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A B S T R A C T

Advancements in acoustic data collection technologies have greatly increased their use in wildlife monitoring, 
but produce large volumes of data that are challenging to analyse manually. Recent developments in machine 
learning, particularly convolutional neural networks (CNNs), have transformed audio data analysis, enabling 
efficient and accurate sound classification. This study aimed to develop a method for automatic classification of 
behaviour (on-water activity, flight, vocalisation and preening) from sounds recorded by free-ranging albatrosses 
of two species equipped with audio recorders during foraging trips at sea. Using a manually labelled seabird 
audio dataset, a general-purpose CNN model was created and trained in Google Colab. The model development 
followed a structured workflow, including audio data preparation, pre-processing, model architecture and 
training, and performance evaluation. The model achieved a global accuracy and precision of 95 % during 
testing. Despite high overall accuracy, performance varied across sound categories due to the inherent 
complexity of distinguishing behaviours, leading to differences in prediction errors. This study primarily focused 
on developing and validating an accessible, high-performance workflow for automated acoustic classification, 
with the goal of enabling future ecological and conservation applications. It demonstrated that a generic web- 
based CNN model can effectively classify seabird sounds into different behaviours with high accuracy. The 
approach provides a foundation for future ecological and conservation applications, enabling detailed explora
tion of activities, interactions and environmental context of seabird behaviour using acoustic data. By leveraging 
open-source platforms and accessible tools, this work provides a foundation for future advancements in auto
mated acoustic monitoring, making it accessible to a diverse range of researchers.

1. Introduction

Sounds emitted by animals reflect their behaviour, physiology and 
activities, offering first-hand insights into different aspects of their lives 
and environmental contexts (Bradbury and Vehrencamp, 2011; Snaddon 
et al., 2013; Tosa et al., 2021). The advent of autonomous recording 
devices has facilitated the sampling of animal soundscapes across 
diverse environments and time scales, allowing for the collection and 
storage of high-quality recordings in a non-intrusive manner (Duarte 
et al., 2021; Laiolo, 2010; Towsey et al., 2014). However, the analysis 
and classification of large volumes of acoustic data present challenges 
due to their inherent complexity and scale (Stowell et al., 2019). The 
importance of following best practices for acoustic data collection and 
analysis, including rigorous documentation, standardised annotation 

protocols, and transparent metadata handling, has been highlighted as 
critical for ensuring reproducibility and data utility (Oswald et al., 
2022). Conventional methods involving auditory and visual inspection, 
as well as manual labelling of audio files, can be labour-intensive and 
error-prone, making the analysis process time-consuming and poten
tially inaccurate (Digby et al., 2013; Stowell et al., 2019; Swiston and 
Mennill, 2009).

Advancements in machine learning, particularly convolutional neu
ral networks (CNNs), have revolutionised the way that audio recordings 
can be analysed and classified (Hershey et al., 2017; Purwins et al., 
2019; Xie et al., 2018). CNNs are deep learning models designed for 
image processing that can be adapted to inspect spectrograms of audio 
recordings, enabling the automated identification and classification of 
sounds with high accuracy (Fairbrass et al., 2019; Salamon and Bello, 
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2017). CNNs automatically extract features from audio files that 
describe their spectral and temporal characteristics such as audio time 
signal, peak frequency and frequency range (Browning et al., 2017; Dai 
et al., 2017). These features are then used by the neural network to 
recognise patterns in the audio data and to sort them into categories 
based on their characteristics. However, the training and optimisation of 
CNNs require large amounts of labelled data and computing resources, 
which is computationally intensive (Aodha et al., 2014; Goëau et al., 
2016; Xie et al., 2018).

In recent years, several web-based interactive computing environ
ments have been developed that offer an accessible and collaborative 
platform for researching and developing deep learning models. One such 
platform is Google’s Colaboratory (hereafter “Colab”), a free, open- 
source, web-based interactive computing environment (Jupyter note
book) that allows computer code written in the Python language to be 
run on Google’s cloud infrastructure, with support for both GPUs 
(Graphical Processing Units) and TPUs (Tensor Processing Units) 
(Dwivedi, 2025). This feature is particularly useful for training large- 
scale machine learning models when processing power on local ma
chines is limited. Colab also comes with pre-installed machine learning 
libraries, including TensorFlow and PyTorch, used in deep learning 
frameworks for automated audio classification (Colaboratory, 2025; 
Dwivedi, 2025; Yalçın, 2020). Additionally, Colab’s notebooks are 
stored in Google Drive, making it easy to share, edit, and collaborate on 
the framework from any location with internet access.

Leveraging Colab’s accessibility and computational power offers a 
promising solution for overcoming the current challenges in classifying 
animal audio data. Animal-borne acoustic recorders provide a novel 
method for remote studies of ecology and behaviour, delivering valuable 
insights into activities and the environmental conditions in which 
sounds are produced (e.g., Clayton et al., 2023; Stowell et al., 2017; 
Thiebault et al., 2019; Wijers et al., 2018). Streamlining and acceler
ating the classification of animal audio data is essential for fully realising 
the potential of acoustic monitoring in ecological, behavioural, and 
conservation research. Developing open-source, cost-effective classifi
cation methods would greatly advance animal acoustic monitoring, 
making it more accessible and user-friendly for a broad range of re
searchers, from experts to non-experts.

Albatrosses are among the most threatened of all bird families, at 
particular risk from incidental mortality (bycatch) in fisheries, climate 
change and invasive species (Dias et al., 2019; Phillips et al., 2016). 
Analyses of acoustic data recorded by albatrosses at sea may therefore 
provide information on threats (e.g. proximity to fishing vessels, oil 
platforms or wind turbines), as well as on activity patterns or social 
interactions (Monier, 2024). With these applications in mind, we 
developed a general-purpose CNN model using Colab to automatically 
classify sounds recorded by free-ranging albatrosses of two species 
during their foraging trips at sea. The model was trained on a manually 
labelled subset of the audio dataset, which served as a benchmark for 
performance evaluation. We then assessed the accuracy and precision of 
the model in classifying seabird sounds. Results are discussed in terms of 
the broader application of this automated approach. As far as we are 
aware, the only previous studies that have analysed acoustic data from 
foraging seabirds were on penguins and cape gannets Morus capensis 
(McInnes et al., 2020; Thiebault et al., 2019b; Thiebault et al., 2021). 
Our study primarily focuses on developing and validating an accessible, 
high-performance workflow for automated acoustic classification, with 
the goal of enabling future ecological and conservation applications. It 
highlights the potential of integrating open-source deep learning plat
forms like Colab with animal-borne audio recorders to enhance our 
understanding of seabird behaviour and ecology. By streamlining the 
classification process, we aimed to make acoustic data analysis more 
accessible and efficient, thus paving the way for broader adoption of 
these methods in wildlife research and conservation.

2. Method

2.1. Audio data acquisition, classification, and dataset preparation

The acoustic datasets used in this study were collected from five 
black-browed albatrosses (Thalassarche melanophris) and five wandering 
albatrosses (Diomedea exulans) during the brood-guard period in austral 
summer 2014/15 at Bird Island (54◦00′S, 38◦03′W), South Georgia. 
Before departing their nests for foraging trips at sea, birds were equip
ped with Edic-mini Tiny Solar-300 h digital audio recorders (TS-Market 
Ltd., Moscow, Russia), IGotU GT-120 GPS loggers (Mobile Action 
Technology Inc., Taiwan), and Intigeo C250 combined light-level geo
locator and immersion sensors (Migrate Technology Lt, Cambridge, 
United Kingdom). The audio recorders were set to record continuously 
at a of 22 kHz sampling rate in mono, using ADPCM compression 
internally to optimise storage. All devices were recovered from the birds 
upon their return to the colony, and the data were downloaded. Audio 
files were exported as standard WAV files.

A total of 436 h of seabird audio recordings made at sea were ana
lysed manually and classified using WavePad Masters Sound Editor 
version 8.04 (NCH Software, Canberra, Australia, 2020). As a first step, 
each file was played in full to verify the presence of audible seabird 
sounds, and the at-sea segments were identified using GPS and immer
sion data. Sounds were identified through auditory examination and 
visual inspection of spectrograms and waveforms. Acoustic cues were 
used to assign labels as follows: flight was recognised by flapping 
sounds, rhythmic hops, or wind rushing over wings during gliding; 
vocalisations were calls, sometimes modulated or repeated, produced by 
the tagged bird or conspecifics; preening was characterised by repetitive 
tapping, scratching, or rubbing noises; and on-water activity included 
splashing, paddling, or water displacement. As studies of albatross 
acoustic behaviour at sea are extremely scarce – with most studies 
limited to colony-based observations (Makris et al., 2002; Pickering and 
Berrow, 2001) - this study represents a pioneering effort in character
ising at-sea acoustic behaviour in these species.

Classifications were manually annotated in an Excel spreadsheet, 
with time-stamped descriptions of the identified sounds (e.g., “splash 
sound during landing” or “repeated tapping consistent with preening”) 
to facilitate cross-referencing with GPS and immersion data. To support 
reproducibility and future reuse, metadata were systematically organ
ised and documented retrospectively alongside the acoustic data, in 
alignment with best-practice recommendations for bioacoustic data 
collection (Oswald et al., 2022). Metadata included device settings 
(sampling frequency, compression format), recording context (at-sea 
versus colony-based segments identified through GPS and immersion 
data), time-stamped annotations of sound events, and behavioural 
classifications. All manual annotations were documented in structured 
spreadsheets linked to each audio file, providing a transparent frame
work for validation and further analysis.

File segments recorded before the first and after the last GPS fix were 
excluded, as they corresponded to time spent at the colony and the study 
focused on capturing seabird sounds at sea. A randomised quality con
trol process was conducted independently by two researchers, who 
classified 10 % of the dataset without access to the original labels. 
Discrepancies were discussed and resolved by consensus to minimise 
subjectivity. For model training, only audio segments that clearly rep
resented one of the four sound categories – flight, preening, vocalisation, 
and on-water activity - were selected from the main dataset (Table 1; 
Fig. 1).

The final set of manually classified audio segments was used to create 
distinct folders corresponding to the four target sound categories, which 
served as the training dataset for the automated seabird sound classifier. 
This approach ensured that the training data did not include overlapping 
seabird sounds, which was identified as a potential issue during the 
manual analysis phase. Although audio segments containing only one 
type of seabird sound were scarce, it was possible to create a subset 
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containing 8.2 h of ‘pure’ sounds to train and test the model, constituting 
2 % of the entire dataset. This curated subset was considered suitable for 
supervised training, as it reduced within-class variability and eliminated 
background interference. To determine the ideal segment length for 
model training, clips of 1, 5, and 10 s were tested within the framework. 
An empirical comparison showed that 1-s segments yielded the highest 
classification accuracy and lowest validation loss, likely due to reduced 
variability within individual clips, offering the best balance between 
temporal resolution and model performance. The segmentation process 

produced a total of 29,584 audio clips, which were organised into four 
labelled category folders within Google Drive.

The original Colab audio classifier framework was designed to 
handle datasets with 10 distinct sound categories and approximately 
8000 audio samples (Herring, 2018). For the present study, the frame
work was adapted to accommodate a smaller number of biologically 
meaningful classes, each supported by a larger and well defined training 
set. This modification aimed to build a focused seabird sound library 
that represented the principal behavioural sound categories identified 
during manual classification, enabling the development of a robust and 
generalisable model for classifying bird-borne audio. By reducing the 
number of classes, we intended to improve classification performance 
and facilitate the future application of the model in ecological and 
behavioural studies.

2.2. Model development

The development of the automated seabird sound classifier using a 
CNN architecture involved a multi-step process comprising audio data 
preparation, pre-processing, model training, and performance evalua
tion. The CNN model was built in Colab, leveraging components from 
Colab’s Audio Classifier Tutorial (Herring, 2018) and TensorFlow’s Simple 
audio recognition: Recognizing keywords (TensorFlow, 2020), with 

Table 1 
Acoustic categories and descriptions of seabird sounds identified from bird- 
borne audio recordings of wandering and black-browed albatrosses at sea.

Sound category Acoustic description

Flight Flapping sounds during wing beats, hopping noises, and wind 
rushing over wing surfaces during gliding flight.

Preening Repetitive tapping, scratching, or rubbing sounds associated with 
feather maintenance and grooming behaviours.

Vocalisation Calls emitted by the tagged bird or conspecifics; may include 
individual or group calling events.

On-water 
activity

Splashing, paddling, water displacement, and intermittent 
submersion sounds, often linked to bathing, diving, or surface 
feeding attempts.

Fig. 1. Examples of the four behavioural sound categories used for model classification: (a) Flight, (b) Preening, (c) Vocalisation, and (d) On-water activity. Each 
panel shows a 10-s segment recorded from a foraging wandering albatross, with a spectrogram (top) and waveform (bottom). In the spectrograms, the x-axis 
represents time (seconds), the y-axis represents frequency (kHz), and colour indicates the amplitude (dB) of the sound signal, with brighter colours denoting 
higher intensity.
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necessary modifications to suit the seabird sound dataset (see Supple
mentary Information).

2.2.1. Step 1 - audio data preparation
Labelled audio clips from the seabird dataset were imported into the 

Colab environment. The dataset was split into training, validation, and 
test sets in an 80:10:10 ratio, consistent with standard practices in deep 
learning for audio classification tasks (Gupta et al., 2021; Sun et al., 
2022). This split resulted in 23,668 clips for training, and 2958 each for 
validation and testing. Given the limited number of sound classes and 
the need for sufficient samples per class to support robust training, this 
split provided a sufficient training size to ensure model convergence 
without overfitting. After splitting, the dataset was carefully curated to 
exclude overlapping sound categories.

2.2.2. Step 2 - audio data pre-processing
During model training, audio waveforms were transformed dynam

ically into spectrograms using a short-time Fourier transform (STFT) 
(Fairbrass et al., 2019). Audio files were resampled to 22,050 Hz to 
ensure compatibility with TensorFlow/Keras audio processing pipelines, 
which are optimised for this standard sample rate in deep learning 
workflows. This slight upsampling (~0.23 %) does not affect the effec
tive spectral resolution (Nyquist ~11 kHz) but ensures consistent frame 
alignment during spectrogram computation, which is a common best 
practice in audio classification (Ibrahim, 2024; Velayudham, 2020). 
Audio files were then segmented into one-second clips, consistent with 
the optimised chunk length determined during pre-processing. Spec
trograms, providing a 2D representation of the audio signal’s frequency 
and amplitude over time, were computed using a 255-sample window, 
following TensorFlow’s STFT convention of odd-length windows for 
symmetric centring, which also produced near-square spectrograms 
(171 × 129) optimised for CNN input (TensorFlow, 2020). The magni
tude of the STFT was extracted without applying any filtering or log- 
scaling prior to model input. These parameters were selected to pro
duce near-square image dimensions compatible with CNN input re
quirements and reflect common practice in audio classification pipelines 
(Hershey et al., 2017; Piczak, 2015). While an exhaustive parameter 
search was not conducted, preliminary evaluations confirmed that these 
settings supported strong model performance and convergence during 
training. This conversion enabled the model to learn spectral and tem
poral features essential for accurate sound classification.

2.2.3. Step 3 - model architecture and training
The CNN model was developed using the TensorFlow framework, 

consisting of 10 sequential layers designed for data pre-processing, 
feature extraction, and classification (Fig. 2). Full implementation de
tails, including model architecture, data input format, and training 
pipeline, are openly available in the project’s GitHub repository: htt 
ps://github.com/SeabirdSoundscapes/Seabird-Audio-Classifier.

The initial Keras resizing and normalisation layers downsampled the 
input data and standardised pixel values, enhancing training speed and 
accuracy (Lamons et al., 2018; TensorFlow, 2020). The subsequent 
convolutional layers extracted spatial features from the spectrograms, 
while max pooling layers reduced data dimensionality, retaining 
essential information (Lecun et al., 2015). To mitigate overfitting, 
dropout layers were applied, and flatten layers transformed the multi- 
dimensional data into a one-dimensional feature vector for final classi
fication (Hinton et al., 2012; Jeong, 2019). Fully-connected dense layers 
then interpreted these features to generate classification outputs (Rawat 
and Wang, 2017; Simonyan and Zisserman, 2015). The model was 
trained over 10 epochs using the Adam optimiser and a categorical 
cross-entropy loss function, as preliminary tests over 20 epochs showed 
no consistent improvements in validation accuracy and indicated early 
signs of overfitting. Backpropagation adjusted the model parameters by 
calculating gradients of the loss function, enhancing learning efficiency 
(Rawat and Wang, 2017). The Adam optimiser dynamically adapted the 
learning rates, which is particularly useful for handling large datasets 
(Dai et al., 2017). The categorical cross-entropy loss function quantified 
the difference between predicted and actual data distributions, further 
refining the model’s accuracy (Purwins et al., 2019).

2.2.4. Step 4 - model performance evaluation
Model performance was monitored throughout training, and after 

each epoch using several metrics for both the training and validation 
datasets: accuracy (the proportion of correctly classified audio clips), 
loss (the difference between predicted and true outputs, calculated using 
the cross-entropy algorithm), validation accuracy (accuracy measured 
on the validation set), and validation loss (loss computed on the vali
dation set). After training, the model was run on the labelled test dataset 
to evaluate its performance. A confusion matrix table was produced to 
show how many audio clips were misclassified (Salamon and Bello, 
2017). To assess the model’s performance both globally and on each 
sound class, four metrics were calculated: (1) accuracy (proportion of 
the number of correct predictions over the number of audio clips ana
lysed); (2) precision (proportion of correct predictions over the total 

Fig. 2. Automated framework for the seabird sounds classifier.
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number of positive predictions); (3) sensitivity or recall (proportion of 
correct predictions over the number of actual category occurrences); (4) 
specificity (proportion of actual negative predictions over the number of 
actual negative occurrences). These metrics were calculated using the 
following formulae: accuracy = (TP + TN)/(TP + TN + FP + FN), 
precision = TP/(TP + FP), sensitivity = TP/(TP + FN), specificity = TN / 
(TN + FP), where TP stands for true positives, TN for true negatives, FP 
for false positives and FN for false negatives. An additional metric, here 
defined as misclassification rate, was calculated to determine the pro
portion of the number of audio clips belonging to one category that were 
misclassified as another. Misclassification rate = xFN/ TP + xFN, where 
xFN stands for specific category false negative.

3. Results

The accuracy and loss function metrics were computed on both the 
training and validation datasets after each epoch. The model accuracy 
and model loss function were plotted as functions of the epoch number. 
The resulting training and validation accuracy curves (Fig. 3a) indicate 
that the model rapidly improved its accuracy during the first few epochs 
of training. By epoch 9, the training accuracy reached approximately 95 
%, while the validation accuracy stabilised at around 93 %. The training 
loss function steadily decreased over the course of training, while the 
validation loss initially decreased but started to plateau after epoch 4 
(Fig. 3b).

The model correctly classified the withheld test set with global ac
curacy and precision scores of 95.0 %, sensitivity of 94.6 %, and spec
ificity of 98.2 %. The confusion matrix (Fig. 4) indicates that these 
metrics varied slightly across sound categories. Flight demonstrated the 
highest performance among the four categories, with accuracy of 99.7 
%, precision of 100.0 %, sensitivity of 99.6 %, and specificity of 100.0 %. 
In contrast, on-water activity showed the lowest scores, except for 
sensitivity, with accuracy of 95.2 %, precision of 89.9 %, sensitivity of 
96.5 %, and specificity of 94.6 % (Table 2). Preening sounds exhibited 
the highest misclassification rate, with 11.1 % of sounds misclassified as 
another category (8.5 % as on-water activity and 2.7 % as vocalisations). 
In contrast, on-water activity sounds had the lowest misclassification 
rates, with a total of 3.6 %, including 3.0 % misclassified as vocalisations 
and 0.5 % as preening (Table 3).

4. Discussion

This work demonstrates that it is possible to train a generic open- 

source web-based automated audio classification model to identify 
sounds collected using bird-borne audio recorders that are associated 
with different seabird behaviours, with high performance scores. The 
model performance, as shown by the accuracy and loss curves, indicates 
that the model steadily increased its accuracy scores over the first few 
epochs, reaching >90.0 % accuracy on both the training and the vali
dation datasets after epoch 4. By epoch 8, training accuracy was 95.0 %, 
while validation accuracy dropped. This suggests that while the model 
generalised well to the data, the learning rate started to slow down after 
epoch 4 and further training would probably not lead to significant 
improvements in the accuracy metrics (Rawat and Wang, 2017).

Corroborating this conclusion, the training loss scores continued to 
decrease after epoch 4, whereas the validation loss scores started to 
plateau and then increased after epoch 8. This was probably due to 
overfitting after epoch 4, reducing the ability of the model to generalise. 
Model overfitting and reduced generalisation can be addressed by 
stopping the training process after a certain number of epochs or when 
the validation loss stops improving (Brownlee, 2018; Khan et al., 2018). 
However, regularisation techniques such as L1 (also known as Lasso 
regression), L2 (ridge regression), or dropout may also improve model 
performance during training without the need for early stopping (Hinton 
et al., 2012; Rawat and Wang, 2017; Srivastava et al., 2014). Adjusting 
the learning rate and fine-tuning of hyperparameters such as the number 
of layers, number of nodes in each layer, activation functions, optimiser, 
and loss function can also improve model training efficiency (Alto, 2019; 
Radhakrishnan, 2017; Simonyan and Zisserman, 2015).

Training convergence occurred rapidly, with validation accuracy 
stabilising by epoch 8. To evaluate the potential benefits of longer 
training, the model was also run for 20 epochs. Although training ac
curacy continued to increase, validation accuracy fluctuated and vali
dation loss showed intermittent peaks after epoch 10, indicating 
unstable generalisation and early signs of overfitting. Based on these 
results, limiting training to 10 epochs provided the optimal balance 
between performance and computational efficiency. Each epoch 
required approximately 9–10 s on the GPU provided by the Colab 
environment (NVIDIA Tesla T4 GPU), and the full training process was 
completed in under two minutes. These results highlight the model’s 
computational efficiency and accessibility, demonstrating that effective 
training can be achieved using freely available cloud-based resources. 
This low barrier to entry reinforces the model’s value as a practical, 
open-source tool for researchers working in ecology and conservation.

Future work could investigate how alternative training/validation/ 
test splits, such as a 50:50 configuration, influence model convergence 

Fig. 3. (a) training and validation accuracy curves and (b) training and validation loss curves as functions of the number of epochs during training of a model to 
classify behaviour based on audio data from foraging albatrosses. The horizontal axis represents the epochs, indicating the number of complete passes through the 
training dataset, while the vertical axis shows the accuracy values (in percentage) for the accuracy curves and the loss values (mean squared error) for the loss curves.
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and generalisation. Such comparisons may provide insights into the 
minimum training data requirements and offer further guidance for 
researchers applying similar classification models under data-limited 
conditions.

The model achieved high overall performance during testing, with 
accuracy and precision scores of 95.0 %, sensitivity of 94.6 %, and 
specificity of 98.2 %. These metrics indicate that the model effectively 
captured key features of the audio dataset. However, performance var
ied across different seabird sound categories (behaviours). Notably, the 

on-water activity category had the lowest precision (89.9 %) despite an 
overall high accuracy of 95 %. This suggests that while the model could 
generally classify on-water activity sounds correctly, it occasionally 
struggled with precise identification, though misclassifications were 
relatively infrequent. Misclassification rates varied among classes; for 
example, on-water activity was occasionally mistaken for vocalisation 
(3.0 %) and preening (0.5 %). Similarly, flight sounds were sometimes 
misclassified as on-water activity (3.6 %) or vocalisation (0.4 %), and 
vocalisation was occasionally confused with on-water activity (4.6 %) 
and preening (0.4 %). The preening class, in particular, showed the 
highest misclassification rate, being confused with on-water activity 
(8.5 %) and vocalisation (2.7 %). These variations highlight the chal
lenges in distinguishing overlapping behaviours and acoustic signals in 
recordings of seabirds.

These results likely reflect the natural overlap of different behaviours 
performed by the albatrosses at sea. Seabirds often vocalise while 
feeding, interacting with conspecifics on the water, or during brief 
flights and landings (Monier, 2024; Thiebault et al., 2019). Similarly, 
preening typically occurs at the sea surface, where vocalisations and 
splashing sounds are also present. Despite efforts to select only “pure” 
sound segments, some audio labelled as a single category may have 
contained multiple sound types, contributing to misclassifications. 

Fig. 4. Performance of an automated seabird sound classifier applied to test data to identify behaviour of foraging albatrosses. The confusion matrix shows the 
number of correctly classified audio clips (true positives - TP) for each sound category on diagonal, the number of audio clips incorrectly classified as true positives 
(false positives - FP) per column for each category (excluding the value on diagonal), and the number of audio clips incorrectly classified as true negatives (false 
negatives - FN) per row for each category (excluding the value on diagonal).

Table 2 
Automated seabird sound classifier model performance metrics calculated on 
the test dataset for each seabird sound category: Accuracy = (TP + TN)/ (TP +
TN + FP + FN), Precision = (TP/ (TP + FP)), Sensitivity or Recall = (TP/ (TP +
FN)) and Specificity = (TN / (TN + FP)).

Sound 
category

Accuracy 
(%)

Precision 
(%)

Sensitivity/ 
Recall (%)

Specificity 
(%)

Flight 99.7 100.0 99.6 100.0
Vocalisation 96.6 96.2 95.1 97.6
Preening 97.8 98.1 89.3 99.6
On-water 95.2 89.9 96.5 94.6

Table 3 
Behaviour misclassification rates by seabird sound category indicating the proportion of audio clips belonging to one category that were misclassified as another 
category (xFN/ TP + xFN, where xFN).

Sound category Correct predictions Misclassification rate (%) True category misclassified as (%):

On-water Flight Vocalisation Preening

On-water 957 3.6 – 0 3.0 0.5
Flight 242 4.0 3.6 – 0.4 0
Vocalisation 1123 4.9 4.6 0 – 0.4
Preening 476 11.1 8.5 0 2.7 –
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Further refinement of the dataset or the application of more sophisti
cated model architectures may be required to improve classification 
accuracy. Although this study addressed a four-class classification task, 
the combination of natural background noise, overlapping behaviours, 
and environmental variability introduced meaningful complexity. Un
like controlled laboratory datasets, these bird-borne field recordings 
capture authentic ecological conditions, where vocalisations, water in
teractions, and ambient sounds frequently co-occur. This ecological re
alism strengthens the study’s relevance for applied conservation but also 
presents inherent challenges for automated classification.

4.1. Automated seabird audio classifier: limitations and opportunities

The dataset used in this study was limited in terms of complexity, but 
its information resolution could be improved by refining the labels of the 
samples. The sound category ‘flight’ encompasses multiple modes of 
movement, including take-off, landing, gliding and wing beats during 
sustained flight, and dynamic soaring. Additionally, complementary 
sensors such as accelerometers and magnetometers can provide valuable 
context for distinguishing flight modes. For instance, accelerometers are 
effective at identifying flapping and soaring through kinematic signals, 
while magnetometers can reveal subtle variations in dynamic soaring 
patterns, such as heading adjustments and angular velocity around the 
yaw axis (Conners et al., 2021). Integrating audio data with these sen
sors could enhance classification accuracy and provide a more 
comprehensive understanding of albatross flight dynamics.

Vocalisation includes calls emitted by the tagged bird, multiple 
conspecifics or possibly other albatross species. On-water activity in
cludes sounds caused by diving, splashing, bathing and potential 
feeding. Preening sounds vary from gentle feather grooming to loud 
tapping and scratching sounds. Besides the bird-specific sound cate
gories targeted in this study, other aspects of seabird soundscapes hold 
ecological and behavioural importance which could be explored in 
future investigations. Environmental (e.g., wind, rain, storm), anthro
pogenic (e.g., boat engine, off-shore wind farm, human voice) and 
sounds made by other animals (biophony), provide context to important 
aspects of seabird life, helping to identify environmental interactions 
and potential threats (Darby et al., 2024; Dias et al., 2019; Phillips et al., 
2016). However, although refining audio data resolution has the po
tential to increase the range of information that can be extracted from 
seabird soundscapes, this requires considerable effort to annotate and 
label the audio files. This drawback can be addressed by combining the 
use of supervised and unsupervised deep learning models to identify 
similar features and patterns in unlabelled audio datasets and to group 
audio samples together in clusters based on specific parameters 
(Purwins et al., 2019; Sethi et al., 2020).

The seabird audio classifications produced in this study have a 
temporal resolution of 1 s, making them a valuable dataset for future 
investigations. While activity budgets can already be determined using 
immersion data (flights and landings) or accelerometer data (Conners 
et al., 2021), the addition of acoustic data provides complementary in
formation. This approach not only allows for the calculation of time- 
activity budgets but also offers insights into the behavioural context of 
sound production, such as vocalisations or water interactions, which are 
not captured by immersion or accelerometer data alone. Such detailed 
understanding is an important step toward exploring the energetics and 
communication strategies of free-ranging individuals (Thiebault et al., 
2021). By matching the audio data classifications with other data 
streams such as GPS and saltwater immersion it is possible to examine 
the distribution and rate of occurrence of seabird sounds across different 
scales of time and space, providing the opportunity to pinpoint hotspots 
of specific acoustic behaviours. It is also possible to calculate the dura
tion of activity bouts and determine the potential drivers. By examining 
the relationship between the audio data classifications and environ
mental data layers, it is possible to predict the effects of environmental 
factors on seabird sounds distribution and how the investigated 

relationships may change over time and under different scenarios 
(Frankish et al., 2020).

The results of this study demonstrate that it is possible to effectively 
resolve bottlenecks in animal acoustic data classification through the 
utilisation of advanced open-source machine learning technologies. 
Such an approach not only enhances the understanding of animal sounds 
but also extends their applications to the classification of entire sound
scapes, thereby providing insights into the surrounding environment. As 
demonstrated in Sethi et al. (2020), general-purpose audio classifier 
Convolutional Neural Network (CNN) models can be tailored to identify 
anomalous events within large datasets over extended periods in an 
unsupervised manner. This approach allows for the extraction of 
detailed information about the natural environment based on its 
soundscape. These advanced models are capable of processing larger 
and more diverse acoustic datasets, thereby enhancing the potential of 
automated classifier applications for biodiversity and ecological moni
toring across various scales. However, it is worth noting that the audio 
classifier developed by Sethi et al. was based on the VGG architecture 
and trained using the TensorFlow framework, an open-source machine 
learning framework developed by the Google Brain team (Simonyan and 
Zisserman, 2015). Such powerful open-source deep learning resources 
hold promise as fundamental technologies for extensive monitoring 
efforts.

Finally, this automated seabird sound classifier was developed with 
the benefit of access to a free open-source web-based machine learning 
research environment, without the need for using a local machine with 
high computational power or prior specialised technical knowledge on 
CNNs by the user. Readily accessible tutorials on how to develop CNN 
models for audio classification in Colab were used extensively during the 
development of this study, highlighting the great importance that open 
source and open access information resources have in advancing sci
entific research.

5. Conclusion

Acoustic monitoring of wildlife using animal-borne instrumentation 
is a relatively new and as yet under-exploited tool with potentially wide 
applications in ecology, animal behaviour and conservation research, 
facilitating access to a wealth of information on biodiversity and the 
surrounding environment. After data collection, the ability to analyse 
and classify audio data correctly and efficiently is arguably the most 
crucial step in the process. Automated audio classification systems such 
as deep learning and machine learning models have the capacity to 
process large volumes of audio data quickly and more accurately 
compared to traditional manual audio analysis and classification 
methods. This study demonstrated that a generic web-based deep 
learning CNN model designed to classify audio data can be trained to 
classify seabird sounds accurately. It also highlighted the importance of 
access to free open-source information resources. The automatically 
classified seabird sounds produced in this work can form the basis for a 
series of subsequent investigations using acoustic-based calculation of 
time-activity budgets, and the spatial distribution and environment 
drivers of sounds produced at sea. Furthermore, machine learning and 
deep learning-based automated audio classifiers serve as tools to explore 
broader soundscapes across various scales, offering opportunities to 
uncover diverse aspects of animal lives, including behaviour, in
teractions with the environment, and exposure to specific threats.

Future work could extend this workflow by integrating automated 
signal detection to identify and extract candidate audio segments con
taining seabird sounds. Such an approach would enable full automation 
of the pipeline, from data curation to classification, using the same open- 
source machine learning framework described in this study.
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