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 A B S T R A C T

The Earth’s main geomagnetic field arises from the constant motion of the fluid outer core. By assuming that the 
field changes are advection-dominated, and that diffusion only plays a minor role, the fluid motion at the core 
surface can be related to the secular variation of the geomagnetic field, providing an observational approach 
to understanding the motions in the deep Earth. The majority of existing core flow models are global, showing 
features such as an eccentric planetary gyre, with some evidence of rapid regional changes. By construction, the 
flow defined at any location by such a model depends on all magnetic field variations across the entire core–
mantle boundary: because of this nonlocal dependence of the flow on the magnetic field, it is very challenging 
to interpret local structures in the flow as due to specific local changes in magnetic field. Here we present an 
alternative strategy in which we construct regional flow models that rely only on local secular changes. We use 
a novel technique based on machine learning termed Physics-Informed Neural Networks (PINNs), in which we 
seek a regional flow model that simultaneously fits both the local magnetic field variation and dynamical 
conditions assumed satisfied by the flow. Although we present results using the Tangentially Geostrophic 
flow constraint, we set out a modelling framework for which the physics constraint can be easily changed 
by altering a single line of code. After validating the PINN-based method on synthetic flows, we apply our 
method to the CHAOS-8.1 geomagnetic field model, itself based on data from Swarm. Constructing a global 
mosaic of regional flows, we reproduce the planetary gyre, providing independent evidence that the strong 
secular changes at high latitude and in equatorial regions are part of the same global feature. Our models also 
corroborate regional changes in core flows over the last decade. In our models, we find that the azimuthal flow 
under South America has changed sign quasi-periodically, with a recent sign change in 2022. Furthermore, 
our models endorse the existence of a dynamic high latitude jet, which began accelerating around 2005 but 
has been weakening since 2017.
. Introduction

The Earth’s main magnetic field, which is generated by a self-
ustaining geodynamo arising from fluid motions in the Earth’s core
Bullard, 1950), exhibits fluctuations on timescales of years to mil-
ennia and longer (Constable and Constable, 2023). Changes in the 
eomagnetic field on timescales of years to millennia are termed Sec-
lar Variation (SV) (Jackson and Finlay, 2015). The geomagnetic field 
as been measured by networks of ground-based observatories since 
837 (Macmillan, 2007), and supplemented by continuous satellite 
easurements since 1999 (Jackson and Finlay, 2015; Friis-Christensen 
t al., 2006; Olsen and Floberghagen, 2018; Zhang, 2023; Jiang et al., 
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2024). Changes in the geomagnetic field can have critical impacts on 
both industry and scientific exploration in a diverse range of disciplines, 
such as navigation, satellite operations and the protection of the Earth 
from space weather. By mapping the outer core flow that generates the 
SV, the dynamics and properties of the core can be explored, and SV 
forecasts such as the candidate models of IGRF-13 (Alken et al., 2021) 
constructed.

The typical approach to map core flows is to use observations from 
satellites, observatories and other surveys to construct global geomag-
netic field models using spherical harmonics, which can be downward-
continued to the Core–Mantle Boundary (CMB). The inversion of the 
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SV to recover motions on the outer core is under-determined, and so 
additional assumptions must be included. A widely used assumption is 
that of frozen flux (Roberts and Scott, 1965), where on sufficiently short 
timescales, magnetic diffusion can be considered negligible. Under this 
simplification, the magnetic field lines are ‘frozen’ into packets of 
moving liquid at the surface of the outer core, so that the field becomes 
a tracer for the flow (Bloxham and Jackson, 1991). However, even 
with this assumption, the problem of non-uniqueness remains (Backus, 
1968). There are still more unknown components of the flow than 
the number of equations describing them. This means additional con-
straints on the flow are required in order to reduce the fundamental 
non-uniqueness. Various flow assumptions have been used in previous 
studies, including steady flows (Gubbins et al., 1982), toroidal only 
flow (Whaler, 1980), tangential geostrophy (TG) (Le Mouël, 1984; Rau 
et al., 2000), quasi-geostrophic flow (Pais and Jault, 2008) and helical 
and columnar flow (Amit and Olson, 2004). Non-uniqueness is further 
reduced by the large scale flow assumption, in which small scale flow 
structures are penalised (e.g. Bloxham, 1988).

Spherical harmonics are also used to create these global flow mod-
els, and underpin most studies to date. Results from previous global 
outer core flow inversions, as well as numerical simulations, reveal 
an eccentric, anticyclonic, planetary gyre (Pais and Jault, 2008; Gillet 
et al., 2022; Kloss and Finlay, 2019). This gyre is a planetary-scale 
circulation pattern, travelling west under the Atlantic, then south under 
Asia, and then westwards near the North Pole. Although this is a 
global pattern, there are several regional features that are of specific 
interest. Firstly, there is evidence for a localised jet under the Bering 
strait, which has been strengthening since 2005 and is associated 
with a strong change in the SV at high northern latitudes (Livermore 
et al., 2017). Additionally, multiple studies, such as Whaler et al. 
(2022) and Li et al. (2024), have observed changes in the azimuthal 
flow direction in areas in the equatorial region, particularly beneath 
Indonesia and Central America. These may be a result of hydromagnetic 
waves producing changes on interannual timescales (Gillet et al., 2022), 
and many of these sign changes may be associated with geomagnetic 
jerks - a phenomenon in which the SV changes rapidly, sometimes in a 
spatially localised manner (Brown et al., 2013).

In contrast to global core flow inversions, we adopt a local approach 
in which flows are inferred from a regional realisation of a global 
geomagnetic field model, presenting an independent method to check 
global flow analysis. This is important, as a large-scale global inversion 
will act to interpolate multiple local features into one larger one. For 
example, a global approximation to westward drift in the Atlantic 
and flow into the polar regions would be a gyre that connects these 
regions, and so the use of regional inversions could test how robust 
these features are. Additionally, in a global flow analysis, any point 
on the CMB depends non-locally on all the points in the model, but 
in a local flow inversion the same point would only depend on the 
other points in the region. As the data coverage of the Earth is spatially 
uneven, especially at the poles, a regional methodology would probe 
the reliability of local features in these areas, ensuring they are not an 
artefact of a global inversion. This would allow for regional features 
to be studied in more detail, without the uncertainty of coupling to 
neighbouring regions.

Local core flow inversions have been attempted in two previous 
studies with mixed results. Rogers (2022) studied regional variations 
using spherical Slepian functions. This technique produced better sepa-
ration of SV at the Earth’s surface compared to spherical harmonics but 
reliable local flow separations at the CMB were not achieved. Schwaiger 
et al. (2023) presented a local core flow inversion methodology based 
on pointwise inversion, which was able to reproduce the main features 
found in global core flow studies, but it was found that additional 
smoothing was required to prevent unreliable re-construction of small-
scale flows. They also found that their results heavily depended on what 
prior they used to reduce the non-uniqueness.
2 
This work introduces a novel approach to infer local flows, em-
ploying recent advancements in machine learning through the use of 
Physics-Informed Neural Networks (PINNs). Machine learning refers to 
a set of statistical techniques to leverage data in order to undertake 
a task, without being explicitly programmed to do so (Armstrong and 
Fletcher, 2019). This allows the user to extract knowledge and draw 
inferences from data (Jordan and Mitchell, 2015). Neural Networks 
(NN) are a machine learning technique, consisting of layers of artificial 
neurons that can process information. PINNs, first proposed in Raissi 
et al. (2019), are a class of neural network that use mathematical 
descriptions of physical laws as constraints in order to solve forward 
and inverse problems. PINNs have been used in a diverse range of fields 
such as fluid mechanics (Raissi et al., 2020), medicine (Arzani et al., 
2021), nuclear physics (Schiassi et al., 2022) and seismology (Chen 
et al., 2022). PINNs have been recently used in core flow and length 
of day analysis by Li et al. (2024), albeit in a global flow inversion 
framework, rather than the local approach that we adopt in this study.

The methodology presented in this work takes secular variation 
from regional latitude–longitude boxes from the global geomagnetic 
field model CHAOS-8.1 as input, and then outputs a flow that both 
reproduces the input secular variation and satisfies an additional flow 
constraint. We aim to establish a framework that can be used for 
any flow assumption, which we illustrate here using the TG flow 
constraint. We do not rely on any prior information other than the 
physics constraint. The methodology and validation is described in 
Section 2. Results, including local flow analysis as well as a global flow 
model constructed from a mosaic of regional models, are presented 
in Section 3. All of these results are discussed in Section 4, with our 
conclusions in Section 5.

2. Method

2.1. Mathematical framework

We model the Earth’s core as a sphere, described using spherical 
coordinates (𝑟, 𝜃, 𝜙), and assume that the flow within it obeys a non-
penetration boundary condition at the edge of the core such that 𝑢𝑟 = 0
at the CMB. Assuming frozen flux, the radial magnetic field, 𝐵𝑟, can 
be related to the outer core surface horizontal fluid movement via the 
radial component of the induction equation just below the CMB. This 
is written as 
𝜕𝐵𝑟
𝜕𝑡

= −∇𝐻 ⋅ (𝑢𝑢𝑢𝐵𝑟), (1)

in which 𝑢𝑢𝑢 = [0, 𝑢𝜃 , 𝑢𝜙] is the flow, which is sought in the inversion 
methodology, and ∇𝐻  is the horizontal gradient operator.

The tangential geostrophic flow assumption arises from considering 
the force balance at the top of the Earth’s core (Le Mouël, 1984). If 
the force balance is dominated by the Coriolis (rotational) and pressure 
forces, then the Navier–Stokes equation for the motion of the fluid 
reduces to 
2𝜌(𝛺𝛺𝛺 × 𝑢𝑢𝑢)𝐻 + ∇𝐻𝑝 = 0, (2)

where 𝜌 is the density of the liquid outer core, 𝛺𝛺𝛺 is the rotation vector 
of the Earth, and 𝑝 is the pressure of the fluid.

Taking the horizontal divergence of the cross product of Eq.  (2) and 
the radial unit vector 𝑟̂𝑟𝑟 gives 
∇𝐻 ⋅ (𝑢𝑢𝑢 cos 𝜃) = 0, (3)

which can be written as 
tan 𝜃
𝑟

𝑢𝜃 − ∇𝐻 ⋅ 𝑢𝑢𝑢 = 0, (4)

that defines the TG constraint (Le Mouël, 1984; Amit and Pais, 2013). 
This additional constraint modifies Eq. (1) to 
𝜕𝐵𝑟 = −𝑢𝑢𝑢 cos 𝜃 ⋅ ∇𝐻

(

𝐵𝑟
)

. (5)

𝜕𝑡 cos 𝜃
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Fig. 1. Schematic of the PINN used in this study, where 𝜃, 𝜙 are co-latitude and longitude, 𝑇  and 𝑃  are the toroidal and poloidal scalars, and 𝑢𝜃 and 𝑢𝜙 are the 
components of the horizontal flow. Yellow indicates inputs to the network, the two parallel FC-NNs are blue and green, loss functions in white, inputs to the loss 
function in orange, and the outputs are cyan.
It was noted by Backus and Le Mouël (1986) that this flow is non-
unique on contours of 𝐵𝑟∕ cos 𝜃, as well as in regions bounded by 
contours of 𝐵𝑟∕ cos 𝜃 that do not cross the equator, meaning care must 
be taken when interpreting flows in these areas.

In spherical coordinates, the total flow 𝐮 can be decomposed into 
toroidal and poloidal components 
𝑢 = ∇ × 𝑇 (𝜃, 𝜙)𝐫 + ∇𝐻 (𝑟𝑃 (𝜃, 𝜙)), (6)

whose horizontal components can be written (Holme, 2015), 

𝑢𝑇 =
(

1
sin 𝜃

𝜕𝑇
𝜕𝜙

,− 𝜕𝑇
𝜕𝜃

)

, (7)

𝑢𝑃 =
(

𝜕𝑃
𝜕𝜃

, 1
sin 𝜃

𝜕𝑃
𝜕𝜙

)

. (8)

Therefore, in our flow inversion we seek toroidal (𝑇 ) and poloidal (𝑃 ) 
scalar functions which define the flow.

2.2. Neural networks

Our inversion methodology consists of two Fully Connected Neural 
Networks (FC-NNs) working in parallel: one to describe the toroidal 
scalar T  and the other to describe the poloidal scalar P. A schematic 
for this is shown in Fig.  1. FC-NNs consist of layers of nodes, organised 
into an input layer, multiple hidden layers, and an output layer (Jordan 
and Mitchell, 2015). Each of these nodes are connected to each other 
and have an associated weight and bias, and the output of each node is 
computed by some non-linear function of the input and the weight. This 
non-linear function is called the activation function, and the weights 
and biases are adjusted during a process termed training (Goodfellow 
et al., 2016). Once the network weights are determined, the flows are 
then described using Eqs. (7) and (8).

While we could train a network without any flow assumptions, 
here we use an additional physics constraint to enforce TG. This takes 
place solely in the training stage, which is done by minimising a 
loss term consisting of a data loss, which aims to implement Eq. (1), 
and a physics-based loss, which aims to implement Eq. (4). In this 
way, we fit both to the data and to the underlying physics. This is 
so we can establish a framework wherein different flow assumptions, 
such as Toroidal or Helical flow, can be swapped in and out using a 
single line of code. All the loss terms are implemented by defining a 
derived quantity from the network and a corresponding target, with 
the loss value determined by the Mean Squared Error (MSE) between 
the quantity and the target. The total loss, 𝐿𝑇𝑂𝑇𝐴𝐿 is defined by 
𝐿TOTAL = 𝐿SV + 𝜆𝐿FC, (9)

which consists of two loss terms:
3 
• The Data Loss (𝐿SV): 

𝐿SV = 1
𝑁

∑

𝑖

[

𝜕𝐵𝑟
𝜕𝑡 𝑃𝐼𝑁𝑁

−
𝜕𝐵𝑟
𝜕𝑡 𝐶𝐻𝐴𝑂𝑆

]2
|

|

|

|𝜃𝑖 ,𝜙𝑖

(10)

where 𝑁 is the number of points, and the SV calculated from the 
horizontal flows is 

𝜕𝐵𝑟
𝜕𝑡 𝑃𝐼𝑁𝑁

= −1
𝑟

( 𝑢𝜙
sin 𝜃

𝜕𝐵𝑟
𝜕𝜙 𝐶𝐻𝐴𝑂𝑆

+ 𝑢𝜃
𝜕𝐵𝑟
𝜕𝜃 𝐶𝐻𝐴𝑂𝑆

)

−𝐵𝑟𝐶𝐻𝐴𝑂𝑆
(∇𝐻 ⋅𝑢𝑢𝑢),

(11)

• and the TG Flow Loss (𝐿FC): 

𝐿FC = 1
𝑁

∑

𝑖

[

∇𝐻 ⋅ 𝑢𝑢𝑢 −
( tan 𝜃

𝑟

)

𝑢𝜃
]2

|

|

|

|𝜃𝑖 ,𝜙𝑖
(12)

where 𝜃𝑖, 𝜙𝑖 are the pre-determined set of latitude–longitude grid points 
on which we impose the constraints. We use the same grid to constrain 
the data and the physics. For the data constraint, the target is the SV 
from CHAOS-8.1, whereas in the flow constraint the target is zero. A 
scaling analysis of typical magnitudes of the two terms suggests a value 
of 𝜆 = 1000 for the weighting factor, which is applied to 𝐿𝐹𝐶 in Eq.  (9) 
so that both terms are (1). This is desirable so that one loss term is 
not more important than the other.

The networks are trained using the optimisation method Adam
(Kingma and Ba, 2017), which updates both networks simultaneously. 
The PINN takes in a (𝜃, 𝜙) grid of points, at a radius of 3485 km, 
and then analytically computes the toroidal and poloidal scalar value 
at each of those points, as well as the derivatives. These derivatives 
are then used in Eqs. (7) and (8) to produce 𝑢𝜃 , 𝑢𝜙. The total error is 
calculated by summing 𝐿𝑆𝑉 , the error between the network derived SV 
and the CHAOS-8.1 SV, and 𝐿𝐹𝐶 , the departure of the flow from the 
tangentially geostrophic flow assumption, together with a weighting 
factor 𝜆. This error is then back-propagated through the network by 
the Adam optimiser, adjusting the weights and biases of the network 
to attempt to minimise the MSE error. This process repeats for 100,000 
iterations until the loss is minimised such that the loss does not de-
crease further. The PINN methodology is written with PyTorch Version 
2.5 (Paszke et al., 2019). Our dataset is of order 1000–10000 points, 
which is modest by machine learning standards, and so we are able to 
use all the data in each iteration of training. When training the network, 
we initialise the weights from a pseudo-random distribution using a 
technique called Xavier initialisation (Glorot and Bengio, 2010). The 
optimiser then implements a descent method to seek a global minimum. 
However, we found empirically that the loss function is very complex, 
and so the optimiser will almost inevitably only find a local minima. 
We therefore choose multiple different seeds – and so initial weights – 
for independent training, from which we select the model that achieves 
the lowest loss.
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Fig. 2. Example of a latitude–longitude box used for inversion. After training, 
a 5◦ border shown in translucent colouring, is removed. Colours show the 
radial SV at the CMB from CHAOS-8.1 for reference.

2.3. Training dataset: CHAOS-8.1

Our training procedure requires values for the SV to train the 
PINN, which enters through 𝐿𝑆𝑉 . We use the model CHAOS-8.1 (Kloss 
et al., 2024) projected onto a grid in spherical coordinates. CHAOS-
8.1 spans from 1999 to 2025, and is built from satellite and ground 
based observatory data. It is the latest update of the CHAOS family of 
models, which have been used for multiple core flow inversion studies, 
such as Gillet et al. (2022), making it a suitable choice of model for this 
study. The time-dependent internal field model is defined up to spheri-
cal harmonic degree 20, but only the coefficients for the main field and 
SV up to degree 13 are used here, as at higher degrees the crustal field 
dominates the magnetic field signal (Langel and Estes, 1982). CHAOS-
8.1 is also temporally regularised in order to reduce non-uniqueness, 
by taking temporal covariances from geodynamo simulations. This is 
a departure from the regularisation method of CHAOS-7 (Finlay et al., 
2020), which penalised the second time derivative at the endpoints, and 
the third time derivative throughout. This difference in regularisation 
method affects the small scale features of the SV and the intensity of the 
acceleration, which may have an effect on the recovered flows (Kloss 
et al., 2024).

In order to use CHAOS-8.1 as input to the local flow inversion, a 
subsection of the SV is selected, either in a latitude–longitude box (as in 
Fig.  2), or in a longitudinal band, each with a grid density of one point 
per degree. A 5◦ border is added to the area of interest on all edges, 
which is removed after training. This is to promote continuity between 
adjacent regions, because continuity is not explicitly imposed, as well 
as to avoid edge effects. Tests with larger overlaps did not significantly 
change the results. To maximise the performance of the model, and 
to minimise training time, the CHAOS-8.1 input and outputs of the 
network are re-scaled so that they all have a magnitude of about 1 (Sola 
and Sevilla, 1997). We do this by measuring 𝐵𝑟 in 𝜇𝑇 , time in 0.1 years, 
length in km. Typical values of 𝐵𝑟 at the CMB are 500μT and so typical 
values of SV are then 1 μT∕0.1 yr in these units and flow speeds are 
typically 1 km∕0.1 years.

2.4. Parameter choices

Having described the algorithm, there remain several parameter 
choices that define both the model and how it is trained. First, is the 
learning rate of the model, which governs how rapidly the weights 
change with each iteration. After testing a variety of learning rates, 
we found empirically that a standard learning rate of 10−3 worked 
well. Second is the choice of activation function. We found that the 
4 
hyperbolic tangent function worked well, which is widely used due 
to its zero-centred property that results in faster training (Goodfellow 
et al., 2016). Lastly, we must select a network size — the number of 
hidden layers and the number of neurons per layer. A small network has 
a very limited functional representation, and in our case would result in 
a flow too smooth to fit the SV data. In contrast, a large network can 
represent spatially complex behaviour, and could result in flows that 
fit the SV but have spurious small-scale features. We seek to adopt an 
optimal network size that is large enough to fit the data constraints, 
but no larger, which effectively penalises small-scale features of the 
flow. This approach is analogous to the spatial regularisation of global 
flows, for which their complexity is penalised through an explicit 
trade-off between data fit and complexity (for example, the strong 
norm presented in Bloxham (1988)). To be clear, we do not impose 
explicit regularisation of our flows, although we could by introducing 
an additional loss term in Eq.  (9).

Our aim is to find a single network size that we can use in each 
region that we consider. To find the optimum network, we test a 
variety of network sizes for areas underneath the Atlantic (10◦N to 
20◦N latitude, 45◦W to 5◦E longitude) and the South China Sea (10◦N 
to 20◦N latitude, 100◦E to 130◦E longitude), which represent end 
member behaviour. Under the Atlantic we expect simple westward 
flow (Holme, 2007), whereas under the South China Sea we expect 
complex, diverging flow (Whaler et al., 2022). For each tested network, 
we record the SV Root Mean Squared Error (RMSE) and the complexity 
as measured by the average of the squared second spatial derivative of 
the flow (Bloxham, 1988), evaluated on the SV data grid. We repeat 
this with 5 different seeds to investigate the spread in results. These 
are then plotted as trade-off curves in a manner similar to Hansen and 
O’Leary (1993).

The results for both regions are plotted in Fig.  3, which shows trade-
off curves of complexity against RMSE. The grey points show the local 
minima for all the different seeds, and the black points indicate the seed 
for each network size which has the minimum RMSE, which we adopt 
as the closest model we have obtained to the global minimum. Simple 
networks are on the right, as they have a low complexity but a high SV 
RMSE. Complex networks are on the left, as they have a low SV RMSE 
but a high complexity. The network size with the highest complexity is 
shown in blue, whereas the one with the lowest complexity is shown 
in orange. Examples of the recovered flows and SV residuals at these 
points are shown in Fig.  4 for the area under the Atlantic, and Fig. 
5 for the area under the South China Sea. For both of these figures, 
the size of network that recovers the most complex flows fits the data 
better than the size that recovers the least complex flows, but with 
the unwanted side effect of adding very rapid, small scale flows. This 
is due to the non-uniqueness present, both the large and small scale 
flows fit the SV adequately. A subjective way to choose the size of 
network is to choose the one at the ‘knee’ of this trade-off curve, and 
the values around this point are shown in green. The bottom panels of 
Fig.  3 shows the points at the knee in more detail. The behaviour is not 
always monotonic, although there is a general trend, perhaps due to the 
training getting stuck at a local minimum. For the area under the South 
China Sea, it was more difficult to find complex models which fit to 
the data, as larger networks did not converge. We choose 8 layers of 40 
neurons, indicated as 8[40] in Fig.  3, which was consistently at the knee 
across regions. While both 8[40] and 4[40] would be an appropriate 
pick for the size of model, we opted for the larger model to ensure 
that there would be enough free parameters to fit any SV structure. 
Cross-Validation (Goodfellow et al., 2016), a method often used for 
model selection, was not used in this case due to our small dataset, 
as Cross-Validation requires the dataset to be split during training.

In principle large networks will over-fit the data, which in this case 
would be evident through high complexities and spurious flows. We 
note that while the complexity varies across four orders of magnitude 
in the area under the Atlantic (shown in the left panels of Fig.  3), 
the complexity is never particularly high. This is even more apparent 
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Fig. 3. Trade-off curves for an area under the South China Sea (10◦N to 20◦N latitude, 100◦E to 130◦E longitude) (left) and Atlantic (10◦N to 20◦N latitude, 
45◦W to 5◦E longitude) (right). Black dots indicate the minimum RMSE for each size of network, grey dots indicate the local minima, and the green dots indicate 
the points at the knee of the curve, which are shown in more detail on the bottom panel. The labels indicate the size of network, in the format 𝑎[𝑏], where 𝑎 is 
the number of layers and 𝑏 is the number of neurons per layer.
Fig. 4. Recovered flows and SV Residuals for the network sizes that produce the least complex (left) and most complex (right) flows, in the area under the 
Atlantic, at 35◦N to 5◦N latitude and 0◦W to 45◦W longitude.
under the South China Sea (shown in the right panels of Fig.  3), 
where the complexity only varies over one order of magnitude. This 
may be a consequence of using CHAOS-8.1 for the input field and 
SV, as this model is already smoothed spatially and temporally, and 
we find that it is apparently difficult to overfit the data in this case. 
Adding artificial Gaussian noise to the SV data increased the range of 
complexity magnitudes, and so perhaps smoothing through the choice 
of the size of networks will be more critical when using ‘noisier’, sparser 
or unevenly sampled data sources, such as Geomagnetic Virtual Obser-
vatories (GVOs) (Mandea and Olsen, 2006), rather than field models 
whose complexity was already controlled during their construction.

2.5. Synthetic tests

In order to test the performance of the chosen networks, a number of 
synthetic examples were set up with pre-defined flows for the network 
to discover. On a latitude–longitude grid spanning -15◦ to 15◦ latitude 
5 
and 0◦ to 55◦ longitude with 1-degree spacing in each direction, we 
define 𝐵𝑟 using 

𝐵𝑟 = exp (−
(𝜃 − 90𝜋

180 )
2 + (𝜙 − 30𝜋

180 )
2

2
), (13)

which describes a single peak centred at (90◦, 30◦) in radians. For 
each flow, the instantaneous SV was determined using Eq. (1). A range 
of synthetic flows were investigated, as listed in Table  1, which span 
behaviours from simple drift to a more complex vortex. The final syn-
thetic flow tested was a rigid body rotation section of a circular Rankine 
vortex patch first presented in Rankine (1872), and most recently used 
in a geomagnetism context by Amit (2014). The description of this flow 
does not fit in the table, so it is described here. Rankine flow contains 
an inner circular area, described by a boundary of angular distance 
𝐻 , wherein the fluid motion follows that of solid body rotation with 
vorticity 𝜁 , and an outer area where the flow does not follow solid 
body rotation. We only use this inner section for our synthetic flow. 
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Fig. 5. Recovered flows and SV Residuals for the network sizes that produce the least complex (left) and most complex (right) flows, in the area under the South 
China Sea.
Fig. 6. Example of the PINN recovery of the flow, based on a synthetic test using rigid body rotation (A) Input SV to the PINN, (B) Output SV from the PINN (C) 
Residual SV (Difference between input and output) (D) Synthetic flow used to generate input SV (E) Output flow from the PINN. A 5◦ border has been removed 
after training as in Fig.  2.
The azimuthal toroidal flow, 𝑢𝑡, at a given angle from the centre, ℎ, is 
given by 

𝑢𝑡 = −

{ 1
2 𝜁ℎ, if ℎ < 𝐻
1
2 𝜁

𝐻2

ℎ2
, if ℎ > 𝐻,

(14)

where 𝐻 = 35◦ is the angular distance of the solid body circular area 
and 𝜁 = 0.1 km∕0.1 year is a constant vorticity in the region where 
ℎ < 𝐻 . The maximum flow speeds are 2.6km∕0.1 year.

The models are trained with 5 different seeds, with a 5◦ border 
removed after training as in Fig.  2. We did not apply the TG flow 
restriction here, as a number of these flows do not satisfy it. Fig.  6A 
shows the input SV, Fig.  6B shows the output SV from the PINN, and 
Fig.  6C shows the residuals between the input and output SV, all for 
6 
the rigid body rotation. Fig.  6D shows the synthetic rigid body rotation 
flow used to generate the input SV and Fig.  6E shows the output flows 
from the PINN. Table  1 shows the description and results for other 
synthetic flows, with the error between the true value and the output 
value expressed using the relative L1 error given by: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 % 𝐿1 𝐸𝑟𝑟𝑜𝑟 =
(𝑉 𝑎𝑙𝑢𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑉 𝑎𝑙𝑢𝑒𝑇 𝑟𝑢𝑒) × 100

𝑉 𝑎𝑙𝑢𝑒𝑇 𝑟𝑢𝑒
(15)

in which  denotes the mean. The spread in the results due to the 
different starting seeds calculated by taking the standard deviations of 
the percentage errors are also shown. Each of these tests successfully 
recovers the synthetic flows, validating the method for large scale 
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Table 1
Synthetic flows used for testing. Similar results are found for flows constructed with cos 𝜃.
 Flow description Flow equations  SV relative L1 

% error
𝑢𝜃 Relative L1 
% error

𝑢𝜙 Relative L1 
% error

 

 Eastward 𝑢𝜃 = 0
𝑢𝜙 = sin(𝜃)

0.0676 ±0.0141 1.60 ±0.041 0.710 ±0.015  

 Westward 𝑢𝜃 = 0
𝑢𝜙 = − sin(𝜃)

0.0595 ±0.023 1.62 ±0.022 0.680 ±0.018  

 Northward 𝑢𝜃 = − sin(𝜃)
𝑢𝜙 = 0

0.0817 ±0.020 1.54 ±0.011 0.680 ±0.0075  

 Southward 𝑢𝜃 = sin(𝜃)
𝑢𝜙 = 0

0.0809 ±0.031 1.53 ±0.026 0.657 ±0.015  

 North-East 𝑢𝜃 = sin(𝜃)
𝑢𝜙 = sin(𝜃)

0.0843 ±0.0022 3.22 ±0.031 1.38 ±0.019  

 North-West 𝑢𝜃 = sin(𝜃)
𝑢𝜙 = − sin(𝜃)

0.0320 ±0.012 0.100 ±0.033 0.0417 ±0.014  

 South-West 𝑢𝜃 = − sin(𝜃)
𝑢𝜙 = − sin(𝜃)

0.0980 ±0.023 3.18 ±0.048 1.37 ±0.018  

 South-East 𝑢𝜃 = − sin(𝜃)
𝑢𝜙 = sin(𝜃)

0.0392 ±0.0083 0.120 ±0.027 0.043 ±0.017  

 Rigid Body See equation (14) 0.205 ±0.028 0.832 ±0.039 0.811 ±0.019  
Fig. 7. Loss plotted against iteration, (A) Data loss, 𝐿𝑆𝑉 , (B) TG Flow Constraint, 𝐿𝐹𝐶 , and (C) Total loss, 𝐿𝑇𝑂𝑇𝐴𝐿. The total loss does not decrease after 80,000 
epochs, showing that the model has converged.
flows. The residuals also do not have any structures correlating to the 
original input, and the residuals are all small-scale.

3. Results

3.1. Atlantic

Having tested the methodology on synthetic examples, we now 
demonstrate an application of the methodology on the region under 
the equatorial Atlantic, using our optimal network size. We use CHAOS-
8.1 SV from 1st January 2024, training models for five different seeds, 
and choose the one with the lowest RMSE as the ‘preferred model’. 
Fig.  7A shows 𝐿𝑆𝑉 , Fig.  7B shows 𝐿𝐹𝐶 , and Fig.  7C shows 𝐿𝑇𝑂𝑇𝐴𝐿, all 
plotted against iteration count, for one example seed. These loss curves 
show that the PINN has converged on a solution, and that the two loss 
components are of the same order of magnitude by the end of training, 
indicating that one loss term is not more important than the other. This 
vindicates our value of a weighting factor of 𝜆 = 1000. The 𝐿𝐹𝐶 term 
has a much smaller amplitude in the first iteration than in any other 
iteration, which is not the typical shape of a loss curve, in which the loss 
at the first iteration is much larger than that of subsequent iterations. 
This is due to the magnitude of recovered flows in the first iteration 
being very close to zero, thereby satisfying the TG constraint but not 
the SV constraint, a behaviour that is penalised by the optimiser in 
subsequent iterations. While the loss terms are balanced by the end of 
the training run, the ‘spikes’ in the loss function indicate that the use 
of the weighting factor 𝜆 may be too simple a method. Further work 
7 
may be to implement adaptive weighting schemes, in which either the 
weighting factors are trainable parameters (McClenny and Braga-Neto, 
2023) or the weighting factors are adjusted according to the model 
performance during training (Wang et al., 2021; Heydari et al., 2019).

The inferred flows are shown in Fig.  8A, the recovered SV in 8B, 
and the residuals shown in Fig.  8C. The mean absolute error (MAE) 
between the SV from the CHAOS-8.1 model and the SV output by the 
PINN is 97nT/year (Relative L1 Error of 2.57%), and the recovered 
flows show the expected westward drift present in all flow inversions 
to date, regardless of inversion methodology (Holme, 2007; Kloss and 
Finlay, 2019; Whaler et al., 2022).

3.2. Global patchwork

In order to compare the flows recovered by the regional method 
with those recovered by global methods, a mosaic of regional flows is 
constructed from SV from 1st January 2024 using CHAOS-8.1, spanning 
a latitude space of within 1◦ of the geographic poles. We do not include 
the poles in our inversion, due to the coordinate singularity there. We 
also do not impose any constraints to impose boundary conditions in 
latitude or longitude. The surface of the core–mantle boundary, at a 
radius of 3485 km, is carved up into 56 overlapping latitude–longitude 
boxes spanning 30◦ by 55◦, and 16 overlapping boxes spanning 25◦ by 
55◦ for the boxes closest to the poles. Each of these boxes have grid 
points every 1◦ in both dimensions.

For each of the 72 boxes, a separate PINN is trained to find the flow 
that would generate the SV for that box only. The PINN for each box 
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Fig. 8. (A) Recovered Flow under the northern Atlantic, at 35◦N to 5◦N latitude, showing westward flow. (B) Recovered SV (C) Residuals between the SV from 
CHAOS-8.1 and the SV shown in (B).
is trained for 100,000 iterations, and results obtained for 5 seeds. The 
model with the lowest 𝐿𝑆𝑉  (SV RMSE) is taken as the ‘preferred model’ 
for that box. The 5◦ border is then cut off the results of each box, as 
in Fig.  2, with the result being 56 20◦ by 45◦ boxes, and 16 15◦ by 
45◦ boxes. The remainder of each box are stitched together, with no 
continuity conditions imposed at the edges of the boxes. The results 
go to within 6◦ of the pole. We did attempt to interpolate the flow in 
the overlapping edges to attempt to remove any flow discontinuities, 
but unfortunately this amplified those discontinuities, and so we have 
chosen to apply no additional smoothing.

The recovered flows, the recovered SV, and the residuals are shown 
in Fig.  9. The flows show the same large scale features as those found 
using global methodologies, demonstrating westward flow under the 
Atlantic, eastward flow under the Pacific, and the presence of the 
8 
anticyclonic planetary gyre This last feature is of particular note, as it 
demonstrates that this large scale feature is independent from the use 
of global methodologies, and is something that can be re-constructed 
from regional SV. The MAE between the SV from the CHAOS-8.1 model 
and the SV output by the PINN is 229nT/year (Relative L1 Error 
of 5.85%), with a standard deviation spatially of 251 nT/year. The 
residuals vary spatially, particularly in areas of increased SV intensity 
or complexity, and notably south of Africa where the maximum residual 
is 7578 nT/year. This high residual is consistent across seeds. Further 
investigation of this feature shows that the error is not consistent across 
time, peaking in 2024, and is not present when the TG assumption is 
not applied, perhaps indicating a failure of the TG assumption at this 
particular location. This is discussed further in Section 4.
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Fig. 9. (A) Global patchwork of regional flows in January 2024. The thickness of the arrows indicate flow magnitude, and the arrows indicate direction. (B) SV 
calculated from Eq.  (1), using the recovered flows in the top panel. (C) Residuals between the SV from CHAOS-8.1 and the SV shown in the middle panel. The 
box boundaries (after the 5◦ border removal) are marked by grey dashed lines.
3.3. Equatorial flows

To probe the broader flow properties of the equatorial region, the 
PINN methodology was applied to a 30◦ latitude by 360◦ longitude 
band, centred on the equator. SV values from CHAOS-8.1 were taken 
in one year increments from 2000.0 to 2024.0, and then five different 
models (one per seed) were trained for each of the 25 epochs, resulting 
in 125 models. For each time increment, the model from the five seeds 
which had the lowest RMSE between the input and output SV was 
chosen as the ‘preferred model’. We use the same network size found 
in Section 2.4 for this elongated box, as it was found empirically that 
larger network sizes did not give significantly lower values of SV RMSE, 
likely related to limitations of the TG assumption at low latitudes. Addi-
tionally, we do not impose periodicity between the longitudinal-edges 
of the elongated box.

The recovered azimuthal flow at the equator was extracted from 
the preferred models, and displayed in a time–longitude plot, shown 
in Fig.  10A. The area from 100◦ to 180◦ longitude shows a reversal in 
azimuthal flow direction, starting in 2010 and becoming more intense 
in 2017. This result was also found by Whaler et al. (2022), who associ-
ated the change in azimuthal flow direction with the 2017 geomagnetic 
jerk. By 2024.0, this eastward flow is still present. The area -180◦ to 
−70◦ longitude shows features of small-scale alternating flow direction 
in the area under central America, with four changes in flow direction 
9 
seen in the area since 2000. This alternating pattern was previously 
found in Kloss and Finlay (2019) in their global flow inversion from 
ground- and satellite-based magnetic field measurements. Results from 
2022 onwards show a recent change in the azimuthal flow direction in 
this area, from eastwards to westwards, which to our knowledge is a 
new result.

Fig.  10B shows the recovered SV from the PINN, and Fig.  10C 
shows the residuals between the input and output SV. The residuals 
are generally small, with a MAE of 434 nT/year (Relative L1 Error 
of 9.98%), though the residuals vary slightly across longitude and 
time, with the largest residuals being at the location of fast changes 
in azimuthal flow direction. Of particular note is a feature at −75◦
longitude, spanning from 2013 to 2018, where the maximum MAE is 
6465 nT/year. This feature is not present when the TG assumption is 
not applied, once again indicating the possibility that this residual is 
due to a failure in the TG assumption, similar to that found in the global 
residuals shown in Fig.  9C. The residuals do not have any correlation 
to contours of 𝐵𝑟∕ cos 𝜃, and most of the residuals appear to be due to 
a difference in intensity, rather than structure.

The two regions of azimuthal flow directional change indicated in 
Fig.  10 — Indonesia and Central America — were studied in more 
detail. Once again, for each time increment five models were trained, 
and the one with the lowest RMSE was chosen to be the ‘preferred 
model’.
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Fig. 10.  (A) Time–longitude plot at the equator, spanning 2000.0 to 2024.0. Blue indicates westward flow, and red indicates eastward. (B) SV calculated from Eq. 
(1), using the recovered flows in the top panel. (C) Residuals between the SV from CHAOS-8.1 and the SV shown in the middle panel.
3.3.1. Indonesia
The recovered flows under Indonesia in the time period of 2010.0–

2024.0 are shown in Fig.  11, and the residuals for 2024.0 shown 
in Fig.  14. The flows show a predominantly westward, horizontally 
divergent flow structure beginning in 2010, increasing in magnitude 
until it becomes predominantly eastward flowing in 2020. Typical flow 
speeds are approximately 25 km/year, similar in magnitude to those 
found in Whaler et al. (2022). Results from 2015 onwards show an 
increased north-eastern flow magnitude at 150◦ to 165◦ longitude. The 
SV residuals show features that line up almost exactly with contours 
of 𝐵𝑟∕ cos 𝜃, as shown in Fig.  12, the lines along which the flow is 
ambiguous. This is perhaps explained by considering Eq. (5), which 
shows that the induced SV is proportional to 𝐵𝑟∕ cos 𝜃, and we might ex-
pect a correlation between the SV residuals and 𝐵𝑟∕ cos 𝜃. The average 
MAE across the time period of 2010.0–2024.0 is 171 nT/year (Relative 
L1 Error of 2.65%), with a maximum of 255 nT/year in 2005 and a 
minimum of 120 nT/year in 2000.
10 
3.3.2. Eastern pacific
Fig.  13 shows three time increments from 2020.0 to 2024.0, which 

were chosen to investigate the recent change in flow direction in the 
Eastern Pacific, between longitudes of −150◦ to −75◦. The recovered 
flows show a horizontally convergent flow structure in 2020, just under 
the coast of western South America, similar to those found in numerical 
simulations driven by heterogeneous CMB heat flow by Mound and 
Davies (2023), although the flow is strongly time-dependent and differs 
only a few years later. The intensity of the eastern portion of the re-
covered flow decreases from 2020, before becoming entirely westward 
by 2024. Once again, the residuals between input and output SV show 
features aligned with contours of 𝐵𝑟∕ cos 𝜃. The average MAE across 
the time period of 2020.0–2024.0 is 201 nT/year (Relative L1 Error of 
3.11%), with a maximum of 362 nT/year in 2020 and a minimum of 
75 nT/year in 2024.
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Fig. 11. Changes in the horizontal flow under Indonesia during the period 2010.0 to 2024.0, at 10◦ above and below the equator.
Fig. 12. Residual between input SV and output SV for 2024.0, MAE of 157nT/year, with contours of 𝐵𝑟∕ cos 𝜃 superimposed, truncated at ± 40 𝑛𝑇 . Red lines 
indicate negative values of 𝐵𝑟∕ cos 𝜃, and blue lines indicate positive values of 𝐵𝑟∕ cos 𝜃. Latitude range is 10◦ above and below the equator.
Fig. 13. Changes under the Eastern Pacific during the period of 2020.0 to 2024.0, at 10◦ above and below the equator.
3.4. High latitude jet near the north pole

Global magnetic field models show patches of SV with alternating 
sign in the northern polar region, occurring close to the inner core 
tangent cylinder. Livermore et al. (2017) presented an explanation for 
this in the form of a strengthening high latitude jet of localised flow 
11 
underneath Alaska and Siberia, which forms a part of the eccentric 
planetary gyre. The magnitude of this jet is not well constrained, as 
noted in Finlay et al. (2023); simpler, localised, models such as in Liv-
ermore et al. (2017) show a larger flow acceleration compared to those 
from more complex global models such as Gillet et al. (2022), which use 
priors to constrain non-uniqueness. It is worth noting that this choice 
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Fig. 14. Residual between input SV and output SV for 2022.0, MAE of 201nT/year, with contours of 𝐵𝑟∕ cos 𝜃 superimposed, truncated at ± 40 𝑛𝑇 . Red lines 
indicate negative values of 𝐵𝑟∕ cos 𝜃, and blue lines indicate positive values of 𝐵𝑟∕ cos 𝜃. Latitude range is 10◦ above and below the equator.
of prior impacts the azimuthal flow speed around the tangent cylinder 
when using data assimilation methodologies (Rogers et al., 2025). To 
investigate where the flows from this regional method would fit into 
this picture, as well as to investigate the evolution of this jet over time, 
the PINN method was applied to a high-latitude band spanning from 
60◦N to 80◦N latitude, and between 0◦ to 360◦ longitude. Once again 
5 models were trained to find the ‘preferred model’, for increments 
every 5 years between 2000 and 2024, using the network size found 
in Section 2.4.

The recovered flows in 2017 and 2024 are shown in Fig.  15. 
The PINN methodology recovers the high-latitude jet, increasing in 
azimuthal velocity beginning in 2005, before reaching a maximum 
velocity of 39 km/year in 2017 and decreasing in velocity afterwards. 
This change in intensity may be caused by a change in the discon-
tinuous dynamics across the inner core tangent cylinder, as suggested 
in Finlay et al. (2023), and could be associated with the evolution 
of the planetary gyre. Fig.  16 shows the maximum azimuthal flow 
over time from this study (blue), the localised model of Livermore 
et al. (2017) (orange), and a global flow model that utilises statistics 
from dynamo simulations as prior information (Gillet et al., 2022) 
(green). The PINN flow results show the larger acceleration favoured 
by the local flow model presented in Livermore et al. (2017), but with 
a decreased amplitude compared to the other local and global flow 
models. We also show that the jet has been decelerating since 2017, 
perhaps indicating that the jet has been a transient feature that is now 
subsiding. This result does not change with network size or choice of 
seed. The average MAE across the time period of 2000.0 - 2024.0 was 
107 nT/year (Relative L1 Error of 1.79%), with a maximum of 173 
nT/year in 2015 and a minimum of 49 nT/year in 2000.

4. Discussion

Our global mosaic model shown in Fig.  9 reproduces previously 
published large-scale flow structures, such as westward flow under the 
Atlantic, variable flow under Indonesia and Central America, and the 
large-scale gyre (Pais and Jault, 2008; Gillet et al., 2022; Kloss and 
Finlay, 2019). It is important to remember that our multiple regional 
flow models were all trained separately and had no knowledge of the 
SV outside the given region, but could still produce mostly continuous 
large-scale features across the box edges. The reproduction of the large-
scale eccentric gyre indicates this is a data-driven feature, rather than 
it being an artefact of the global modelling approach. It is interesting 
12 
to compare our results with the results shown in Buffett et al. (2016), 
where the authors found that high-latitude SV can be fit locally using 
waves, meaning there would be no need for a gyre to connect areas 
at high latitude to those at mid-latitude. Our models indicate that the 
high-latitude flow is connected to the mid-latitude flow, suggesting that 
the SV at high-latitudes is a flow feature, rather than a wave feature. 
This does not rule out high-latitude waves, but perhaps lends weight to 
the idea that there is a flow component due to the high-latitude SV.

The time–longitude plot at the equator, shown in Fig.  10, demon-
strates azimuthal flow direction changes happening multiple times over 
a period of 24 years. There is good temporal continuation from one 
time-step to the next for the flow and recovered SV, despite there 
being no temporal regularisation applied to these PINN models. Instead, 
Fig.  10 shows a series of instantaneous snapshots over time, though 
there is temporal smoothing applied to the CHAOS-8.1 field model that 
provides the input SV. The regional flow inversions shown in Figs.  11
and 13 also highlight new features, particularly the recent change in 
flow direction under the eastern Pacific. This behaviour could be wave-
driven, similar to the waves described in Gillet et al. (2022), but further 
work would be needed to confirm this. Recent changes are also shown 
in Fig.  16, in the decrease in azimuthal flow intensity at high latitudes 
in the Northern Hemisphere. Whether this change is due to a change 
in the dynamics at the inner core (Finlay et al., 2023), or due to other 
dynamics, is a possible area of further study.

While our study presents flows modelled with the tangentially 
geostrophic flow assumption, this framework makes changing the flow 
assumption, in principle, as simple as changing a single line of code. 
This allows for different flow assumptions to be tested easily and 
quickly. Additionally, there is also no restriction on the shape of the 
region studied, as the loss function is a sum over a grid, which can 
be any shape. This provides the opportunity to study non-rectangular 
regions in their entirety, such as features of heterogeneity at the bottom 
of the mantle (e.g. Large Low-shear-Velocity Provinces, LLVPs (Panton 
et al., 2025)). However, care must be taken when choosing a flow 
assumption, as the residuals presented in this study suggest there are 
locations and times where the TG assumption is not valid. Additionally, 
due to the construction method of the CHAOS-8.1 model, our local 
values for the main field and SV at the CMB do still depend on the 
observational data everywhere. For a truly regional flow inversion, a 
regional geomagnetic model would need to be used, which is outside 
the scope of this study.

Regional core surface flow inversions have a wide range of potential 
applications, particularly in cases when the spatial distribution of data 
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Fig. 15. High Latitude jet in 2017.0 and 2024.0.
Fig. 16. Maximum azimuthal flow over time, adapted from Finlay et al. (2023). Results from the model presented in Livermore et al. (2017) shown in orange, 
spanning a time period from 1999.0 to 2022.0, results from the model presented in Gillet et al. (2022) shown in green, spanning a time period from 1997.5 to 
2021.0, and results from this study, spanning from 2000.0 to 2024.0, shown in blue.
measurements is uneven, or when using paleomagnetic or historical 
data. The combination of this regional methodology with the SOLA 
(Subtractive Optimally Localised Averages, Hammer and Finlay (2018)) 
could be particularly productive, and may provide an opportunity 
for the use of historical/palaeomagnetic data for regional core flow 
inversions, as well as low inclination satellite orbits where data is 
restricted to mid- and low-latitudes, such as MSS-1 (Jiang et al., 2024).

5. Conclusion

This study presents a novel methodology for inverting regional 
flows at the core surface, using Physics Informed Neural Networks. We 
validate our method on synthetic flow examples, and then construct 
a global flow model from a mosaic of local flow models, reproducing 
the large-scale gyre and therefore indicating that this is a data-driven 
feature. We also investigate equatorial time dependence, and present 
regional flow models underneath the Atlantic, Indonesia, South Amer-
ica and at high latitudes in the Northern Hemisphere. We highlight 
new features, particularly the recent change in flow direction under 
the Eastern Pacific and the deceleration of the high-latitude jet from 
2017.
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