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Abstract A critical gap in East Asian summer monsoon research is the lack of speleothem records from its
northeasternmost fringe, hindering tests of orbital‐scale monsoon variability at higher latitudes. Our new
records from the Russian Far East, spanning 9–5 ka BP, fill this spatial gap and reveal a synchronous δ18O
negative excursion and intensified monsoon precipitation between 8 and 9 ka BP, contrasting with trends in
North China. We suggest this difference may stem from changes in Northern Hemisphere summer insolation
(NHSI) over the Holocene. The NHSI decrease since early Holocene weakens southwesterly winds and the
Western Pacific Subtropical High, shifting the westerly jet and rainbelt southward. This causes reduced
(increased) precipitation in North China (Northeast Asia), as well as reduced (increased) contribution of Pacific
Ocean moisture to North China (Northeast Asia), resulting in δ18O increase (decrease) in North China
(Northeast Asia).

Plain Language Summary Speleothem oxygen isotope (δ18O) records are widely used as high‐
resolution proxies to characterize East Asian summer monsoon (EASM) variability at various timescales. While
discrepancies between coherent δ18O records and regionally inconsistent moisture patterns have been identified,
studies on the eastern edge of the EASM region remain sparse. This study provides new cave records from the
Russian Far East, covering 9 to 5 ka BP, the northernmost site in the EASM region. Combined with other
records from Northeast Asia, we observe significant synchronous depletion of speleothem δ18O and intensified
monsoon precipitation in Northeast Asia between 8 and 9 ka BP. This contrasts with patterns in North China.
We suggest that this contrast is driven by changes in the Northern Hemisphere Summer Insolation (NHSI)
during the Holocene. A decrease in NHSI weakens the southwesterly winds and the West Pacific Subtropical
High, while simultaneously inducing a southward shift of the westerly jet. These changes collectively force the
East Asian rain belt southward. This leads to reduced precipitation in North China and increased rainfall in
Northeast Asia, along with δ18O enrichment in North China and depletion in Northeast Asia. These findings
offer a more spatially detailed understanding of the EASM region's footprint from North China to Northeast
Asia during the Holocene.

1. Introduction
The East Asian summer monsoon (EASM) is a critical component of the global climate system, profoundly
influencing the ecological and environmental conditions across East Asia. The high‐resolution and precisely
dated speleothem records have greatly advanced our understanding of the climate variability of the Asian summer
monsoon (ASM) from orbital to decadal timescales, as well as their global teleconnections (Y. Cai et al., 2015;
Cheng et al., 2006, 2009, 2016; Y. Wang et al., 2001, 2005, 2008; Yuan et al., 2004). However, a closer ex-
amination of speleothem records reveals that the majority of the data are concentrated in the core region of the
EASM, where these records exhibit the coherent variability on orbital timescales. Yet, recent studies indicate
exceptions to this spatial consistent pattern. For instance, H. Zhang et al. (2021) highlighted that the speleothem
δ18O record in Shennong Cave in southeastern China has remained stable over the entire Holocene, thus sug-
gesting a spatiotemporal diversity in speleothem δ18O across monsoonal China, which is related to the latitudes
shifts of convective precipitation in the monsoon frontal system. Furthermore, from amodern climate perspective,
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the EASM is not confined to East China but extends beyond, encompassing the Meiyu‐Baiu rainband that spans
East China, the Korean Peninsula, and Japan, thereby covering a much larger region. A recent study (Q. Wen
et al., 2024) highlighted a grand dipole pattern of oxygen isotope and rainfall between South Asia and Japan
region, with South China lying in a hybrid transition region on orbital‐scales. It further suggested that the
mismatch between rainfall and oxygen isotopes is an inherent characteristic of the ASM variability. However, this
perspective lacks direct supporting evidence, since speleothem δ18O data on orbital‐scales from Northeast Asia,
including Northeast China, Japan and the Korean Peninsula, remain sparse or limited in duration.

On the other hand, the Holocene records from loess deposits (Lu et al., 2013; H. Wang et al., 2014), dune per-
centages (Lu et al., 2005; Xu et al., 2020), paleosol development (Q. Li et al., 2014), and vegetation re-
constructions (Chen et al., 2015; R.Wen et al., 2017) suggest that the EASM precipitation maximumwas between
∼5 and 2.4 ka on the western Chinese Loess Plateau, while it peaked around ∼6 ka in northern China. They
suggest that the EASM intensity (in terms of rainfall) was likely delayed and/or modulated by internal feedback
processes, such as the effects of change in high‐northern‐latitude ice sheets, atmospheric CO2 (Lu et al., 2013),
and Atlantic Meridional Overturning Circulation (AMOC) (Chen et al., 2015). Notably, the synchronous spe-
leothem δ18O records that closely mirror Northern Hemisphere Summer Insolation (NHSI) without significant
phase lag, revealed that the EASM (in terms of dynamic) was dominantly driven by precession‐induced insolation
variations at orbital‐scales (Cheng et al., 2016; Y. Wang et al., 2005). This discrepancy may come from the
complexity of δ18O as a hydroclimate proxy, as it integrates dynamic monsoon processes (e.g., upstream rainout,
vapor‐source shifts) rather than solely reflecting local precipitation amount (Cheng et al., 2019; H. Zhang
et al., 2021). Therefore, the discrete and dynamic nature of the monsoon calls for a systematic understanding of
how the different components of the monsoon system interact and the driving mechanisms behind its variability
via a view of the “monsoon system science” (Cheng et al., 2021, 2022).

In this study, we have successfully collected two speleothems from northeastern Vladivostok in the southern
Russian Far East, providing the northernmost (the highest latitude hitherto) speleothem record from the EASM
domain with Pacific moisture contributions dominate. By integrating these records with existing data, we aim to
investigate the climate variability in the Northeast Asia region from the early‐ to mid‐Holocene, and to investigate
latitudinal gradients in EASM responses to orbital‐scale forcing—a critical yet understudied dimension in current
speleothem‐based paleomonsoon reconstructions.

2. Cave and Modern Climatology
Two speleothems were collected from Sadovaya Cave (44°27′38″N, 135°42′01″E, 450 m above sea level) and
Tetukhe Cave (44°36′40″N, 135°32′00″E, 390 m above sea level), and both, approximately 23 km apart, are
located in 335 km northeast of Vladivostok City, in the southern part of the Sikhote‐Alin of the Russian Far East
(Figure 1). The caves are formed in Triassic limestones with similar geological characteristics. Sadovaya Cave
has a narrow entrance measuring 1 m in width and 1.2 m in height. The cave roof is approximately 10–12 m thick.
This cave presents rather closed relict formation and a stable microclimate with consistently positive temperatures
maintains throughout the year, ranging from +4 to +5°C. Humidity levels remain high year‐round, between 96%
and 100%. Tetukhe Cave, in contrast, has a larger entrance that transits into a narrow passage. The roof thickness
at the sampling site exceeds 20 m. With a total length of over 1 km, it is a lengthy and narrow cave system formed
along fault lines. This cave is relatively open, leading to a measurable temperature fluctuation. During summer,
the temperatures range from +3 to +4°C, while in winter, they drop to approximately − 2–0°C. The humidity
levels approach 100% in summer but decrease to 80%–90% in winter.

The climate of the southern Russian Far East is strongly influenced by the East Asian monsoon system (Belyanin
& Belyanina, 2021). The study site experiences a mean annual temperature of 4°C and annual precipitation of
697 mm during 1980–2020, based on isoGSM2 simulations (Yoshimura et al., 2008) (Figure 1d, the detailed
information of ISOGSM2 can be found in Text S1 in Supporting Information S1). Approximately 50% of the
annual rainfall occurs during the summer monsoon season (June–September, JJAS),while winter season con-
tributes ∼19%. Precipitation δ18O values exhibit pronounced seasonal variations, with the lowest values in winter
(<− 14‰) and the highest in summer (− 8‰ to − 10‰).

The humid climate supports extensive boreal (taiga) and temperate (cool mixed) forests, which collectively cover
over half of the area (Mokhova et al., 2009). Vegetation is predominantly composed of spruce and fir‐spruce taiga
forests, while cool mixed broadleaf‐conifer forests are prevalent in the southern areas at elevations of 800–900 m.
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3. Materials, Age Model and Results
3.1. Speleothem Sample

Speleothem Sadovaya‐S1 (∼12.8 cm long), was sampled 74 m from Sadovaya Cave entrance, while speleothem
Tetukhe‐T1 (12.6 cm long), was sampled 54 m from Tetukhe Cave entrance. Both samples are pure calcite, cut
along the growth axis, and polished. 230Th dating, δ13C, and δ18O analyses were performed on both.

3.2. Chronology

The results show that Tetukhe‐T1 grew continuously between 7.80 ± 1.04 and 6.00 ± 0.80 ka BP (Figure S1a in
Supporting Information S1). The samples are impure, with 230Th/232Th ratios ranging from 0.000028 to

Figure 1. Locations of Tetukhe Cave, Sadovaya Cave, and other sites mentioned in the text, along with relevant regional climate information. (a) Atmospheric
circulation and precipitation seasonality: Gray arrows depict the mean 850 hPa summer (June‐July‐August, JJA) streamline patterns based on NCEP/NCAR Reanalysis
data (1980–2020). Shaded areas represent differences in precipitation (mm) betweenMay‐June and July‐August based on GPCC data (1980–2020). The green and black
contours show the average position of theWest Pacific Subtropical High (WPSH) for May‐June and July‐August, respectively, represented by 5,880 geopotential meters
(gpm) at 500 hPa, based on NCEP/NCAR Reanalysis data (1980–2020). The dark green and gray lines depict the climatological axis of the westerly jet at 200 hPa for
May‐June and July‐August, respectively, defined by the line of maximum zonal wind speed (u‐max) based on NCEP/NCAR Reanalysis data (1980–2020). The red star
marks the study region (Russian Far East, encompassing Tetukhe and Sadovaya Caves). “EASM,” “ISM,” and “Westerlies” indicate areas primarily influenced by the
East Asian Summer Monsoon, Indian Summer Monsoon, andWesterlies, respectively. The modern Asian summer monsoon boundary is shown as an orange line. Black
squares denote key sites discussed in the text, and pink dots represent GNIP (Global Network of Isotopes in Precipitation) stations: 1. Haerbin; 2. Changchun; 3. Jinzhou;
4. Yantai; 5. Cheongju; 6. Terney. (b) Map showing the locations of Tetukhe Cave and Sadovaya Cave. (c) Modern precipitation δ18O and precipitation values from
GNIP stations: Precipitation δ18O values (‰, V‐PDB) and total precipitation amounts (mm) from the GNIP stations labeled in (a) (data source: https://www.iaea.org/
services/networks/gnip). (d) Precipitation δ18O (‰, V‐PDB), temperature (°C), and precipitation amounts (mm) from outputs of the isoGSM2 isotope‐enabled
atmospheric general circulation model (Yoshimura et al., 2008), used in this study to contextualize modern precipitation isotope patterns (this study).
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0.000058. Sadovaya‐S1 grew continuously between 8.80± 0.05 and 7.43± 0.06 ka BP (Figure S1c in Supporting
Information S1). The sample are also impure, with 230Th/232Th ratios ranging from 0.0002 to 0.001. The StalAge
Monte‐Carlo model (Scholz & Hoffmann, 2011) was used to establish the age models for the two samples (Figure
S1 in Supporting Information S1).

3.3. Stable Isotopes of Oxygen and Carbon

The δ13C and δ18O values along the growth layers of both Tetukhe‐T1 and Sadovaya‐S1 (Figure S2 in Supporting
Information S1) remain virtually constant, indicating that isotopic fractionation conditions (equilibrium or
disequilibrium) were relatively stable during deposition, and drip water δ18O may have been consistent over this
period (Hendy test, Hendy &Wilson, 1968). For Tetukhe‐T1, δ18O values rang from − 8.5‰ to − 10.5‰, with no
significant long‐term trend observed between 5.71 and 8.49 ka BP (Figure S3 in Supporting Information S1). The
δ13C values fluctuate between − 6.2‰ and − 8.1‰. For Sadovaya‐S1, the δ18O values exhibit a negative shift of
0.8‰, with an average of − 5.94‰ from 9.0 ka BP to 8.6 ka BP, decreasing to − 6.75‰ after approximately
8.6 ka BP. Similarly, δ13C values show a negative shift of 2.2‰, averaging − 3.73‰ before ∼8.6 ka BP, and then
declining to − 5.89‰ following ∼8.6 ka BP.

For the overlapping time period (7.25–8.49 ka BP), the δ18O value of Tetukhe‐T1 (− 9.5‰) is 2.8‰ more
negative than that of Sadovaya‐S1 (− 6.7‰). In contrast, δ13C values are similar, with Tetukhe‐T1 at − 6.6‰ and
Sadovaya‐S1 at − 5.9‰. This large δ18O difference is notable, especially considering the proximity of the two
caves (25 km apart) and their similar elevations.

We propose two potential reasons for this discrepancy: (a)Mixing of seasonal precipitation. In Tetukhe Cave, the
thicker roof (>20 m) likely enhances the mixing of annual precipitation, particularly with winter vapor, which is
characterized by significantly lower δ18O values due to colder atmospheric conditions. This results in a more
negative δ18O signature in the speleothem records. In contrast, Sadovaya Cave, with a thinner roof (∼10–12 m),
experiences less mixing of seasonal waters, leading to relatively enriched δ18O values in the cave deposits. (b)
Soil/Epikarst Evaporation. Evaporation in the soil or epikarst zone may enrich δ18O in dripwater. At Sadovaya
Cave, shallower infiltration pathways (potentially linked to thinner roof or sparser vegetation) could enhance
evaporation, enriching δ18O values. This process preferentially affects oxygen isotopes due to kinetic fraction-
ation during water evaporation, explaining the similar δ13C values between caves (− 6.6‰ vs. − 5.9‰).
Considering our δ18O records show great similarity with those from Japan (Mori et al., 2018) and South Korea (Jo
et al., 2011) (which we discuss in further detail in Section 4.1), all exhibiting a notable negative shift between 8
and 9 ka BP, we infer evaporation only modifies local δ18O baselines but not climate‐driven signals. This aligns
with the Hendy test, which indicates stable isotopic fractionation conditions (here stable disequilibrium) during
deposition.

These factors influence only the local δ18O values. We suggest that on millennial timescales, both caves reflect
the same climate signals, as indicated by the relatively consistent patterns and fluctuations in δ13C and δ18O
values during the overlapping period (Figure S3 in Supporting Information S1). However, further detailed
comparison of the two δ18O time series is challenging due to age model uncertainties and differences in temporal
resolution. This similarity suggests that both records can be combined to reconstruct large‐scale climate changes.
Therefore, in the following discussion, we combine the isotopic records from the two caves to better represent
regional climate variability.

4. Discussion
4.1. Moisture Sources Changes Indicated by Speleothem δ18O

High‐resolution speleothem δ18O, inherited from atmospheric precipitation, effectively captures the monsoon
variability on multiple timescales (Cheng et al., 2022). In EASM regions, upstream isotope depletion recorded in
speleothem δ18O records is primarily due to monsoon circulation intensity (or spatial‐scales) and the associated
rainout effect along the moisture trajectory, as noted in previous model studies (Liu et al., 2014; Pausata
et al., 2011). High δ18O values indicate weakened summer monsoon dynamics or circulation, while low δ18O
values suggest strengthenedmonsoon dynamics on a wide range of timescales (Cheng et al., 2012, 2022; H. Zhang
et al., 2021; Zhao et al., 2023). However, given the region's complex topography and climate conditions, there is no
consensus yet on the interpretation of speleothem δ18O in Northeast Asia, with existing interpretations including
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EASM intensity (Jo et al., 2011), the East Asian winter monsoon (Sone et al., 2013), seawater δ18O (Mori
et al., 2018), or temperature (Kano et al., 2023;Kato et al., 2023) changes. Our preliminary analysis of precipitation
and oxygen isotope data reveals pronounced seasonal rainfall concentration, with 40%–65%of annual precipitation
occurring during summer months. Considering this region's unique geographical position, we investigate moisture
sources as a potential modulator of δ18O variability. Using IsoGSM2 tagging simulations (Yoshimura et al., 2008),
we quantified moisture contributions from the Pacific Ocean (PCO), terrestrial sources (LAND), and the Indian
Ocean (IO). Seasonal analyses demonstrate that precipitation δ18O becomes progressively depleted as summer
rainfall intensifies (Figure 1d), yet this depletion is asynchronous with shifts in moisture sources (Figures S4a and
S4c in Supporting Information S1). This negative δ18O‐precipitation correlation is corroborated by modern ob-
servations from six nearby GNIP stations (Figure 1c). Similarly, interannual δ18O variations exhibit significant
negative correlations with summer (JJAS) rainfall but no clear linkage to moisture source changes (Figures S4b,
S4d, and S5 in Supporting Information S1), aligning with patterns observed across East Asia.

However, some studies show that on orbital timescales, more pronounced changes in monsoon circulation due to
insolation forcing may effectively shift both distant and nearby moisture sources, further altering δ18O signals
(Q. Wen et al., 2024). Our IsoGSM2 simulations reveal that the moisture source for North China and Northeast
Asia differs significantly (Figure S6 in Supporting Information S1): Continental sources dominate North China
(∼70%), while Pacific‐derived moisture accounts for nearly one‐third of Northeast Asia's supply. Pacific Ocean
moisture is generally more depleted in 18O (Xue et al., 2023), partly due to secondary evaporation processes
beneath the cloud layer, which leads to the enrichment of 18O in the resultant water vapor and precipitation
(Tang et al., 2015). Additionally, inland moisture does not always contribute to precipitation during transport,
resulting in less depletion of heavy isotopes. In contrast, oceanic moisture undergoes continuous condensation
and precipitation along its transport path, causing a progressive depletion of heavy isotopes (Z. Cai &
Tian, 2016; M. Tan, 2016; Xia et al., 2020). Consequently, an increased contribution of moisture from the PCO,
which is relatively more depleted in 18O compared to continental moisture, would lead to more negative δ18O
values in both meteoric and speleothem records. Based on this, we suggest that δ18O in Northeast Asia reflects
changes in contribution of moisture sources, particularly the moisture fraction from the PCO on longer time-
scales. However, this hypothesis requires further study through both reconstructions and model simulations in
future.

Our speleothem δ18O records from the Russian Far East reveal a notable negative shift between 8 and 9 ka BP,
which are also evident in δ18O records from Japan (Mori et al., 2018) and South Korea (Jo et al., 2011) (Figure 2).
This suggests that climate changes in Northeast Asia exhibit strong spatial consistency on a large area. This
contrasts with the δ18O increase observed in North China (Zhenzhu Cave) (Y. Li et al., 2020) and the core
monsoon regions, such as the Dongge Cave record (Dykoski et al., 2005; Y. Wang et al., 2005) (Figure 2). This
discrepancy highlights the heterogeneous response between the EASM rainfall over the northeastern margin of
Asia and North China during the early Holocene. The decrease in δ18O values in Northeast Asia between ∼8 and
9 ka may suggest an increased contribution of moisture from the Pacific, a hypothesis that will be further dis-
cussed in subsequent sections.

4.2. Regional Precipitation Change Indicated by δ13C

The δ13C values in cave deposits are influenced by multiple processes, including: changes in cave ventilation and
water‐rock interaction, prior carbonate precipitation (PCP) in the vadose zone, and the type of vegetation and the
soil process above the cave (Genty et al., 2001). Typically, under dry conditions, slower water discharge would
increase water‐rock interaction time, enhancing both carbonate dissolution from bedrock and PCP process in the
vadose zone (Fairchild et al., 2006; Johnson et al., 2006). These processes collectively enrich δ13C values in drip
water and speleothems. The δ13C values are also influenced by the type of vegetation and the process in soil above
the cave, which are in turn affected by external hydrological conditions (L. Tan et al., 2020). On the one hand,
variations in δ13C value can reflect vegetation type with different photosynthetic pathways (McDermott, 2004)
above the cave system, which respond differently to changes in temperature, humidity, and atmospheric CO2

concentrations (Coplen et al., 1994; Dorale et al., 1992; Genty et al., 2001). Evidence suggests that the vegetation
around Vladivostok is predominantly C3‐type, corresponding with the temperate climate of the region (Mokhova
et al., 2009). Since the δ13C values of modern C3 vegetation have a significant negative correlation with mean
annual precipitation (r = − 0.43 (Rao et al., 2017)), it is expected that drier conditions would lead to heavier δ13C
values in both vegetation and speleothems. On the other hand, reduced vegetation density under drier conditions
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Figure 2. Comparison of multiple proxies in the Asian summer monsoon margin, spanning the Holocene. (a) 65°N summer insolation. (b) Speleothem δ18O records from
Dongge Cave, southern China (Dykoski et al., 2005; Y. Wang et al., 2005). (c) Speleothem δ18O records from Zhenzhu Cave, northern China (Y. Li et al., 2020).
(d) Speleothem δ18O records in this study. (e) Daeya cave speleothem δ18O records from South Korea (Jo et al., 2011). (f) Kiriana cave speleothem δ18O records (Mori
et al., 2018) from Japan. (g) Speleothem δ13C records in this study. (h) Daeya cave speleothem δ13C records from South Korea (Jo et al., 2011). (i) Pollen‐based proxies
from the Sanai‐Maruyama Site, Japan: the ratio of Fagus to Quercus subgen. Lepidobalanus pollen, and the proportion of non‐arboreal pollen to total pollen (Kawahata
et al., 2009). (j) Pollen‐based annual precipitation reconstructed from Lake Biwa, Japan (Kigoshi et al., 2014). (k) Pollen‐based annual precipitation reconstructed from
Gonghai Lake, northern China (Chen et al., 2015). The gray shadow indicates the significant change between 8 and 9 ka.
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can decrease plant root respiration and lower the organic matter content in the soil. This results in less CO2 being
produced by soil microorganisms, leading to heavier δ13C values in drip water and speleothems (L. Tan
et al., 2020). Collectively, arid conditions can prolong water‐rock interaction, enhance PCP, diminish vegetation
cover, and reduce microbial activity in the soil above the cave, ultimately leading to elevated δ13C values, vice
versa (Pérez‐Mejías et al., 2019).

Therefore, the pronounced negative shift in δ13C around 8.6 ka BP indicates a regional transition to a more humid
climate at that time. This finding is consistent with records from Japan (Kawahata et al., 2009; Kigoshi
et al., 2014) and South Korea (Jo et al., 2011) (Figure 2). Moreover, speleothems in both Sadovaya Cave and
Daeya Cave began to grow between 8 and 9 ka BP. Speleothem formation depends on the availability of infil-
trating water, which supplies dissolved calcium carbonate and facilitates carbonate deposition through CO2

degassing. In karst systems, the initiation of speleothem growth is typically interpreted as a shift toward wetter
environmental conditions. Therefore, for the relatively arid Northeast Asia, the synchronous inceptive growths of
speleothems in Sadovaya Cave and Daeya Cave likely signifies a transition to more humid conditions during the
time. Taken together, multiple lines of evidence suggest an increase in precipitation across Northeast Asia since
8.2–8.6 ka BP, or perhaps even earlier.

4.3. Driving Mechanism for Precipitation and Circulation Changes in the Early‐Mid Holocene

Our study reveals a significant negative δ18O shift and intensifiedmonsoon precipitation inNortheastAsia between
8 and 9 ka BP, in contrast to the patterns observed in North China (Figure 2). From a spatial perspective (Figure 3),
the negative δ18O shift from 9 to 6 ka aligns with changes observed in the NuanhuoCave record in Northeast China
(Wu et al., 2012), as well as Shennong and Xianyun cave records in Southeast China (H. Zhang et al., 2021). In
contrast, it differs from most other speleothem δ18O records from Southwest and North China (Y. Cai et al., 2010,
2021; Dong et al., 2015; Dykoski et al., 2005; Y. Li et al., 2020; H.‐L. Zhang et al., 2013), as well as South Asia
(Kathayat et al., 2016). Meanwhile, the increased precipitation from 9 to 6 ka corresponds to patterns observed in
southernChina (W. Zhang et al., 2018; H. Zhang et al., 2021; Zheng et al., 2020; Zhu et al., 2010) but contrasts with
reductions in northern China and South Asia (Cao et al., 2010; Cheddadi, 2020; Goldsmith et al., 2017; Hong
et al., 2005; Lauterbach et al., 2020;G. Li et al., 2020;Ming et al., 2020; Zhong et al., 2015). These spatial variations
align closely with the differences in JJAS and annual precipitation δ18O and amounts between 9 and 6 ka BP
simulated by the COSMOS‐wiso isotope‐enabled climate model (H. Zhang et al., 2021) (Figure 3, detailed in-
formation of COSMOS‐wiso can be found in Text S1 in Supporting Information S1). The model further illustrates
contrasting responses of precipitation monsoon rainfall and oxygen isotopes between Northeast Asia and the
coastal regions compared to the expansive inner continental regions. Since these time‐slice experiments at 9 and
6 ka are mainly driven by corresponding orbital parameters while maintaining other boundary conditions identical
to the pre‐industrial period, the results suggest that the distinct patterns of δ18O and rainfall are inherent features of
monsoon variability, which are primarily controlled by orbital forcing. This is basically consistent with the notion
of the “monsoon system sciences,” underlining a systematic/integrative view of different dynamic natures/re-
sponses/feedback across an exceptionally broad range of temporospatial scales in a monsoon system and put them
into the context of external insolation and internal (ice volume/CO2) forcings (Cheng et al., 2021, 2022).

Although the speleothem records around Northeast Asia are relatively short, making it challenging to definitively
conclude how δ18O and rainfall evolved throughout the Holocene, two longer pollen records from Japan provide
additional insights (Kawahata et al., 2009; Kigoshi et al., 2014). These records indicate that regional rainfall
increased since the early Holocene, even as NHSI decreased (Figures 2i and 2j). This contrasts with decreased
precipitation observed in North China, such as in the Gonghai Lake record (Chen et al., 2015) (Figure 2k). Such
discrepancies suggest that the dipole response between Northeast Asia and North China may persist on longer
timescales. This contrasting pattern aligns with the “dipole pattern” observed between land and ocean, as revealed
by numerous previous climate simulations (Jalihal et al., 2019). Furthermore, it supports recent modeling studies
that demonstrate a grand dipole response of rainfall oxygen isotope and amount among South Asia, North China,
and Japan to the orbital forcing (Q. Wen et al., 2024).

Regarding the precipitation change, the decrease in NHSI from 9 to 6 ka BP, or from the early to late Holocene,
led to a reduction in the land‐sea temperature contrast in summertime, which in turn weakened the southwesterly
wind (H. Zhang et al., 2021) (Figures 3c and 3d). Simultaneously, a weakened WPSH and southward shift of the
westerly jet (evidenced in circulation change at multiple level, Figure S7 in Supporting Information S1)‐ were
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Figure 3. Simulated and schematic changes in precipitation amount and precipitation δ18O between 9 and 6 ka. (a–d) Simulated differences (9 kyr minus 6 kyr) in
June–July–August–September (JJAS) and annual precipitation δ18O (a, c, shade) and precipitation amount (b, d, shade) from the isotope‐enabled general circulation
model COSMOS‐wiso (modified from H. Zhang et al. (2021)). Shading indicates the magnitude of anomalies; arrows represent JJA 850‐hPa water vapor transport. The
circle dots denote sites from original literature, while the squares and pentagons are new points added in this study (see Figure 1a for locations). The filled colors of these
points are qualitatively comparable to the anomaly color bars. (e–h) Schematic diagrams illustrating precipitation (e, f) and δ18O (g, h) variations at 9 and 6 ka. Blue
arrows indicate water vapor originating from the Indian Ocean and Pacific Ocean, while orange arrows represent water vapor coming from the land.
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driven by reduced zonal asymmetric diabatic heating and enhanced meridional temperature gradient. These
changes displaced the East Asian moisture front southward (Q. Wen et al., 2024), generating a rainfall dipole
pattern: reduced precipitation over North China versus increased rainfall across South China and Japan. This
paleorainfall pattern appears mechanistically analogous to modern seasonal rainband displacements driven by
insolation‐forced oscillations of the westerly jet and western Pacific subtropical high (WPSH). From May and
June to July and August, the WPSH intensifies and shifts northward, while the westerly jet axis migrates ∼2°N
poleward (Figure 1a). This coupled intensification of the WPSH and northward displacement of the jet drives the
East Asian rainbelt northward, enhancing precipitation over northern China while reducing rainfall across
southeastern China and southern Japan (Z. Li et al., 2024; Y. Wang et al., 2023). Conversely, when the WPSH
weakens and westerly jet shifts southward (equivalent to the period from July‐August to May‐June, Figure 1a), the
rainbelt retreats southward, creating a distinct belt of increased precipitation from southeastern China to southern
Japan.

Although this modern precipitation belts rarely extend into Northeast Asia, stronger early Holocene insolation
likely amplified the western Pacific subtropical high (WPSH) intensity and shifted the westerly jet poleward.
These circulation modifications could have extended precipitation influence over wider areas—including
Northeast Asia—more significantly than today. This interpretation gains support from X. Li et al.'s (2021)
analysis of modern circulation variability on interannual scale: during anti‐phase WPSH‐jet configurations
(characterized by WPSH weakening and southward jet displacement), coherent wet anomalies emerge across the
Yangtze River basin, southern Japan, and the Korean Peninsula while North China experiences drying—precisely
mirroring the 9–6 ka BP dipole pattern identified in our study. This consistency further underscores the combined
role of WPSH and westerly jet dynamics in generating continental‐scale precipitation dipoles.

As to δ18O changes, it is suggested that orbital‐scale δ18O variations over the ASM region are primarily driven by
changes in the relative contributions of moistures from different source regions, with more distant sources
contributing to more negative δ18Op, and vice versa (Kong et al., 2017; Q. Wen et al., 2024). Our moisture
analysis reveals distinct differences in moisture sources between Northeast Asia and North China. For Northeast
Asia, the contribution from the Asian continent is relatively low compared to North China with approximately
70% of the moisture coming from the continent. In contrast, the PCO plays a much greater role in Northeast Asia,
contributing nearly a third of the total moisture. As NHSI decreased from 9 to 6 ka, the weakening of the
southwesterly monsoon wind, coupled with the southward shift of the Meiyu‐Baiu rainbelt, reduced the contri-
bution of PCOmoisture to North China, resulting in the δ18O increase. Meanwhile, the relative contribution of the
nearby PCO moisture to Northeast Asia increased, leading to the δ18O decrease in that region (Figures 3e and 3f).

Overall, both monsoon rainfall and speleothem δ18O exhibit contrasting patterns between Northeast Asia and
North China during the early to mid‐Holocene, highlighting the diverse responses of rainfall and δ18O to NHSI
forcing. These contrasting patterns are further supported by the diverse patterns observed across eastern China
during the Holocene (H. Zhang et al., 2021). Some studies suggest that variations in ice volume may have shifted
the rainfall maximum in Northern China from the Early to Middle Holocene by influencing CO2 concentrations
(Lu et al., 2013) or the AMOC (Chen et al., 2015). However, modeling results indicate that remnant ice sheets
over North America during the Early Holocene likely had negligible impacts on atmospheric circulation in remote
East Asia (Gregoire et al., 2018; Jin et al., 2012; Weber & Tuenter, 2011). Our findings emphasize that the unique
patterns of δ18O and rainfall are fundamental characteristics of monsoon system, primarily controlled by NSHI.
The internal processes, such as ice sheet melting and vegetation feedback, may have secondary effects, either
amplifying or dampening these variations. The phase differences between speleothem isotope records and other
moisture proxies align broadly with the dynamics of monsoon systems under the NHSI forcing. Notably, the
abrupt δ18O/precipitation shift at ∼9–8 ka may present an intriguing nonlinear response to gradual insolation
change. We cautiously propose this may parallel modern intraseasonal thresholds where the WPSH exhibits
abrupt northward jumps (mid‐June and mid‐July), corresponding to the EASM's characteristic three quasi‐
stationary stages separated by two rapid transitions (Ding & Chan, 2005). Though orbital and seasonal time-
scales differ, similar atmospheric reorganization mechanisms—potentially involving coupled WPSH‐jet
displacements—might operate across timescales. This hypothesis requires further validation through dedicated
modeling studies.
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5. Conclusions
We conducted a comprehensive analysis on new δ18O and δ13C records from two speleothems from the Russian
Far East, spanning 9 to 5 ka BP, which represent the northernmost cave records thus far in the EASM region. This
study, in conjunction with other records from Northeast Asia, indicates a significant synchronous negative shift of
the speleothem δ18O and intensified monsoon precipitation in Northeast Asia between 8 and 9 ka BP, contrasting
with the rainfall and speleothem δ18O patterns observed in North China. We suggest that this contrasting pattern
may be driven by changes in NHSI during the Holocene. A decrease in NHSI would weaken the southwesterly
winds and the WPSH, while simultaneously inducing a southward shift of the westerly jet. These changes
collectively force the rain belt southward, thereby reducing precipitation in North China while increasing it in
Northeast Asia. Additionally, this shift would reduce (increase) the contribution of the PCO moisture to North
China (Northeast Asia), resulting in δ18O increase (decrease). In summary, our study sheds light on the complex
evolution of the precipitation and δ18O in Northeast Asia, emphasizing the pivotal role of NHSI in driving
monsoon climate dynamics.
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