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ABSTRACT

The risk of climate maladaptation is increasing for numerous species, including trees. Developing robust methods to assess
population maladaptation remains a critical challenge. Genomic offset approaches aim to predict climate maladaptation by char-
acterizing the genomic changes required for populations to maintain their fitness under changing climates. In this study, we as-
sessed the risk of climate maladaptation in European populations of English yew (Taxus baccata), a long-lived tree with a patchy
distribution across Europe, the Atlas Mountains, and the Near East, where many populations are small or threatened. We found
evidence suggesting local climate adaptation by analyzing 8616 SNPs in 475 trees from 29 European T. baccata populations,
with climate explaining 18.1% of genetic variance and 100 unlinked climate-associated loci identified via genotype-environment
association (GEA). Then, we evaluated the deviation of populations from the overall gene-climate association to assess vari-
ability in local adaptation or different adaptation trajectories across populations and found the highest deviations in low lati-
tude populations. Moreover, we predicted genomic offsets and successfully validated these predictions using phenotypic traits
assessed in plants from 26 populations grown in a comparative experiment. Finally, we integrated information from current
local adaptation, genomic offset, historical genetic differentiation, and effective migration rates to show that Mediterranean and
high-elevation T. baccata populations face higher vulnerability to climate change than low-elevation Atlantic and continental
populations. Our study demonstrates the practical use of the genomic offset framework in conservation genetics, offers insights
for its further development, and highlights the need for a population-centered approach that incorporates additional statistics
and data sources to credibly assess climate vulnerability in wild plant populations.
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1 | Introduction

Genetic adaptation is one of the main mechanisms for long-
term persistence of organisms in a changing environment
(Aitken et al. 2008). For genetic adaptation to occur, individ-
uals must exhibit heritable phenotypic differences, and these
differences must affect their survival and/or reproduction
(i.e., be related to their fitness; Darwin 1859; Mayr 1982).
While evidence for local adaptation in plants (Leimu and
Fischer 2008) and animals (Hereford 2009) is common, it can
only occur or be maintained when the selective pressures are
greater than other evolutionary forces such as genetic drift or
gene flow (Savolainen et al. 2013). Random genetic drift can,
purely by chance, promote mutations that are not beneficial
but rather neutral or even deleterious, potentially under-
mining local adaptation (Yeaman and Otto 2011). Gene flow
can hinder adaptation by introducing maladaptive alleles or
promote it by spreading beneficial alleles across populations
and increasing overall genetic diversity (Joron et al. 2011;
Blanquart et al. 2013; Savolainen et al. 2013; Deacon and
Cavender-Bares 2015).

The predicted intensification of climate change in the near
future poses serious threats to all biodiversity levels (Diaz
et al. 2019). Rapid environmental changes expose species
and populations to novel conditions leading to a phenotypic
mismatch, which may result in a reduction in fitness (Chen
et al. 2011; Brady et al. 2019). A growing body of evidence
shows range contractions and shifts as serious threats to bio-
diversity conservation, particularly affecting sessile organ-
isms that will most likely not be able to adapt and disperse at
the same rate as the predicted climate change (Zhu et al. 2012;
Dyderski et al. 2018; Zu et al. 2021). Additionally, fragmenta-
tion often leads to smaller population sizes, which increase the
likelihood of genetic drift and inbreeding, while limiting gene
flow (Young et al. 1996; Cheptou et al. 2017). Therefore, iso-
lated populations may be more vulnerable to climate change
due to reduced adaptive capacity and migration potential
(Leimu et al. 2010). Thus, the development of reliable meth-
ods to study and predict maladaptation is becoming urgent, in
particular for long-lived, sessile keystone species with highly
fragmented ranges, such as some trees (e.g., the English yew,
Taxus baccata L.).

To quantify levels of maladaptation in populations under
changing climate, Fitzpatrick and Keller (2015) proposed an
approach based on genomic data and climate projections,
known as genomic (or genetic) offset. This increasingly pop-
ular approach relies on calculating the magnitude of genetic
change required to maintain the current gene—environment
relationships under novel climates, assuming that populations
are locally adapted (Bernatchez et al. 2024). Several methods
have been used to compute genomic offsets: for example latent
factor mixed models (LFMMs; Gain and Francois 2021), gra-
dient forest (GF; Fitzpatrick and Keller 2015) or redundancy
analysis (RDA; Capblancq and Forester 2021), and have been
applied to a variety of study systems: crops (Aguirre-Liguori
et al. 2019; Rhoné et al. 2020), trees (Capblancq, Morin,
et al. 2020; Theraroz et al. 2024; Archambeau et al. 2024;
Bonnier et al. 2025), invertebrates (Adam et al. 2022; Bourret
et al. 2024), amphibians (Wu et al. 2025), birds (Bay et al. 2018;

Smith et al. 2021), and, recently, mammals (Hoste et al. 2024;
McLennan et al. 2025).

Recent studies have shown that genomic offset predictions
can be validated using simulation (Laruson et al. 2022) or em-
pirical (Bay et al. 2018; Fitzpatrick et al. 2021; Archambeau
et al. 2024) approaches. However, to date, most validations
have relied on the same data used to train the model. For
this reason, some authors have highlighted the need to use
independent datasets to train and test genomic offset models
in order to avoid model overfitting (e.g., Rellstab et al. 2021;
Lotterhos 2024b). Furthermore, the majority of the evalua-
tion studies using empirical data produced contrasting results
depending on the fitness proxy used (Fitzpatrick et al. 2021;
Lind et al. 2024; Archambeau et al. 2024). For example, in
trees, Lind et al. (2024) found that height was more associ-
ated with genomic offset predictions than mortality for Jack
pine (Pinus banksiana Lamb.) and Douglas fir (Pseudotsuga
mengziesii Mirb.), while Archambeau et al. (2024) found the op-
posite pattern for maritime pine (Pinus pinaster Aiton). These
contrasting results suggest that the most appropriate fitness
proxies may vary across species, even for those with similar
life-history traits. Taken together, these findings highlight the
need for more case studies across species and ecological sce-
narios, as well as evaluation data that use a variety of fitness
proxies (e.g., variables related to reproductive, phenological,
or ecophysiological traits), before adopting the genomic offset
approach to support population conservation or management
guidelines.

Although the genomic offset framework is promising and
offers a variety of methods, several assumptions, common
to all methods, need to be carefully considered (see Ahrens
et al. 2023). These include: (i) all populations are equally lo-
cally adapted and (ii) the genotype-environment relationships
can be extrapolated across space and will remain valid in the
future, thus neglecting the adaptive capacity of populations
(Rellstab et al. 2021; Ahrens et al. 2023). Populations devi-
ating from overall gene-climate relationships may be partic-
ularly common in species with fragmented distributions as
some populations would not or only partially exchange genes
with other populations (Deacon and Cavender-Bares 2015). To
date, these key assumptions remain largely untested (but see
the RONA framework; Rellstab et al. 2016). Moreover, a num-
ber of additional processes can exacerbate climate maladapta-
tion (e.g., inbreeding depression) or mitigate it (e.g., beneficial
gene flow; Aguirre-Liguori et al. 2021; Rellstab et al. 2021;
Chen et al. 2022; but see Lachmuth et al. 2024). In particular
in trees, the overall effect of gene flow is expected to facili-
tate the evolutionary change required by populations to adapt
to new climatic conditions, as they typically exhibit long-
distance gene flow (Kremer et al. 2012). Several recent stud-
ies have interpreted together (Capblancq, Morin, et al. 2020;
Lazic et al. 2024) or combined (Barratt et al. 2024) various
sources of information with genomic offset to provide more in-
tegrative climate maladaptation or vulnerability predictions,
but the integration of key processes such as gene flow is still
largely missing.

English yew (Taxus baccata L.) is a long-lived, dioe-
cious, wind-pollinated and animal-dispersed conifer tree
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species, with a fragmented distribution across Europe, the
Atlas Mountains, and the Near East, from sea level up to
2,200ma.s.l. Many populations of T. baccata are small and
isolated, and they are threatened by fires, browsing, and, in
some cases, current or past overexploitation and long-term
climate variability (Thomas and Polwart 2003; Mysterud and
Ostbye 2004; Ruprecht et al. 2010; Benham et al. 2016). The
species is found in a wide range of climatic conditions, includ-
ing high-elevation, Atlantic, continental, and Mediterranean
climates (Thomas and Polwart 2003). Cold temperature and
drought appear to be among the main limiting factors explain-
ing, respectively, its northern (Thomas and Polwart 2003) and
southern (Gegechkori 2018; but see Linares 2013) distribution.
Several studies have described overlaying levels of population
genetic structure in T. baccata at different geographical scales.
Indeed, while Mayol et al. (2015) found two to three main gene
pools at the rangewide geographical scale, studies at local
and regional spatial scales found strong population genetic
structure and marked genetic differentiation even between
populations in close spatial proximity (e.g., less than 500m in
Dubreuil et al. 2010; see also Gonzalez-Martinez et al. 2010;
Chybicki et al. 2011). Different lines of evidence suggest local
adaptation to climate in this species, including phenotypic dif-
ferences observed under common garden conditions (Mayol
et al. 2020), as well as genomic signatures of natural selection
in defense-related genes (Burgarella et al. 2012) and climate-
related genes (Mayol et al. 2020). Demographic decline is
thought to have begun a long time ago in several parts of the
T. baccata range (e.g., around 300,000years ago in Iberian
populations; Burgarella et al. 2012) and may have intensified
more recently (particularly over the past 4,000years; Thomas
and Polwart 2003). Climate change is expected to exacerbate
this decline, particularly for Mediterranean populations at
the warm and arid range limit, and for those in other sensi-
tive environments, such as high-elevation mountain regions,
where climate-induced stress is already being observed and/

or is predicted to be particularly strong in the near future
(Mendoza et al. 2009; Knight 2022).

The main objectives of this study are (i) to investigate patterns
of local adaptation to climate in T. baccata, (ii) to evaluate the
potential of genomic offset to predict population maladapta-
tion under novel climatic conditions for a species with a highly
fragmented distribution, and (iii) to gain insight into the poten-
tial vulnerability of T. baccata populations to future climate by
linking information on the current degree of local adaptation,
the historical capacity of gene flow, and the predicted future
climate maladaptation. To meet these objectives, we first used
climatic and genomic data from 29 populations across the spe-
cies' European range to identify gene-climate relationships, as
well as candidate climate-associated loci; second, we computed
the distance between the observed and predicted genomic com-
position to identify populations deviating from average gene-
climate relationships (subsequently called ‘genomic discrepancy
index’); and third, we calculated historical effective migration
rates and genetic differentiation between populations to deter-
mine potential trends in gene flow capacity in the near future,
assuming conservatism of historical patterns. Finally, we cal-
culated genomic offsets using two methods and evaluated their
predictions using phenotypic traits related to growth, growth
phenology, reproductive phenology, and drought/temperature
tolerance, measured in plants from 26 populations grown in a
comparative experiment.

2 | Materials and Methods
2.1 | Sampling and Genotyping
Genomic data were obtained for 501 trees from 29 popula-

tions covering nearly the entire range of T. baccata in Europe
(Figure 1 and Table S1). A first dataset involving 25,726 Single
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FIGURE1 | Map showing the two sets of T. baccata populations used for genomic offset (and related indexes) estimation and validation. In green,
the species’ European range (EUFORGEN; Caudullo et al. 2017). The black dots represent the 29 SNP-genotyped populations, while the pink trian-

gles indicate the 26 populations from which material was sourced to establish the comparative experiment in Central Spain (clonal bank) used for

empirical evaluation of genomic offset models. Population labels correspond to those in Table S1.
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Nucleotide Polymorphisms (SNPs) from 120 trees sampled in
12 natural populations was obtained from Mayol et al. (2020).
A subset of these SNPs (7,405 SNPs) was used as target SNPs
to genotype 11 additional populations (202 individuals) using
Single Enrichment Primer Technology (SPET) by Farsakoglou
(2025), data available at Data INRAE public repository (doi:
10.15454/7COC1A). In addition, 179 trees from six popula-
tions in Slovenia and Italy were genotyped using the same
SPET technology. For the latter, DNA was extracted using the
NucleoSpin Plant II kit (Macherey Nagel). SNP calling fol-
lowed GATK best practices (version 3, with —filterExpression
‘MQ <40 [l MQrank >12.51IDP <7.0 11 Q <50.0 11 QD <1.51l
FS >60.0 Il ReadPosRanksum > —8’; Auwera and der Auwera
and O'Connor 2020). Additionally, we filtered for allele bal-
ance (between 0.2 and 0.8) using the vcfR R package (Knaus
and Griinwald 2017). A subset of three individuals that were
genotyped by both Mayol et al. (2020) and Farsakoglou (2025)
was used to ensure reproducibility across experiments. Low-
quality SNPs and those with inconsistent calls across experi-
ments were discarded, resulting in a final genomic dataset of
11,367 SNPs for 490 trees.

From these data, two datasets were produced for specific anal-
yses (see Table S2). For the first dataset, we filtered for miss-
ing data > 15% (for both individuals and SNPs) without filtering
for minor allele count (i.e., we retained low-frequency alleles),
resulting in 8252 SNPs for 452 individuals. This set was used
for population genetic structure analyses, as they are sensitive
to high missing data rates and removal of low-frequency SNPs
(Linck and Battey 2019). Genotyping errors resulting from the
lack of filtering for minor allele count were considered unlikely
due to the robust study design and filtering procedures (see
above). For the second dataset, used for all other analyses (ex-
cept for estimating historical gene flow, see below), we filtered
for missing data >30% (for both individuals and SNPs) and re-
moved all SNPs with a minor allele count lower than 20 (i.e.,
twice the number of individuals in the smallest population be-
fore filtering, which corresponded to a minor allele frequency of
2.11%), as low-frequency alleles can lead to high false-positive
rates, resulting in 8616 SNPs for 475 individuals (ranging from
8 to 31 individuals per population). Then, we imputed missing
data in this dataset by using the most common genotype within
each gene pool identified by a STRUCTURE clustering analysis
(Pritchard et al. 2000; see below).

Finally, a dataset consisting of 4993 individuals from 238 popu-
lations genotyped with seven nuclear microsatellites (nuSSRs)
was retrieved from Mayol et al. (2015). This dataset was used
to estimate historical gene flow using EEMS (see below and
Table S2). Analyses were also performed based only on pop-
ulations with at least 10 trees sampled (4,658 individuals, 176
populations).

2.2 | Climatic Data

Climatic data at high resolution (30 arc-seconds, approxi-
mately 1km at the equator) were obtained from the Climate
Downscaling tool (ClimateDT, available at www.ibbr.cnr.it/
climate-dt; Marchi et al. 2024). The 1901-1950 time interval,
which likely reflects the long-term climatic conditions to which

current T. baccata populations are adapted, was defined as the
reference period. To predict maladaptation to future climate, we
used climatic projections for the 2041-2070 time interval from
five global climate models (GCMs; Table S3) under the Shared
Socio-economic Pathway SSP3-7.0 (AR6) associated with a se-
vere climate forcing scenario (Fujimori et al. 2017).

To identify climatic variables potentially involved in T. baccata
adaptation, we applied four selection steps. First, we preselected
climatic variables based on their relevance according to previ-
ous studies and/or the species’ ecology (Melzack and Watts 1982;
Moir 1999; Thomas and Polwart 2003; Mayol et al. 2015, 2020;
Gegechkori 2018; Sanchez-Martinez et al. 2021; Cedro 2023).
Second, we performed forward selection on the preselected vari-
ables to identify those explaining most of the genomic variation
among populations. For this, we used the ordiR2step function
from the vegan R package (Oksanen et al. 2025), ranging from
a null model without explanatory variables to a full model with
all the explanatory variables. The stopping criterion was the sig-
nificance of the variable in increasing the model's R?, using a
p-value threshold of 0.05 and 1000 permutations. Twenty runs
were performed to ensure robustness (Table S4). Third, we re-
moved climate variables with Pearson's correlation greater than
10.751, keeping, when possible, the most informative climate
variables identified during the forward selection. Fourth, we
removed additional climatic variables to achieve variance infla-
tion factors (VIF) below 10, following James et al. (2021). The
final six selected climatic variables were: mean annual tempera-
ture, mean diurnal range temperature, temperature seasonality,
mean temperature of the driest quarter, mean annual precipita-
tion, and precipitation seasonality (Table 1).

To establish how well our SNP data depicted rangewide climatic
pressures, we visually compared the climatic envelope of the 29
SNP-genotyped populations with the rangewide one based on
all 298 locations with confirmed presence of T. baccata used in
this study (i.e., including the locations genotyped with nuSSRs
in Mayol et al. 2015; Figure S1). The climatic envelopes were
built by extracting, for each location, the values for the six cli-
mate predictors identified above and combining them using
PCA (FactoMineR; Lé et al. 2008). In addition, we compared
the climatic envelope of these 29 populations with that of the 26
populations from the comparative experiment used to validate
the genomic offset models.

2.3 | Phenotypic Traits

Phenotypic data were obtained from plants from 26 natural
populations grown in a comparative experiment (a clonal bank
established in 1992) under common garden conditions. Only
three of the populations (RAS, CAR, and BUJA) in the com-
parative experiment were also in the SNP dataset but probably
sampled different individual trees; therefore, we considered
both sets of populations to be nearly independent. The compar-
ative experiment was located in Valsain, in the foothills of the
Sierra de Guadarrama mountains in central Spain (40.9106°N,
4.0125°W, 1,140m a.s.l). Phenotypic traits were measured sev-
eral times over the years for over 250 trees (see details in Mayol
et al. 2020). We selected growth, growth phenology, reproduc-
tive phenology, and drought/temperature tolerance as relevant
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TABLE 1 | Description of the final set of six climatic predictors used in genotype-environment association (GEA) and genomic offset analyses.

“OrdiR2step model” corresponds to climatic predictors identified by the forward selection as explaining most of the genomic variation among

populations.
Variable Abbreviation Relevance
Biol: Mean Annual Temperature (°C) Annual_Tc Thomas and Polwart (2003); Gegechkori (2018);

Bio2: Mean Diurnal Range (°C)

Bio4: Temperature Seasonality (standard
deviation X 100)

Bio9: Mean Temperature Driest Quarter (°C)

Biol2: Mean Annual Precipitation (mm)

Biol5: Precipitation Seasonality (coefficient of
variation)

Diurnal_range_Tc

Tc_Seasonality

Tc_Driest_quarter

Annual_P

P_Seasonality

Mayol et al. (2020); Ahmadi et al. (2020)
OrdiR2step model

Cedro and Iszkuto (2011); Ahmadi
et al. (2020); OrdiR2step model

Moir (1999); Cedro and Iszkuto (2011);
OrdiR2step model

Moir (1999); Mayol et al. (2020)
Ahmadi et al. (2020)

fitness components for climate adaptation, based on previous
studies and the ecology of the species, as explained below (see
also Table S5 and Mayol et al. 2020).

Growth is commonly considered a proxy for fitness in trees
(Fitzpatrick et al. 2021; Capblancq et al. 2023). Individual
growth was approximated using shoot volume measured as
the volume of the leading current-year shoot from the two lon-
gest stems, averaged between the stems and over fouryears
(2009-2012).

Phenological traits often follow latitudinal/altitudinal clines,
suggesting climate-related selective pressures that may lead
to adaptation (Alberto et al. 2013; Mayol et al. 2020; Silvestro
et al. 2023). This is especially relevant for T. baccata because
some populations occur at high elevation or latitude, where they
are exposed to frost events, while others occur at low elevation or
latitude, and are exposed to drought during the growing season
or benefited from milder climate (coastal Atlantic populations).
Growth phenology was estimated from the mean ratio of shoot
length before summer (May-June) to the total shoot length at
the end of the growing season (October-November), over three
consecutive years (2010-2012; referred to as shoot elongation).
Reproductive phenology was estimated over the same period by
estimating the ratio of open male strobili to the total number of
male strobili in several branches during the main period of pol-
len dispersal (see details in Mayol et al. 2020).

Finally, drought/temperature tolerance traits have garnered in-
creasing interest for evaluating the potential of populations to
adapt to warming climates (Keller et al. 2011). Previous studies
in T. baccata have shown that drought may be one of the limit-
ing factors in the southern part of the species' range (Thomas
and Polwart 2003; Gegechkori 2018). We used the mean leaf
thickness, an ecophysiological trait associated with drought and
thermal tolerance, measured with a digital calliper (to the near-
est 0.01 mm) on the two to five largest leaves of the leading shoot
at the end of the growing year, over fouryears (2009-2011, 2021).

For all traits, we calculated best linear unbiased predictors
(BLUPs) to estimate population-level phenotypic values,

accounting for covariates influencing trait variation when
needed. As the traits showed nearly normal distributions, we
used Gaussian mixed-effects models as follows:
Y = n + pop; + genoy, + &

where Yy, is the average trait value across years of measurement
for individual k of genotype j in population i, u is the overall
phenotypic mean, pop; and geno,, are the population and geno-
type (nested in population) random intercepts, respectively, and
ey are the residuals of the model. For the growth model, stem
length was used as a covariate (fixed effect) to account for differ-
ences in age between trees. BLUPs used in this study correspond
to the mean of the posterior distribution of pop,.

All mixed-effects models were fitted within a Bayesian frame-
work using Markov chain Monte Carlo (MCMC) methods im-
plemented in the MCMCglmm R package (Hadfield 2010).
Because of the lack of prior knowledge, we used weakly infor-
mative priors (inverse-Wishart with V=1 and »=0.002) for all
random effects and residuals (Hadfield 2010). Each model ran
for 1,500,000 iterations, with a 50,000-iteration burn-in to sta-
bilize the chains and a thinning interval of 500 iterations to re-
duce autocorrelation. Four independent MCMC chains were run
for each model, and chain convergence was assessed using the
Gelman-Rubin criteria (Gelman and Rubin 1992) (Table S5).

2.4 | Population Genetic Structure and Historical
Gene Flow

Population genetic structure analyses were conducted using
principal component analysis (PCA), as implemented in the
vegan R package (Oksanen et al. 2025), and the STRUCTURE
Bayesian clustering approach (version 2.3.4; Pritchard
et al. 2000). STRUCTURE models were run for a number of clus-
ters (K) ranging from 1 to 10, with 10 independent MCMC runs
for each K, using 500,000 iterations each, including a burn-in pe-
riod of 100,000. The most likely number of genetic clusters was
estimated from averaged values for each K, using the AK method
(Evanno et al. 2005).
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TABLE 2 | Description of the six genotype—environment association (GEA) analyses used to detect climate-associated loci (see additional details

in Supporting Information).

Population
structure correction

Method Functional shape

Procedure for candidate-

SNP selection Sources

Redundancy analysis Linear Extreme Mahalanobis Legendre and
(RDA) distance with false Legendre (2012);
Partial redundancy Yes, with first two PCs discovery rate of 10% ;apbltanc(g(?znlc;
analysis (pPRDA) orester
Latent factor mixed model Linear Yes, with two False discovery rate of 10% Caye et al. (2019)
(LFMM) latent factors
BayPass Linear Yes, with covariance Mean Bayes factor across Gautier (2015)

matrix five runs > 8 (substantial

evidence on the Jeffreys'
scale; Kass and Raftery 1995)

Gradient forest (GF-raw) Non-linear Top 5% overlapping Ellis et al. (2012);

Gradient forest corrected
(GF-corrected)

Yes, with LFMM
corrected matrix

SNPs across five runs Fitzpatrick

et al. (2021)

Historical gene flow patterns were investigated based on the
genetic differentiation (Fg;) of each population relative to a
common predicted ancestral gene pool, calculated using
BayeScan software version 2.1 (Foll and Gaggiotti 2008),
as well as Jost's D (Jost 2008) estimated using the mmod R
package (Winter 2012). Potential areas of historical permea-
bility or barriers to gene flow across the range of T. baccata
were further identified by estimating effective migration sur-
faces (EEMS, Petkova et al. 2016). This analysis evaluates the
consistency of molecular data with expectations under an
isolation-by-distance (IBD) model (see details in Table S7 and
in Supporting Information).

2.5 | Patterns of Local Adaptation to Climate
2.51 | Genetic Variance Partitioning

To disentangle the influence of demographic history, geog-
raphy, and climate on population allele frequencies in T. bac-
cata, we used a combination of redundancy analysis (RDA) and
partial redundancy analysis (pRDA), following Capblancq and
Forester (2021). We first ran a full RDA model with all predic-
tors to estimate the total proportion of genetic variance they
explain. Second, we ran three pRDA models to estimate the pro-
portion of genetic variance explained separately by demographic
history, geography, and climate, while partialing out the effects
of the others. Population demographic history was accounted
for by using the first two PCs (explaining 24.5% of the variance)
of the PCA performed on the SNP data not filtered for minor
allele count. As proxies for geography, we used all positive cor-
relation axes from a spatial autocorrelation analysis (distance-
based Moran's eigenvector maps, dbMEMs) computed with the
adespatial R package (Dray 2016). Finally, the selected climate
variables (Table 1) were used as climate predictors. All the RDA
and pRDA models, and the PCA, were performed using the
vegan R package (Oksanen et al. 2025).

2.5.2 | Climate-Related Candidate SNPs

SNPs potentially involved in climate adaptation were identi-
fied using six genotype-environment association (GEA) meth-
ods: RDA, pRDA, LFMM, BayPass, and Gradient Forest with
or without correction for population structure (see Table 2,
Figure 2, and additional Methods in Supporting Information).
These methods have contrasting assumptions and performance
under different scenarios, and combining their results helps re-
duce false positive rates (Forester et al. 2018).

Candidate SNPs identified by at least two GEA methods were
retained in an outlier set. This set was filtered to include only
unlinked SNPs within contigs, using a linkage disequilibrium
threshold of R?< 0.7, calculated using the genetics R package
(Warnes et al. 2022). A set of putatively neutral SNPs (here-
after random set) was generated by randomly selecting the
same number of SNPs as in the outlier set from the SNPs that
were not identified as candidates by any of the GEA methods,
matching the allele frequencies of the outlier set. Finally, we
also performed the downstream analyses using all the avail-
able SNPs (hereafter the all set).

2.5.3 | Identifying Populations Deviating From
GEA Patterns

We identified populations that deviate from the global GEA
trends provided by the RDA model with the best correlation
with fitness proxies (i.e., the RDA model based on the ran-
dom set of SNPs; see Figure 3). To achieve this, we extracted
the observed and predicted population scores (using the refer-
ence time period 1901-1950) based on the linear combination
of the climatic variables in the constrained RDA ordination
space. These scores were extracted for the most explana-
tory RDA axes only (K=2 in our case) and were weighted by
axis importance. Euclidean distances between the observed
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and predicted population scores were calculated and subse-
quently standardized using a min-max normalization to range
from zero to one. The resulting index is hereafter referred to
as genomic discrepancy index (GDI-RDA). Populations with
higher GDI-RDA values deviate more from the mean GEA
relationship.

2.6 | Potential Maladaptation Under Future
Climate

2.6.1 | Genomic Offset Predictions

The potential maladaptation of T. baccata populations to fu-
ture climate was estimated using the genomic offset approach
(Fitzpatrick and Keller 2015). Although several methods exist
to compute this index, the general framework is similar. The
first step estimates gene-climate relationships using genomic
data and climate conditions at the population locations for a
reference period (1901-1950 in our study). In the second step,
these relationships are used to project the genomic composi-
tion of the populations for both the reference and future pe-
riods (2041-2070 under SSP3-7.0 in our study). The final step
calculates the genetic distance between the reference and
future projected genomic composition, that is the genomic
offset. Genomic offsets were calculated using two methods,

redundancy analysis (RDA; Capblancq and Forester 2021) and
gradient forest (GF; Fitzpatrick and Keller 2015), whose main
difference is the shape of the gene-climate relationship (i.e.,
linear for RDA and linear as well as nonlinear for GF). For
both methods, we predicted the genomic offset using the three
SNP sets described above (i.e., the outlier set, the random set,
and the all set). We also used two additional SNP sets to assess
the consistency of our predictions for the random and outlier
sets: a second random SNP set, referred to as random_2, and
a set including all 935 outliers identified by at least one GEA
method, referred to as all_outlier. All genomic offset predic-
tions were made using five distinct GCMs (see Table S3), and
the mean genomic offset value across GCMs was standardized
using min-max normalization. Genomic offset predictions
were projected for a relatively near-future interval given the
long generation time of T. baccata (reported to be as long as
75years; Thomas and Polwart 2003), to address the assump-
tion that genotype-climate associations based on current ge-
nomic data will remain valid for the prediction time period.

2.6.2 | Evaluation of Genomic Offset Predictions Using
Phenotypic Traits

To assess the relevance of genomic offset predictions, we esti-
mated their Pearson's correlations with the BLUPs of the four
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phenotypic traits (growth, growth phenology, reproductive phe-
nology, and drought/temperature tolerance) described above.
Only populations with at least three individual plants measured
for a given trait were included in the analyses. Single traits are
often integrated into complex phenotypes, with different compo-
nents of lifetime fitness being approximated by different traits,
especially in long-lived organisms such as trees (see review in
Climent et al. 2024). Therefore, we also correlated genomic off-
set predictions with a multitrait index (hereafter Composite trait
index), computed as follows:

Composite trait index; = an=1 (Std(trait,, )) /n

where i is the population, trait,  denotes the population inter-
cept (or BLUPSs) of population i and trait m, n is the total num-
ber of traits, and Std corresponds to a min-max standardization
(applied to each trait to constrain the values between 0 and 1).
While simple, given the lack of better information on trait-fit-
ness correlation, this index combines all available traits and
gives them equal weights.

Genomic offsets for populations from the comparative experi-
ment were calculated using the GEA models built with the 29
SNP-genotyped populations and the Euclidean distance between
the predicted optimal genomic composition at the population's
reference climate of origin (1901-1950 period) and the experi-
mental site's climate from the planting to the last measurement
date (1992-2012 for growth, growth phenology, and reproduc-
tive phenology, and 1992-2021 for drought/temperature toler-
ance). Relationships between trait BLUPs and genomic offset
predictions for each trait and the composite trait index were in-
vestigated using both Pearson's correlation coefficients, as sug-
gested by Lotterhos (2024b), and linear models, as suggested by
Fitzpatrick et al. (2021). For the latter, analyses were conducted
under both a frequentist framework using the stats R package (R
Core Team 2023) and a Bayesian framework using the brms R
package (Biirkner 2021; see Supporting Information for details).
Because of the particular climatic conditions of the compar-
ative experiment, we expected a negative correlation between
genomic offset predictions and phenotypic traits, assuming that
later phenology, higher growth, and larger leaf thickness would
confer higher fitness in this environment.

3 | Results
3.1 | Climatic Variation and Phenotypic Traits

Visual exploration of the climatic envelope of the 29 SNP-
genotyped populations suggests that it adequately covers the cli-
matic niche of T. baccata, as determined from the 298 sites with
known presence of the species across its range (Figure S2a). The
climatic envelope of the populations planted in the compara-
tive experiment matched the climatic envelope of the 29 SNP-
genotyped populations (Figure S2b). Finally, the climates of the
source populations of the plants in the comparative experiment
(reference period 1901-1950) were milder than the current cli-
mate of the experimental site (time periods 1992-2012 and
1992-2021), which is characterized by higher temperature, es-
pecially during the dry season, higher temperature seasonality,

and lower annual precipitation (Figure S3). This showed that the
experimental location was suitable for validating genomic offset
predictions associated with climate change.

Additionally, we found that single phenotypic traits were not
highly correlated; therefore, supporting the idea that they con-
tribute to different fitness components (Figure S4).

3.2 | Population Genetic Structure and Historical
Gene Flow

Bayesian clustering analysis identified two main gene pools
corresponding to the Western and Eastern parts of the spe-
cies' range, while centrally located populations, such as those
from Switzerland and Germany, exhibited admixed genetic
compositions. PCA revealed a similar geographic pattern,
consistent with an east-west genetic structure (Figures S5-
S7). According to AK, the best number of clusters was K=2
(Figure S7c¢), as largely confirmed by the topology of both indi-
viduals and populations along the first two PC axes (Figures S5
and S6). The Western gene pool includes the populations from
Spain, the United Kingdom, Norway, France, and southern
Italy, while the Eastern one includes those from Sweden,
Germany, Switzerland, northern Italy, Slovenia, Slovakia,
Bosnia-Herzegovina, and Greece. The two population genetic
differentiation indices, namely Bayescan's population-specific
Fy and Jost's D, were highly correlated (Pearson'’s correla-
tion=0.93). Therefore, we only used Bayescan's population-
specific Fy; in the following sections. Population-specific
Fg; ranged from 0.05 to 0.29, with most of the highest values
found in the Mediterranean area, but with no region consis-
tently exhibiting the highest genetic differentiation (Figure 4a
and Table S6). Additionally, EEMS models enabled the iden-
tification of multiple populations with higher (e.g., Sainte-
Baume in France, Omberg in Sweden, Gabrovo in Bulgaria,
or Tosande in Spain) or lower (e.g., Skarzynsko-Kamienna in
Poland, Yenice in Turkey, Las Hurdes in Spain, or the Middle
Atlas in Morocco) migration than under an isolation by dis-
tance (IBD) model (Figure S8). Levels of estimated historical
migration did not seem to follow any particular geographical
or environmental pattern. In addition, the correlation be-
tween population-specific Fg and historical migration esti-
mates from EEMS for the 29 SNP-genotyped populations was
very low and non-significant (Pearson's correlation =—0.21,
p-value =0.27).

3.3 | Patterns of Local Adaptation to Climate
3.3.1 | Genetic Variance Partitioning

The full RDA model explained 58.6% of the total genetic vari-
ance across the 29 SNP-genotyped populations and provided
strong evidence against the null hypothesis (i.e., no association
between the model predictors and genetic variation; Table 3).
Partial RDA models showed that 30.9% of the genetic variance
was attributed solely to climate, 17.9% to the demographic his-
tory, and 22.2% to geography, while 29% of the genetic vari-
ance remained confounded between the predictors (see also
Figures S5b and S9).
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TABLE 3 | Partition of the total amount of genetic variance showing proportions explained by climate (clim.), demographic history (pop.struc.)
and geography (geog.), as well as by the confounding effect among these factors.

Proportion of total

Proportion of relative

Partial RDA models explained variance (R?) explained variance P
Full model: F~clim. + pop.struc. + geog. 0.586 1 0.001
Pure climate: F~clim. | (pop.struc. + geog.) 0.181 0.309 0.041
Pure population structure: F~ pop.struc. | (clim. + geog.) 0.105 0.179 0.001
Pure geography: F ~geog. | (clim. + pop.struc.) 0.130 0.222 0.030
Confounded climate/population structure/geography 0.170 0.290

Total unexplained
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FIGURE 3 | Pearson's correlations between the genomic offset pre-
dictions and the phenotypic traits assessed under common garden
conditions. Genomic offset was calculated for each population as the
Euclidean distance between the predicted optimal genomic composition
in the climate of origin of the population for the reference period (1901-
1950) and the predicted optimal genomic composition in the climate of
the comparative experiment from the planting to the last measurement
dates (1992-2012 for growth, growth phenology, and reproductive phe-
nology, and 1992-2021 for drought tolerance and the composite trait in-
dex), for each method and SNP set considered. The y-axis is inverted to
display negative correlations in the upper part, reflecting our expecta-
tion that genomic offset predictions and fitness components are nega-
tively correlated under the specific climatic conditions of the compara-
tive experiment (see main text and Figure S3).

3.3.2 | Climate-Related Candidate SNPs

Genotype-environment association (GEA) methods identified
different numbers of climate-related candidate SNPs (Figure 2
and Figures S10-S14 in Supporting Information). RDA and
pRDA identified the highest number of candidates (373 and

397 SNPs, respectively), and also had the largest number of
candidates in common (57 SNPs). GF uncorrected for popula-
tion genetic structure (GF-raw) and BayPass identified a similar
number of candidate SNPs (110 and 133, respectively), while GF
corrected for population genetic structure (GF-corrected) and
LFMM identified the smallest number of candidate SNPs (59 and
24, respectively). The number of overlapping candidate SNPs be-
tween at least two methods was small compared to the overall
number of candidate SNPs (136 vs. 935 SNPs). Furthermore,
no candidate SNP was identified by more than three methods.
After pruning SNPs for LD within contigs, 100 candidate SNPs
were retained as outliers potentially involved in climate adapta-
tion across populations (i.e., the outlier set).

3.3.3 | Identifying Populations Deviating From
GEA Patterns

We found a general pattern of higher GDI-RDA at lower lat-
itudes, supported by a negative Pearson's correlation of —0.51
between GDI-RDA and latitude (p-value=0.005), with Greek,
Bosnian-Herzegovinian, Spanish, and Italian populations hav-
ing, in most cases, higher GDI-RDA than Swedish, Norwegian,
British, and Swiss ones (Figure 4b).

3.4 | Genomic Offset Predictions
3.4.1 | Variability Across Methods and SNP Sets

Variability in genomic offset predictions was observed across
GCMs, with RDA predictions showing greater variability than
those of GF (Figures S15 and S16). We used the mean genomic
offset predictions across the five GCMs for subsequent compar-
isons and analyses (Table S8). For each method, genomic off-
set predictions across the main SNP sets were highly correlated
(i.e., all Pearson's correlations above 0.90 for RDA and 0.70 for
GF; Figure S17) and thus population ranks based on genomic
offset were largely consistent (Figure S18). Moreover, the ran-
dom_2 SNP set provided predictions consistent with the initial
random set's, and the all_outlier SNP set also provided predic-
tions very similar to the outlier set's (all Pearson's correlations
above 0.90; Figure S19). In contrast, we observed some variabil-
ity in genomic offset predictions across methods (albeit substan-
tial correlation remained: lowest Pearson's correlation=0.30;
see Figure S17). For instance, the Pearson's correlation between
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FIGURE 4 | Potential maladaptation of T. baccata to future climate. (A) Population-specific Fy, an estimate of historically realised gene flow,
on the European-scale environmental zone map of Metzger (2018). The size of the 29 red dots is proportional to their F; value. Population labels
correspond to those in Table S1. (B) Genomic discrepancy index (GDI-RDA) based on the random set of SNPs. A higher GDI-RDA indicates a greater
difference between the predicted and observed genomic composition at the reference period. (C) Genomic offset predictions for the RDA (lower half-

circle) and GF (upper half-circle) models using the random set of SNPs and the mean climate across five general circulation models for the 2041-2070

time interval under the SSP3-7.0. Red stars represent the populations where the predictions of the two genomic offset models differed by more than

two classes. In (B, C), GDI-RDA and genomic offset predictions were standardized to the range 0-1 and categorised into five equal-size classes from
low (green) to high (red) values. The species’ European range is presented in dark gray (EUFORGEN; Caudullo et al. 2017).

RDA and GF using the outlier set was 0.41, resulting in discrep-
ancies in population rankings (e.g., the southern French popu-
lation of Sainte-Baume (BAU) had the highest genomic offset
using RDA, but the second lowest using GF; Figure S18).

3.4.2 | Evaluation Using Phenotypic Traits
Evaluation of genomic offset predictions using phenotypic data

provided consistent results for almost all genomic offset models.
Indeed, according to Pearson's correlations, all genomic offset

predictions were negatively associated with the phenotypic traits
(except for the RDA model based on all set and reproductive phe-
nology), as expected, with significant p-values for several cor-
relations (Figure 3; Figure S20 and Table S9). Several of these
associations were also supported by frequentist and Bayesian
linear models. For instance, the negative associations observed
between RDA models (with random and outlier sets) and GF
models (with random set) and the composite trait index were
highly unlikely to be obtained by chance (see Tables S10 and
S11). Additionally, we found that the negative Pearson's correla-
tions between the genomic offset predictions and the composite
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trait index were greater than most correlations for single traits
(Figure 3). Finally, we also found that several genomic offset
models appeared similarly associated with the composite trait
index, and thus no prediction model can be confidently iden-
tified as displaying the best genomic offset predictions overall.
Therefore, we retained the two models most strongly associated
with fitness proxies and displayed both predictions on the same
map for each population by organizing predictions into five
equal-size classes (Figure 4c). Predictions were considered to be
congruent (and therefore robust) only when the two models dif-
fered by less than two of these classes.

3.4.3 | Geographical Trends

Based on robust predictions (i.e., those supported by both GF
and RDA models with a random set), we found a negative cor-
relation between genomic offset and latitude (Pearson's correla-
tion of —0.71, p-value=0.0001), with most of the populations
that had higher genomic offset being located at low latitudes in
Mediterranean environments (VOU, OLY, and CHO in Greece,
CARin Spain, and ANC and VAL in Italy). Additionally, we also
found a positive correlation between genomic offset and eleva-
tion (Pearson's correlation of 0.65, p-value =0.0005). However,
this correlation was substantially reduced when Atlantic low-
elevation populations (CED, RWM, and YEW in the UK, and
BRA in Norway) were removed (Pearson's correlation of 0.39, p-
value =0.08), suggesting that the correlation is mostly driven by
the very low genomic offset of Atlantic coastal populations (but
notice the high genomic offset of some high-elevated popula-
tions: BLI in the Swiss Alps, and BUJA and BUJG in the Spanish
Pyrenees). Finally, populations located in continental environ-
ments were also predicted to have low genomic offset (e.g., PAT
in Germany or HAR in Slovakia). GF and RDA genomic offset
models using other SNP sets (i.e., outlier, random_2, and all_
outlier) showed rather similar geographical patterns and com-
parable numbers of populations with inconsistent predictions
(except for the models using the outlier set; see Figures S21-S23).

4 | Discussion

In this study, we found evidence of local adaptation to climate
in T. baccata, by unveiling substantial genetic variation among
populations explained by climate (18.1% of the total genetic vari-
ance) and identifying a sizeable number of climate-associated
loci using several GEA methods. We found variability in genomic
offset predictions across methods (GF and RDA), but not across
SNP sets (all, random, outlier). Despite this, we found negative
correlations between nearly all the genomic offset models and
four phenotypic traits related to fitness (growth, growth phenol-
ogy, reproductive phenology, and drought tolerance) measured
in plants from 26 nearly independent populations planted in a
comparative experiment under common garden conditions. By
combining information from estimates of historical genetic dif-
ferentiation and effective migration, local adaptation, and val-
idated future climate maladaptation predictions, we provided
valuable and credible insights into population vulnerability to
future climate in T. baccata. Overall, our results highlight the
vulnerability of Mediterranean and high-elevation mountain
populations to ongoing climate change.

4.1 | Range-Wide Population Genetic Structure
and Historical Gene Flow

At the European scale, SNP markers revealed two main gene
pools (western and eastern parts of the species’' range), with cen-
tral populations showing admixture, consistent with patterns
reported by Mayol et al. (2015) based on nuclear microsatellites
at a similar spatial scale. This study also detected a weak but
significant isolation-by-distance (IBD) pattern across the en-
tire species distribution. Nevertheless, despite these large-scale
patterns, many T. baccata populations appear to be strongly
isolated. This is supported by the high population-specific F,
values observed in our study, and a large body of literature
reporting strong Fg, values at local or regional geographical
scales (e.g., Dubreuil et al. 2010; Gonzalez-Martinez et al. 2010;
Maroso et al. 2021; Casier et al. 2024; Chybicki et al. 2024).
Notably, population-specific Fgy; and EEMS provided divergent
estimates of historical gene flow in many cases, likely reflecting
the influence of multiple interacting processes beyond simple
IBD (e.g., historical fragmentation, genetic drift, sporadic gene
flow, or local adaptation). However, both methods converged
in specific cases, for example VAL (Northern Italy) and CHO
(Greece), which were consistently inferred to have experienced
reduced historical gene flow, while SUE (Spain) and RWM
(United Kingdom) were among the populations with signals of
historically high connectivity (a pattern previously reported for
United Kingdom populations in Gargiulo et al. 2019).

4.2 | Evidence Supporting Local Adaptation to
Climate

The percentage of genetic variance explained by climate pre-
dictors in T. baccata (18.1%) was similar to or even higher
than the values reported for other trees (Fagus sylvatica L.:
17%, Capblancq, Morin, et al. 2020; Pseudotaxus chienii W.C.
Cheng: 8.2%, Liu et al. 2021; Picea rubens Sarg.: 14%, Capblancq
et al. 2023). In addition, we identified a substantial number of
climate-related candidate SNPs in this species, including two
from genes previously reported to be potentially under positive
selection for climate in T. baccata (Table S12; Mayol et al. 2020).
Nevertheless, congruent genomic offset predictions and correla-
tions with phenotypic traits across SNP sets (including random
sets) suggest that the signals captured by GEA may result from
linkage disequilibrium (LD) with genome-wide loci of small ef-
fect, and thus that climate adaptation along the identified cli-
mate gradients is polygenic rather than oligogenic in this species.
This hypothesis is supported by recent literature on trees, which
reports widespread polygenic adaptation for adaptive traits (e.g.,
De La Torre et al. 2019; de Miguel et al. 2022). Nevertheless, we
cannot exclude that the signals captured by GEA could also re-
flect neutral demographic history rather than local adaptation,
leading to inflated false positive rates among identified climate-
associated SNPs, and thus potentially biased GEA models and
genomic offset estimates (see Holliday et al. 2010; Rellstab
et al. 2015).

One of the main assumptions underlying GEA and genomic
offset methods is that populations are equally locally adapted
to their environments (Rellstab et al. 2015; Ahrens et al. 2023;
Lotterhos 2024a). However, numerous studies in diverse species
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have shown that this assumption is often not met. For example,
Marcora et al. (2021) found higher performance (e.g., germina-
tion success, sapling growth, and survival) under site-of-origin
conditions in Polylepis australis (Bitter), an endemic tree species
of central Argentina, but only in marginal populations. There
is also evidence of adaptation lags to current climate affecting
unequally different parts of a species’ range, probably associated
with contrasting demographic histories (Browne et al. 2019;
Fréjaville et al. 2020). Furthermore, under strong population
structure, or complex mechanisms such as conditional neu-
trality or genetic redundancy, GEA approaches may fail to de-
tect candidate loci for climate adaptation (Rellstab et al. 2015;
Lind et al. 2018). To assess variability in local adaptation across
populations or potential differences in adaptive trajectories,
we calculated a new genomic discrepancy index (GDI-RDA, see
Methods). Interestingly, in this study, GDI-RDA followed the in-
verse pattern of historical effective migration detected by EEMS
(Pearson's correlation of —0.39, p-value=0.03), with higher
GDI-RDA associated with lower predicted historical migration
rates. This pattern was also supported by population-specific
F; (Pearson’s correlation of 0.52, p-value = 0.004). This suggests
that isolation and/or higher genetic drift may have hindered
local adaptation or led to different adaptive trajectories by lim-
iting the influx of beneficial alleles from other populations (e.g.,
Deacon and Cavender-Bares 2015) or, alternatively, may have
exacerbated the effects of genetic drift (Lande 1993). However,
inconsistencies between estimates derived from EEMS and
population-specific Fg; highlight the need for further research
to clarify the role of gene flow in local adaptation in T. baccata.
Here, we used GDI-RDA to assess the degree of local adapta-
tion by identifying populations deviating from the overall GEA
patterns identified by RDA. To test empirically the validity of
this index, future work could use reciprocal transplant exper-
iments (Kawecki and Ebert 2004). The genomic discrepancy
index approach could also be extended beyond RDA to other
GEA methods (e.g., gradient forest, which does not assume a lin-
ear relationship) or incorporated directly into the genomic offset
framework.

4.3 | Toward a More Comprehensive Genomic
Offset Framework

We found variability in genomic offset predictions across meth-
ods (GF and RDA). However, despite these differences, we still
found substantial positive correlations among them, regardless
of the SNP set used, and mostly consistent population rankings.
These results are reassuring compared to those of Archambeau
et al. (2024), who found almost no correlations between RDA
and GF predictions in maritime pine (Pinus pinaster Aiton), an-
other European conifer, and inconsistent population rankings.
Similarly, Lind et al. (2024) reported inconsistent genomic off-
set predictions between GF and the Risk of Non-Adaptiveness
(RONA, Rellstab et al. 2016) for Jack pine (Pinus banksiana
Lamb.), but not for Douglas-fir (Pseudotsuga menziesii Mirb.).
These stark differences between studies illustrate a likely
species-specific effect on the consistency of genomic offset pre-
dictions across methods, possibly related to levels of population
genetic structure, shape of climate adaptive clines, and/or the
genomic sampling used (e.g., candidate genes vs. random mark-
ers). Taken together, these studies highlight that, in the current

framework, the use of genomic offset predictions without empir-
ical validation should be avoided.

Empirical validation in our study was performed by using phe-
notypic traits measured under common garden conditions. We
found that random SNP sets had predictive accuracy similar to
that of candidate SNPs identified by GEA. This is in agreement
with recent studies on genomic offset prediction based on GF
(Fitzpatrick et al. 2021; Lind et al. 2024) and RDA (Archambeau
et al. 2024), which have also reported comparable performance
between candidate and random marker sets. In our study, these
results might be explained by the fact that both the candidate
and random SNPs were drawn from coding regions. As a result,
even the random SNPs may carry biologically relevant signals
due to linkage with functional variants, as also noted by Lind
et al. (2024). Moreover, as the phenotypic traits used for vali-
dation are expected to be highly polygenic (see, e.g., de Miguel
et al. 2022 for growth), predictive models may benefit from
diffuse genome-wide LD patterns rather than individual large-
effect SNPs.

Almostall the genomic offset models had moderate to substantial
negative correlations with the phenotypic traits, consistent with
current knowledge on the adaptation of trees to Mediterranean
mountains (Liu et al. 2020; Arroyo et al. 2021; Quan et al. 2024).
While a negative relationship between genomic offset predic-
tions and fitness proxies has already been demonstrated using
common gardens (Rhoné et al. 2020; Fitzpatrick et al. 2021;
Lachmuth et al. 2023; Archambeau et al. 2024), to our knowl-
edge, it has never been tested before using fitness proxies from a
nearly independent set of populations. Therefore, our study ad-
dresses a pending question in the literature (Lotterhos 2024b)
by suggesting that the observed negative correlation between
genomic offset predictions and fitness under common garden
conditions is not the result of model overfitting.

Finally, we found a stronger negative association between ge-
nomic offset and the index integrating the different phenotypic
traits (i.e., the composite trait index) than for any single trait. This
finding suggests (1) that phenology and drought/temperature
tolerance traits may provide information on fitness components
other than growth and, thus, (2) that combining multiple traits
into a synthetic index may help to better approximate fitness,
especially for long-lived organisms, such as trees, for which di-
rect lifetime fitness cannot be measured (Climent et al. 2024).
Nevertheless, although promising, the calculation of the com-
posite trait index in this study may not properly account for the
complex interaction of phenotypic traits that determines fitness,
and further work on methods for phenotypic trait integration in
trees is needed. Additionally, the methodology used in this study
to approximate population phenotypic means can lead to anti-
conservatism (i.e., increased false-positive rates), as estimate
uncertainty was neglected (see Hadfield et al. 2010). This issue
is particularly important for the composite trait index, where
error propagation may accumulate across traits. Consequently,
the observed correlations involving phenotypic data should be
interpreted with caution.

To conclude, we argue that studies assessing population mal-
adaptation to climate in a conservation context should restrict
their estimates to the genotyped populations (i.e., to adopt a
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more “population-centered” framework), and trusted only when
predictions from different methods are in agreement. Indeed,
extrapolating genomic offset models to unsampled areas can
lead to misleading conclusions in the context of population con-
servation (see Lind and Lotterhos 2024). We have also shown in
this study that conflicting genomic offset predictions can arise
across models for some genotyped populations, even when the
predictions are linked with fitness proxies using empirical data.
Moreover, integrating additional information, such as the de-
gree of local adaptation or connectivity, seems advisable for a
more comprehensive assessment of population vulnerability in
the face of climate change.

4.4 | The Fate of English Yew in the Face
of Climate Change

Given the long-term demographic decline in T. baccata, due to
various factors including long-term climate variability, one may
expect climate change to be an additional threat for population
survival. By combining information on the potential degree of
local adaptation (GDI-RDA), historical genetic differentiation,
effective migration surfaces, and potential maladaptation to fu-
ture climate, we identified several T. baccata populations poten-
tially at risk in the face of climate change.

Populations located along the Mediterranean coast and in high-
elevation mountain environments (i.e., in Greece, northern and
central Italy, the Pyrenees, Mediterranean Spain, and southern
Switzerland) mostly share similar features regarding the above-
mentioned factors, suggesting a higher vulnerability to future
climate. Apart from high genomic offsets, it appears that most
of these populations have evolved under strong historical iso-
lation, so their access to beneficial alleles through gene flow
may also be compromised in the near future if these patterns
are maintained. In addition, most of these populations show
substantial GDI-RDA, suggesting that they deviate from aver-
age climate adaptation patterns in the species. This may be be-
cause of pre-adaptation, distinct adaptive patterns not captured
by the statistical framework, or a lower degree of adaptation due
to adaptation lags or random genetic drift, which highlights the
higher degree of uncertainty in patterns of adaptation to future
climate for high GDI-RDA populations.

Overall, our results are in accordance with the current body of
literature that shows the considerable impact of climate change
on tree species inhabiting Mediterranean and high-elevation
mountain regions (Capblancq, Morin, et al. 2020; Calama
et al. 2024; Longo-Minnolo et al. 2025). They also suggest that T.
baccata populations in Atlantic and continental environments
may cope better with future climate. Indeed, populations from
northern Spain, the United Kingdom, Norway, Germany, and
Slovakia have very low genomic offsets, follow overall climate
adaptation patterns (i.e., low GDI-RDA), and, in most cases,
seem to have evolved under lower historical isolation.

Caution must be exercised while considering these interpre-
tations, as there are several limitations to our analyses. First,
population-specific Fg; and EEMS provided inconsistent in-
formation on the historical gene flow patterns, suggesting a
complex demographic history that is not fully accounted for by

either of the two approaches. Additionally, these analyses pro-
vided information on historical patterns but not on the current
or future gene flow patterns, which remain unknown. At pres-
ent, many T. baccata populations have low population sizes or
suffer from habitat fragmentation, and thus may even be more
isolated than in the past, as shown in other tree species with
currently fragmented distributions (Jump and Pefiuelas 2006;
Sebbenn 2011). Second, the genomic offset framework relies
on several assumptions that may limit its validity (see Rellstab
et al. 2021; Ahrens et al. 2023, amongst others). For example,
these approaches assume that the genotype-environment re-
lationships will remain constant, thus neglecting the adaptive
capacity of populations. We have addressed some of these as-
sumptions by using common garden data to establish a rela-
tionship between genomic offset predictions and fitness, and
by limiting our predictions to near-future time intervals, mak-
ing standing genetic variation the most likely source of future
adaptation (Barrett and Schluter 2008). Nevertheless, we must
remain aware of other untested assumptions that may impact
future climate maladaptation predictions (e.g., overall lack of
local adaptation). Furthermore, the insights into future cli-
mate vulnerability provided in this study do not take into ac-
count other processes that may mitigate the effects of climate
change in the short term, such as phenotypic plasticity, or ex-
acerbate its effects, such as inbreeding depression (Capblancq,
Fitzpatrick, et al. 2020; Aguirre-Liguori et al. 2021). Extreme
climatic events and projected changes in their frequency,
duration, and intensity are not accounted for in our models
and predictions. As a result, the patterns of climate adapta-
tion and maladaptation presented in this study may differ
from actual outcomes, particularly in certain parts of the spe-
cies' range (e.g., Northern and Mediterranean regions). More
broadly, biotic interactions, such as grazing intensification,
pest outbreaks, and competition, may also be altered by cli-
mate change and have a strong impact on T. baccata popula-
tions (Thomas and Polwart 2003; Mysterud and @stbye 2004;
Ruprecht et al. 2010).

5 | Conclusions

Our study demonstrates the complexity of applying the genomic
offset framework for the genetic conservation of T. baccata, a de-
clining tree species. It also highlights the benefits of combining
different sources of information (e.g., genomic and phenotypic
data) and analyses (e.g., genomic offsets, local adaptation esti-
mates, and historical gene flow) to gain insight into population
vulnerability to climate change. By using a nearly independent
set of populations growing under common garden conditions,
we provided a robust interpretation of genomic offset predic-
tions and showed how integrating multiple phenotypic traits
in simple indices can help to approximate fitness for long-lived
organisms such as trees. However, we also found potential vari-
ability in the degree of local adaptation across populations and
different degrees of historical isolation, which were not fully
consistent across estimation methods. Finally, by combining
insights into levels of local adaptation and historical effective
gene flow with maladaptation predictions, we suggested that
European Mediterranean and high-elevation mountain popu-
lations of T. baccata will suffer the most in the face of climate
change, as opposed to Atlantic and continental ones.
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