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ABSTRACT

Soil pH indicates the level of acidity or alkalinity in the soil environment, influencing various biogeochemical and physical processes. Additionally, soil pH levels are
crucial in determining the bioavailability of elements such as iron, aluminium, and heavy metals which can be harmful. As such, pH is an important soil health and
degradation indicator. Although there is a well-established understanding of soil pH at localized levels, the spatial and temporal variations, as well as significant
thresholds at national and continental scales, are not sufficiently documented. Here we analyse the European topsoil pH data (LUCAS) in combination with other soil
properties from the LUCAS survey, to identify thresholds and spatial patterns of soil pH across Europe in relation to soil health and degradation. At the European scale
we found: 1) the water balance, calculated as mean annual precipitation minus potential evapotranspiration (MAP-PET), provides essential context to interpret soil
pH; 2) the shift from organic carbon-rich soils to those dominated by inorganic carbon is observed at a pH of about 7.2, however, soil moisture levels may be more
critical than pH for the accumulation of soil organic carbon; 3) we identified three distinct clusters within the multivariate regression tree: acidophiles (below pH
5.2), neutrophiles (pH 5.2-6.9) and alkaliphiles (above pH 6.9), while optimum microbial diversity occurred between pH 6 and 7. Earthworm abundance, as reported
by the sWorm database, is more nuanced and dependent on land use; 4) risk of degradation by heavy metals cannot be captured by a single pH threshold. Finally, we
identify soil pH thresholds that can aid policymakers in identifying regions that may require protection or intervention.

1. Introduction solution is an important integrating measure of element and nutrient

availability (Hartemink and Barrow, 2023) as it regulates the soils ca-

Soils serve as a fundamental element of ecosystems, providing a
range of services that are crucial for human well-being and environ-
mental sustainability (Fernandez-Ugalde et al., 2022). Considerate
management and conservation of soils are vital for maintaining these
ecosystem services and their associated benefits. One indicator affecting
ecosystem services is soil pH, which was identified as a critical indicator
of soil quality (Biinemann et al., 2018). It is one of the twelve soil de-
scriptors employed to assess soil health in the European Union, as
stipulated by the proposal for an EU Soil Monitoring and Resilience Law
(European Commission, 2023) and it is among the eight indicators to
track changes during the Soil Mission implementation (Panagos et al.,
2024).

It has long been recognised that the measurement of pH in the soil
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pacity to store and supply nutrients. Soil pH plays a critical role in
modulating soil organic matter dynamics and regulates the availability
of macro- and micro-nutrients, with direct implications for crop pro-
duction and food security (Hou, 2023; Pozza and Field, 2020).
Furthermore, pH regulates various biological processes and the activ-
ities of soil microorganisms (Malik et al., 2018), which is particularly
important given that soils support 59 % of species on Earth (Anthony
et al., 2023). The community of soil bacteria, particularly those
responsible for organic matter decomposition and nitrogen fixation, is
optimally adapted to the pH levels typically found in their natural en-
vironments (Fernandez-Calvino and Baath, 2010). When pH levels shift,
these microorganisms initiate an adaptive response characterized by the
production of exoenzymes to accommodate the change (Puissant et al.,
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2019). Research has shown that bacterial diversity and richness in soils
tend to peak at pH levels between 6 and 7 (Chu et al., 2010; Fierer and
Jackson, 2006; Tripathi et al., 2012). Consequently, measuring soil pH is
a vital indicator for evaluating soil health and its capacity to support
plant growth (Neina, 2019), as well as its overall ecosystem function-
ality and implications for human health (McBride, 1994).

While pH is essential for soil health, it also indicates land degrada-
tion and the potential to harm organisms. Soil pH significantly affects
the accumulation, mobility, and bioavailability of metals and heavy
metals, which can create toxic conditions for various plants and or-
ganisms (Lofts, 2022). For example, in the 1970 s, air pollution across
Europe led to increased soil acidity and forest decline (Smith et al.,
2024). Although recovery in Britain’s soils was observed due to policy
interventions (Reynolds et al., 2013), more recent monitoring indicates
this has slowed or potentially reversed, likely as a result of climate
drivers or land use management pressures (Seaton et al., 2023). Given
the important role soil pH plays in element cycling and plant produc-
tivity, it is carefully managed in agricultural and horticultural habitats.
Acid soils are often limed to raise their pH and alkaline soils can have
sulphur added to reduce their pH. Another often-overlooked aspect of
potential for degradation is the influence of pH on soil structural sta-
bility; the interaction between pH and alkaline cations, particularly
sodium, can lead to clay dispersion and can exacerbate erosion
(Shainberg and Levy, 2020). The degradation of the natural habitat,
where biological activity occurs, may further impair the delivery of
ecosystem services by reducing the available niche space associated with
soil structural diversity (Seaton et al., 2020).

Parent material plays an important role in pH at large scales, espe-
cially in the initial stages of soil formation, but vegetation and climate
quickly modify soil pH levels. Recent research on soil pH shows that
global patterns of soil pH are related to biomes and to the mean annual
precipitation (MAP) and mean annual temperature (MAT) (Zhao et al.,
2019). Global soil pH patterns were shown to be fundamentally linked to
the water balance with regional modifications due to parent material
(Slessarev et al., 2016). A transition point was shown to exist at the
global scale where MAP exceeds mean annual potential evapotranspi-
ration (PET) (Slessarev et al., 2016); wet soils being more acidic and dry
soils being more alkaline. It is well known that environmental forcing
regulates many aspects of soil chemistry, including pH (Jenny, 1994).
However, it is only recently, with our ability to aggregate large global
data sets, that the patterns which emerge across scales can be quantified
and attributed to different environmental drivers. Climate through
water balance, parent material (Slessarev et al., 2016), and land man-
agement type drives large scale patterns, whilst pressures such as
pollution and specific management practices superimpose effects at
local scales.

One of the significant challenges encountered is the interpretation of
pH changes, particularly the need to differentiate the effects of various
large- and small-scale drivers and pressures. Overcoming these chal-
lenges will help to comprehend, and ultimately forecast, the conse-
quences of environmental change. Our aim is to adopt a comprehensive
approach to identify pH thresholds, optima or changes that are pertinent
for informing policy decisions at both national and European levels. This
paper investigates the large-scale pH patterns across Europe as reported
by the Land Use/Cover Area frame statistical Survey (LUCAS) for soils
sampled in 2018 (Orgiazzi et al., 2018), beginning with fundamental
geochemical relationships and progressing to the implications for nu-
trients, micronutrients, and metal toxicity. Additionally, we examine the
connections between biota, land use, and microbial and worm abun-
dance in relation to pH. Through this analysis, we aim to uncover
consistent patterns and critical thresholds in a holistic way for inter-
preting pH as an indicator of soil health and degradation in the context
of environmental change throughout Europe. The specific goals of this
study include (i) determining if the water balance creates thresholds in
soil pH in European topsoils; (ii) to identify thresholds associated with
carbon storage and the transition from soil organic carbon (SOC) to soil
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inorganic carbon (SIC); (iii) to determine the optimal pH for microbial
diversity and worm abundance in European soils; and (iv) to analyse
spatial patterns of the susceptibility of soils to heavy metal release as
influenced by soil pH.

2. Material and methods
2.1. European soil pH and carbon data

Approximately 19,000 soil samples from the topsoil (0-20 c¢m) in
georeferenced locations from across 27 countries in the European Union
plus the UK were collected in 2018 by the Land Use and Cover Area
Frame Survey (LUCAS) (Orgiazzi et al., 2018; Fernandez-Ugalde et al.,
2022). We mapped pH data using R version 4.5.1 using the “tidyterra”
package by Hernangomez (2023). From the parameters measured in the
soils we examined the pH data and the organic and inorganic carbon
concentrations. Measurements of pH were performed in a 1:5 soil:
deionized water ratio according with the method ISO 10390:2005 (data
shown in Fig. 1). Organic carbon was analysed by dry combustion
following the ISO 10694:1995 and carbonated by the volumetric
method, 1S0:10693:1995. Maps showing the spatial distribution of
organic matter based on LUCAS data have been reported by Castaldi
et al., 2019. The crossover between the decrease of SOC and increase of
SIC with pH increasing, was modelled as functions of soil pH using a
non-linear quantile regression model, which assumes a sigmoid rela-
tionship in both scenarios (Andersen (2002), eq. S1).

2.2. Climate data

Data on mean annual precipitation (MAP) and mean monthly po-
tential evapotranspiration (PET) at a resolution of 1 km for the period
from 1981 to 2010 were obtained from the CHELSA climate data re-
pository. MAP and PET were extracted to the locations of sampling
points from the LUCAS 2018 survey using the “extract” function from
the “terra” package (Hijmans, 2020) in R (Team, 2024). Monthly PET
was multiplied by 12 to estimate annual values before subtracting from
MAP and dividing by 1000 to get the water balance in metres. Scatter
plots were generated in R using the “ggplot2” package (Wickham and
Wickham, 2016) to show the relationship between MAP-PET and soil pH
(in water). Histograms of pH and MAP-PET values were plotted using the
“ggMarginal” function from the “gridExtra” package (Auguie and
Antonov, 2017).

2.3. DNA (microbiome), bioinformatics and statistical analysis

The LUCAS 16S rRNA gene sequences were processed using nf-core/
ampliseq version 2.9.0 (da Veiga Leprevost et al., 2017; Ewels et al.,
2020; Griining et al., 2018; Straub et al., 2020). Adapter and primer
sequences were trimmed using Cutadapt 4.6 (Martin, 2011) and all
untrimmed sequences were discarded. Sequences were then processed
sample-wise (independent) with DADA2 1.30.0 (Callahan et al., 2016)
to eliminate PhiX contamination, trim reads (before median quality
drops below 25 and at least 75 % of reads are retained; forward reads at
219 bp and reverse reads at 216 bp, reads shorter than this were dis-
carded), discard reads with > 2 expected errors, correct errors, merge
read pairs, and remove polymerase chain reaction (PCR) chimeras. This
produced 145,714 amplicon sequencing variants (ASVs) across the 881
LUCAS 16S rRNA libraries. Taxonomic classification was performed by
DADA2 using the Silva 138.1 database (Quast et al., 2012). ASVs with
taxonomic assignments of ‘mitochodria’ and ‘chloroplast’ were excluded
from any further analyses, giving a final total of 143,893 ASVs. Singleton
taxa were removed prior to statistical analyses, samples with a
sequencing depth of less than 5000 reads were discarded. Where
duplicate samples were present, the duplicate with the greatest number
of reads was retained. Reads were rarefied to 5000 across samples using
the Vegan package to account for variable sequencing depth. To identify
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outlier samples decorana scores were calculated, euclidean distances
were determined between sample axis scores and the mean scores of
each ordination axis, samples with an euclidean distances greater than
the 99th percentile were removed. Loess regression was used to assess
the relationship between Shannon’s diversity and soil pH, a pH optimum
relating to diversity was identified at the soil pH with the maximum
loess fitted Shannon’s diversity. To evaluate pH associated shifts in
bacterial community composition, multivariate regression tree analysis
was carried out on the proportional abundance compositional matrix -
after rarefaction to 5000 reads per sample using the mvpart library in R.

2.4. European earthworm data

Data on earthworm abundance relevant to the European Union were
sourced from the sWorm database (Phillips et al., 2021) and modelled
using Generalised Additive Models (GAMs). The database was specif-
ically filtered to include only European countries and to select data
points where both earthworm abundances and soil pH were docu-
mented, resulting in a subset dataset of 1,348 records. It covered 20
European countries having a good representation across latitude and
climatic zones (Table 1). Only those methodologies that involved hand
sorting were considered, leading to the exclusion of a further 104 re-
cords. We standardized land use information provided in the sWorm
database (Land use, Habitat cover, Management system, and habitat as
described) into LUCAS equivalent land cover categories, namely Crop-
lands, Grasslands, and Woodlands, which resulted in 1,177 usable data
points. A series of General Additive Models (GAMs, utilizing the ‘mgcv’
package version 1.9-1 (Wood, 2011) were employed, incorporating
random factors including Extraction Method, Country, and the month
when data collection concluded, serving as indicators of sampling
timing. The Akaike information criteria (AIC), an estimator of prediction
error, was used to gauge the relative quality of the statistical model for
the data, with the smaller number indicating a more accurate model.
The dataset used included 569 datapoints for Cropland, 187 datapoints
for grassland and 424 datapoints for grassland. The functions plot_pre-
dictions and plot_slopes from the ‘marginaleffects’ package (Arel-Bun-
dock et al., 2024) were utilized to visualize predictions of earthworms’
abundance, or first derivative, across the range of pH values.

2.5. Computation and mapping of the metal vulnerability in EU soils

The assessment of metal leaching risk from soils, or the vulnerability
index, was determined for European soils using LUCAS data and the
POSSMs model (Supplementary Methods) (Lofts, 2022). We forecasted
the alterations in concentrations of nickel, copper, zinc, and cadmium in
porewater resulting from changes in soil conditions, such as increased
moisture from precipitation over short durations of a few days. It com-
prises dissolved metal in porewater, and adsorbed metal bound to
chemically active soil components. The POSSMs model is an equilibrium

Table 1

Overview of European countries and sample numbers (N) in the sWorm database
(Phillips et al., 2021) which had earthworm abundance and pH data associated
with them, and where a land cover equivalent to the LUCAS land cover cate-
gories could be assigned.

Country N Country N
Austria 3 Lithuania 16
Belgium 4 Netherlands 124
Denmark 5 Poland 55
Finland 167 Portugal 74
France 65 Romania 34
Germany 257 Slovakia 13
Greece 27 Spain 61
Hungary 3 Sweden 62
Ireland 102 Switzerland 4
Italy 36 United Kingdom 68

Catena 260 (2025) 109454

chemical speciation model for soils that requires minimal input for
computations and is thus useful for large scale application. The
vulnerability index is centred on the reaction of metal concentration in
the soil porewater to the introduction of metal in a ’reactive’ state. The
reactive metal represents the fraction of metal that quickly adjusts to
variations in soil conditions and governs the concentration of metal
present in the soil porewater.

For each soil, two calculations of the equilibrium distribution of the
reactive metal between the soil solids and the porewater are done. The
equilibrium distribution using the POSSMs model (Lofts, 2022). POSSMs
requires the porewater pH, soil organic matter (SOM) content and the
concentration of dissolved organic matter (DOM) in the soil porewater.

The porewater metal concentration, [M],, possvs> 18 first computed
for a specific reactive metal concentration, {M},.. Then, a second

simulation is done with the reactive metal content, {M} ¢,c( ayg» initially

increased (augmented) by 10 %. Before calculation of the porewater
concentration, the additional metal is assumed to undergo ‘aging’ for
one year. Aging is a generic term for processes that remove metal from
the reactive pool into an unreactive, or ‘aged’ pool. Unreactive metal
does not form part of the pool that can equilibrate with the porewater
and thus loss of metal from the reactive pool by aging reduces the
modelled porewater concentration. Aging is modelled by reversible first
order kinetics, where one or both of the forward or backward rate
constants is a function of the porewater pH (Table 2). The porewater
metal concentration, [M],,,, possms.aug> 1 then calculated from the sum of
the original reactive metal concentration plus the portion of the 10 %
additional reactive metal that has not aged.
The vulnerability index is given by the expression

My, possws aug _

vul.index — —operossws (@))
[LIr—

{M}reqce

If the increase in the reactive metal concentration were to cause the
predicted porewater concentration to rise by the same proportion, the
vulnerability index would be at its maximum value of unity. Similarly,
no change in the predicted porewater concentration would give a
vulnerability index of zero. Therefore, the index provides an internally
consistent, bounded value that reflects the ability of the soil to buffer
metal addition and limit the corresponding increase in the porewater
concentration and thus the risk of dissolved metal leaching to ground-
water or surface water.

The modelling requires the following dataset for a soil: porewater
pH, SOM content (% w/w), porewater DOM (mg L’l), reactive metal
concentration (mol g’l).

Porewater pH and SOM content were sourced from the LUCAS 2018
dataset (Fernandez-Ugalde et al., 2022). Only soils sampled from 0 to 20
cm depth were used in computations. Porewater pH (pH,,) was esti-
mated from the pH measured in aqueous soil slurries (pH_H20) using an
expression provided by de Vries et al. (2005):

PHp, = —0.2847 +1.0462-pH,0 )

Porewater DOM was taken from the modelled dataset of (Langeveld

Table 2
First order forward and backward aging rate constants for nickel, copper, zinc
and cadmium.

Metal logo forward rate log,o backward rate Reference
constant for aging constant for aging
@ @h
Nickel ~1.9 + 0.000309¢”" -1.5 Lofts,
unpublished
data
Copper —2.5 + 0.000501eP" —2.1 + 0.000316¢P" Xu et al. (2016)
Zinc —4.2 + 0.26pH -3.2 Xu et al. (2016)
Cadmium  —2.9 + 0.18pH -2.1 Xu et al. (2016)
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et al., 2020).

Reactive metal concentrations were measured in the LUCAS 2009/12
survey, but were never published in a publicly accessible dataset, so
estimates were made using available maps of total concentrations
available on the ESDAC website:Nickel: Toth et al. (2016), Copper:
Ballabio et al. (2018), Zinc: Téth et al. (2016); Van Eynde et al. (2023),
and Cadmium: Ballabio et al. (2024).

Mapped metal concentrations extracted to sample locations in the

LUCAS 2018 dataset were used to estimate reactive metal content, based
on a set of empirical relationships obtained from paired total and
reactive metal concentrations measured by Garforth (2015). The reac-
tive metal concentration is predicted from the total metal concentration
using the expression:
{M}reuct = Kﬂ'aﬁlg {SOM}ﬂl {M}/:thtal (3)
where {M} .. and {M},,, are the reactive and total metal concentra-
tions respectively (mol g~1), ay is the proton activity in the porewater
(ag = 107PHw), {SOM]} is the soil organic matter content (% w/w) and
Ky, py, p1 and p, are fitted parameters (Table 3).

European vulnerability indices maps were produced for nickel,
copper, zinc and cadmium and for soil pH higher and lower than 6 using
R version 4.5.1 using the “tidyterra” package by Hernangomez (2023).
using R software.

3. Results
3.1. Geochemical buffering

The spatial distribution of pH values across the European continent is
illustrated in Fig. 1, with data sourced from the LUCAS 2018 monitoring
program.

Combining pH data with meteorological data we obtained Fig. 2,
which illustrates the distribution of pH values in relation to the mean
annual precipitation (MAP) minus the potential evapotranspiration
(PET) across Europe. The blue horizontal lines indicate the upper
geochemical threshold for CaCOg3 buffered soils, approximately pH 8.2,
while the lower red line denotes the geochemical threshold for AI(OH)3
buffered soils, around pH 5.1, below which aluminium species become
more prevalent in the soil solution. Fig. 1A encompasses all LUCAS data
(n = 19,000), whereas Fig. 1B reflects the LUCAS data for seminatural
habitats (woodlands, grasslands, shrublands and wetlands), after
excluding agricultural habitats, cropland, and livestock pasture (n =
7157). The histogram in Fig. 1A reveals that when all data is included,
the pH distribution peaks at roughly pH 8, followed by a uniform dis-
tribution of samples within the neutral and acidic ranges. In contrast,
after the exclusion of agricultural habitats, the pH histogram in Fig. 1B
exhibits a bimodal distribution with peaks around pH 7.5 and 4.5.

3.2. Acid soils and alkaline soils in Europe

Soils exhibiting pH values below 5.1 and above 8.2 are depicted in
Figs. 3A and 3B, respectively. Besides the evident north-south gradient,
soils along the western coast are significantly more acidic, particularly
in regions with higher moisture, even in southern areas like Portugal.
Alkaline soils are primarily found in countries such as Spain, southern

Table 3
Parameters for the relationship between total and reactive metal concentrations
in soils.

Metal log Ky Po A P2 SE (log {M}recact)
Nickel —-1.61 0.732 1.03 0.32
Copper -1.01 —0.0640 0.990 0.26
Zinc —0.738 0.585 1.12 0.43
Cadmium —-2.49 —0.105 0.453 0.863 0.36
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Fig. 1. Distribution of pH in Europe according to the monitoring program
LUCAS for the year 2018 data.

France, Italy, Croatia, and extending into Greece. In contrast, there are
very few instances of alkaline soils in the northern regions, likely only
occurring due to the influence of calcareous parent material such as
bands of chalk overshadowing climatic factors. A notable observation is
the widespread occurrence of acidic soils across Europe. Approximately
24.1 % of the 19,000 LUCAS samples recorded pH values below 5.1,
which suggests a risk of aluminium toxicity. While the pH distribution
appears irregular in central Europe, most soils in Scandinavia exhibit pH
levels below 5.1, reflecting the predominance of organic soils in those
areas. Conversely, only 3.3 % of the sampled soils had pH values
exceeding 8.2, most of these occurring in the Mediterranean countries.

3.3. Soil organic carbon (SOC) and soil inorganic carbon (SIC) transition

The relationship between carbon concentration and soil pH, high-
lighting both SOC and SIC (SIC represented by calcite concentration) is
shown in Fig. 4. Fig. 4 illustrates that organic soils are associated with
low pH levels, whereas soils rich in carbonates correspond to elevated
pH levels across the EU. This observation suggests a significant corre-
lation between SOC and SIC between pH levels 6 to 8. The crossover
point, where carbon storage in the forms of SOC and SIC are equally
likely, is found to be between pH 7.15 and 7.3, depending on the chosen
percentile for SIC.

Fig. 5A illustrates soil organic carbon levels in Europe in relation to
the annual water balance (MAP-PET). The point where MAP minus PET
equals zero indicates that for soils to accumulate SOC stocks exceeding
200 g kg-1 in the top 0-20 cm, there must be a surplus of MAP compared
to PET. In contrast, Fig. 5B indicates that for carbonates to remain stable,
PET typically must exceed the MAP.

3.4. pH and the microbiome

To assess the influence of soil pH on soil bacterial communities, and
specifically identify thresholds, we used soil data (Fernandez-Ugalde
et al., 2022) and 16S rRNA gene sequence molecular data (Labouyrie
et al., 2023). An analysis of a subsample of survey points derived from
the 2018LUCAS survey data was conducted to assess DNA. The findings
illustrated in Fig. 6A, which shows that Shannon’s diversity in relation
to soil pH, and by land use. The LUCAS data reveals a broad increasing
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Fig. 2. A) The relationship between topsoil pH (0-20 cm) and annual water balance (MAP-PET) is illustrated using the European dataset from LUCAS 2018, which
encompasses approximately 19,000 soil sample measurements. The side panels display histograms depicting the difference between mean annual precipitation (MAP)
and potential evapotranspiration (PET), and soil pH values. The blue and red lines indicate the predicted pH levels for soils buffered with CaCO3 (8.2) and AI(OH)3
(5.1), respectively. Graph B) shows the same graph specifically for seminatural habitats ((woodlands, grasslands, shrublands and wetlands), comprising a sample size

of 7,157.

A)

MAP-PET (m)

M severely wet (>1.5)
Wet (0.5 - 1.5)
Near normal (-0.5 - 0.5)

M Dry (<-0.5) :

60°N

50°N
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B)

MAP-PET (m) o

B severely wet (>1.5) 3
Wet (0.5 - 1.5)
Near normal (-0.5 - 0.5) ¢

M Dry (<-0.5)

60°N-

50°N-

0° 20°E

Fig. 3. Panels A and B shows the European map colour coded according to four classes of rain regime from severely wet to dry. Overlapped black dots represent the

spatial distribution of soils with pH < 5.1 (A) and > 8.2 (B).

trend with pH peaking at a pH of 6.28, as shown in Fig. 5A. Further
analyses of LUCAS compositional microbiome data, using a multivariate
regression tree with pH alone as a predictor (Griffiths et al., 2011)
(Fig. 6B) identifies distinct community groups clustered according to pH
thresholds. One community with a pH below 5.2, another within the pH
range of 5.2 to 6.9, and a third that thrives at pH levels above 6.9. The
data broadly split into three groups, consistent with acidophiles, neu-
trophiles and alkaliphiles. Inset barplots reveal higher abundances of
Acidobacterial taxa below pH 5.2, which decline at higher pH being
replaced by a more even distribution of diverse lineages.

3.5. Earthworms

European data from the sWorms database (Phillips et al., 2021)
reveal that earthworms inhabit soils with pH levels ranging from 2.9 to
8.64, averaging 6.05 and with a median of 6.18. (Table 4 and 5 and
Figs. 7 and 8). The lowest pH of 2.9 was observed in woodland envi-
ronments, and all land uses contained earthworm counts at pH levels
above 8. The predicted distribution of earthworm abundance varies
across the pH range differently for the three land uses (Fig. 9). In
woodlands, there is no specific pH threshold; rather, abundance in-
creases in a linear fashion as pH rises.
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Fig. 4. Soil carbon concentration as a function of pH with soil organic carbon (SOC) and soil inorganic carbon (SIC) transition at a pH of 7.15 (red line) for the
European LUCAS 2018 data (when the 99th percentile of the SIC data was considered).

The density of data at low pH values (Fig. 7) likely reflect coniferous
woodlands or other woodlands on soil high in SOC. Grasslands exhibit
unimodal change with increasing pH reaching their highest predicted
earthworm abundance at a pH of 5.95, while cropland exhibits a
bimodal pattern, with abundance peaks predicted at pH levels of 5.75
and 7.45 (Fig. 8).

3.6. Vulnerability to degradation by heavy metal mobility

The issue of metal toxicity is intricate, as the behaviour of metals is
affected by various factors, with pH levels and soil organic matter (SOM)
being particularly significant. Fig. 9 illustrates the changes in the
vulnerability index with pH for nickel (Ni), copper (Cu), zinc (Zn), and
cadmium (Cd).

The vulnerability index within the European context is illustrated in
Fig. 10.. This analysis reveals that the spatial distribution is more
complex than merely applying a pH threshold of 6 and is dependent on
each metal as one would expect. However, since the pH = 6 has been
used extensively to define metal vulnerability we also produced a Eu-
ropean spatial distribution of soils with pH higher and lower than 6
(Fig. 11).

4. Discussion
4.1. Biochemical processes and pH thresholds

Soil pH influences biochemical processes like nutrient availability,
microbial activity, plant development, and the overall health of eco-
systems (Neina, 2019). Additionally, soil pH affects the solubility of
minerals, which can lead to either deficiencies or toxicities depending on
the pH range. Table 6 presents key pH values and ranges for various soil
processes considered in this work. It is evident from Table 1 that a pH
range of 5.5-7.5 is the least limiting for crop production. It is essential to
acknowledge that there are numerous specialized plants that exist
beyond this range and necessitate pH levels outside of this range in order
to flourish. A considerable percentage of soils globally (Slessarev et al.,
2016) do not fall within this least limiting range, highlighting, often a
need for intervention for major crop production, ensuring cropland soils
offer appropriate conditions for food production. At pH values below 5.5
toxicity can have an abrupt effect on yield reduction of many crops
(Page et al., 2021). However, at pH values above 7.5 effects are more
nuanced. Direct toxicity can occur due to HCO3 (Islam, 1980) and is
highly species dependent, but more commonly nutrient deficiencies
occur (Msimbira, and Smith, 2020), with varying impacts, such that no
single threshold is easily apparent; however, it becomes increasingly
likely on these marginal soils that management interventions will be
required to maintain yield for food production. This scenario
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Fig. 5. A) Soil organic carbon (SOC) within the top 0-20 cm versus annual water balance (MAP-PET) for seminatural habitats ((woodlands, grasslands, shrublands
and wetlands). Side panels show histograms of MAP minus PET and SOC concentrations. B) Soil inorganic carbon (SIC) versus annual water balance for semi-
natural habitats.
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Fig. 6. A) Shannon’s diversity index versus pH measured measured for European topsoils (0-20 cm). Land use information is shown as colour coded. The dashed line
represents the optimum for Shannon’s diversity, which is achieved at pH = 6.3. B) Multivariate regression tree identifying consistent pH defined bacterial com-
munities with break points at pH 5.2 and ~ 7.1 spanning the diverse soils across Europe.

emphasizes the necessity for soil modification and management of the limitations of the current study. In the subsequent section, we will
considering a rising population, especially as the quest for food security examine the interactive influence of the water balance (MAP-PET) in
drives agricultural practices to encroach upon more marginal soils. conjunction with soil biochemistry within the European context, aiming
Moreover, the challenge of connecting biogeochemical processes to comprehend the data and identify patterns for analyzing soil health at
observed at the field scale to soil pH on a continental scale tends to the continental level.

oversimplify the complexity of the involved processes; this may be one
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Table 4

Generalized additive models (GAM) tested; using the sWorm database for Eu-
ropean countries where site Abundance and pH values were available for the
three land uses croplands, grasslands and woodlands. Data on timings of sam-
pling (Month when the sampling had finished), extraction method and the
country the data came from all added to the deviance explained in the model.
The degrees of freedom (df) and the Akaike information criteria (AIC) criterion
are shown. The best model was b5 which was used to predict earthworm
abundance across the pH gradient and the three land uses.

Model  Model structure Deviance df / AIC
explained
bo Abundance ~ s(PH, k = 10) 8.3 % 10.0 /
15,869
bl Abundance ~ s(PH, k = 10, by = 13.8% 15.4 /
Land Use) 15,807
b2 bl + Month 20.0 % 27.2/
15,743
b3 bl + Month + Extraction Method 30.3 % 29.4/
15,584
b4 bl + Month + Country 40.6 % 43.2/
15,423
b5 bl + Month + Country + Extraction ~ 41.5 % 45.3/
Method 15,410
Table 5

GAM of predicted earthworm abundance using the sWorm database (Phillips
et al., 2021) using model b5 in Supplementary table tt. N = 1180, Deviance
explained = 41.5 %.

Term edf Ref.df F-statistic p-value
s(pH):Cropland 5.439 6.383 5.409 <0.001
s(pH):Grassland 2.589 3.240 2.526 0.0515
s(pH):Woodland 1.005 1.010 22.066 <0.001

4.2. Water balance and the geochemical nature of soil pH

Global and continental trends indicate that environmental factors
significantly influence soil pH, especially concerning the water balance.
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Research by Slessarev et al. (2016) has highlighted a worldwide tran-
sition from alkaline to acidic soils at the point where MAP exceeds PET
in subsoils (50 cm), as subsoils are expected to be less susceptible to
management pressure. The study found a bimodal distribution of soil
pH, with notable peaks at pH 5.1 and pH 8.2, which align with the
stability points of gibbsite and calcite, respectively. In scenarios where
PET is greater than MAP, calcium tends to accumulate and form calcite;
in contrast, when MAP surpasses PET, leaching occurs, resulting in
aluminium becoming the dominant cation. The chemical equations that
depict the shift from alkaline to acidic soils are presented in the sup-
plementary information. The importance of the findings by Slessarev
et al. (2016) is their capacity to identify soils that are less buffered and
potentially more vulnerable to significant alterations.

Fig. 2A presents the distribution of pH values in European topsoils in
relation to the water balance, demonstrating that these topsoils do not
follow a distinct bimodal distribution pattern. While it is conceivable
that there is a notable concentration of soils with a pH near 6.5 in
Europe, it is more likely that the pH variations observed in the dataset
stem from uniform agricultural practices and management strategies,
such as the use of lime and organic amendments. When cropland and
livestock pasture areas were removed from the dataset, a bimodal dis-
tribution emerged, as shown in Fig. 2B, consistent with Slessarev et al.
(2016).

The optimal pH range for most crop production is identified as 6-7
(Vitousek et al., 2004, Roy et al., 2006). Consequently, it is not unex-
pected that the removal of croplands and livestock pastures, as illus-
trated in Fig. 2A, reveals a distribution where numerous soils within the
6-7 pH range have been lost (Fig. 2B). This suggests that anthropogenic
inputs maintain soils out of the natural equilibrium for biomass pro-
duction. Given the implications of climate change, this scenario raises
concerns about the sustainability of certain agricultural methods,
especially those that deviate further from equilibrium, as they will
necessitate greater inputs to maintain pH levels conducive to produc-
tivity or may require a shift to different crop varieties.

Fig. 2B illustrates that the bimodal distribution observed in European
soils does not exhibit peaks at 8.2 and 5.1, as seen in the global soils
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Fig. 7. A) Histogram of the number of pH measurements by land use. B) First derivative of the linear predictor in relation to Fig. 7A, derived for predicted earthworm
abundances across the soil pH range for European croplands, grasslands and woodlands.
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Fig. 8. Predicted earthworm abundance and 95% confidence interval across the pH range for croplands, grasslands and woodlands. European data from the global
sWorm database from (Phillips et al., 2021).

vulnerability index nickel

vulnerability index copper

1.0 1.0
Sos | 8os
£ £
>06 >06 F2.%°
T 0.4 Boa4 |
Q Q
= =
302 302 t
0.0 1 0.0 L L s L L %
3 4 5 6 7 8 9 0 1 3 4 8 6 7 8 9
porewater pH porewater pH
vulnerability index zinc vulnerability index cadmium
1.0 1.0
x x
3os 308 |
£ £
QO.G 30.6 K
T 0.4 T04 |
Q [}
< £
302 302 |
00 (o X Qo 00 1 1 1 1 1 1
3 4 5 6 7 8 9 10 M1 3 4 5 6 7 8 9 11

porewater pH

porewater pH

Fig. 9. Computed vulnerability indices for nickel, copper, zinc and cadmium in LUCAS soils as a function of the porewater pH.



L Lebron et al.

Nickel

.

Vulnerability index

00-0.1
01-02
02-03
03-04
04-05
05-06
06-07

07-08
08-09
09-1.0

Zinc

Vulnerability index

0.0-0.1
01-02
02-03
03-04
04-05
05-06
06-07

07-08
08-09
09-1.0

Catena 260 (2025) 109454

Vulnerability index

00-0.1
0.1-02
02-03
03-04
04-05
05-06
06-07
07-08
08-09
09-10

Cadmium
Vulnerability index

00-0.1
0.1-02
02-03
03-04
04-05
05-06
06-07

07-08
08-09
09-1.0

Fig. 10. Mapped vulnerability indices for nickel, copper, zinc and cadmium mobility according to LUCAS 2018 topsoil (0-20 cm) data.

analysed by Slessarev et al. (2016). Instead, these peaks are shifted to-
wards lower values, suggesting that European soils have undergone
partial leaching, which contributes to a trend of acidification (refer to
Appendix D). Ecosystems can progress beyond the equilibrium states of
calcite and gibbsite, leading to more severe conditions that may
compromise soil health and its ability to sustain life. For example, when
MAP exceeds PET, the soil’s water content is affected not only by the
influx of water but also by the soil’s hydraulic characteristics. Factors
such as soil texture, structure, organic matter levels, compaction, and
the depth of the water table play crucial roles in determining the
duration that water remains within the soil. The alternating cycles of
wetting (reduction) and drying (oxidation) trigger redox reactions that
facilitate the transfer of electrons among various chemical species,

10

potentially altering the pH by as much as 2 units (Thompson et al.,
2006). Significant redox processes in soils, which involve minerals such
as iron and manganese oxides, are elaborated in the supplementary
material and have important consequences for microbial activity,
nutrient availability, weathering rates, and the mineral composition of
the soil system.

The geographical distribution of soils with pH levels below 5.1 and
above 8.2 across Europe is depicted in Fig. 3. This illustration empha-
sizes the influence of the water balance on the leaching or accumulation
of salts within the soil. Soils with pH levels below 5.1 are typically found
in regions with a Nordic climate, characterized by cold winters and mild,
humid summers, as well as in areas with an oceanic climate, which
features mild winters and humid summers in Western Europe.
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Fig. 11. Spatial distribution of soils in Europe with a pH value less than 6,
in red.

Conversely, Southern European countries, which experience a Medi-
terranean climate, predominantly contain soils with pH levels close to,
or exceeding, 8.2. Although the prevalence of soils with pH levels above
8.2 is relatively low in Europe, their economic significance warrants
attention, as they are generally situated in highly productive agricul-
tural regions, such as the Ebro Basin in Spain. These soils have been the
subject of extensive research due to their susceptibility to desertifica-
tion, a process that often begins with soil alkalinization. The combina-
tion of elevated pH, that affects the charge balance for variable charge
sites on minerals and organic matter, and sodium presence can adversely
affect soil characteristics, leading to issues such as colloid dispersion,
SOC loss, reduced soil permeability, and increased runoff and erosion
(Allison and Richards, 1954; Lebron et al., 1994). This process is initi-
ated by water movement, which facilitates the transport of dispersed
colloids that clog soil pores, resulting in densification and diminished
hydraulic conductivity. Once the soil structure is compromised, resto-
ration can be exceedingly challenging. The mechanisms responsible for
the high pH values observed in soils are detailed in the supplementary
information.

4.3. Topsoil carbon

Climate has long been recognized as a key factor influencing SOC
levels (Carvalhais et al., 2014). However, recent studies indicate that
climate, moisture, and geochemical factors interact significantly in the
mechanisms of soil carbon storage (Doetterl et al., 2015; Yu et al., 2021).
Soil pH serves as a valuable indicator of the geochemical processes
occurring within the soil. Fig. 4 illustrates the correlation between SOC
and pH across European soils, alongside the relationship between SIC
and pH. As pH approaches neutral and alkaline ranges, there is an in-
crease in the dissociation of functional groups within SOM (Andersson
et al., 2000), and the bonds at the mineral interface between clay min-
erals and organic compounds weaken (Curtin et al., 1998). These con-
current phenomena lead to enhanced dissolution and transport of SOM
(Neina, 2019). Fig. 4 demonstrates that the soil’s capacity to retain SOM
diminishes as pH rises towards more alkaline levels, with a notable
overlap occurring around pH 7.2, where SIC begins to accumulate more
rapidly as pH continues to increase. Exceptions to this pattern include
fenland soils, which have an alkaline pH but maintain carbon through
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Table 6

Synthesis of key pH values and ranges for biogeochemical processes and plant
growth from the literature. This table serves as a guide only and values are not
universal definitive thresholds. CUE = Carbon Use Efficiency, SOM = Soil

Organic Matter.

Process pH Effect outside the pH Reference
range

acid phosphorus 4-5 Limited phosphorus (Turner and

enzyme activity availability Romero, 2010)
Fungal activity 4-6 Reduced activity (Neina, 2019)
Bioturbation by 5-7 less bioturbation and (Hakonen et al.,

earthworm activity distribution of SOM, 2010)

reduced soil present study
connectivity,
Different by land use

Al dissolution <5.1 Plant growth limitations, (Lofts, 2022)
forest die back etc

Iron dissolution <5.5 toxicity in the acid range  (Lofts, 2022)

Crop yield decline <5.5 Many common crops (Rowell, 1988;

due to toxicity suffer significant (50 %) Page et al., 2021)

relative yield declines.
(species dependent)

Heavy metals <6-7 More toxicity (Lofts, 2022)

dissolution

Microbial carbon use 6.2 Below 6.2 CUE goes to (Malik et al.,

(CUE) efficiency zero 2018)

Microbial activity 6-7.5 Reduced bacterial (Labouyrie et al.,
activity 2023)

Organic matter 6-7 Slower decomposition (Malik et al.,

decomposition 2018)

Priming of SOM 5.5-7.5  Slower decomposition (Wang and

Kuzyakov, 2024)

Plant growth least 5.5-7.5 Increasing constraints Roy et al., 2006;

limiting range Msimbira and

Smith (2020); (
Vitousek et al.,
2004);
Microbial diversity >6.28 Reduced diversity (Griffiths et al.,
2011); Seaton
et al. (2024)
Present study

Transition between ~7 Has implications for Present study

organic dominated carbon accumulation

to inorganic and storage

carbon dominated

Plant growth >7.5 Species dependent Islam, (1980);

nutrient deficiency growth affected by Msimbira and

excess HCOj3 or potential Smith (2020)
deficiency of Fe, P and

Zn or imbalance of Ca,

Mg and K.

Calcite buffering 8.2 Drastic changes of pH (Van Breemen
affecting et al., 1983)
biogeochemical
reactions in soils

Sodification >9 Often associated with (Lebron et al.,
soil salinity and 1994)
structural deterioration

alkaline phosphorus 10-11 Limited phosphorus (Turner and

enzyme activity

availability

Romero, 2010)

high productivity and oxygen limiting conditions suppressing decom-
position that allows for SOC accumulation even when adjacent waters
have a pH above 7. Additionally, certain low pH soils can be found over
calcareous parent materials, showing that with sufficient time, climate
and biological factors become dominant at driving pH in topsoil. Despite
these anomalies, a clear general trend is evident: as pH rises, SOC de-
creases, and SIC levels increase beyond pH 7.2, with SIC becoming the
dominant form of carbon, in line with pedological theory (Jenny, 1994).
It is expected that calcite will be the main form of SIC within the pH
range of 7 to 9 (van Breemen et al., 1983), although other carbonates
may gain prominence at pH levels above 8.1; however, such high pH
soils are primarily confined to the southern regions of Europe. The
transition from SOC to SIC is often linked to a decrease in moisture



L Lebron et al.

content, which aligns with the data presented in Fig. 4 and the annual
water balance (MAP-PET).

It is essential to assess pH within the framework of environmental
variables, such as climatic conditions and parent material. Fig. 5 illus-
trates that SOC can only build up to more than 200 g/Kg in soils when
MAP exceeds PET; conversely, when PET surpasses MAP, conditions
become more conducive to the accumulation of SIC. The data presented
in Fig. 5 highlight a significant interplay between geochemical factors
and climate in determining a soil’s capacity to sequester carbon, this
observation has also been made by Hansen et al. (2024). We focused on
seminatural habitats for the plots in Fig. 5 to eliminate the influence of
human activity. It is crucial to note that SOC can accumulate in soils
with either high or low pH, provided they are moist; however, it does not
accumulate in dry, high pH soils. This observation may suggest that
moisture levels are a more critical factor than pH in inhibiting microbial
turnover or oxidation processes.

4.4. Health and microbial response to pH

Advancements in DNA and metagenomic technologies have provided
insights into the previously uncharted soil microbiome. Investigations
into the microbiome, particularly its diversity, have revealed relation-
ships between bacterial diversity and soil pH levels. Soil pH is recog-
nized as a significant factor influencing soil microbial communities, with
numerous global studies indicating that pH serves as the foremost pre-
dictor of bacterial communities across extensive environmental gradi-
ents, which encompass a variety of climatic conditions and land uses
(Bahram et al., 2018; Fierer and Jackson, 2006; Griffiths et al., 2011;
Labouyrie et al., 2023). These associations are often established by
comparing environmental characteristics with either univariate metrics
derived from sequencing data, such as taxonomically agnostic richness
estimates, or through multivariate ordination techniques that provide
deeper insights into compositional changes. Typically, bacterial di-
versity exhibits either positive or humped relationships with pH
(Fig. 6A), this pattern aligns with the results of previous studies, such as
those by Fierer and Jackson (2006), which identified a similar optimal
pH. Additionally, data from temperate experimental sites suggest that
when pH falls below 6.2, microbial carbon use efficiency (CUE) signif-
icantly decreases, which has important implications for carbon pro-
cessing (Malik et al., 2018). Ordination methods reveal distinct
community assemblages along pH gradients, highlighting the ecological
responses of specific taxa to variations in pH (Jones et al., 2021; Zhou
et al., 2024). In their study utilizing multivariate regression trees to
analyse compositional and abundance changes across various British
soils, Griffiths et al. (2011) identified critical transition points within
bacterial communities that corresponded to shifts in land use and pH.
The primary division in the dataset was influenced by land use, dis-
tinguishing typically acidic environments, such as bogs, moors, and
upland woods, from arable lands, grasslands, and lowland woods.
Within these divisions, a clear distinction based on pH emerged, with
acidic habitats categorized into two groups above and below pH 5.2,
while non-acidic habitats were similarly divided above and below pH
6.9.

We examined comparable data from the EU-wide LUCAS survey,
which also identified similar pH breakpoints of 5.2 and 7.1 delineating
three broad community types across a range of soil types (Fig. 6B) It
suggests that the soil bacterial communities can be considered to split
into acidophiles, neutrophiles and alkaliphiles between these thresh-
olds. It is important to note that different sequencing techniques were
employed in the LUCAS survey, including the use of various primers.
More significantly, the EU survey encompassed a variety of habitats,
specifically targeting arable, grassland, and wooded communities, while
excluding the typically carbon-rich upland moor and bog habitats that
were appropriately sampled with the stratified random design in the GB
survey (Robinson et al., 2024). Collectively, these findings underscore
the critical role of soil pH as a primary factor influencing the
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composition of dominant bacterial taxa, often surpassing the impact of
related land use variables, thereby highlighting the widespread signifi-
cance of pH. Furthermore, additional breakpoints around pH 5 and 7
have been observed in the assessment of archaeal communities, as noted
by Gubry-Rangin et al. (2011) and Seaton et al. (2024).

4.5. Earthworms and soil health

Soil pH is also linked to earthworm species composition and overall
abundance. In strongly acidic soils, pH < 3, fewer tolerant taxa tend to
dominate diversity, but their abundances are generally low. In wood-
lands, this is particularly evident from studies comparing earthworms
under different tree species, with changes in earthworm abundance
related to differences in the quality of litter inputs and associated
changes in litter layer accumulation, soil biogeochemistry and pH e.g.
(Neirynck et al., 2000; Reich et al., 2005; Schelfhout et al., 2017). Such
changes hinge on the pH threshold at ~ 4.5 separating soil processes
dominated by aluminium/iron and base cation exchange, and a vertical
decoupling of litter incorporation, with many earthworm species being
intolerant at lower soil pH. The study by Desie et al. (2019) demon-
strated the overriding importance of tree inputs at lower soil pH, relative
to inherent differences in exchange domain, with conversion from de-
ciduous to coniferous species enacting reductions in pH and lower
earthworm abundance and biomass. In a common garden experiment of
14 tree species, Reich et al. (2005) found positive relationships between
litter calcium, exchangeable calcium in soil and earthworm biomass.
Where tree species with rich litter are found on alkaline parent material
or soils, exceptionally high earthworm abundance can be found
(Lakhani and Satchell, 1970; Piearce, 1972). The linear increase in
predicted earthworm abundance with soil pH for woodlands presented
in our study may represent these mechanisms, playing out at the Euro-
pean scale.

The unimodal relationship between predicted earthworm abundance
and soil pH in grassland, with a pH optimum just below 6, combines
effects of pH, management and climate. Previous studies of temperate
grasslands have found greater earthworm abundances to be linked to
higher pH (Hoeffner et al., 2021). Indeed, greater earthworm abundance
have been found following the liming of acidic grasslands and associated
increases in soil pH (McCallum et al., 2016). The decline in predicted
earthworm abundance at higher pH for grasslands likely reflects a pre-
dominance of higher pH representing locations with drier climate and
associated reductions in SOC. In croplands, tillage is a critical factor
impacting earthworm abundance (Briones and Schmidt, 2017) and
management may be the primary driver of earthworm abundance e.g.
(Frazao et al., 2017). The bimodal peaks in predicted earthworm
abundance for croplands presented in this study likely represent agri-
cultural management which optimises conditions for earthworms under
different soil types or geographies.

4.6. Soil degradation through metals

One of the major potential challenges to food security in Europe is
the contamination caused by metals that are released from pollution or
environmental sources, particularly heavy metals. The presence of
heavy metals often stems from the historical activities of various in-
dustries, including agricultural practices. The solubility and bioavail-
ability of numerous heavy metals are significantly affected by pH levels,
with critical thresholds that influence their movement. A review of the
current literature indicates that a pH level below 6 is widely acknowl-
edged as a threshold at which the mobility of heavy metals increases the
associated risks (Krol et al., 2020). The distribution of soils with a pH
lower than 6 is illustrated in Fig. 11, revealing that most regions in
Europe, except for parts of Spain, Italy, Croatia, and Greece that have
more calcareous soils, are vulnerable to metal mobility.

pH serves as a crucial indicator of metal solubility, with geochemical
thresholds of 5.1 and 8.2 playing a significant role in determining metal
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abundance and toxicity. Soils with a pH below 5.1 (see Fig. 3A) are
prone to the dissolution of aluminium, primarily in the form of ARY,
which is harmful to plant roots and has been linked to forest dieback
caused by acid rain across Europe. The presence of AI*" interferes with
root cell division and elongation, resulting in stunted root development
and a decrease in fine root hairs. This impairment limits the plant’s
ability to absorb water and nutrients, causing drought stress even when
water is present. Furthermore, Al3" competes with vital cations such as
Ca?*, Mg?*, and K™, diminishing their availability. It also reacts with
phosphate ions to create insoluble AlPOy4, rendering phosphorus inac-
cessible to plants. Additionally, aluminium toxicity adversely impacts
microbial communities that are essential for nutrient cycling and the
decomposition of organic matter, as illustrated in Fig. 6A, which shows a
decline in microbial diversity. AI*" is detrimental to numerous benefi-
cial bacteria and fungi, leading to a reduction in microbial populations,
particularly affecting nitrogen-fixing bacteria (Rhizobia) and conse-
quently hindering symbiotic nitrogen fixation in legumes.

Elevated pH levels exceeding 8.2 can lead to complications con-
cerning metal ions, as the solubility of various metal cations, such as iron
(Fe), zinc (Zn), copper (Cu), manganese (Mn), aluminium (Al), lead (Pb),
and cadmium (Cd), diminishes due to the formation of insoluble com-
pounds like hydroxides and carbonates. Nonetheless, some metals may
remain dissolved, influenced by their specific chemical forms and their
interactions with soil constituents. For instance, oxyanions such as
arsenic (As) in the form of arsenate (AsO%’), selenium (Se) as selenate
(SeOﬁ’), and boron (B) as borate (B(OH)3) can exhibit increased solu-
bility under alkaline conditions. Sodium is another element that dem-
onstrates high solubility and has a complex relationship with pH levels.
In non-saline sodic soils, sodium displaces calcium (Ca®*) and magne-
sium (Mg?") from soil particles, which results in the dispersion of clay
and organic matter. This process diminishes the soil’s buffering capacity
and leads to the accumulation of carbonates (CO%’) and bicarbonates
(HCOg3), consequently elevating soil pH; in some sodic soils, pH values
may surpass 9. Although infrequent, in acidic soils, sodium can interact
with aluminium (Al3+), resulting in acidification. The presence of so-
dium poses challenges not only to plant growth by increasing osmotic
potential but also contributes to structural degradation through the
dispersion of clay particles, as previously mentioned.

Heavy metal leaching in soils is primarily influenced by pH levels
and soil organic matter (SOM) (Lofts, 2022; van der Sloot and van
Zomeren, 2012). Even minor changes in pH can result in fluctuations in
metal concentrations due to various processes, including dissolution/
precipitation, adsorption/desorption on mineral and organic substrates,
and complexation with ligands in the solution (Lofts, 2022). We evalu-
ated the vulnerability index for Ni, Cu, Zn, and Cd concerning pH levels
in European soils (Fig. 9). A significant pH threshold was observed for Ni
and Cu around pH 7, beyond which their vulnerability sharply declined.
Conversely, the reduction in vulnerability for Zn and Cd was more
gradual, although it still decreased with increasing pH. When this
vulnerability index was mapped across Europe (Fig. 10), the
geographical distribution closely mirrored the pH maps shown in
Fig. 11, indicating that countries with acidic pH values are more sus-
ceptible to metal toxicity. The vulnerability varies by metal, with Ni
exhibiting a higher tendency to leach in areas where pH is below 6. Toth
et al. (2016) report that Ni concentrations in Europe are generally low,
at under 25 mg/Kg; nonetheless, the vulnerability remains significant. In
regions where pH exceeds 6, the overall vulnerability markedly di-
minishes. The presence of elevated levels of heavy metals in soil solu-
tions adversely affects primary productivity, which in turn restricts
carbon inputs into the soil and limits carbon storage under these con-
ditions (Yu et al., 2021).

4.7. Modelling climate driven pH changes and future work

The rate of biogeochemical changes in soil can vary, occurring either
gradually or rapidly, depending on the internal chemical reactions to
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environmental influences. Climate change forecasts for Europe suggest
modifications in the frequency and intensity of rainfall, with an
increased probability of extreme weather events during both winter and
summer (Stocker, 2015). These shifts result in more frequent occur-
rences of intense, short-lived rainfall followed by extended periods of
drought (Chan et al., 2014; Hirabayashi and Kanae, 2009; Kharin et al.,
2007; Kundzewicz et al., 2014). The alternating cycles of wetting and
drying serve as significant factors driving the spatial and temporal
variability in soil characteristics, which in turn impact the biogeo-
chemical processes occurring within the soil (Robinson et al., 2019;
Schulz-Zunkel et al., 2015; Tockner et al., 2010). Such changes
encompass fluctuations in redox potential, which subsequently affect
the concentrations of iron (Fe) and manganese (Mn), ultimately influ-
encing soil pH levels (Rinklebe and Shaheen, 2017).

Assessing the influence of climate variability, trends, and extremes
on soil pH necessitates a modelling framework that encompasses envi-
ronmental, geochemical, and biological processes. These processes can
be effectively integrated into modelling frameworks via the calibration
of process-based models, the application of statistical and artificial in-
telligence (AI)-based models, and the creation of hybrid approaches that
merge both methodologies. Process-based models, such as MAGIC
(Cosby et al., 2001), VSD+ (Bonten et al., 2016), and ForSAFE (Wallman
et al., 2005), predict soil pH by combining climate variables—such as
temperature, precipitation, and CO3 concentrations—with soil chemis-
try, hydrology, and biological interactions over time. Al-driven models
leverage statistical and machine learning methods to uncover predictive
relationships between environmental variables and soil pH, utilizing
historical and spatially distributed datasets (Were et al., 2015).
Conversely, hybrid methodologies take advantage of the mechanistic
insights offered by process-based models while integrating Al to
improve predictive accuracy through data fusion techniques (Afshar
et al., 2019).

Process-based models provide a mechanistic framework for simu-
lating changes in soil pH across various environmental contexts. These
models account for time-dependent processes such as acidification,
buffering, and leaching, allowing them to capture the long-term dy-
namics of soil pH (Zeng et al., 2017). However, they require calibration
specific to individual sites, utilizing time series data obtained from field
measurements, which makes them computationally intensive and
applicable only to certain areas (Reinds et al., 2008). Additionally,
although these models excel at simulating gradual climate changes, they
may struggle to accurately depict nonlinear and unforeseen extreme
events due to their dependence on established relationships, which
might not sufficiently represent the conditions brought about by climate
extremes (Holmberg et al., 2018).

Statistical and Al-based approaches can effectively handle the com-
plex relationships between climate and soil pH by utilizing spatially
distributed datasets (Xiao et al., 2023). A notable advantage of Al
models is their ability to incorporate a diverse range of spatial obser-
vations, especially in cases where temporal data is limited (Borrelli
et al., 2020; Hassani et al., 2021). However, the performance of these
models may be limited by uneven data distribution or biases that exist
within the training dataset.

Hybrid methodologies tackle these issues by integrating process-
oriented mechanistic insights with Al-driven pattern recognition (Jin
et al., 2018). While Al-based models consider predictions as isolated
instances, process-based models consider the historical factors influ-
encing soil pH (Zhao et al., 2019). Soil acidification or alkalization may
stem from the cumulative effects of climate over several years or even
decades, rather than merely from short-term environmental changes
(Rengel, 2011). Hybrid modelling strategies that employ data assimi-
lation techniques can improve the predictive precision of soil pH as-
sessments, ensuring that both the temporal continuity of soil processes
and the spatial variability of environmental conditions are adequately
represented.

These modelling frameworks can be adapted to predict future soil pH
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changes under various climate change scenarios. By calibrating process-
based models to replicate long-term soil responses or training artificial
intelligence models on historical correlations among climate variables,
land use, and soil pH, these frameworks can generate soil pH forecasts
using climate data from Earth system models, including those from the
Coupled Model Intercomparison Project (CMIP). The inclusion of
climate projections derived from different Shared Socioeconomic Path-
ways (SSPs) facilitates scenario-based evaluations of soil pH changes in
the future. This integration provides a more thorough understanding of
potential trends in soil acidification or alkalization, assisting land
managers and policymakers in formulating adaptive soil management
strategies considering anticipated climate conditions.

It is essential to begin forecasting pH variations in soils throughout
Europe, and more widely the globe, to anticipate alterations resulting
from climate change, land use, or land management practices. Recog-
nizing areas at high risk will provide policymakers with the necessary
foresight to minimise or avert soil degradation.

5. Conclusions

The examination of topsoil pH trends throughout Europe, as recor-
ded by LUCAS, indicates that seminatural habitats exhibit a bimodal
distribution of topsoil pH values. In contrast to global soils, which peak
at pH values of 5.1 and 8.2, European topsoils are skewed towards lower
pH values (4.41 and 7.54). This shift suggests that European soils have
undergone partial leaching, contributing to a trend of acidification. As a
result, there is increased susceptibility to metal and heavy metal
leaching vulnerability across European soils in compared to their global
counterparts. Furthermore, our findings indicate that human activities,
such as food production and associated land management, are displacing
soils from their natural equilibrium, particularly towards the pH range
of 6-7. Considering climate change, this situation raises serious concerns
regarding the sustainability of specific agricultural practices, especially
those that further deviate from equilibrium, as they will require
increased inputs to sustain pH levels that are favourable for
productivity.

A consistent trend is discerned and significant thresholds for utilizing
pH as a measure of soil health and degradation in the context of envi-
ronmental changes across Europe. Notably, a pivotal transition occurs at
pH 7.2, where soil organic matter (SOM) diminishes in favour of the
accumulation of soil inorganic carbon (SIC). This transition has been
associated with climatic factors, indicating that a mean annual precip-
itation minus potential evapotranspiration (MAP-PET) greater than zero
is necessary for SOM accumulation, while conditions where MAP-PET is
less than zero favour calcite deposition in the soil. Regarding soil health,
the application of multivariate regression trees has enabled us to illus-
trate the significance of soil pH as a key factor affecting the dominant
taxa. This classification highlights three general community types across
different soil types, acidophiles, neutrophiles and alkaliphiles between
these thresholds further establishing pH as the most dependable pre-
dictor for soil microbial populations. Patterns for earthworms were more
nuanced generally with more distinct optima based on land use.
Regarding vulnerability and degradation, soil moisture content and
subsequently pH have been shown to influence the susceptibility to
metal toxicity, particularly nickel. Nickel is prone to leaching in regions
where soil pH falls below 6, particularly in humid climates. It is crucial
to initiate predictions of pH fluctuations in soils throughout Europe to
prepare for changes induced by climate change, land use, or land
management practices. Identifying regions at elevated risk will equip
policymakers with the foresight needed to minimise or prevent soil
degradation.
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