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A B S T R A C T

Soil pH indicates the level of acidity or alkalinity in the soil environment, influencing various biogeochemical and physical processes. Additionally, soil pH levels are 
crucial in determining the bioavailability of elements such as iron, aluminium, and heavy metals which can be harmful. As such, pH is an important soil health and 
degradation indicator. Although there is a well-established understanding of soil pH at localized levels, the spatial and temporal variations, as well as significant 
thresholds at national and continental scales, are not sufficiently documented. Here we analyse the European topsoil pH data (LUCAS) in combination with other soil 
properties from the LUCAS survey, to identify thresholds and spatial patterns of soil pH across Europe in relation to soil health and degradation. At the European scale 
we found: 1) the water balance, calculated as mean annual precipitation minus potential evapotranspiration (MAP-PET), provides essential context to interpret soil 
pH; 2) the shift from organic carbon-rich soils to those dominated by inorganic carbon is observed at a pH of about 7.2, however, soil moisture levels may be more 
critical than pH for the accumulation of soil organic carbon; 3) we identified three distinct clusters within the multivariate regression tree: acidophiles (below pH 
5.2), neutrophiles (pH 5.2–6.9) and alkaliphiles (above pH 6.9), while optimum microbial diversity occurred between pH 6 and 7. Earthworm abundance, as reported 
by the sWorm database, is more nuanced and dependent on land use; 4) risk of degradation by heavy metals cannot be captured by a single pH threshold. Finally, we 
identify soil pH thresholds that can aid policymakers in identifying regions that may require protection or intervention.

1. Introduction

Soils serve as a fundamental element of ecosystems, providing a 
range of services that are crucial for human well-being and environ
mental sustainability (Fernandez-Ugalde et al., 2022). Considerate 
management and conservation of soils are vital for maintaining these 
ecosystem services and their associated benefits. One indicator affecting 
ecosystem services is soil pH, which was identified as a critical indicator 
of soil quality (Bünemann et al., 2018). It is one of the twelve soil de
scriptors employed to assess soil health in the European Union, as 
stipulated by the proposal for an EU Soil Monitoring and Resilience Law 
(European Commission, 2023) and it is among the eight indicators to 
track changes during the Soil Mission implementation (Panagos et al., 
2024).

It has long been recognised that the measurement of pH in the soil 

solution is an important integrating measure of element and nutrient 
availability (Hartemink and Barrow, 2023) as it regulates the soils ca
pacity to store and supply nutrients. Soil pH plays a critical role in 
modulating soil organic matter dynamics and regulates the availability 
of macro- and micro-nutrients, with direct implications for crop pro
duction and food security (Hou, 2023; Pozza and Field, 2020). 
Furthermore, pH regulates various biological processes and the activ
ities of soil microorganisms (Malik et al., 2018), which is particularly 
important given that soils support 59 % of species on Earth (Anthony 
et al., 2023). The community of soil bacteria, particularly those 
responsible for organic matter decomposition and nitrogen fixation, is 
optimally adapted to the pH levels typically found in their natural en
vironments (Fernández-Calviño and Bååth, 2010). When pH levels shift, 
these microorganisms initiate an adaptive response characterized by the 
production of exoenzymes to accommodate the change (Puissant et al., 
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2019). Research has shown that bacterial diversity and richness in soils 
tend to peak at pH levels between 6 and 7 (Chu et al., 2010; Fierer and 
Jackson, 2006; Tripathi et al., 2012). Consequently, measuring soil pH is 
a vital indicator for evaluating soil health and its capacity to support 
plant growth (Neina, 2019), as well as its overall ecosystem function
ality and implications for human health (McBride, 1994).

While pH is essential for soil health, it also indicates land degrada
tion and the potential to harm organisms. Soil pH significantly affects 
the accumulation, mobility, and bioavailability of metals and heavy 
metals, which can create toxic conditions for various plants and or
ganisms (Lofts, 2022). For example, in the 1970 s, air pollution across 
Europe led to increased soil acidity and forest decline (Smith et al., 
2024). Although recovery in Britain’s soils was observed due to policy 
interventions (Reynolds et al., 2013), more recent monitoring indicates 
this has slowed or potentially reversed, likely as a result of climate 
drivers or land use management pressures (Seaton et al., 2023). Given 
the important role soil pH plays in element cycling and plant produc
tivity, it is carefully managed in agricultural and horticultural habitats. 
Acid soils are often limed to raise their pH and alkaline soils can have 
sulphur added to reduce their pH. Another often-overlooked aspect of 
potential for degradation is the influence of pH on soil structural sta
bility; the interaction between pH and alkaline cations, particularly 
sodium, can lead to clay dispersion and can exacerbate erosion 
(Shainberg and Levy, 2020). The degradation of the natural habitat, 
where biological activity occurs, may further impair the delivery of 
ecosystem services by reducing the available niche space associated with 
soil structural diversity (Seaton et al., 2020).

Parent material plays an important role in pH at large scales, espe
cially in the initial stages of soil formation, but vegetation and climate 
quickly modify soil pH levels. Recent research on soil pH shows that 
global patterns of soil pH are related to biomes and to the mean annual 
precipitation (MAP) and mean annual temperature (MAT) (Zhao et al., 
2019). Global soil pH patterns were shown to be fundamentally linked to 
the water balance with regional modifications due to parent material 
(Slessarev et al., 2016). A transition point was shown to exist at the 
global scale where MAP exceeds mean annual potential evapotranspi
ration (PET) (Slessarev et al., 2016); wet soils being more acidic and dry 
soils being more alkaline. It is well known that environmental forcing 
regulates many aspects of soil chemistry, including pH (Jenny, 1994). 
However, it is only recently, with our ability to aggregate large global 
data sets, that the patterns which emerge across scales can be quantified 
and attributed to different environmental drivers. Climate through 
water balance, parent material (Slessarev et al., 2016), and land man
agement type drives large scale patterns, whilst pressures such as 
pollution and specific management practices superimpose effects at 
local scales.

One of the significant challenges encountered is the interpretation of 
pH changes, particularly the need to differentiate the effects of various 
large- and small-scale drivers and pressures. Overcoming these chal
lenges will help to comprehend, and ultimately forecast, the conse
quences of environmental change. Our aim is to adopt a comprehensive 
approach to identify pH thresholds, optima or changes that are pertinent 
for informing policy decisions at both national and European levels. This 
paper investigates the large-scale pH patterns across Europe as reported 
by the Land Use/Cover Area frame statistical Survey (LUCAS) for soils 
sampled in 2018 (Orgiazzi et al., 2018), beginning with fundamental 
geochemical relationships and progressing to the implications for nu
trients, micronutrients, and metal toxicity. Additionally, we examine the 
connections between biota, land use, and microbial and worm abun
dance in relation to pH. Through this analysis, we aim to uncover 
consistent patterns and critical thresholds in a holistic way for inter
preting pH as an indicator of soil health and degradation in the context 
of environmental change throughout Europe. The specific goals of this 
study include (i) determining if the water balance creates thresholds in 
soil pH in European topsoils; (ii) to identify thresholds associated with 
carbon storage and the transition from soil organic carbon (SOC) to soil 

inorganic carbon (SIC); (iii) to determine the optimal pH for microbial 
diversity and worm abundance in European soils; and (iv) to analyse 
spatial patterns of the susceptibility of soils to heavy metal release as 
influenced by soil pH.

2. Material and methods

2.1. European soil pH and carbon data

Approximately 19,000 soil samples from the topsoil (0–20 cm) in 
georeferenced locations from across 27 countries in the European Union 
plus the UK were collected in 2018 by the Land Use and Cover Area 
Frame Survey (LUCAS) (Orgiazzi et al., 2018; Fernandez-Ugalde et al., 
2022). We mapped pH data using R version 4.5.1 using the “tidyterra” 
package by Hernangómez (2023). From the parameters measured in the 
soils we examined the pH data and the organic and inorganic carbon 
concentrations. Measurements of pH were performed in a 1:5 soil: 
deionized water ratio according with the method ISO 10390:2005 (data 
shown in Fig. 1). Organic carbon was analysed by dry combustion 
following the ISO 10694:1995 and carbonated by the volumetric 
method, ISO:10693:1995. Maps showing the spatial distribution of 
organic matter based on LUCAS data have been reported by Castaldi 
et al., 2019. The crossover between the decrease of SOC and increase of 
SIC with pH increasing, was modelled as functions of soil pH using a 
non-linear quantile regression model, which assumes a sigmoid rela
tionship in both scenarios (Andersen (2002), eq. S1).

2.2. Climate data

Data on mean annual precipitation (MAP) and mean monthly po
tential evapotranspiration (PET) at a resolution of 1 km for the period 
from 1981 to 2010 were obtained from the CHELSA climate data re
pository. MAP and PET were extracted to the locations of sampling 
points from the LUCAS 2018 survey using the “extract” function from 
the “terra” package (Hijmans, 2020) in R (Team, 2024). Monthly PET 
was multiplied by 12 to estimate annual values before subtracting from 
MAP and dividing by 1000 to get the water balance in metres. Scatter 
plots were generated in R using the “ggplot2” package (Wickham and 
Wickham, 2016) to show the relationship between MAP-PET and soil pH 
(in water). Histograms of pH and MAP-PET values were plotted using the 
“ggMarginal” function from the “gridExtra” package (Auguie and 
Antonov, 2017).

2.3. DNA (microbiome), bioinformatics and statistical analysis

The LUCAS 16S rRNA gene sequences were processed using nf-core/ 
ampliseq version 2.9.0 (da Veiga Leprevost et al., 2017; Ewels et al., 
2020; Grüning et al., 2018; Straub et al., 2020). Adapter and primer 
sequences were trimmed using Cutadapt 4.6 (Martin, 2011) and all 
untrimmed sequences were discarded. Sequences were then processed 
sample-wise (independent) with DADA2 1.30.0 (Callahan et al., 2016) 
to eliminate PhiX contamination, trim reads (before median quality 
drops below 25 and at least 75 % of reads are retained; forward reads at 
219 bp and reverse reads at 216 bp, reads shorter than this were dis
carded), discard reads with > 2 expected errors, correct errors, merge 
read pairs, and remove polymerase chain reaction (PCR) chimeras. This 
produced 145,714 amplicon sequencing variants (ASVs) across the 881 
LUCAS 16S rRNA libraries. Taxonomic classification was performed by 
DADA2 using the Silva 138.1 database (Quast et al., 2012). ASVs with 
taxonomic assignments of ‘mitochodria’ and ‘chloroplast’ were excluded 
from any further analyses, giving a final total of 143,893 ASVs. Singleton 
taxa were removed prior to statistical analyses, samples with a 
sequencing depth of less than 5000 reads were discarded. Where 
duplicate samples were present, the duplicate with the greatest number 
of reads was retained. Reads were rarefied to 5000 across samples using 
the Vegan package to account for variable sequencing depth. To identify 
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outlier samples decorana scores were calculated, euclidean distances 
were determined between sample axis scores and the mean scores of 
each ordination axis, samples with an euclidean distances greater than 
the 99th percentile were removed. Loess regression was used to assess 
the relationship between Shannon’s diversity and soil pH, a pH optimum 
relating to diversity was identified at the soil pH with the maximum 
loess fitted Shannon’s diversity. To evaluate pH associated shifts in 
bacterial community composition, multivariate regression tree analysis 
was carried out on the proportional abundance compositional matrix
after rarefaction to 5000 reads per sample using the mvpart library in R.

2.4. European earthworm data

Data on earthworm abundance relevant to the European Union were 
sourced from the sWorm database (Phillips et al., 2021) and modelled 
using Generalised Additive Models (GAMs). The database was specif
ically filtered to include only European countries and to select data 
points where both earthworm abundances and soil pH were docu
mented, resulting in a subset dataset of 1,348 records. It covered 20 
European countries having a good representation across latitude and 
climatic zones (Table 1). Only those methodologies that involved hand 
sorting were considered, leading to the exclusion of a further 104 re
cords. We standardized land use information provided in the sWorm 
database (Land use, Habitat cover, Management system, and habitat as 
described) into LUCAS equivalent land cover categories, namely Crop
lands, Grasslands, and Woodlands, which resulted in 1,177 usable data 
points. A series of General Additive Models (GAMs, utilizing the ‘mgcv’ 
package version 1.9–1 (Wood, 2011) were employed, incorporating 
random factors including Extraction Method, Country, and the month 
when data collection concluded, serving as indicators of sampling 
timing. The Akaike information criteria (AIC), an estimator of prediction 
error, was used to gauge the relative quality of the statistical model for 
the data, with the smaller number indicating a more accurate model. 
The dataset used included 569 datapoints for Cropland, 187 datapoints 
for grassland and 424 datapoints for grassland. The functions plot_pre
dictions and plot_slopes from the ‘marginaleffects’ package (Arel-Bun
dock et al., 2024) were utilized to visualize predictions of earthworms’ 
abundance, or first derivative, across the range of pH values.

2.5. Computation and mapping of the metal vulnerability in EU soils

The assessment of metal leaching risk from soils, or the vulnerability 
index, was determined for European soils using LUCAS data and the 
POSSMs model (Supplementary Methods) (Lofts, 2022). We forecasted 
the alterations in concentrations of nickel, copper, zinc, and cadmium in 
porewater resulting from changes in soil conditions, such as increased 
moisture from precipitation over short durations of a few days. It com
prises dissolved metal in porewater, and adsorbed metal bound to 
chemically active soil components. The POSSMs model is an equilibrium 

chemical speciation model for soils that requires minimal input for 
computations and is thus useful for large scale application. The 
vulnerability index is centred on the reaction of metal concentration in 
the soil porewater to the introduction of metal in a ’reactive’ state. The 
reactive metal represents the fraction of metal that quickly adjusts to 
variations in soil conditions and governs the concentration of metal 
present in the soil porewater.

For each soil, two calculations of the equilibrium distribution of the 
reactive metal between the soil solids and the porewater are done. The 
equilibrium distribution using the POSSMs model (Lofts, 2022). POSSMs 
requires the porewater pH, soil organic matter (SOM) content and the 
concentration of dissolved organic matter (DOM) in the soil porewater.

The porewater metal concentration, [M]pw,POSSMs, is first computed 
for a specific reactive metal concentration, {M}react. Then, a second 
simulation is done with the reactive metal content, {M}react,aug, initially 
increased (augmented) by 10 %. Before calculation of the porewater 
concentration, the additional metal is assumed to undergo ‘aging’ for 
one year. Aging is a generic term for processes that remove metal from 
the reactive pool into an unreactive, or ‘aged’ pool. Unreactive metal 
does not form part of the pool that can equilibrate with the porewater 
and thus loss of metal from the reactive pool by aging reduces the 
modelled porewater concentration. Aging is modelled by reversible first 
order kinetics, where one or both of the forward or backward rate 
constants is a function of the porewater pH (Table 2). The porewater 
metal concentration, [M]pw,POSSMs,aug, is then calculated from the sum of 
the original reactive metal concentration plus the portion of the 10 % 
additional reactive metal that has not aged.

The vulnerability index is given by the expression 

vul.index =

[M]pw,POSSMs,aug
[M]pw,POSSMs

− 1
{M}react,aug
{M}react

− 1
(1) 

If the increase in the reactive metal concentration were to cause the 
predicted porewater concentration to rise by the same proportion, the 
vulnerability index would be at its maximum value of unity. Similarly, 
no change in the predicted porewater concentration would give a 
vulnerability index of zero. Therefore, the index provides an internally 
consistent, bounded value that reflects the ability of the soil to buffer 
metal addition and limit the corresponding increase in the porewater 
concentration and thus the risk of dissolved metal leaching to ground
water or surface water.

The modelling requires the following dataset for a soil: porewater 
pH, SOM content (% w/w), porewater DOM (mg L-1), reactive metal 
concentration (mol g− 1).

Porewater pH and SOM content were sourced from the LUCAS 2018 
dataset (Fernandez-Ugalde et al., 2022). Only soils sampled from 0 to 20 
cm depth were used in computations. Porewater pH (pHpw) was esti
mated from the pH measured in aqueous soil slurries (pH_H2O) using an 
expression provided by de Vries et al. (2005): 

pHpw = − 0.2847+1.0462⋅pHH2O (2) 

Porewater DOM was taken from the modelled dataset of (Langeveld 
Table 1 
Overview of European countries and sample numbers (N) in the sWorm database 
(Phillips et al., 2021) which had earthworm abundance and pH data associated 
with them, and where a land cover equivalent to the LUCAS land cover cate
gories could be assigned.

Country N Country N

Austria 3 Lithuania 16
Belgium 4 Netherlands 124
Denmark 5 Poland 55
Finland 167 Portugal 74
France 65 Romania 34
Germany 257 Slovakia 13
Greece 27 Spain 61
Hungary 3 Sweden 62
Ireland 102 Switzerland 4
Italy 36 United Kingdom 68

Table 2 
First order forward and backward aging rate constants for nickel, copper, zinc 
and cadmium.

Metal log10 forward rate 
constant for aging 
(d–1)

log10 backward rate 
constant for aging 
(d–1)

Reference

Nickel − 1.9 + 0.000309epH − 1.5 Lofts, 
unpublished 
data

Copper − 2.5 + 0.000501epH − 2.1 + 0.000316epH Xu et al. (2016)
Zinc − 4.2 + 0.26pH − 3.2 Xu et al. (2016)
Cadmium − 2.9 + 0.18pH − 2.1 Xu et al. (2016)
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et al., 2020).
Reactive metal concentrations were measured in the LUCAS 2009/12 

survey, but were never published in a publicly accessible dataset, so 
estimates were made using available maps of total concentrations 
available on the ESDAC website:Nickel: Tóth et al. (2016), Copper: 
Ballabio et al. (2018), Zinc: Tóth et al. (2016); Van Eynde et al. (2023), 
and Cadmium: Ballabio et al. (2024).

Mapped metal concentrations extracted to sample locations in the 
LUCAS 2018 dataset were used to estimate reactive metal content, based 
on a set of empirical relationships obtained from paired total and 
reactive metal concentrations measured by Garforth (2015). The reac
tive metal concentration is predicted from the total metal concentration 
using the expression: 

{M}react = Ktl⋅aβ0
H {SOM}

β1{M}
β2
total (3) 

where {M}react and {M}total are the reactive and total metal concentra
tions respectively (mol g− 1), aH is the proton activity in the porewater 
(aH = 10− pHpw ), {SOM} is the soil organic matter content (% w/w) and 
Ktl, β0, β1 and β2 are fitted parameters (Table 3).

European vulnerability indices maps were produced for nickel, 
copper, zinc and cadmium and for soil pH higher and lower than 6 using 
R version 4.5.1 using the “tidyterra” package by Hernangómez (2023). 
using R software.

3. Results

3.1. Geochemical buffering

The spatial distribution of pH values across the European continent is 
illustrated in Fig. 1, with data sourced from the LUCAS 2018 monitoring 
program.

Combining pH data with meteorological data we obtained Fig. 2, 
which illustrates the distribution of pH values in relation to the mean 
annual precipitation (MAP) minus the potential evapotranspiration 
(PET) across Europe. The blue horizontal lines indicate the upper 
geochemical threshold for CaCO3 buffered soils, approximately pH 8.2, 
while the lower red line denotes the geochemical threshold for Al(OH)3 
buffered soils, around pH 5.1, below which aluminium species become 
more prevalent in the soil solution. Fig. 1A encompasses all LUCAS data 
(n = 19,000), whereas Fig. 1B reflects the LUCAS data for seminatural 
habitats (woodlands, grasslands, shrublands and wetlands), after 
excluding agricultural habitats, cropland, and livestock pasture (n =
7157). The histogram in Fig. 1A reveals that when all data is included, 
the pH distribution peaks at roughly pH 8, followed by a uniform dis
tribution of samples within the neutral and acidic ranges. In contrast, 
after the exclusion of agricultural habitats, the pH histogram in Fig. 1B
exhibits a bimodal distribution with peaks around pH 7.5 and 4.5.

3.2. Acid soils and alkaline soils in Europe

Soils exhibiting pH values below 5.1 and above 8.2 are depicted in 
Figs. 3A and 3B, respectively. Besides the evident north–south gradient, 
soils along the western coast are significantly more acidic, particularly 
in regions with higher moisture, even in southern areas like Portugal. 
Alkaline soils are primarily found in countries such as Spain, southern 

France, Italy, Croatia, and extending into Greece. In contrast, there are 
very few instances of alkaline soils in the northern regions, likely only 
occurring due to the influence of calcareous parent material such as 
bands of chalk overshadowing climatic factors. A notable observation is 
the widespread occurrence of acidic soils across Europe. Approximately 
24.1 % of the 19,000 LUCAS samples recorded pH values below 5.1, 
which suggests a risk of aluminium toxicity. While the pH distribution 
appears irregular in central Europe, most soils in Scandinavia exhibit pH 
levels below 5.1, reflecting the predominance of organic soils in those 
areas. Conversely, only 3.3 % of the sampled soils had pH values 
exceeding 8.2, most of these occurring in the Mediterranean countries.

3.3. Soil organic carbon (SOC) and soil inorganic carbon (SIC) transition

The relationship between carbon concentration and soil pH, high
lighting both SOC and SIC (SIC represented by calcite concentration) is 
shown in Fig. 4. Fig. 4 illustrates that organic soils are associated with 
low pH levels, whereas soils rich in carbonates correspond to elevated 
pH levels across the EU. This observation suggests a significant corre
lation between SOC and SIC between pH levels 6 to 8. The crossover 
point, where carbon storage in the forms of SOC and SIC are equally 
likely, is found to be between pH 7.15 and 7.3, depending on the chosen 
percentile for SIC.

Fig. 5A illustrates soil organic carbon levels in Europe in relation to 
the annual water balance (MAP-PET). The point where MAP minus PET 
equals zero indicates that for soils to accumulate SOC stocks exceeding 
200 g kg-1 in the top 0–20 cm, there must be a surplus of MAP compared 
to PET. In contrast, Fig. 5B indicates that for carbonates to remain stable, 
PET typically must exceed the MAP.

3.4. pH and the microbiome

To assess the influence of soil pH on soil bacterial communities, and 
specifically identify thresholds, we used soil data (Fernandez-Ugalde 
et al., 2022) and 16S rRNA gene sequence molecular data (Labouyrie 
et al., 2023). An analysis of a subsample of survey points derived from 
the 2018LUCAS survey data was conducted to assess DNA. The findings 
illustrated in Fig. 6A, which shows that Shannon’s diversity in relation 
to soil pH, and by land use. The LUCAS data reveals a broad increasing 

Table 3 
Parameters for the relationship between total and reactive metal concentrations 
in soils.

Metal log Ktl β0 β1 β2 SE (log {M}react)

Nickel − 1.61 ​ 0.732 1.03 0.32
Copper − 1.01 − 0.0640 ​ 0.990 0.26
Zinc − 0.738 ​ 0.585 1.12 0.43
Cadmium − 2.49 − 0.105 0.453 0.863 0.36

Fig. 1. Distribution of pH in Europe according to the monitoring program 
LUCAS for the year 2018 data.
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trend with pH peaking at a pH of 6.28, as shown in Fig. 5A. Further 
analyses of LUCAS compositional microbiome data, using a multivariate 
regression tree with pH alone as a predictor (Griffiths et al., 2011) 
(Fig. 6B) identifies distinct community groups clustered according to pH 
thresholds. One community with a pH below 5.2, another within the pH 
range of 5.2 to 6.9, and a third that thrives at pH levels above 6.9. The 
data broadly split into three groups, consistent with acidophiles, neu
trophiles and alkaliphiles. Inset barplots reveal higher abundances of 
Acidobacterial taxa below pH 5.2, which decline at higher pH being 
replaced by a more even distribution of diverse lineages.

3.5. Earthworms

European data from the sWorms database (Phillips et al., 2021) 
reveal that earthworms inhabit soils with pH levels ranging from 2.9 to 
8.64, averaging 6.05 and with a median of 6.18. (Table 4 and 5 and 
Figs. 7 and 8). The lowest pH of 2.9 was observed in woodland envi
ronments, and all land uses contained earthworm counts at pH levels 
above 8. The predicted distribution of earthworm abundance varies 
across the pH range differently for the three land uses (Fig. 9). In 
woodlands, there is no specific pH threshold; rather, abundance in
creases in a linear fashion as pH rises.

Fig. 2. A) The relationship between topsoil pH (0–20 cm) and annual water balance (MAP-PET) is illustrated using the European dataset from LUCAS 2018, which 
encompasses approximately 19,000 soil sample measurements. The side panels display histograms depicting the difference between mean annual precipitation (MAP) 
and potential evapotranspiration (PET), and soil pH values. The blue and red lines indicate the predicted pH levels for soils buffered with CaCO3 (8.2) and Al(OH)3 
(5.1), respectively. Graph B) shows the same graph specifically for seminatural habitats ((woodlands, grasslands, shrublands and wetlands), comprising a sample size 
of 7,157.

Fig. 3. Panels A and B shows the European map colour coded according to four classes of rain regime from severely wet to dry. Overlapped black dots represent the 
spatial distribution of soils with pH < 5.1 (A) and > 8.2 (B).

I. Lebron et al.                                                                                                                                                                                                                                   Catena 260 (2025) 109454 

5 



The density of data at low pH values (Fig. 7) likely reflect coniferous 
woodlands or other woodlands on soil high in SOC. Grasslands exhibit 
unimodal change with increasing pH reaching their highest predicted 
earthworm abundance at a pH of 5.95, while cropland exhibits a 
bimodal pattern, with abundance peaks predicted at pH levels of 5.75 
and 7.45 (Fig. 8).

3.6. Vulnerability to degradation by heavy metal mobility

The issue of metal toxicity is intricate, as the behaviour of metals is 
affected by various factors, with pH levels and soil organic matter (SOM) 
being particularly significant. Fig. 9 illustrates the changes in the 
vulnerability index with pH for nickel (Ni), copper (Cu), zinc (Zn), and 
cadmium (Cd).

The vulnerability index within the European context is illustrated in 
Fig. 10.. This analysis reveals that the spatial distribution is more 
complex than merely applying a pH threshold of 6 and is dependent on 
each metal as one would expect. However, since the pH = 6 has been 
used extensively to define metal vulnerability we also produced a Eu
ropean spatial distribution of soils with pH higher and lower than 6 
(Fig. 11).

4. Discussion

4.1. Biochemical processes and pH thresholds

Soil pH influences biochemical processes like nutrient availability, 
microbial activity, plant development, and the overall health of eco
systems (Neina, 2019). Additionally, soil pH affects the solubility of 
minerals, which can lead to either deficiencies or toxicities depending on 
the pH range. Table 6 presents key pH values and ranges for various soil 
processes considered in this work. It is evident from Table 1 that a pH 
range of 5.5–7.5 is the least limiting for crop production. It is essential to 
acknowledge that there are numerous specialized plants that exist 
beyond this range and necessitate pH levels outside of this range in order 
to flourish. A considerable percentage of soils globally (Slessarev et al., 
2016) do not fall within this least limiting range, highlighting, often a 
need for intervention for major crop production, ensuring cropland soils 
offer appropriate conditions for food production. At pH values below 5.5 
toxicity can have an abrupt effect on yield reduction of many crops 
(Page et al., 2021). However, at pH values above 7.5 effects are more 
nuanced. Direct toxicity can occur due to HCO3 (Islam, 1980) and is 
highly species dependent, but more commonly nutrient deficiencies 
occur (Msimbira, and Smith, 2020), with varying impacts, such that no 
single threshold is easily apparent; however, it becomes increasingly 
likely on these marginal soils that management interventions will be 
required to maintain yield for food production. This scenario 

Fig. 4. Soil carbon concentration as a function of pH with soil organic carbon (SOC) and soil inorganic carbon (SIC) transition at a pH of 7.15 (red line) for the 
European LUCAS 2018 data (when the 99th percentile of the SIC data was considered).
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emphasizes the necessity for soil modification and management 
considering a rising population, especially as the quest for food security 
drives agricultural practices to encroach upon more marginal soils. 
Moreover, the challenge of connecting biogeochemical processes 
observed at the field scale to soil pH on a continental scale tends to 
oversimplify the complexity of the involved processes; this may be one 

of the limitations of the current study. In the subsequent section, we will 
examine the interactive influence of the water balance (MAP-PET) in 
conjunction with soil biochemistry within the European context, aiming 
to comprehend the data and identify patterns for analyzing soil health at 
the continental level.

Fig. 5. A) Soil organic carbon (SOC) within the top 0–20 cm versus annual water balance (MAP-PET) for seminatural habitats ((woodlands, grasslands, shrublands 
and wetlands). Side panels show histograms of MAP minus PET and SOC concentrations. B) Soil inorganic carbon (SIC) versus annual water balance for semi
natural habitats.

Fig. 6. A) Shannon’s diversity index versus pH measured measured for European topsoils (0–20 cm). Land use information is shown as colour coded. The dashed line 
represents the optimum for Shannon’s diversity, which is achieved at pH = 6.3. B) Multivariate regression tree identifying consistent pH defined bacterial com
munities with break points at pH 5.2 and ~ 7.1 spanning the diverse soils across Europe.
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4.2. Water balance and the geochemical nature of soil pH

Global and continental trends indicate that environmental factors 
significantly influence soil pH, especially concerning the water balance. 

Research by Slessarev et al. (2016) has highlighted a worldwide tran
sition from alkaline to acidic soils at the point where MAP exceeds PET 
in subsoils (50 cm), as subsoils are expected to be less susceptible to 
management pressure. The study found a bimodal distribution of soil 
pH, with notable peaks at pH 5.1 and pH 8.2, which align with the 
stability points of gibbsite and calcite, respectively. In scenarios where 
PET is greater than MAP, calcium tends to accumulate and form calcite; 
in contrast, when MAP surpasses PET, leaching occurs, resulting in 
aluminium becoming the dominant cation. The chemical equations that 
depict the shift from alkaline to acidic soils are presented in the sup
plementary information. The importance of the findings by Slessarev 
et al. (2016) is their capacity to identify soils that are less buffered and 
potentially more vulnerable to significant alterations.

Fig. 2A presents the distribution of pH values in European topsoils in 
relation to the water balance, demonstrating that these topsoils do not 
follow a distinct bimodal distribution pattern. While it is conceivable 
that there is a notable concentration of soils with a pH near 6.5 in 
Europe, it is more likely that the pH variations observed in the dataset 
stem from uniform agricultural practices and management strategies, 
such as the use of lime and organic amendments. When cropland and 
livestock pasture areas were removed from the dataset, a bimodal dis
tribution emerged, as shown in Fig. 2B, consistent with Slessarev et al. 
(2016).

The optimal pH range for most crop production is identified as 6–7 
(Vitousek et al., 2004, Roy et al., 2006). Consequently, it is not unex
pected that the removal of croplands and livestock pastures, as illus
trated in Fig. 2A, reveals a distribution where numerous soils within the 
6–7 pH range have been lost (Fig. 2B). This suggests that anthropogenic 
inputs maintain soils out of the natural equilibrium for biomass pro
duction. Given the implications of climate change, this scenario raises 
concerns about the sustainability of certain agricultural methods, 
especially those that deviate further from equilibrium, as they will 
necessitate greater inputs to maintain pH levels conducive to produc
tivity or may require a shift to different crop varieties.

Fig. 2B illustrates that the bimodal distribution observed in European 
soils does not exhibit peaks at 8.2 and 5.1, as seen in the global soils 

Table 4 
Generalized additive models (GAM) tested; using the sWorm database for Eu
ropean countries where site Abundance and pH values were available for the 
three land uses croplands, grasslands and woodlands. Data on timings of sam
pling (Month when the sampling had finished), extraction method and the 
country the data came from all added to the deviance explained in the model. 
The degrees of freedom (df) and the Akaike information criteria (AIC) criterion 
are shown. The best model was b5 which was used to predict earthworm 
abundance across the pH gradient and the three land uses.

Model Model structure Deviance 
explained

df / AIC

b0 Abundance ~ s(PH, k = 10) 8.3 % 10.0 / 
15,869

b1 Abundance ~ s(PH, k = 10, by =
Land Use)

13.8 % 15.4 / 
15,807

b2 b1 + Month 20.0 % 27.2 / 
15,743

b3 b1 + Month + Extraction Method 30.3 % 29.4 / 
15,584

b4 b1 + Month + Country 40.6 % 43.2 / 
15,423

b5 b1 + Month + Country + Extraction 
Method

41.5 % 45.3 / 
15,410

Table 5 
GAM of predicted earthworm abundance using the sWorm database (Phillips 
et al., 2021) using model b5 in Supplementary table tt. N = 1180, Deviance 
explained = 41.5 %.

Term edf Ref.df F-statistic p-value

s(pH):Cropland 5.439 6.383 5.409 <0.001
s(pH):Grassland 2.589 3.240 2.526 0.0515
s(pH):Woodland 1.005 1.010 22.066 <0.001

Fig. 7. A) Histogram of the number of pH measurements by land use. B) First derivative of the linear predictor in relation to Fig. 7A, derived for predicted earthworm 
abundances across the soil pH range for European croplands, grasslands and woodlands.
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Fig. 8. Predicted earthworm abundance and 95% confidence interval across the pH range for croplands, grasslands and woodlands. European data from the global 
sWorm database from (Phillips et al., 2021).

Fig. 9. Computed vulnerability indices for nickel, copper, zinc and cadmium in LUCAS soils as a function of the porewater pH.
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analysed by Slessarev et al. (2016). Instead, these peaks are shifted to
wards lower values, suggesting that European soils have undergone 
partial leaching, which contributes to a trend of acidification (refer to 
Appendix D). Ecosystems can progress beyond the equilibrium states of 
calcite and gibbsite, leading to more severe conditions that may 
compromise soil health and its ability to sustain life. For example, when 
MAP exceeds PET, the soil’s water content is affected not only by the 
influx of water but also by the soil’s hydraulic characteristics. Factors 
such as soil texture, structure, organic matter levels, compaction, and 
the depth of the water table play crucial roles in determining the 
duration that water remains within the soil. The alternating cycles of 
wetting (reduction) and drying (oxidation) trigger redox reactions that 
facilitate the transfer of electrons among various chemical species, 

potentially altering the pH by as much as 2 units (Thompson et al., 
2006). Significant redox processes in soils, which involve minerals such 
as iron and manganese oxides, are elaborated in the supplementary 
material and have important consequences for microbial activity, 
nutrient availability, weathering rates, and the mineral composition of 
the soil system.

The geographical distribution of soils with pH levels below 5.1 and 
above 8.2 across Europe is depicted in Fig. 3. This illustration empha
sizes the influence of the water balance on the leaching or accumulation 
of salts within the soil. Soils with pH levels below 5.1 are typically found 
in regions with a Nordic climate, characterized by cold winters and mild, 
humid summers, as well as in areas with an oceanic climate, which 
features mild winters and humid summers in Western Europe. 

Fig. 10. Mapped vulnerability indices for nickel, copper, zinc and cadmium mobility according to LUCAS 2018 topsoil (0–20 cm) data.

I. Lebron et al.                                                                                                                                                                                                                                   Catena 260 (2025) 109454 

10 



Conversely, Southern European countries, which experience a Medi
terranean climate, predominantly contain soils with pH levels close to, 
or exceeding, 8.2. Although the prevalence of soils with pH levels above 
8.2 is relatively low in Europe, their economic significance warrants 
attention, as they are generally situated in highly productive agricul
tural regions, such as the Ebro Basin in Spain. These soils have been the 
subject of extensive research due to their susceptibility to desertifica
tion, a process that often begins with soil alkalinization. The combina
tion of elevated pH, that affects the charge balance for variable charge 
sites on minerals and organic matter, and sodium presence can adversely 
affect soil characteristics, leading to issues such as colloid dispersion, 
SOC loss, reduced soil permeability, and increased runoff and erosion 
(Allison and Richards, 1954; Lebron et al., 1994). This process is initi
ated by water movement, which facilitates the transport of dispersed 
colloids that clog soil pores, resulting in densification and diminished 
hydraulic conductivity. Once the soil structure is compromised, resto
ration can be exceedingly challenging. The mechanisms responsible for 
the high pH values observed in soils are detailed in the supplementary 
information.

4.3. Topsoil carbon

Climate has long been recognized as a key factor influencing SOC 
levels (Carvalhais et al., 2014). However, recent studies indicate that 
climate, moisture, and geochemical factors interact significantly in the 
mechanisms of soil carbon storage (Doetterl et al., 2015; Yu et al., 2021). 
Soil pH serves as a valuable indicator of the geochemical processes 
occurring within the soil. Fig. 4 illustrates the correlation between SOC 
and pH across European soils, alongside the relationship between SIC 
and pH. As pH approaches neutral and alkaline ranges, there is an in
crease in the dissociation of functional groups within SOM (Andersson 
et al., 2000), and the bonds at the mineral interface between clay min
erals and organic compounds weaken (Curtin et al., 1998). These con
current phenomena lead to enhanced dissolution and transport of SOM 
(Neina, 2019). Fig. 4 demonstrates that the soil’s capacity to retain SOM 
diminishes as pH rises towards more alkaline levels, with a notable 
overlap occurring around pH 7.2, where SIC begins to accumulate more 
rapidly as pH continues to increase. Exceptions to this pattern include 
fenland soils, which have an alkaline pH but maintain carbon through 

high productivity and oxygen limiting conditions suppressing decom
position that allows for SOC accumulation even when adjacent waters 
have a pH above 7. Additionally, certain low pH soils can be found over 
calcareous parent materials, showing that with sufficient time, climate 
and biological factors become dominant at driving pH in topsoil. Despite 
these anomalies, a clear general trend is evident: as pH rises, SOC de
creases, and SIC levels increase beyond pH 7.2, with SIC becoming the 
dominant form of carbon, in line with pedological theory (Jenny, 1994). 
It is expected that calcite will be the main form of SIC within the pH 
range of 7 to 9 (van Breemen et al., 1983), although other carbonates 
may gain prominence at pH levels above 8.1; however, such high pH 
soils are primarily confined to the southern regions of Europe. The 
transition from SOC to SIC is often linked to a decrease in moisture 

Fig. 11. Spatial distribution of soils in Europe with a pH value less than 6, 
in red.

Table 6 
Synthesis of key pH values and ranges for biogeochemical processes and plant 
growth from the literature. This table serves as a guide only and values are not 
universal definitive thresholds. CUE = Carbon Use Efficiency, SOM = Soil 
Organic Matter.

Process pH Effect outside the pH 
range

Reference

acid phosphorus 
enzyme activity

4–5 Limited phosphorus 
availability

(Turner and 
Romero, 2010)

Fungal activity 4–6 Reduced activity (Neina, 2019)
Bioturbation by 

earthworm activity
5–7 less bioturbation and 

distribution of SOM, 
reduced soil 
connectivity, 
Different by land use

(Hakonen et al., 
2010) 
present study

Al dissolution <5.1 Plant growth limitations, 
forest die back etc

(Lofts, 2022)

Iron dissolution <5.5 toxicity in the acid range (Lofts, 2022)
Crop yield decline 

due to toxicity
<5.5 Many common crops 

suffer significant (50 %) 
relative yield declines. 
(species dependent)

(Rowell, 1988; 
Page et al., 2021)

Heavy metals 
dissolution

<6–7 More toxicity (Lofts, 2022)

Microbial carbon use 
(CUE) efficiency

6.2 Below 6.2 CUE goes to 
zero

(Malik et al., 
2018)

Microbial activity 6–7.5 Reduced bacterial 
activity

(Labouyrie et al., 
2023)

Organic matter 
decomposition

6–7 Slower decomposition (Malik et al., 
2018)

Priming of SOM 5.5–7.5 Slower decomposition (Wang and 
Kuzyakov, 2024)

Plant growth least 
limiting range

5.5–7.5 Increasing constraints Roy et al., 2006; 
Msimbira and 
Smith (2020); (
Vitousek et al., 
2004);

Microbial diversity >6.28 Reduced diversity (Griffiths et al., 
2011); Seaton 
et al. (2024)
Present study

Transition between 
organic dominated 
to inorganic 
carbon dominated

~7 Has implications for 
carbon accumulation 
and storage

Present study

Plant growth 
nutrient deficiency

>7.5 Species dependent 
growth affected by 
excess HCO3 or potential 
deficiency of Fe, P and 
Zn or imbalance of Ca, 
Mg and K.

Islam, (1980); 
Msimbira and 
Smith (2020)

Calcite buffering 8.2 Drastic changes of pH 
affecting 
biogeochemical 
reactions in soils

(Van Breemen 
et al., 1983)

Sodification >9 Often associated with 
soil salinity and 
structural deterioration

(Lebron et al., 
1994)

alkaline phosphorus 
enzyme activity

10–11 Limited phosphorus 
availability

(Turner and 
Romero, 2010)
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content, which aligns with the data presented in Fig. 4 and the annual 
water balance (MAP-PET).

It is essential to assess pH within the framework of environmental 
variables, such as climatic conditions and parent material. Fig. 5 illus
trates that SOC can only build up to more than 200 g/Kg in soils when 
MAP exceeds PET; conversely, when PET surpasses MAP, conditions 
become more conducive to the accumulation of SIC. The data presented 
in Fig. 5 highlight a significant interplay between geochemical factors 
and climate in determining a soil’s capacity to sequester carbon, this 
observation has also been made by Hansen et al. (2024). We focused on 
seminatural habitats for the plots in Fig. 5 to eliminate the influence of 
human activity. It is crucial to note that SOC can accumulate in soils 
with either high or low pH, provided they are moist; however, it does not 
accumulate in dry, high pH soils. This observation may suggest that 
moisture levels are a more critical factor than pH in inhibiting microbial 
turnover or oxidation processes.

4.4. Health and microbial response to pH

Advancements in DNA and metagenomic technologies have provided 
insights into the previously uncharted soil microbiome. Investigations 
into the microbiome, particularly its diversity, have revealed relation
ships between bacterial diversity and soil pH levels. Soil pH is recog
nized as a significant factor influencing soil microbial communities, with 
numerous global studies indicating that pH serves as the foremost pre
dictor of bacterial communities across extensive environmental gradi
ents, which encompass a variety of climatic conditions and land uses 
(Bahram et al., 2018; Fierer and Jackson, 2006; Griffiths et al., 2011; 
Labouyrie et al., 2023). These associations are often established by 
comparing environmental characteristics with either univariate metrics 
derived from sequencing data, such as taxonomically agnostic richness 
estimates, or through multivariate ordination techniques that provide 
deeper insights into compositional changes. Typically, bacterial di
versity exhibits either positive or humped relationships with pH 
(Fig. 6A), this pattern aligns with the results of previous studies, such as 
those by Fierer and Jackson (2006), which identified a similar optimal 
pH. Additionally, data from temperate experimental sites suggest that 
when pH falls below 6.2, microbial carbon use efficiency (CUE) signif
icantly decreases, which has important implications for carbon pro
cessing (Malik et al., 2018). Ordination methods reveal distinct 
community assemblages along pH gradients, highlighting the ecological 
responses of specific taxa to variations in pH (Jones et al., 2021; Zhou 
et al., 2024). In their study utilizing multivariate regression trees to 
analyse compositional and abundance changes across various British 
soils, Griffiths et al. (2011) identified critical transition points within 
bacterial communities that corresponded to shifts in land use and pH. 
The primary division in the dataset was influenced by land use, dis
tinguishing typically acidic environments, such as bogs, moors, and 
upland woods, from arable lands, grasslands, and lowland woods. 
Within these divisions, a clear distinction based on pH emerged, with 
acidic habitats categorized into two groups above and below pH 5.2, 
while non-acidic habitats were similarly divided above and below pH 
6.9.

We examined comparable data from the EU-wide LUCAS survey, 
which also identified similar pH breakpoints of 5.2 and 7.1 delineating 
three broad community types across a range of soil types (Fig. 6B) It 
suggests that the soil bacterial communities can be considered to split 
into acidophiles, neutrophiles and alkaliphiles between these thresh
olds. It is important to note that different sequencing techniques were 
employed in the LUCAS survey, including the use of various primers. 
More significantly, the EU survey encompassed a variety of habitats, 
specifically targeting arable, grassland, and wooded communities, while 
excluding the typically carbon-rich upland moor and bog habitats that 
were appropriately sampled with the stratified random design in the GB 
survey (Robinson et al., 2024). Collectively, these findings underscore 
the critical role of soil pH as a primary factor influencing the 

composition of dominant bacterial taxa, often surpassing the impact of 
related land use variables, thereby highlighting the widespread signifi
cance of pH. Furthermore, additional breakpoints around pH 5 and 7 
have been observed in the assessment of archaeal communities, as noted 
by Gubry-Rangin et al. (2011) and Seaton et al. (2024).

4.5. Earthworms and soil health

Soil pH is also linked to earthworm species composition and overall 
abundance. In strongly acidic soils, pH < 3, fewer tolerant taxa tend to 
dominate diversity, but their abundances are generally low. In wood
lands, this is particularly evident from studies comparing earthworms 
under different tree species, with changes in earthworm abundance 
related to differences in the quality of litter inputs and associated 
changes in litter layer accumulation, soil biogeochemistry and pH e.g. 
(Neirynck et al., 2000; Reich et al., 2005; Schelfhout et al., 2017). Such 
changes hinge on the pH threshold at ~ 4.5 separating soil processes 
dominated by aluminium/iron and base cation exchange, and a vertical 
decoupling of litter incorporation, with many earthworm species being 
intolerant at lower soil pH. The study by Desie et al. (2019) demon
strated the overriding importance of tree inputs at lower soil pH, relative 
to inherent differences in exchange domain, with conversion from de
ciduous to coniferous species enacting reductions in pH and lower 
earthworm abundance and biomass. In a common garden experiment of 
14 tree species, Reich et al. (2005) found positive relationships between 
litter calcium, exchangeable calcium in soil and earthworm biomass. 
Where tree species with rich litter are found on alkaline parent material 
or soils, exceptionally high earthworm abundance can be found 
(Lakhani and Satchell, 1970; Piearce, 1972). The linear increase in 
predicted earthworm abundance with soil pH for woodlands presented 
in our study may represent these mechanisms, playing out at the Euro
pean scale.

The unimodal relationship between predicted earthworm abundance 
and soil pH in grassland, with a pH optimum just below 6, combines 
effects of pH, management and climate. Previous studies of temperate 
grasslands have found greater earthworm abundances to be linked to 
higher pH (Hoeffner et al., 2021). Indeed, greater earthworm abundance 
have been found following the liming of acidic grasslands and associated 
increases in soil pH (McCallum et al., 2016). The decline in predicted 
earthworm abundance at higher pH for grasslands likely reflects a pre
dominance of higher pH representing locations with drier climate and 
associated reductions in SOC. In croplands, tillage is a critical factor 
impacting earthworm abundance (Briones and Schmidt, 2017) and 
management may be the primary driver of earthworm abundance e.g. 
(Frazão et al., 2017). The bimodal peaks in predicted earthworm 
abundance for croplands presented in this study likely represent agri
cultural management which optimises conditions for earthworms under 
different soil types or geographies.

4.6. Soil degradation through metals

One of the major potential challenges to food security in Europe is 
the contamination caused by metals that are released from pollution or 
environmental sources, particularly heavy metals. The presence of 
heavy metals often stems from the historical activities of various in
dustries, including agricultural practices. The solubility and bioavail
ability of numerous heavy metals are significantly affected by pH levels, 
with critical thresholds that influence their movement. A review of the 
current literature indicates that a pH level below 6 is widely acknowl
edged as a threshold at which the mobility of heavy metals increases the 
associated risks (Król et al., 2020). The distribution of soils with a pH 
lower than 6 is illustrated in Fig. 11, revealing that most regions in 
Europe, except for parts of Spain, Italy, Croatia, and Greece that have 
more calcareous soils, are vulnerable to metal mobility.

pH serves as a crucial indicator of metal solubility, with geochemical 
thresholds of 5.1 and 8.2 playing a significant role in determining metal 
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abundance and toxicity. Soils with a pH below 5.1 (see Fig. 3A) are 
prone to the dissolution of aluminium, primarily in the form of Al3+, 
which is harmful to plant roots and has been linked to forest dieback 
caused by acid rain across Europe. The presence of Al3+ interferes with 
root cell division and elongation, resulting in stunted root development 
and a decrease in fine root hairs. This impairment limits the plant’s 
ability to absorb water and nutrients, causing drought stress even when 
water is present. Furthermore, Al3+ competes with vital cations such as 
Ca2+, Mg2+, and K+, diminishing their availability. It also reacts with 
phosphate ions to create insoluble AlPO4, rendering phosphorus inac
cessible to plants. Additionally, aluminium toxicity adversely impacts 
microbial communities that are essential for nutrient cycling and the 
decomposition of organic matter, as illustrated in Fig. 6A, which shows a 
decline in microbial diversity. Al3+ is detrimental to numerous benefi
cial bacteria and fungi, leading to a reduction in microbial populations, 
particularly affecting nitrogen-fixing bacteria (Rhizobia) and conse
quently hindering symbiotic nitrogen fixation in legumes.

Elevated pH levels exceeding 8.2 can lead to complications con
cerning metal ions, as the solubility of various metal cations, such as iron 
(Fe), zinc (Zn), copper (Cu), manganese (Mn), aluminium (Al), lead (Pb), 
and cadmium (Cd), diminishes due to the formation of insoluble com
pounds like hydroxides and carbonates. Nonetheless, some metals may 
remain dissolved, influenced by their specific chemical forms and their 
interactions with soil constituents. For instance, oxyanions such as 
arsenic (As) in the form of arsenate (AsO4

3− ), selenium (Se) as selenate 
(SeO4

2− ), and boron (B) as borate (B(OH)4
− ) can exhibit increased solu

bility under alkaline conditions. Sodium is another element that dem
onstrates high solubility and has a complex relationship with pH levels. 
In non-saline sodic soils, sodium displaces calcium (Ca2+) and magne
sium (Mg2+) from soil particles, which results in the dispersion of clay 
and organic matter. This process diminishes the soil’s buffering capacity 
and leads to the accumulation of carbonates (CO3

2− ) and bicarbonates 
(HCO3

− ), consequently elevating soil pH; in some sodic soils, pH values 
may surpass 9. Although infrequent, in acidic soils, sodium can interact 
with aluminium (Al3+), resulting in acidification. The presence of so
dium poses challenges not only to plant growth by increasing osmotic 
potential but also contributes to structural degradation through the 
dispersion of clay particles, as previously mentioned.

Heavy metal leaching in soils is primarily influenced by pH levels 
and soil organic matter (SOM) (Lofts, 2022; van der Sloot and van 
Zomeren, 2012). Even minor changes in pH can result in fluctuations in 
metal concentrations due to various processes, including dissolution/ 
precipitation, adsorption/desorption on mineral and organic substrates, 
and complexation with ligands in the solution (Lofts, 2022). We evalu
ated the vulnerability index for Ni, Cu, Zn, and Cd concerning pH levels 
in European soils (Fig. 9). A significant pH threshold was observed for Ni 
and Cu around pH 7, beyond which their vulnerability sharply declined. 
Conversely, the reduction in vulnerability for Zn and Cd was more 
gradual, although it still decreased with increasing pH. When this 
vulnerability index was mapped across Europe (Fig. 10), the 
geographical distribution closely mirrored the pH maps shown in 
Fig. 11, indicating that countries with acidic pH values are more sus
ceptible to metal toxicity. The vulnerability varies by metal, with Ni 
exhibiting a higher tendency to leach in areas where pH is below 6. Tóth 
et al. (2016) report that Ni concentrations in Europe are generally low, 
at under 25 mg/Kg; nonetheless, the vulnerability remains significant. In 
regions where pH exceeds 6, the overall vulnerability markedly di
minishes. The presence of elevated levels of heavy metals in soil solu
tions adversely affects primary productivity, which in turn restricts 
carbon inputs into the soil and limits carbon storage under these con
ditions (Yu et al., 2021).

4.7. Modelling climate driven pH changes and future work

The rate of biogeochemical changes in soil can vary, occurring either 
gradually or rapidly, depending on the internal chemical reactions to 

environmental influences. Climate change forecasts for Europe suggest 
modifications in the frequency and intensity of rainfall, with an 
increased probability of extreme weather events during both winter and 
summer (Stocker, 2015). These shifts result in more frequent occur
rences of intense, short-lived rainfall followed by extended periods of 
drought (Chan et al., 2014; Hirabayashi and Kanae, 2009; Kharin et al., 
2007; Kundzewicz et al., 2014). The alternating cycles of wetting and 
drying serve as significant factors driving the spatial and temporal 
variability in soil characteristics, which in turn impact the biogeo
chemical processes occurring within the soil (Robinson et al., 2019; 
Schulz-Zunkel et al., 2015; Tockner et al., 2010). Such changes 
encompass fluctuations in redox potential, which subsequently affect 
the concentrations of iron (Fe) and manganese (Mn), ultimately influ
encing soil pH levels (Rinklebe and Shaheen, 2017).

Assessing the influence of climate variability, trends, and extremes 
on soil pH necessitates a modelling framework that encompasses envi
ronmental, geochemical, and biological processes. These processes can 
be effectively integrated into modelling frameworks via the calibration 
of process-based models, the application of statistical and artificial in
telligence (AI)-based models, and the creation of hybrid approaches that 
merge both methodologies. Process-based models, such as MAGIC 
(Cosby et al., 2001), VSD+ (Bonten et al., 2016), and ForSAFE (Wallman 
et al., 2005), predict soil pH by combining climate variables—such as 
temperature, precipitation, and CO2 concentrations—with soil chemis
try, hydrology, and biological interactions over time. AI-driven models 
leverage statistical and machine learning methods to uncover predictive 
relationships between environmental variables and soil pH, utilizing 
historical and spatially distributed datasets (Were et al., 2015). 
Conversely, hybrid methodologies take advantage of the mechanistic 
insights offered by process-based models while integrating AI to 
improve predictive accuracy through data fusion techniques (Afshar 
et al., 2019).

Process-based models provide a mechanistic framework for simu
lating changes in soil pH across various environmental contexts. These 
models account for time-dependent processes such as acidification, 
buffering, and leaching, allowing them to capture the long-term dy
namics of soil pH (Zeng et al., 2017). However, they require calibration 
specific to individual sites, utilizing time series data obtained from field 
measurements, which makes them computationally intensive and 
applicable only to certain areas (Reinds et al., 2008). Additionally, 
although these models excel at simulating gradual climate changes, they 
may struggle to accurately depict nonlinear and unforeseen extreme 
events due to their dependence on established relationships, which 
might not sufficiently represent the conditions brought about by climate 
extremes (Holmberg et al., 2018).

Statistical and AI-based approaches can effectively handle the com
plex relationships between climate and soil pH by utilizing spatially 
distributed datasets (Xiao et al., 2023). A notable advantage of AI 
models is their ability to incorporate a diverse range of spatial obser
vations, especially in cases where temporal data is limited (Borrelli 
et al., 2020; Hassani et al., 2021). However, the performance of these 
models may be limited by uneven data distribution or biases that exist 
within the training dataset.

Hybrid methodologies tackle these issues by integrating process- 
oriented mechanistic insights with AI-driven pattern recognition (Jin 
et al., 2018). While AI-based models consider predictions as isolated 
instances, process-based models consider the historical factors influ
encing soil pH (Zhao et al., 2019). Soil acidification or alkalization may 
stem from the cumulative effects of climate over several years or even 
decades, rather than merely from short-term environmental changes 
(Rengel, 2011). Hybrid modelling strategies that employ data assimi
lation techniques can improve the predictive precision of soil pH as
sessments, ensuring that both the temporal continuity of soil processes 
and the spatial variability of environmental conditions are adequately 
represented.

These modelling frameworks can be adapted to predict future soil pH 
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changes under various climate change scenarios. By calibrating process- 
based models to replicate long-term soil responses or training artificial 
intelligence models on historical correlations among climate variables, 
land use, and soil pH, these frameworks can generate soil pH forecasts 
using climate data from Earth system models, including those from the 
Coupled Model Intercomparison Project (CMIP). The inclusion of 
climate projections derived from different Shared Socioeconomic Path
ways (SSPs) facilitates scenario-based evaluations of soil pH changes in 
the future. This integration provides a more thorough understanding of 
potential trends in soil acidification or alkalization, assisting land 
managers and policymakers in formulating adaptive soil management 
strategies considering anticipated climate conditions.

It is essential to begin forecasting pH variations in soils throughout 
Europe, and more widely the globe, to anticipate alterations resulting 
from climate change, land use, or land management practices. Recog
nizing areas at high risk will provide policymakers with the necessary 
foresight to minimise or avert soil degradation.

5. Conclusions

The examination of topsoil pH trends throughout Europe, as recor
ded by LUCAS, indicates that seminatural habitats exhibit a bimodal 
distribution of topsoil pH values. In contrast to global soils, which peak 
at pH values of 5.1 and 8.2, European topsoils are skewed towards lower 
pH values (4.41 and 7.54). This shift suggests that European soils have 
undergone partial leaching, contributing to a trend of acidification. As a 
result, there is increased susceptibility to metal and heavy metal 
leaching vulnerability across European soils in compared to their global 
counterparts. Furthermore, our findings indicate that human activities, 
such as food production and associated land management, are displacing 
soils from their natural equilibrium, particularly towards the pH range 
of 6–7. Considering climate change, this situation raises serious concerns 
regarding the sustainability of specific agricultural practices, especially 
those that further deviate from equilibrium, as they will require 
increased inputs to sustain pH levels that are favourable for 
productivity.

A consistent trend is discerned and significant thresholds for utilizing 
pH as a measure of soil health and degradation in the context of envi
ronmental changes across Europe. Notably, a pivotal transition occurs at 
pH 7.2, where soil organic matter (SOM) diminishes in favour of the 
accumulation of soil inorganic carbon (SIC). This transition has been 
associated with climatic factors, indicating that a mean annual precip
itation minus potential evapotranspiration (MAP-PET) greater than zero 
is necessary for SOM accumulation, while conditions where MAP-PET is 
less than zero favour calcite deposition in the soil. Regarding soil health, 
the application of multivariate regression trees has enabled us to illus
trate the significance of soil pH as a key factor affecting the dominant 
taxa. This classification highlights three general community types across 
different soil types, acidophiles, neutrophiles and alkaliphiles between 
these thresholds further establishing pH as the most dependable pre
dictor for soil microbial populations. Patterns for earthworms were more 
nuanced generally with more distinct optima based on land use. 
Regarding vulnerability and degradation, soil moisture content and 
subsequently pH have been shown to influence the susceptibility to 
metal toxicity, particularly nickel. Nickel is prone to leaching in regions 
where soil pH falls below 6, particularly in humid climates. It is crucial 
to initiate predictions of pH fluctuations in soils throughout Europe to 
prepare for changes induced by climate change, land use, or land 
management practices. Identifying regions at elevated risk will equip 
policymakers with the foresight needed to minimise or prevent soil 
degradation.
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