
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.

Farley et al. BMC Public Health         (2025) 25:3449 
https://doi.org/10.1186/s12889-025-23813-x

BMC Public Health

*Correspondence:
Katherine Laura Farley
katfar@ceh.ac.uk

Full list of author information is available at the end of the article

Abstract
Background  Urban air pollution is the second highest risk factor for non-communicable diseases. Socioeconomically 
deprived populations are at greater risk from related adverse health outcomes and often bear the additional burden 
of living in areas with higher pollution exposure. To reduce this inequality policy makers need to understand the 
relationship between the location of interventions and improvements in air quality. The 3–30-300 greening rule 
outlines guidance to improve residents’ access to trees and greenspace. No studies have yet evaluated its implications 
for reductions in inequalities or co-benefits beyond greenspace access. This paper explores the relationship between 
exposure to PM2.5 and socioeconomic status in Paris and Aarhus, and the potential impact of the 3–30-300 rule on 
health inequalities.

Method  We use air quality models and socioeconomic data to calculate disparities in access to greenspace and 
exposure to fine particulate air pollution across subgroups using two land cover scenarios: existing greenspace 
conditions and potential enhancements following the 3–30 rule. The following socioeconomic data were 
disaggregated to residential buildings: households in poverty, age group, citizenship, employment, and education. 
Exposure to air pollution was calculated as the population-weighted average of PM2.5 concentration (µg m−3).

Results  The relationship between socioeconomic characteristics and exposure to poor air quality differed in each 
city: In Paris, populations often considered more vulnerable to adverse health outcomes (unemployed, non-citizens, 
lower education level, lowest income) were exposed to higher concentrations of PM2.5, (although the relationship 
with income was nonlinear), whilst both older and younger populations had slightly lower particulate exposure than 
working age populations. By contrast, in Aarhus, populations with higher socioeconomic status (and by association, 
lower vulnerability) in terms of income, education, citizenship and employment status, were exposed to higher 
concentrations of PM2.5, whilst children were the age group least exposed to fine particulates.
Increasing greenspace under the 3–30 had contrasting effects on inequities in each city: mitigations improved air 
quality for all populations in both but, in Paris, the greatest benefit was experienced by those with lower baseline 
exposure as well as lower vulnerability. In Aarhus larger air quality improvements were experienced by populations 
with the highest baseline exposure except for the income characteristic. These were not groups expected to be at 
greater risk of adverse health outcomes.
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Introduction
Air pollution is one of the greatest risks to human 
health: an estimated 4.2 million premature deaths are 
caused by ambient air pollution globally [1] and it is the 
second highest risk factor for non-communicable dis-
eases worldwide [1] which include asthma and chronic 
obstructive pulmonary disease (COPD), cardiovascu-
lar disease (CVD) [2], and acute lower respiratory tract 
infections (ALRTI) [1]. Higher concentrations of air pol-
lutants are associated with lower self-reported health [3–
5] and poorer mental health, whilst long term exposure 
to pollutants is associated with increased risk of mental 
illness (depression and anxiety [6–10] cognitive develop-
ment [11], and dementia [12]). These non-communicable 
mental and physical diseases contribute to poorer qual-
ity of life and life years lost (LYL) with their associated 
socioeconomic consequences.

Fine particulate matter with a diameter up to 2.5  μm 
(PM2.5) is responsible for a substantial component of 
this health burden, and is linked specifically to all-cause 
mortality, cardiopulmonary and lung cancer mortality, 
and low birthweight [13, 14]. All levels of PM2.5 concen-
tration have harmful outcomes with a clear increase in 
mortality rate associated with increases in concentrations 
[15]. The importance of improving ambient air pollution 
is recognised globally with a reduction of mortality and 
morbidity from air pollution forming a component of 
Sustainable Development Goal (SDG) 3.9.1. In 2024, the 
European Union provisionally reduced the annual PM2.5 
limits to 10 µg/m3 [13] and the WHO reduced limits to 5 
µg/m3 in 2021 [14]. Reducing air pollution is thus impor-
tant in reducing prevalence and outcomes of chronic 
health conditions.

At risk populations
Adverse health effects from air pollution are greater for 
socio-demographic groups whose health, economic, or 
environmental factors increase vulnerability. Socioeco-
nomic disadvantage is associated with poorer health 
outcomes including higher CVD, respiratory disease and 
mental illness prevalence, infant mortality, comorbidi-
ties, and higher mortality. This greater burden of existing 
chronic health conditions means that deprived popula-
tions are more vulnerable to the effects of air pollution 
[15].

As well as socioeconomic disadvantage, age has a 
notable influence on vulnerability. Existing comorbidi-
ties such as reduced lung function, ALRTI, IHD, stroke, 

and COPD mean that older people have a greater vulner-
ability to respiratory and cardiovascular outcomes from 
ambient air pollution and are at greater risk from short 
term exacerbation of symptoms. Children and young 
people (CYP) are also at greater risk due to their develop-
ing physiology.

Some ethnic groups may be more vulnerable due to 
variation in the prevalence of existing health conditions, 
for example, Black and South Asian people are more 
likely to have a diagnosis of CVD [4, 16]. However, some 
evidence shows a complex relationship [4, 5, 16] in the 
UK, where overall minority groups tend to have poorer 
self-reported health, but black African and Caribbean 
populations report better health than British white peo-
ple [5].

Variation in exposure
Certain populations are more likely to be exposed to 
higher concentrations of air pollution across multiple 
environments (including the home, occupational envi-
ronments, neighbourhoods, and commuting) [17]. In 
the USA, this positive relationship between air pollu-
tion and poverty is relatively clear but the relationship 
in the European Union (EU) is complex [18] with greater 
variation in patterns between cities: some studies report 
that populations with low socioeconomic status (SES) 
are more exposed to pollutants [19, 20] whilst others 
indicate an inverse relationship [15]. Socioeconomically 
disadvantaged populations are also more likely to expe-
rience less favourable living conditions than more afflu-
ent populations [21], and neighbourhood socioeconomic 
status is a potential risk factor for some individual health 
outcomes [22]. Immigrant populations in particular may 
be exposed to above average concentrations of particu-
late matter [15]. Ethnic segregation is also important: 
some minority groups are more likely to live in areas 
with higher air pollution as well as experiencing higher 
deprivation.

Intersectionality of exposure, vulnerability and 
socioeconomic status
There is a complex relationship between socioeconomic, 
environmental, and health factors, supporting the triple 
jeopardy hypothesis that low-SES communities face 
increased susceptibility to ill-health; higher exposure to 
pollution; and health disparities driven by environmen-
tal hazards [23]. Age and ethnicity are important deter-
minants of risk, with older people, children and some 

Conclusions  Reductions in PM2.5 concentration can be produced via targeted increases in trees. The impact on 
public health outcomes depends in part, on the spatial distribution of socioeconomic groups. Somewhat counter-
intuitively, the 3–30 rule in both cities gave greater benefit to those with lower vulnerability.
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minority ethnic groups living in disadvantaged areas 
likely to experience both higher exposure and to have 
greater vulnerability. People at the intersection of multi-
ple characteristics are at particularly high risk of adverse 
health outcomes. Since both air pollution and clustering 
of populations with high risk factors exhibit strong spa-
tial patterns, understanding the spatial distribution of air 
pollution and socio-economic status in cities can assist in 
planning local health service provision [16, 17].

Potential health benefits of tree planting
Evidence from Spain suggests that reducing fine par-
ticulate pollution could lead to thousands fewer deaths 
per year [24]. Improving air quality can be achieved by 
directly reducing emissions at source, for example via 
regulation of vehicles and their access to urban areas, or 
controls on other emissions including rural sources of 
PM2.5 and its precursors such as ammonia. Alternatively, 
increasing the proportion of vegetation such as trees, 
shrubs and to a lesser extent grass and crops can reduce 
particulate matter present in the air [25, 26]. Although 
removal of air pollution by greenspace can only be a par-
tial mitigation, green infrastructure offers a wide range of 
health co-benefits such as noise reduction, shading, and 
mental wellbeing [27, 28].

3–30-300 rule
Cities around the world, such as Barcelona, Denver [29] 
Manchester [30], are increasingly developing ambitious 
plans to increase the amount of green infrastructure, 
recognising the many co-benefits. These ambitions are 
typically expressed as a percentage increase from cur-
rent levels of e.g. tree cover, since cities have widely vary-
ing levels of existing tree cover, but there is an ambition 
to aim for certain minimum standards. An approach to 
setting a target of ambition which is rapidly gaining trac-
tion is the 3–30-300 rule, which simultaneously aims to 
increase green space (with a focus on trees) and address 
underlying equity issues in the distribution of green 
space within cities. The 3–30-300 rule has three main 
components/targets: each workplace, school, or home 
should have a minimum of three viewable trees, 30% 
neighbourhood tree canopy cover, and be within 300 m 
of their nearest green space of minimum one hectare (ha) 
[31, 32]. Few cities meet all the components of the rule 
[33], but it shows potential to partially address both air 
quality and equity issues in urban areas due to its focus 
on improving tree cover across all areas of a city.

Existing studies have explored the relationship between 
socioeconomic characteristics and air quality in Paris 
[18]. Other studies have quantified the amount of air pol-
lution removed by trees in studies in the USA [34] and 
UK [26, 35], and the associated reduction in PM2.5 con-
centrations due to urban tree cover, which can range 

from 0.1–10%. Relatively few studies have looked at the 
inter-relationship between socioeconomic status, air pol-
lution exposure and the benefits of greenspace, and no 
studies have yet quantified the potential benefits of the 
3–30-300 rules in reducing inequities associated with 
air pollution exposure. This paper explores the impact of 
such initiatives on socioeconomic groups likely to be at 
greater risk from the effects of PM2.5 due to higher preva-
lence of chronic health conditions usually found in these 
communities.

Aims & objectives
This paper aims to evaluate equity issues for different 
socioeconomic groups around the potential of tree plant-
ing interventions under the 3–30-300 rule to mitigate 
outdoor air pollution on public health. The study com-
pares two cities with contrasting demographics, size, and 
population distribution, with respect to how four socio-
economic factors (age, income, education, & citizenship) 
play out in terms of:

 	• Inequity in exposure to current levels of air pollution
 	• Whether the tree-planting component of the 

proposed 3–30-300 rule for enhanced green space 
will exacerbate or will improve existing inequities

Method
In this section, we provide an overview of the data used 
(see “  Study sites” section) and explain how we mea-
sure the population-weighted values for both residential 
buildings’ average air quality and tree cover which is a 
key variable linked to removal of PM2.5 pollution by veg-
etation (see “ Data” section).

Study sites
This study takes a case study approach, comparing the 
effects of the rule in the context of two cities with con-
trasting demographies: Paris in France and Aarhus in 
Denmark. These cities have differing histories of migra-
tion and urban development, as well as the spatial dis-
tribution of residential properties. They have also been 
used in a recent assessment of the potential to implement 
the 3–30-300 greening rule [33], providing readily avail-
able spatial scenario data on tree cover to apply in this 
analysis.

Paris
Paris city region has a population of 12.1 million of which 
2.2 million reside in the central City of Paris neighbour-
hoods. It is the second most multicultural city in Europe 
[36] and has spatial differentiation of income subgroups, 
with the north-east predominantly more deprived and 
the west and wider satellite urban areas being more afflu-
ent. In the second decade of the twenty-first century, 
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there was a rise in immigration and there are high lev-
els of segregation for non-European immigrants [37]: due 
in part to the historical location of public housing proj-
ects, industry and jobs, migrants generally settle in sub-
urbs peripheral to the central City of Paris [38]. Urban 
disadvantage and immigration are strongly linked in the 
city and there is high income inequality [39]; a history 
of social mix policies to combat segregation has been 
deemed only partially successful [40]. In 2015, 1100 pre-
mature deaths (32.5% of all air pollution related deaths) 
in metropolitan Paris were attributable to ambient PM2.5 
and ozone from transportation tailpipe emissions [41]. 
The city has implemented several initiatives to address 
the limited amount of green space per capita, improve air 
quality, and alleviate associated environmental pressures. 
These include the introduction of Low Emissions Zones 
in 2015, 2016 & 2017, and Euro 5 regulation, as well as 
emergency speed restrictions and free public transport 
during pollution events [42]. Other interventions include 
plans to plant 170 000 trees across the city in between 
2020 and 2026 to cut noise, air pollution and tackle global 
warming [43], and to increase green roof coverage by 100 
hectares [44].

Aarhus
Aarhus is the second largest city in Denmark, with a rela-
tively young population. The population of Aarhus rose 

rapidly over the past two decades to 355 238 in 2021, 
9.53% of this population are immigrants and just 15% are 
over 64  years old [45]. This population increase has led 
to an increase in population density. The city has a com-
mitment to nature-based solutions (NBS) and ecosystem 
services (ESS) with an ambition to double the city’s total 
nature area by 2023 [33] and increase forested land by 
60% by 2030 [46].

Data
Datasets used in this study include high-resolution land 
cover, air quality model outputs, disaggregated building-
level population, and socioeconomic/demographic data 
(Table 1). The high-resolution (5m) land cover data used 
was obtained from Owen et al. [47], derived from Knopp 
[48, 49]. The baseline PM2.5 concentration data used in 
combination with air quality modelling in this study was 
obtained from Hammer et al. [50, 51]. For Paris, all social 
data was obtained from France’s annual census survey 
for 2020 at the IRIS level, the smallest statistical unit 
(Table 1). In Aarhus, the social data was made available 
by Statistics Denmark, processed by Geomatics and is 
available at the district and 1 km grid resolution [52].

The 3–30-300 rule
The full methodology behind how the 3–30-300 rule was 
implemented for each city is outlined in Owen et al. [33] 
with the resulting landcover available from Owen et al. 
[47]. This interpretation differs slightly from the origi-
nal ideas of Konijnendijk [31] in that all green and blue 
space is included as a component of the neighbourhood 
30% tree cover target. In this study, we only analyse the 
impacts of the ‘3’ and ‘30’ components of the 3–30-300 
scenario, i.e. every residential building to have at least 
three viewable trees (defined as two 5 m tree raster cells 
within 30 m) and every neighbourhood to have at least 
30% green (tree canopy) and blue space cover.

Air quality modelling
To investigate the impact of current tree cover and the 
new 3–30 tree planting on PM2.5 concentrations, a sta-
tistical meta-model in the form of a regression equation 
for each city was created from the outputs of the atmo-
spheric chemistry transport model EMEP-WRF.

The use of meta-models has distinct benefits in allow-
ing rapid assessment for policy purposes or exploring 
multiple scenarios, without re-running complex atmo-
spheric chemistry models each time. Examples of apply-
ing meta-models derived from the atmospheric chemistry 
transport model EMEP-WRF, which is described in more 
detail below, include use within an integrated model-
ling platform evaluating government policies in Wales 
[53], and a comparison of greenspace benefits in selected 
cities across the world [25, 26, 53, 54]. EMEP-WRF 

Table 1  Data and variables
Variable Sub-categories Resolution 

(Paris)
Resolution 
(Aarhus)

Land cover
Current landcover 
(2015, 2017)

- 5 m 5 m

Air quality PM2.5

Satellite data 
(2019)

- 1 km 1 km

Building-level population
  Disaggregated 
population

- Building Building

Social data
  Population - IRIS District
  Age  < 18 IRIS District

18–64
 ≥ 65

  Citizenship Citizen IRIS District
Non-citizen

  Employment Employed IRIS District
Unemployed

  Education Primary IRIS District
Secondary
Tertiary

  Income Bottom Quintile IRIS 1 km
Middle Quintiles
Top Quintile
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[55–57] is the European Monitoring and Evaluation Pro-
gramme (EMEP) MSC-W, coupled with the Weather and 
Research Forecasting model as a meteorology driver. The 
model set up here used EMEP version rv4.45 and WRF 
version 4.2.2 [58], nudged towards ERA5 re-analysis data 
[59]). Anthropogenic pollution emission data from the 
EMEP emission inventory Centre for Emission Inven-
tories and Projections (CEIP, http://www.ceip.at/) were 
used as inputs. EMEP calculates chemical interactions, 
exchanges and transport for 80 pollutants, with pollutant 
removal via dry deposition depending on the land cover 
class [57]. 2018 data were used for the meteorology and 
the input emissions. EMEP-WRF has been validated for 
investigating impacts of air pollution changes on health 
by Lin et al. [60] and applied in other studies quantify-
ing the air pollution removal by vegetation based on full 
EMEP-WRF runs [25, 26].

For the EMEP modelling, specific scenarios for each 
city were used to build the regression equations. These 
entailed an EMEP scenario with current urban vegeta-
tion and a counterfactual EMEP scenario where all urban 
trees were removed and replaced with bare soil. The 
change in pollution concentration due to PM2.5 deposi-
tion to leaf surfaces is calculated by difference between 
the scenarios. The bare soil counterfactual was used to 
calculate the pollution removal by current urban trees. 
This allows derivation of a flexible meta-model which 
can be used to estimate the impact of varying additions 
or reductions in tree-cover under a range of policy sce-
narios. Previous modelling runs have established that the 
effect of tree cover on pollution concentration is approxi-
mately linear, with the main variation governed by veg-
etation type and initial pollutant concentration [53, 54]. 
The grid cell size within the city domains was 3 × 3 km. 
In this study we focused only on developing meta-models 
for the pollution concentration change, rather than quan-
tity of pollution removed, since the PM2.5 concentra-
tions directly influence population exposure and health 
outcomes. The meta-model equations were derived by 
extracting gridded outputs of the models and develop-
ing a regression model based on an understanding of key 
input parameters (proportion of tree cover, initial PM2.5 
concentrations) refined in previous studies [53]. The 
meta-model is based on a full-year run of EMEP-WRF, so 
it incorporates hourly variation in meteorology and pol-
lutant interactions as well as seasonal influences on veg-
etation which are all represented within EMEP-WRF.

The regression equations give a percentage change 
in concentration associated with a given proportion of 
woodland cover, which can then be applied to the back-
ground concentration to estimate the actual change in 
concentration (which will be a negative value, represent-
ing the reduction in pollution concentrations due to the 

woodland). The equation derived for Aarhus (R2 = 0.754) 
is provided in Eq.  (1) and that for Paris (R2 = 0.689) in 
Eq. (2):

	AarhuspcPM = (−3.9134 ∗ woodfrac) − 0.1636� (1)

	ParispcPM =
(
6.0425 ∗ woodfrac2)

− (8.9865 ∗ woodfrac) − 0.8939

� (2)

where woodfrac is the proportion of woodland within a 
grid cell (ranging from 0 to 1), and pcPM is percentage 
change in PM2.5 concentration (% µg m−3).

The regression equations were applied to calculate 
PM2.5 concentration change for current landcover and 
for landcover under the 3–30-30 scenario for this study 
as follows. Proportion of woodland was calculated for 
each 3 km grid cell and used to predict the change in 
PM2.5 concentration for current landcover and the 3–30 
rule. Analogous to bias-correction approaches in climate 
scenario modelling, we then calculated the absolute dif-
ference in PM2.5 concentration relative to the EMEP 
baseline PM2.5 concentration from the EMEP model 
outputs at 3 km resolution for each landcover scenario. 
These differences were bilinearly resampled to 1 km and 
applied to a finer resolution (1 km, data for 2019) global 
dataset of PM2.5 concentration [50], used as the baseline 
air quality data in this study, to obtain PM2.5 concentra-
tions under current landcover and the 3–30-300 scenario 
for each city.

Social data classification
The social data used in this study comprised demo-
graphic information (age group and citizenship), and 
components of socioeconomic status (SES) (employ-
ment status, educational attainment, and income) [61]. 
Age groups were classified into three classes (below 18; 
18–64; 65 and above), citizenship status into two classes 
(citizen; non-citizen), employment status into two classes 
(employed; unemployed), educational attainment into 
three classes (primary; secondary; tertiary), and income 
into three classes (bottom quintile; middle quintiles; top 
quintile). Of the above, citizenship and employment sta-
tus were already classified as such in the raw data. Edu-
cational attainment was manually aggregated to widely 
used categories: primary, secondary, and tertiary. The 
remaining variables were classified based on evidence 
from the literature on population sensitivity to air pol-
lution. For example, those under 18 are still developing 
physiologically while those above 65 are more likely to 
have co-morbidities. Income was partitioned into three 
classes, to differentiate the locations within the highest 
and lowest incomes.

http://www.ceip.at/
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Disaggregation of socio-demographic characteristics to 
building-level
The social variables in Paris and Aarhus were disaggre-
gated to building level, by first calculating the proportion 
of the population of each variable (e.g. employed) relative 
to the total population of the respective unit (e.g., IRIS), 
then multiplying the proportion by the building-level 
population.

Population-weighted averages
Air pollution exposure (PM2.5)
In each city, we calculate a single population-weighted 
average PM2.5 concentration (µg m−3) for each population 
subgroup (a), for both the baseline and the 3–30 compo-
nent of the 3–30-300 rule scenarios, using disaggregated 
building-level population data (see “  Disaggregation of 
socio-demographic characteristics to building-level” sec-
tion). This is calculated by multiplying each building’s (u) 
subgroup population by its PM2.5 concentration, sum-
ming these values for all buildings, and then dividing this 
sum by the total subgroup population (Eq. 3). Each build-
ing’s PM2.5 concentration was extracted using the point 
sampling tool (Borys Jurgiel, v0.5.4) in QGIS v3.4.

quintile). Average concentration for the lowest income 
quintile was 10.57 µg m−3 rising to 10.67 µg m−3 for 
the middle quintiles and to 10.69 µg m−3 for the high-
est income quintile. Thus, areas with the highest aver-
age income level in Aarhus had the greatest exposure to 
PM2.5 at baseline.

Smaller variations were identified between other pop-
ulation groups but the pattern of some more vulner-
able populations being exposed to lower concentrations 
of PM2.5 persisted. For example, children were exposed 
to relatively lower concentrations (10.61 µg m−3) than 
older people (10.65 µg m−3) or the working age popula-
tion (10.65 µg m−3). Non-Danish citizens were exposed to 
lower concentrations then those with citizenship (10.58 
µg m−3 vs 10.65 µg m−3), and more educated populations 
had a higher exposure (10.66 µg m−3) than those with less 
education, with those with only primary education hav-
ing the lowest exposure (10.61 µg m−3).

Impact of 3–30-300 mitigations
Mitigations from the 3–30 rule had a small impact on 
levels of PM2.5 across all populations, with an aver-
age overall reduction of −0.035 µg m−3 (Table  2). The 

	
PopulationweightedPM2.5(µg/m3)a =

∑n
u=1Populationa,u × PM2.5

(
µg
m3

)
u∑n

u=1Populationa,u � (3)

Trees
To help explain changes in air quality between the base-
line and 3–30-300 scenario, we calculate the population-
weighted average tree cover (m2) within 300 m for each 
building. 1Once we have the tree cover (m2) for each 
building, we then calculated the population-weighted 
average for each population subgroup (a) for the same 
spatial units as used for population-weighted PM2.5 con-
centration for both the baseline and 3–30-300 scenario. 
This was calculated by multiplying each building’s dis-
aggregated subgroup population by its tree cover (m2), 
summing these values for all buildings, and then dividing 
this sum by the total subgroup population (Eq. 4).

	
Populationweightedtreecover(m2)a =

∑n
u=1 Populationa,u × Treecover(m2)u∑n

u=1 Populationa,u
� (4)

Results
Aarhus
Baseline exposure
Average baseline PM2.5 concentration in Aarhus was 
10.64 µg m−3 (Table  2). The socioeconomic group 
exposed to the poorest quality air was the highest 
income quintile with a difference of 0.12 µg m−3 from 
the group with the best air quality (lowest income 

greatest improvement for a single socioeconomic 
group was for people in the lowest income quintile 
(−0.042 µg m−3), i.e. those expected to be most vulner-
able. From one perspective, the impact of the inter-
vention is inequitable across income quintiles, since 
areas with the worst existing air quality (high income 
quintile) received the smallest improvement (−0.020 
µg m−3). This leads to a widening in the current differ-
ence between low income and high-income areas from 
0.12 µg m−3 to 0.14 µg m−3. However, since the lowest 
income group received the most benefit from 3–30-300, 
this may be seen as positive.

For some characteristics, the largest relative improve-
ment was observed for those populations which had the 
highest baseline exposure, but which are likely to be less 
vulnerable to adverse outcomes. For example, for age, 
the largest improvement was found for the working age 
population (−0.038 µg m−3). Similarly, for education, the 
group which experiences the greatest improvement in 
terms of absolute change of PM2.5 was inhabitants with 
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a tertiary level education, with a reduction of −0.038 µg 
m−3 relative to the average reduction of −0.033 µg m−3 for 
those with primary level education. For other socioeco-
nomic categories there was very little or no variation in 
the absolute or relative change of PM2.5: employed and 
unemployed categories both saw a reduction of −0.036 µg 
m−3 and the difference between citizens and non-citizens 
was 0.001 µg m−3. Thus, although the air quality for all 
residents improved with the modelled intervention, there 

was very little narrowing of the gap in terms of employ-
ment or citizenship status.

Overall, therefore, more disadvantaged and, by proxy, 
more-vulnerable populations in Aarhus were exposed to 
lower levels of air pollution than wealthier or less-vul-
nerable populations. However, the 3–30 rule had variable 
outcomes for different vulnerabilities, further widening 
the gap in exposure of wealthy vs lower incomes, but 
slightly reducing disparities of exposure across education 
level, and having no effect on disparities among employ-
ment or citizenship.

The average tree cover within 300  m of subgroups 
(Table  3) broadly reflected changes in PM2.5 concentra-
tion for education and citizenship categories. At base-
line, middle income, working age, employed, and tertiary 
education populations had the least tree cover and high-
est income the most. These groups benefitted from the 
greatest increases in tree cover thus tree planting in Aar-
hus under the rule led to more equitable tree coverage 
across all categories.

Paris
Baseline exposure
Paris had overall ~ 50% higher levels of PM2.5 concen-
trations under baseline conditions than Aarhus, with a 
population-weighted average of 15.30 µg m−3 across all 
residential buildings (Table  4). Citywide concentrations 
of PM2.5 exceeded the EU threshold of 10 µg m−3 [15]. 
Variation in exposure between different populations was 
small (maximum of 0.24 µg m−3) for all characteristics, 
although this is two times the difference between com-
parative groups in Aarhus. As in Aarhus, the greatest 

Table 2  Population weighted value, and absolute change of 
PM2.5 (µg m−3) concentration for the baseline and 3–30-300 land 
cover scenarios across each population subgroup in Aarhus

PM2.5 concentration (μg m−3)
Category Sub-Category Baseline 3–30-300 ∆ 

PM2.5

Age  < 18 10.61 10.58 −0.028
18–64 10.65 10.61 −0.038
 ≥ 65 10.65 10.62 −0.030

Citizenship Citizen 10.65 10.61 −0.035
Non-Citizen 10.58 10.55 −0.034

Education Primary 10.61 10.58 −0.033
Secondary 10.64 10.60 −0.036
Tertiary 10.66 10.63 −0.038

Employment Unemployed 10.63 10.60 −0.036
Employed 10.65 10.62 −0.036

Income Bottom quintile 
(lowest income)

10.57 10.53 −0.042

Middle quintiles 10.67 10.64 −0.034
Top quintile (high-
est income)

10.69 10.67 −0.020

Total 10.64 10.61 −0.035

Table 3  Population weighted average and absolute change in 
tree cover (ha) within 300 m of residential buildings, for existing 
conditions and the 3–30-300 land cover scenarios in Aarhus

Tree Cover (ha)
Category Sub-Category Baseline 3–30-300 ∆ in 

area
Age  < 18 3.22 3.52 0.30

18–64 2.99 3.49 0.50
 ≥ 65 3.22 3.52 0.31

Citizenship Citizen 3.06 3.50 0.44
Non-Citizen 3.18 3.57 0.39

Education Primary 3.18 3.55 0.37
Secondary 3.06 3.52 0.45
Tertiary 3.04 3.52 0.48

Employment Unemployed 3.08 3.51 0.43
Employed 3.01 3.49 0.48

Income Bottom quintile 
(lowest income)

3.22 3.64 0.42

Middle quintiles 2.80 3.31 0.51
Top quintile (high-
est income)

3.70 3.88 0.18

Total 3.07 3.50 0.43

Table 4  Population weighted value, and absolute change of 
PM2.5 (µg m−3) concentration for the baseline and 3–30-300 land 
cover scenarios across each population subgroup in Paris

PM2.5 Concentration (μg m−3)
Category Sub-Category Baseline 3–30-300 ∆ in 

PM2.5

Age  < 18 15.28 15.18 −0.099
18–64 15.32 15.18 −0.136
 ≥ 65 15.28 15.14 −0.133

Citizenship Citizen 15.29 15.16 −0.130
Non-Citizen 15.38 15.27 −0.113

Education Primary 15.34 15.25 −0.093
Secondary 15.28 15.18 −0.098
Tertiary 15.31 15.14 −0.169

Employment Unemployed 15.35 15.23 −0.124
Employed 15.31 15.17 −0.140

Income Bottom quintile 
(lowest income)

15.46 15.41 −0.059

Middle quintiles 15.22 15.09 −0.132
Top quintile (high-
est income)

15.33 15.11 −0.211

Total 15.30 15.18 −0.127
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variation (0.24 µg m−3) in baseline concentrations in Paris 
was between income categories. However, unlike Aarhus, 
Table  4 shows that for income both the lowest income 
group and the most affluent populations have a relatively 
higher exposure to poor air quality than the middle-
income group, with this exposure greatest for the low-
income group. This U-shaped relationship is also present 
for education, where the greatest exposure to PM2.5 is for 
the lowest and highest levels of education.

In Paris, under current landcover, some of the most 
vulnerable populations were exposed to the highest 
concentrations of PM2.5. Table 4 shows that this is the 
case for income, employment, education, and citizen-
ship status. In contrast, for age, more vulnerable popu-
lations (under 18 and over 65), had a lower baseline 
exposure level (−0.04 µg m−3) relative to the working age 
population.

Impact of 3–30 mitigation
The impact of mitigation on overall PM2.5 concentrations 
in Paris was small (−0.127 µg m−3) but more than double 
that in Aarhus. In direct contrast with Aarhus, the larg-
est improvements in air quality were found for the high-
est income quintile (Table 4). The difference in air quality 
between the highest income and lowest income quintiles 
widened from a gap of 0.13 µg m−3 to 0.30 µg m−3. This 
pattern was also observed for employment, citizenship, 
and education, where less vulnerable populations (i.e., 
the employed, citizens, and those with tertiary educa-
tion) all benefited the most from the intervention with 
a greater decrease in exposure to PM2.5 relative to more 
vulnerable populations, despite having lower baseline 
exposure. This indicates that despite leading to overall air 
quality improvement, inequity in exposure is increased 
by the mitigations.

The 3–30 rule had a greater impact on working age 
adults and older people than for children and young peo-
ple. Although this reduces inequality of exposure across 
the subgroups, especially for those of working age with 
an existing vulnerability, given the higher vulnerability in 
children due to their developing physiology, the potential 
for public health benefits is more limited. The greatest air 
quality improvements were also found for those with the 
highest education level, for the employed population, and 
for citizens, thus increasing the exposure differential to 
the detriment of the less-educated, or more-deprived or 
non-citizens respectively.

Overall, in Paris the PM2.5 exposure at baseline was 
greater for some vulnerable groups (non-citizens, the 
least wealthy, the unemployed) but showed non-linear 
relationships for some aspects (age, where greatest expo-
sure was in the middle age-group, and education level 
where greatest exposure was those in the least and in the 
most educated groups). Urban greening under the 3–30 

rule exacerbated inequality of exposure by benefitting the 
most income rich, French citizens, the employed and the 
most highly educated.

In Paris, tree planting under the rule did not reduce 
inequalities in tree coverage across categories, and actu-
ally widened inequality across the income categories 
where the richest quintile had the greatest initial tree 
cover, but also received the most additional tree cover 
under the 3–30 component of the 3–30-300 rule. The 
greatest improvements in air quality for these less vulner-
able populations can be explained by the greater change 
in tree cover (Table 5). The increase in tree cover gener-
ally reflects the reduction in PM2.5 for those populations 
and explains why the improvement in AQ is found in the 
areas where people already have good AQ.

Discussion
The 3–30 component of the 3–30-300 rule and the intro-
duction of new trees and grassy areas aims to reduce the 
disparities in visibility, presence, and access to urban 
green space. This study demonstrates that some reduc-
tions in PM2.5 concentration for all populations can be 
achieved via increased tree planting applying the 3–30 
urban greening rule. However, while this rule aims to 
reduce inequity, in practice our data show that it has the 
potential to worsen existing inequalities. Differences in 
initial exposure and the benefits of greening were depen-
dent on existing socioeconomic demographic patterns in 
both case study cities. In Aarhus, existing disparities in 
exposure to PM2.5 tended to favour the more vulnerable 
and although greening benefitted all populations, it either 
emphasised these differentials (i.e. gave greater benefit 

Table 5  Population weighted average and absolute change in 
tree cover (ha) within 300 m of residential buildings for existing 
conditions and the 3–30-300 land cover scenarios in Paris

Tree cover (ha)
Category Sub-Category Baseline 3–30-300 ∆ in 

area
Age  < 18 4.72 5.01 0.28

18–64 4.52 4.93 0.41
 ≥ 65 4.73 5.10 0.38

Citizenship Citizen 4.63 5.02 0.39
Non-Citizen 4.42 4.75 0.34

Education Primary 4.59 4.84 0.25
Secondary 4.74 5.01 0.27
Tertiary 4.47 5.01 0.54

Employment Unemployed 4.48 4.85 0.36
Employed 4.52 4.95 0.44

Income Bottom quintile 
(lowest income)

4.55 4.66 0.12

Middle quintiles 4.57 4.96 0.39
Top quintile (high-
est income)

4.69 5.42 0.73

Total 4.60 4.98 0.38
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to the most vulnerable) or had little impact on existing 
inequalities. By contrast in Paris, existing disparities were 
complex but tended to show higher exposure among the 
most vulnerable populations. The 3–30 rule improved air 
quality for all populations in Paris, but the improvements 
tended to favour the least-vulnerable rather than the 
most-vulnerable as found elsewhere in France [18, 24].

This variation in impact is likely due to both residential 
locations of different socioeconomic groups, and varia-
tion in opportunities for tree planting in each city which 
are dependent on building distribution. Paris’ socio-eco-
nomic variation follows common urban patterns with 
deprivation concentrated in previously industrial periph-
eral neighbourhoods with low tree cover, away from the 
cultural and financial districts situated in central areas. 
The patterns in Aarhus are due largely to clusters of very 
high-income households in high quality, high cost, but 
dense, housing in the city centre where there is little open 
or green space, but also high density of consumer-related 
transport.

Whilst, broadly speaking, more affluent neighbour-
hoods tend to have more trees, cities like Paris often 
have concentrations of high quality, high-cost housing 
located in city centres close to cultural and business cen-
tres. Building density in these central areas means that 
existing tree numbers are low, and air quality poorer. 
For example, high nitrogen dioxide concentrations in 
Paris centre are attributable to emissions from the move-
ment of goods and commuter transportation [15] needed 
to support cultural and financial services in the centre 
[18]. Opportunities for increasing tree cover here are 
restricted by high building density, in contrast to periph-
eral neighbourhoods which have greater opportunity for 
increases in tree cover.

Implications for public health
Long-term exposure to poor air quality has been asso-
ciated with premature deaths estimated to be ∼55,000 
annually across France [62]. The theoretical modelling of 
the 3–30 rule benefitted all populations, but these exac-
erbating factors meant that in Aarhus it benefited some 
of the least vulnerable populations to a greater extent 
(citizens and highly educated) and others (higher income 
quintile and working age people) to a lesser extent. 
Likewise, in Paris, although the relationship between 
socioeconomic status and air pollution exposure was 
non-linear, the rule gave the most benefit to the least vul-
nerable populations who also had the lowest exposure at 
baseline, thus exacerbating socioeconomic inequalities.

However, the impact of AQ on health inequalities is 
likely exacerbated by the combined effects of multiple 
risks: some subgroups are more vulnerable to poor health 
outcomes due to higher rates of existing chronic health 
conditions. For example, in Denmark, refugees living in 

disadvantaged areas are at greater risk of cardiovascular 
events than the general population [63], alongside expo-
sure to other environmental risks [18].

To reduce the excess burden on these groups and 
maximise the health impact, mitigations to reduce envi-
ronmental pressures should target the most exposed vul-
nerable populations. The effect of urban tree planting has 
a potential role in a multifaceted strategy to improve air 
quality related health outcomes [64]. The potential stand-
alone impact of this component of the 3–30-300 rule on 
AQ is small. However, the public health co-benefits such 
as mental health, shading, and noise reduction, in combi-
nation with ecosystems services benefits including flood 
reduction, carbon sequestration and biodiversity [28], 
increase the value of new trees in urban areas. Trees can 
be seen as public health assets and prioritised as an inter-
vention to address multiple public health and wider envi-
ronmental pressures. Potential limitations to the benefits 
of the rule also include changes to the socioeconomic 
status of the residents due to neighbourhood desirability, 
rising property prices [65], crime and injury risk should 
also be acknowledged.

Location of trees
Increases in tree numbers do not always correct for dis-
parities in exposure to PM2.5, because of spatial varia-
tion in population, air quality and tree cover. In Paris, 
the widening of inequalities in PM2.5 exposure after the 
introduction of new green space may be attributed to this 
complex relationship. The 3–30-300 interventions take 
into account both wider greenspace as well as tree cover, 
and do not consider existing exposure to PM2.5. There-
fore, some less vulnerable populations receive the big-
gest increase in tree cover as they have a smaller extent 
of urban green and blue space despite having better exist-
ing air quality. In Paris this further benefitted the richest 
income group while in Aarhus this further benefitted the 
poorest income group.

While the meta-model described here only calculates 
PM2.5 removal by trees, they are typically at least five 
times as effective as grass at removing particulate mat-
ter from the air [35]. Therefore the'3'and'30'components 
of the 3–30-300 rule, which focus solely on adding new 
trees, are likely to have a larger impact on air quality than 
the'300'component which is mainly achieved by adding 
large areas of public greenspace, assumed to be predomi-
nantly grassland in Owen et al. [33]. Further work could 
refine this approach with additional meta-models to cal-
culate pollution removal by urban grassland.

This theoretical simulation of urban regreening does 
not account for the complexity of implementation or the 
real-world consequences of replacing artificial land cover 
with trees [33]. A more substantial increase in street 
trees is needed in city centres as well as the repurposing 
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of buildings [33]. In Paris centre, more artificial surfaces 
need to be regreened than in suburbs, due to the lower 
availability of grassy or bare soil areas here. This offers an 
opportunity to further reduce emissions through a reduc-
tion in transportation infrastructure (such as car parking 
and traffic lanes). This would be more beneficial in Paris 
due to the reliance on mineral surface replacement: in 
Paris, the proportion of mineral surface that would need 
to be reduced (nearly 95% of land being resurfaced) is 
greater than in Aarhus (approximately one third of the 
resurfaced land) [33]. Additionally, the creation of small 
(pocket) parks in urban centres offers easier access to 
greenspaces for inhabitants and thus the physical and 
mental health benefits associated with these [33]. How-
ever, these consequences themselves present implemen-
tation barriers and a greater need for behaviour change 
interventions and the involvement of communities in 
decision making processes.

A co-production approach to greenspace design could 
maximise engagement and impact on health. Co-pro-
duction provides an opportunity to ensure regreening 
works alongside infrastructure and an educational role 
to support behaviour change. In Paris there has been a 
recent movement towards devolution of power and par-
ticipatory approaches have led to new public gardens and 
pedestrian areas [27].

The effect of urban tree planting has a potential role 
in a multifaceted strategy to improve air quality related 
health outcomes [64]. The impact on air quality dem-
onstrated by this theoretical model is very small, and 
unlikely to reduce mortality rates significantly as a stand-
alone intervention. However, the public health co-bene-
fits such as mental health, shading, and noise reduction, 
in combination with ecosystems services benefits includ-
ing flood reduction, carbon sequestration and biodiver-
sity increase the value of new trees in urban areas.

Limitations
Variation between our study sites in the availability, clas-
sification, units, and spatial scales of data leads to a lack 
of standardised data at granular, subnational level, and 
the need for proxy variables (e.g. citizenship for ethnicity, 
income for deprivation). Variable structure also affected 
interpretation: for example, for age, citizenship, employ-
ment status, and education, we calculated the popula-
tion-weighted value for each class across all spatial units. 
However, unlike age, citizenship, and employment status, 
we only have a single median value for income per spa-
tial unit. This means that the population weighted value 
for income reflects weighted PM2.5 concentrations only 
in areas with specific income values, leading to more 
extreme values relative to others where the average is cal-
culated across the entire city. All modelling has an inher-
ent degree of uncertainty, as models are an abstraction of 

reality. PM2.5 concentrations for this analysis were gen-
erated from a meta-model approach, developed initially 
at 3  km resolution. As such, there is a degree of uncer-
tainty with predicted concentrations for a given location. 
The outputs of the underlying EMEP model are validated 
against measured concentrations at municipal air qual-
ity monitoring stations, but local variation will cause 
noise around these spatial predictions. In large part, our 
approach minimises this by applying difference between 
model runs to an independent finer resolution mod-
elled layer of PM2.5 concentrations produced by Paris. 
While the uncertainties in that external modelled data 
are unknown, it is likely that the uncertainty in our esti-
mates are likely to be greatest around the calculations 
produced by the meta-models. The accuracy of disaggre-
gated population data will be another area of uncertainty. 
On aggregate however, the model findings are likely to 
hold, since uncertainty in the predictions for individual 
grid-cells, will be smoothed when these are aggregated to 
city-level population weighted averages, assuming errors 
are uniformly distributed.

Small changes in PM2.5 concentration per se are unlikely 
to have a direct health impact on an individual. However, 
the epidemiological relationships linking health impacts 
to particulate matter concentrations assume a linear rela-
tionship and have not to-date identified lower-bound 
thresholds for effects. Thus, any exposure to PM is consid-
ered potentially harmful. Therefore, small changes in con-
centration experienced by large numbers of people may 
potentially still result in some adverse impacts. Since these 
are annual averages, they hide temporal variation in expo-
sure, meaning that at some times of the year the difference 
in exposure will be much greater, potentially more directly 
influencing health outcomes than the small differences in 
average concentrations would suggest. Of more conse-
quence is that these are average changes over a 1 × 1 km 
grid square. This smooths out considerable variation that 
occurs within a grid-square at finer resolutions, e.g. close 
to point-source traffic emissions where exposure, and 
changes in concentration as a result of pollutant removal 
by vegetation, will be greater. Lastly, this can be consid-
ered as an under-estimate of the effects of vegetation since 
it only covers the change in exposure that comes from the 
removal of particulates by deposition onto leaf surfaces. It 
does not take into account barrier effects potentially pro-
vided by the same vegetation which can lead to lower pol-
lutant exposures immediately downwind [66].

Conclusion
Urban trees should be regarded as public health assets 
for their direct impact on air pollution, noise and men-
tal health alongside indirect health improvements, and 
the long-term global benefits from climate change miti-
gation. However, many regreening programmes fail to 
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accommodate social and health vulnerabilities [67]. 
While the 3–30-300 rule aims to reduce inequalities of 
access to green space and its co-benefits, in reality, a sim-
ple application to bring all areas of a city into compliance 
with the rule may exacerbate existing health inequalities. 
Therefore, to maximise improvements to public health 
by improving AQ for the most vulnerable, attempts to 
reduce exposure need to be targeted, both in areas with 
higher exposure, and with larger vulnerable populations.

To maximise the impact of small reductions in PM2.5 
identified here, greening initiatives also need to be imple-
mented in conjunction with other mitigations such as 
extensions to Low Emissions Zone perimeter or modi-
fications to residential properties to reduce emissions of 
air pollutants as well as exposure via the built environ-
ment. The effectiveness of initiatives such as park-based 
tree-planting could be increased through parallel behav-
iour change and infrastructure to improve access to and 
engagement with these spaces. An inclusive approach to 
urban planning which incorporates communities in deci-
sion making processes would maximise effectiveness.

There is a lack of evaluation of the equity implications 
of air pollution interventions in urban areas. Future 
research should consider how urban and public health 
planners can create integrated planning approaches 
which incorporate tree planting in public health out-
comes. Evaluations of urban tree planting should adopt 
a multidisciplinary approach and integrate multiple ben-
efits to ecosystem services as well as the social and health 
value added. Further exploration is also needed into the 
combined relationship between blue space, green space, 
and air quality and in the relative benefits of targeted 
planting for multiple outcomes.
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