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A B S T R A C T

Tropical peatlands storing ~18–25 % of global peat volume contribute significantly to the global carbon cycle.
To balance preservation and protection of tropical peatlands requires assessment of their ecohydrological con-
ditions and continuous monitoring through seasons. This is challenging to achieve using in situ sampling, but
there is a great promise to use C-band Sentinel-1 data for this due to its weather-independence, and particularly
its increased acquisition capacity and spatial/temporal resolution compared to L- and P-band current sensors.
Acknowledging that Small BAseline Subset (SBAS) Interferometry using C-Band Sentinel-1 data has been shown
previously to be useful for retrieving peatland surface displacement, but also that the amplitude and phase of the
SAR signal are dependent on surface hydrology; there remains a critical question about the extent to which the
efficacy of SBAS approaches is themselves sensitive to surface hydrological conditions. This is a particular
methodological concern in tropical peatlands due to the dynamically changing hydrological conditions arising
from significant rainfall events, which can cause groundwater level (GWL) to vary from 1 m to − 2 m. The
research area was situated in lowland Central Kalimantan (Indonesia) using Synthetic Aperture Radar (SAR)
observations from the 2017–2022 period. We used SBAS-derived ground displacements and compared to
groundwater level (GWL) and peat surface elevation acquired from local networks of monitoring sites. Our work
shows that the prevailing hydrological condition affects the area efficacy of the SBAS approach using C-band SAR
data. When surface water significantly floods above the ground surface during the wet season, the coherence is
not sustained for a long time. This is the opposite of the dry season, when coherence is preserved in longer
intervals between acquisitions. Additionally, the range of correlation values between SBAS-derived displace-
ments and in-situ peat surface and ground water table measurements is higher for the dry season than for the wet
and whole hydrological year. We show that the SBAS approach can retrieve surface displacement for 34.4 % to
59.8 % on the peat soils of the tested area (391 to 826 km2), excluding areas of dense forests and open water, due
to C-band SAR limitations, i.e. volume scattering mechanism and/or loss of signal coherence on water bodies. We
show that appropriate hydrological conditions must be met to determine the change in water level above the
ground surface. Too large fluctuations in water level may not be detected because of wavelength limitations, and
outliers from the assumed linear model may be filtered out or removed due to the specific properties of this
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approach. These findings underpin the application of Sentinel-1C-band SAR for monitoring tropical peatlands’
ecohydrological conditions.

1. Introduction

Tropical peatlands store large quantities of terrestrial carbon
(469–694 Giga tons of C (Page et al., 2011; Ribeiro et al., 2021)) and
deliver numerous important ecosystem services to humans, whilst also
supporting conservation of species and habitats of international
importance (Posa et al., 2011). In dry years, widespread wildfires in
tropical peatlands can burn for months with huge impacts locally,
regionally and globally (Liu et al., 2017). These major fire events are
strongly linked to the droughts caused by El Niño Southern Oscillation
(ENSO) climate events (Putra, 2011; Sze and Jefferson Lee, 2019). This
is particularly concerning because such El Niño events are predicted to
increase in frequency under global warming and ongoing deforestation
(Cai et al., 2014; Davies-Barnard et al., 2023; Thirumalai et al., 2017),
and there has been a coupled trend of reduced rainfall over recent de-
cades (McAlpine et al., 2018). Among other needs, preservation and
protection of valuable peatland areas requires assessment and contin-
uous monitoring of the hydrological condition of the peatlands. Yet both
ground- and remote-based peatland monitoring is challenging, particu-
larly in tropical areas because the peat surface itself may be overlain by a
wide variety of land cover types from dense forest to more anthropo-
genic ones (e.g. agriculture; (Page et al., 2011)).

The key characteristics of undisturbed tropical peatlands include
high vegetation species richness, and high water tables (Page et al.,
2009). Monitoring of tropical peatlands from remote sensing follows
different methods, predominantly passive optical and active Synthetic
Aperture Radar (SAR) approaches (Minasny et al., 2019). SAR has been
found to be a particularly useful technique for tropical peatland moni-
toring because it offers a weather-independent technique and is suited to
act in wet climates where cloud cover degrades capability of effective
optical acquisitions (Tanase et al., 2020; Waqar et al., 2020; Widodo
et al., 2019). Furthermore, strong development of SAR systems has been
noted in recent years, especially with the launch of the ESA’s Sentinel-1
(S1) satellites – opening a new chapter of SAR mapping by delivering
free, almost unlimited access to C-band SAR images. Key advantages of
S1 are the wide swath (250 km) and 12-day revisit cycle in case of one
operating satellite or 6-days with two satellites operating (noting recent
loss of Sentinel 1b due to a power supply issue in December 2021; with
subsequent replacement Sentinel 1c launched in December 2024 and at
the time of writing undergoing operational commissioning). Increased
accessibility not only to SAR data but also to open source solutions that
leverage free to use data are especially important for less economically-
resourced countries such as Indonesia, which contains 36 % of the
world’s tropical peatlands, much of which is relatively inaccessible
(peatland land cover accounts for approximately 7.8 % of Indonesia’s
extent (World Bank Group, 2018). Its sensitivity to soil moisture and
roughness leads to SAR having a great potential role for monitoring the
hydrological conditions of tropical peatlands, although this has yet to be
deeply explored. SAR approaches are widely used in hydrological
studies; including i) water bodies detection and delineation of their
extent, including evaluation and monitoring of open surface water
(Dellepiane and Angiati, 2012; Matgen et al., 2011; Pulvirenti et al.,
2016) and water in emergent vegetation (Brisco et al., 2019; Grimaldi
et al., 2020; Mleczko et al., 2021; Plank et al., 2017; Tsyganskaya et al.,
2018) ii) soil moisture (SM) estimation (Barrett et al., 2009; Dabrowska-
Zielinska et al., 2018; Kim et al., 2017; Lopez-Sanchez et al., 2021;
Ranjbar et al., 2021), iii) estimation of changes in water level above the
ground (Gondwe et al., 2010; Hong et al., 2022; Hong and Wdowinski,
2014; Liao et al., 2020), iv) estimation of changes in groundwater levels
(GWL) (Asmuß et al., 2019; Bechtold et al., 2018; Khakim et al., 2020;
Tampuu et al., 2020b; Zhou et al., 2019). A broad range of SAR

techniques are used for these tasks, from backscattering intensity ana-
lyses, through polarimetry (PolSAR) to Differential SAR Interferometry
(DInSAR).

DInSAR (e.g. PSI – Persistent Scatterer Interferometry, SBAS – Small
BAseline Subset Interferometry) is considered as a reliable tool for
mapping of motions and deformations of the ground/ land. Various
drivers of surface movements: tectonics, engineering works, mining
activity / post mining ground motion, water pumping, gas exploration,
and relevant to this piece: “bog breathing” (Tampuu et al., 2023), which
is the vertical deformation of peatland surfaces in response to water
table changes. InSAR PSI has some limitations in monitoring surface
deformation, e.g. due to lack of strong scatterers / permanent scatterers
(PS), also called MP (measurement points) and/or low temporal
coherence of the complex signals. SBAS based on distributed scatterers
also has similar limitations due to low coherence in densely vegetated
areas. Coherence (interferometric correlation) is a crucial parameter for
successful or unsuccessful phase difference measurements. Coherence
variability on wetlands, peatlands and generally grasslands, on the other
hand, is strongly related to hydrological conditions determining scat-
tering mechanisms: advantageous or disadvantageous with further
consequences in InSAR products usability/ applicability (Scott et al.,
2017).

DInSAR approaches have been shown to have high sensitivity to
surface swelling or subsidence with sub-centimetre precision (Hanssen,
2001), and therefore the potential ability to hydrological monitoring via
the estimation of changes in GWL (Evans et al., 2021; Wösten et al.,
1997). Basis of DInSAR is the microwave phase difference measurement
along with correlation of the complex SAR signal over time (between
two or more consecutive acquisitions). Tropical peatlands being mixed
and composite vegetated areas give temporally irregular coherent
measurements, thus the key element in the proposed approach is to
choose a solution that can deal with the temporal decorrelation or
minimise its impact. Such a method is offered by the SBAS approach
which leverages sequential SAR acquisitions mitigating spatial and
temporal decorrelation effects of so-called distributed targets’. So far,
dedicated tropical peatland studies using InSAR long-time series have
been scarce and encompassed the L-band (Hoyt et al., 2020; Umarhadi
et al., 2022; Zhou et al., 2019), with studies exploring C-band (Izumi
et al., 2022a, 2022b; Khakim et al., 2020; Marshall et al., 2018; Zheng
et al., 2023a) or multifrequency combination of C- and L-band
(Umarhadi et al., 2021). The studies have shown that longer wavelength
SAR data (e.g. L- and P-band) are considered more appropriate for
interferometric SAR analysis of complex natural environments, due to
penetration ability through vegetation canopy. Whilst C-band shows
strong potential for measuring peatland surface motion, because of its
fine spatial resolution and improved temporal resolution given the
multiple current and upcoming SAR platforms with C-band instruments
onboard (Torres et al., 2017). The usefulness of C-band data and the
feasibility of the SBAS approach for monitoring long-term surface mo-
tion has been tested with ERS and Sentinel-1 images over peatland in the
northeast of Scotland (Alshammari et al., 2018), which despite having a
very different climate, exhibits similar morphology to tropical peatlands
(albeit with less complex overlying vegetation cover compared to
tropical systems). Sentinel-1 data have also been used to evaluate
whether “bog breathing” can be measured by multitemporal DInSAR in
Northern temperate raised bogs in Estonia (Tampuu et al., 2022).
Although the authors (ibid.) questioned the accuracy of the approach
over peatlands due to underestimation of real surface displacements and
despite a serious phase unwrapping problem, a potential for assessment
of short-term peatland surface displacements in favourable conditions
using time series was stated. Recent efforts to estimate tropical peatland
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subsidence using C-band Sentinel-1 data and correlate results with GWL
were made by Izumi et al., 2022b showing a developed approach based
on SBAS to increase the density of coherent scatterers for tropical
peatland deformation monitoring. On the other hand, DInSAR mea-
surements are sensitive to both: i) topographic displacements and ii)
changes in soil moisture (Zwieback et al., 2017) and these can affect
interferometric phase in ways that are challenging to uncouple. There
are several studies addressing the relationship between interferometric
observables and soil moisture (de Zan et al., 2014; Hrysiewicz et al.,
2023; Molan and Lu, 2020; Ranjbar et al., 2021; Zwieback et al., 2017),
showing that L-band InSAR phases are highly correlated to soil moisture
and more sensitive compared to coherence and phase triplet (Molan and
Lu, 2020). The studies concerning shorter wavelength (C-band) show
that the linear regression model can accurately estimate soil moisture
over bare soils for short temporal baselines, where deformation and
other changes depending on the temporal baseline are negligible
(Ranjbar et al., 2021), but vegetation interferes with the signal and in-
troduces uncertainties.

Acknowledging that SBAS Interferometry using C-Band Sentinel-1
data has been shown previously to be useful for retrieving peatland
surface displacement (Hrysiewicz et al., 2024; Hrysiewicz et al., 2023;
Tampuu et al., 2023; Tampuu et al., 2022; Tampuu et al., 2020b), but
also that the amplitude and phase of the SAR signal are dependent on
surface hydrology, there remains a critical question about the extent to
which the efficacy of SBAS approaches is themselves sensitive to surface
hydrological conditions. Some studies refer to the link between InSAR-
derived displacements, soil moisture and groundwater level

(Hrysiewicz et al., 2023). Marshall et al. (2022) indicate that drought
events can potentially lead to unreliable estimates of high subsidence
rates. These findings are primarily based on temperate peatlands, which
typically exhibit lower variability in groundwater level (GWL) changes.
In temperate regions, GWL fluctuations generally range from 0.2 m to
− 0.3 m (Hrysiewicz et al., 2023; Tampuu et al., 2020a), whereas in
tropical peatlands, GWL can vary more dramatically, from 1 m to − 2 m.
While the fundamental limitations of InSAR on peatlands — such as
coherence loss, phase ambiguity, and temporal decorrelation — are
common to both climatic zones, tropical peatlands tend to exhibit lower
overall coherence. This can be largely due to their dynamic hydrological
conditions, influenced by frequent and intense rainfall events (Hoyt
et al., 2024). Consequently, interpreting InSAR-derived subsidence in
tropical peatlands presents particular methodological challenges that
require careful consideration. Segmenting the analysis according to
hydrological years (November – October) and using a test site in Central
Kalimantan (Indonesia) exhibiting diverse land cover, we investigate the
following questions across the 2017–2022 period and compare to
groundwater levels from SIPALAGA (https://sipalaga.brg.go.id/https
://sipalaga.brg.go.id/), soil moisture from SEPAL project (https://
sepal.io/) and peat camera system data showing surface elevation and
groundwater levels from Evans et al. (2021). We tackled two following
questions:

− Does the area-effectiveness and reproducibility of the SBAS approach
on an inter-annual basis depend on hydrological conditions and if so,
how?

Fig. 1. Location of the study area, Central Kalimantan in Indonesia (left map). Land cover map of the study area for 2019 provided by the Ministry of Environment
and Forestry Indonesia (right map) with an overlaid area of non-peat soils. The locations of sites used to evaluate the correspondence between in situ observations of
peat surface and GWL and time series of displacements are represented by black triangles, sites for evaluating how surface hydrological conditions impact time series
of coherence are highlighted by yellow triangles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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− How does the correspondence between SBAS-derived displacement
and in situ observations (ground water level and surface elevation)
vary with hydrological conditions?

2. Study area and datasets

2.1. Description of the area of interest (AOI)

The specific area of interest (3750 km2) is located in the lowlands of
Central Kalimantan (Indonesian Borneo) in a region to the southeast of
Palangka Raya city (Fig. 1). An official land cover map provided annu-
ally by the Ministry of Environment and Forestry Indonesia (Indonesian:
Kementerian Lingkungan Hidup dan Kehutanan – KLHK) is shown in
Fig. 1 (right inset). Fig. 1 shows land cover product from 2019, while
Fig. S1 in supplementary materials provide annual land cover maps
covering all analysed years 2017–2022. The overall percentage distri-
bution of land use/land cover classes for the AOI is: swamp forest 47 %,
swamp shrubs 26 %, farmland 14 %, bare land 5 %, wetland 4,5 %,
urban area 2 %, water bodies 1,5 % (KLHK, 2022). The area around
Palangka Raya is comprised of tropical land covers of varying types
(from agricultural to intact primary peat swamp forest) underlain by
peat of varying depths between 1 and 10 m (Hayasaka et al., 2020;
Widyatmanti et al., 2022). Fluvisols are found around the rivers (the
generalised location on Fig. 1 is from a map scale 1:50000; (KLHK,
2022)). Some parts of this region were heavily deforested and drained
for the Indonesian Mega Rice Project (MRP) (Page et al., 2009), and
since then parts of the region have been affected by severe and repeated
fires (Hoscilo et al., 2011). Our research area incorporated the so-called
Block C of the ex-MRP, which contains the peat dome between the
Sebangau and Kahayan rivers. Block-C is composed of heterogeneous
mixtures comprising patches of secondary forest fragments, smallholder
agriculture, oil palm plantations, and regions of degraded shrubland
dominated by ferns, regenerating native trees and non-native Acacia
mangium (Page et al., 2009). There is a zone bordering the Kayahan river
labelled in the land cover map (Fig.1 right inset map) as a relatively
large homogenous class of ‘dryland agriculture’ - in reality this classi-
fication belies the true heterogeneity of what is very diverse ecology on
the ground (see later detailed site descriptions for sites M32, M34, M35
which lie in this region). To the west of the degraded Block C study area,
lies the Sebangau National Park, a much less impacted protected area
with relatively undisturbed tropical forest, which has been less affected
by fires (Atwood et al., 2016). Both regions (Sebangau National Park and
Block C) were part of our study region and DInSAR calculations. The AOI
is considered geologically stable, so no ground motion could be attrib-
uted to tectonics. There is no ongoing underground work that could
cause ground surface displacements. According to (Wösten et al., 2008),
oxidation accounts for 60 % of peat subsidence on average, with irre-
versible drying or shrinking of peat accounting for 40 %.

2.2. Sites of interest for specific analyses

The whole AOI and additional test sites chosen within AOI for
detailed analysis (yellow triangles in Fig.1) are used here to answer the
research questions. Initially, we identified 40 test sites using the SAR
data, with site choice based on attributes of high InSAR coherence and
varying topographic dynamics, and accessibility for ground verification
(i.e. proximity to roads or canals). Following consultation with Indo-
nesian authorities and team members with experience in these areas on
the ground, the list of sites was reduced to ten feasible areas where
detailed in situ analyses could be undertaken for validation purposes
(Table 1 and Fig. 2). The remaining 30 sites were unfeasible due to local
conflict, ongoing activities at the site which precluded access, or
inability to contact the landowner. The ten selected sites represent a
broad spectrum of peat depth ranging from 0.5 to 8 m and are classified
as agricultural fields or swamp shrubland (KLHK, 2022). In all cases, the
sites labelled as having agricultural land cover were not subject to

Table 1
Characteristics and management histories of test sites used to answer the
question of how surface hydrological conditions affect SBAS-derived results.

Test site Land use
(based on
KLHK
database)

Peat depth
[m]
(based on in
situ
observations)

Vegetation (based
on in situ
observations)

Fire
history
(based on
MODIS
fire
product)

S_11 agricultural
field
(uncultivated)

0.6 Acacia
auriculiformis A.
Cunn. ex. Benth.;
Scirpus juncoides
Roxb.; Melastoma
malabathricum L.;

2019

S_13 agricultural
field
(uncultivated)

1.2 Acacia
auriculiformis A.
Cunn. ex. Benth.;
Melastoma
malabathricum L.;
Cratoxylon glaucum
Korth.; Scirpus
juncoides Roxb.

2019

MS_15 agricultural
field
(uncultivated,
lying tree
trunks)

2.2 Acacia
auriculiformis A.
Cunn. ex. Benth.;
Cratoxylon glaucum
Korth.; Ploiarium
elegans Korth.;
Melastoma
malabathricum L.

2009,
2014,
2019

MS_16_01 agricultural
field
(uncultivated,
lying tree
trunks)

2.4 Acacia
auriculiformis A.
Cunn. ex. Benth.;
Melastoma
malabathricum L.;
Cratoxylon glaucum
Korth.; Ploiarium
elegans Korth.

2014,
2019

MS_16_02 agricultural
field
(uncultivated)

2.5 Stenochlaena
palustris,
Dicranopteris
linearis, Melastoma
malabathricum,
Acacia sp.,
Cratoxylon
glaucum, Baeckea
frutescens,
Ploiarium
alternifolium

2014

M_19 agricultural
field
(uncultivated)

3.6 Acacia
auriculiformis A.
Cunn. ex. Benth

2002,
2014

M_30 agricultural
field
(inundated
most of the
time)

0.5 Lepironia articulata,
Blechnum indicum,
Acacia sp.,
Melaleuca
leucadendra

2003,
2009,
2014,
2019

M_32 swamp
shrubland

2.0 Blechnum indicum,
Stenochlaena
palustris, Baeckea
frutescens, Acacia
sp., Combretocarpus
rotundatus,
Ploiarium
alternifolium

2004,
2009,
2014,
2019

M_34 swamp
shrubland

7.0 Blechnum indicum,
Elaeis guineensis,
Syzygium sp.,
Melaleuca
leucadendra,
Combretocarpus
rotundatus

2014

M_35 swamp
shrubland

8.0 Nephrolepis
biserrate, Lepironia
articulata,
Melaleuca

2015

(continued on next page)
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agrarian treatments. All test sites suffered wildfire impacts at some point
in the past, and for six test sites (one swamp shrubland M_32 and five
agriculture fields S_11, S_13, MS_15, MS_16_01, and M_30) active fires
burned the sites during the analysed period in the year 2019 (Table 1).
One uncultivated agricultural field test site (M_19) was subjected to
removal of woody vegetation. At four test sites (S_11, M_19, M_30,
M_32), water above the ground was detected based on visual inspection
of optical satellite data, i.e. Planet, Sentinel-2, Landsat and field
reconnaissance.

To answer the second question about the correspondence between
SBAS-derived displacement and in situ observations (ground water level
and surface elevation) varying with hydrological conditions we used the
group of test sites shown in Table 2.

The availability of adequate in situ observations describing hydro-
logical conditions (SM – soil moisture, GWL – groundwater level) for
validation of the satellite products over a multi-year period is very
challenging in this situation due to the heterogeneous land cover across
the study area, which ranges from a dense forest in Sebangau National
Park to more open, heavily managed land covers in Block C. In the re-
gion, there are some measurement stations managed by the Indonesian
Peat and Mangrove Restoration Agency (BRGM) providing real-time
(hourly temporal resolution) groundwater level (m) and soil moisture
(kg/m2) data. Daily data are available freely from the “Sistem Peman-
tauan Air Lahan Gambut” (SIPALAGA) project (https://sipalaga.brg.go.
id/). For each variable, minimum, mean, and maximum values are
provided for each measurement date. In this study, we obtained data
from the eight SIPALAGA stations that sit within our AOI, at daily in-
tervals in the periods specified in Table 2. Additionally, we gathered
data from six measurement stations of the novel low-cost and high-
resolution camera system developed as a part of the project PASSES:
Peatland Assessment in Southeast Asia by Satellite, and project SUS-
TAINPEAT: Overcoming barriers to sustainable livelihoods and envi-
ronments in smallholder agricultural systems on tropical peatland
(Evans et al., 2021). Peat cameras provided measurements of peat sur-
face subsidence and water table dynamics in periods specified in
Table 2. We used GWL and peat surface displacement to compare them
with displacements measured from SBAS (question 2) at SIPALAGA and
PASSES peat cameras locations (Fig. 1 and Table 2).

Over all test sites, we obtained information about SM from the soil
moisture content maps of the System for Earth Observation Data Access,
Processing and Analysis for Land Monitoring (SEPAL; https://sepal.io/).
SEPAL is an open-source platform that provides sufficient spatial reso-
lution (< 50 m) and timing to check how SM affects SBAS results. SM
from SEPAL is estimated based on multispectral (Sentinel-2, Landsat-8)
images and SAR data (Sentinel-1) and validated using ground-based
SIPALAGA measurements, with an overall estimation accuracy of
Root-Mean-Squared-Error (RMSE) 0.04m3m− 3 and R2 0.81 (Greifeneder
et al., 2021). It is worth noting that SM from SEPAL shows only relative
values, while ground measurements show absolute SM values, which
results in SM differences between the two sources.

Table 1 (continued )

Test site Land use
(based on
KLHK
database)

Peat depth
[m]
(based on in
situ
observations)

Vegetation (based
on in situ
observations)

Fire
history
(based on
MODIS
fire
product)

leucadendra,
Cratoxylon
glaucum, Acacia
sp., Combretocarpus
rotundatus, Baeckea
frutescens

S_11 S_13

MS_15 MS_16_01

MS_16_02 M_19

M_30 M_32

M_34 M_35

Fig. 2. Representative pictures of the test sites used for evaluating how surface
hydrological conditions impact time series of coherence.
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2.3. Climatic data

The climate of the test site is tropical, with a fairly distinct division
into two seasons. The wet monsoonal season occurs between November

and April, and a relatively drier season occurs for the rest of the year.
There is some inter-annual variation in the start date of the wet and dry
seasons. This is primarily caused by the influence of the El Niño
Southern Oscillation (ENSO), where drier conditions are experienced
during El Niño events and wetter conditions during La Niña events
(World Bank Group and Asian Development Bank, 2021). Data avail-
ability for our research spanned a 6-year period (2017–2022), including
both dry (El Niño) and wet years (La Niña). We term a hydrological year
to mean the period of twelve months commencing 1 November of any
given year and ending 30 October of the following year; for example, the
2013 hydrological year starts in November 2012 and ends in October
2013. The average annual rainfall for the hydrological years 2013–2022
averages at 2965 mm (Fig. 3). In the hydrological year 2019 an El Niño
prevailed (https://ggweather.com/enso/oni.htm) and rainfall
decreased to below 2500 mm, and very low precipitation was recorded
in the dry season (below 500 mm). Rainfall was around the average in
the hydrological years of 2017, 2018 and 2020, slightly below average
in 2021, and 2022 was a wetter year with rainfall higher than the annual
average. (Fig. 3).

2.4. Satellite data

C-band (~5.3 cm) Synthetic Aperture Radar (SAR) data acquired by
the only one of the Sentinel-1 satellite of the European Space Agency
(ESA) were used (only Sentinel-1 A satellite was operating over the study
area at the time of analysis). A total of 159 Single Look Complex (SLC)
images in Interferometric Wide (IW) swath mode from descending orbit
(relative orbit 3) were used, covering the period from November 2016 to
October 2022 (Table S1 in supplementary materials). The revisit time of
Sentinel-1 A observations from identical observation geometry is 12

Table 2
Characteristics of sites used to compare in situ measurements (GWL and surface
elevation) with SBAS-derived displacements.

Test site Land use (based on
KLHK database
2019)

Peat
depth
[m]

In situ
data
type*

Data
availability
time

BRG_621103_05 swamp shrubland 1.5
GWL,
SM

02/12/
2018–17/04/

2020,
19/04/

2022–31/10/
2022

BRG_621106_05 agricultural field 5.5
GWL,
SM

19/04/
2022–31/10/

2022

BRG_621107_02 agricultural field 0.0
GWL,
SM

19/04/
2022–31/10/

2022

BRG_621107_03 agricultural field 0.5 GWL,
SM

03/12/
2018–17/04/

2020,
19/04/

2022–31/10/
2022

BRG_621107_06 agricultural field 0.5 GWL,
SM

19/04/
2022–31/10/

2022

BRG_621107_07 agricultural field 3.5
GWL,
SM

19/04/
2022–31/10/

2022

BRG_621107_08 agricultural field 1.0
GWL,
SM

19/04/
2022–31/10/

2022

BRG_627104_06 agricultural field 1.5
GWL,
SM

07/12/
2018–17/04/

2020,
19/04/

2022–31/10/
2022

CKAL_001 agricultural field 2.9
GWL,
PS

18/01/
2019–12/09/

2020,
01/11/

2019–12/09/
2020

CKAL_002
agricultural field, oil
palm 3.8

GWL,
PS

22/12/
2018–19/10/

2021,
21/01/

2011–28/10/
2022

CKAL_003
classified as
agricultural field,
covered by trees

2.5 GWL,
PS

24/02/
2020–18/09/

2020,
01/11/

2019–18/09/
2020

CKAL_004 open ground 2.7 GWL,
PS

01/01/
2019–19/09/

2020

CKAL_005 agricultural field 3.6
GWL,
PS

24/02/
2020–19/07/

2020,
01/11/

2019–19/07/
2020

CKAL_006

classified as
agricultural fields,
covered by fern
shrubs

2.7 GWL,
PS

27/12/
2018–27/05/

2020

* GWL – ground water table, SM – soil moisture, PS – peat surface elevation.
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Fig. 3. a) Annual rainfall for hydrological years 2012–2022 b) Monthly rainfall
for hydrological years 2017–2022 at Tjilik Riwut Meteorological Station ob-
tained from Meteorology, Climatology, and Geophysical Agency of Indonesia
(https://dataonline.bmkg.go.id/).
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days. Due to technical issues like a SAR antenna anomaly, calibrations,
and others reported on ESA’s website [https://sentinel.esa.int
/web/sentinel/news], the gaps of continuity in image acquisition of
maximum 3 consecutive images were noticed a few times during the
whole period. The gaps occurred in years 2019–2021 during dry season
(May–July), in 2022 at the beginning of the wet season (October–No-
vember). Within the swath, the incidence angle ranged from 30◦ to 53◦.
The incidence angle to the test site varied between 32◦ to 36◦. All scenes
used included both VV and VH polarisations, but VH cross-polarised SAR
images are known to be affected by volume scattering and are not
preferred for interferometric applications. For this reason, only VV co-
polarised images were applied to our study. The pixel spacing for
gathered acquisitions is 2.32 m in the range direction and 14.05 m in the
azimuth direction.

The Copernicus DEM GLO-30 was used as a reference Digital
Elevation Model (DEM) in the interferometric processing. The Coper-
nicus DEM is one of the global DSMs (Digital Surface Model) and is freely
available. GLO-30 offers global coverage at a resolution of 30 m with
absolute vertical accuracy less than 4 m, and absolute horizontal accu-
racy below 6 m (ESA, 2019).

3. Methodology

3.1. Conceptual experimental design and defining principles

Multitemporal DInSAR methods work efficiently in monitoring the
temporal evolution of subtle surface deformations affecting distributed
targets, but some limitations still exist (Li et al., 2022a). The essential
condition for using DInSAR and achieving reliable measurements of
ground displacements is to preserve phase coherence between two time-
lapse SAR images (Hanssen, 2001). In our research, we have chosen the
SBAS approach (Berardino et al., 2002), which uses SAR image pairs
with small temporal separation to limit the effects of distributed targets’
spatial and temporal decorrelation and cope with other decorrelation
sources (caused by various factors, including the difference in the ge-
ometry between the two acquisitions, differences in the Doppler cen-
troids, characteristics of the system, the specific processing parameters,
the chosen algorithms and/or decorrelation caused by atmospheric
heterogeneities and orbital errors (Hanssen, 2001)). We decided to use
the fundamental version of SBAS (Berardino et al., 2002) as it is the
principle of all modified approaches based on small baseline separation.
In the literature, other methods, developed for peat surface motions and
based on classical SBAS (e.g. ISBAS (Sowter et al., 2013); and Adaptive
HCTSs SBAS-InSAR (Zheng et al., 2023b)) can also be found.

Our approach was intended to examine the factors influencing the
effectiveness (area and accuracy) of the fundamental SBAS method for
characterising the condition of tropical peatlands and to answer

questions about the role of surface hydrological conditions in this. Fig. 4
shows the conceptual approach to the two research questions.

The first research question was answered by analysing the inter-
annual multitemporal coherence and velocity maps over the whole
AOI. Multitemporal coherence was estimated for each pixel, evaluating
the interferometric correlation among the various stack interferograms
along the temporal sequence. We also analysed how surface hydrologi-
cal conditions affect phase coherence, using soil moisture from SEPAL
and surface characteristic changes over ten test sites.

The second research question demanded an analysis of the corre-
spondences between time-series of displacements measured by SBAS
and in situ observations recorded by SIPALAGA (GWL) and PASSES
(GWL and peat surface height) observations. But first, the fitting quality
of the displacement model, calculated as RMSE using formula:

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Pi − Oi)

2

√

where Pi are values predicted by a linear model and Oi the values
observed (derived from the displacement time series) were evaluated to
determine the correspondence between satellite-derived phase mea-
surements and displacements modelled by SBAS. Then, Pearson’s cor-
relation coefficients (r) were calculated to evaluate similarity over time
with regard to the periodicity of the peat-surface motion oscillations,
which aligns with methodologies employed in prior studies (Hrysiewicz
et al., 2024). Correlation coefficient analyses were performed between
time series of displacements measured by SBAS and in situ observations
for periods corresponding to the in situ measurements and divided into
three subsets: 1) wet and dry seasons together, 2) dry season and 3) wet
season separately. SBAS-derived displacements were linearly interpo-
lated between the S1 acquisitions from 6/12 days to a daily frequency
corresponding to the in situ frequency, due to the small number of SBAS
samples within an analysed season. Next, the linear velocity (vertical
displacement rate in cm/year) with RMSE, calculated by least-squares
inversion regarding each season (dry, wet, wet+dry), hydrological
year and stack length, was analysed.

3.2. SBAS image processing workflow

Monitoring the dynamics of surface deformations using the SBAS
approach is possible by obtaining average displacement models and
displacement time series from a stack of at least 15–20 SAR images
(Crosetto et al., 2016). We adopted two strategies based on the length of
time-series, a full stack covering period of six hydrological years
(2017–2022) and short stack representing a hydrological year, where
each year was independently processed. A previous study adopting an
annual subset strategy yielded an improved density of SBAS retrievals

Fig. 4. Conceptual model outlining the project approach.
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compared to all-year subsets, explained because this accounted for dy-
namic surface scattering variations (Izumi et al., 2022b). The hydro-
logical year division via the short stack approach allowed us to analyse
hydrological conditions in the wet and dry seasons and relate them to
SBAS products. The number of acquisitions for the hydrological years
ranged from 24 to 29 (Table S1 in supplementary materials) and met the
requirements for a minimum number of acquisitions to deal with at-
mospheric errors. We tested three types of displacements models: linear,
quadratic and cubic (noting the technical consideration that quadratic
and cubic models, unlike linear ones, require high redundancy and
highly coherent interferograms to provide reliable results (Sarmap,
2022), whereas generally areas covered with vegetation are charac-
terised by low coherence (Brisco et al., 2017)). The results of the linear
model are presented in the main text, while the results of the other
models are presented in the supplementary materials.

The SBAS calculations were performed using the ENVI SARscape®
v6.1 software. The full documentation of SBAS procedure can be found
in SBAS tutorial by Sarmap – a software provider (Sarmap, 2022). The
following processing sequence and parameters were adopted:

1) Connection graph.

All Sentinel-1 SLC images from the analysed image stacks were
paired (Master and Co-master image), assuming the maximum temporal
baseline is 36 days which provides a forward and backward connection
to the three nearest acquisitions (12 days is an interval between two
consecutive images’ acquisitions from a single S1 satellite), and the
geometrical baseline does not exceed 5 % of the critical baseline value.
When the continuity of the registrations was interrupted, we used three
acquisitions forward and backward without limitation to the 36-day
assumption to avoid disconnected blocks of interferograms (Fig. S2 in
Supplementary Material). Such constraints made it possible to reduce
the number of image pairs with poor coherence and shorten the time-
consuming calculations whilst providing sufficient interferograms (to
build a small baseline subset network, following previous work
(Berardino et al., 2002; Cigna and Sowter, 2017; Yunjun et al., 2019;
Zheng et al., 2023b)).

2) Interferometric workflow.

Once the co-registration was performed, the flattened and filtered
interferograms, coherence images, and unwrapped phases were gener-
ated using Copernicus DEM GLO-30 and multilooked (1 in azimuth and
3 in range to exploit almost the S1 product’s full spatial resolution). The
interferograms were filtered using the Goldstein method (Goldstein and
Werner, 1998), and coherence was calculated in window size 9 × 9 (to
minimise bias during coherence calculation). Delaunay MCF (Minimum
Cost Flow - triangular grid) unwrapping method, was used. Delaunay
MCF offers greater robustness around areas of low coherence (Sarmap,
2022). A coherence level equal to 0.2 was applied, typical values are
stipulated in other studies as being between 0.15 and 0.55 (Berardino
et al., 2002; Cigna and Sowter, 2017; Palamà et al., 2022).

3) Ground Control Point (GCP) selection.

At the beginning of the next steps (the first and second inversions,
and the geocoding), the refinement and re-flattening are automatically
performed using GCPs. This step provides GCPs in stable areas. See
Supplementary Materials section 2.3 for a detailed description of the
GCP selection procedure.

4) First inversion.

The refinement and re-flattening were performed using manually
selected GCPs (Fig. S3 in supplementary materials). A singular value
decomposition (SVD) inversion is performed on the unwrapped

interferogram stack to determine a mean displacement rate. Next, the
phase of each interferogram is flattened using the estimated mean
displacement rate. Subsequently, a second phase unwrapping process is
applied to the entire stack.

5) Second inversion.

The displacements in Line of Sight (LOS), i.e. the date-by-date value
[mm] and velocity [mm/year], were generated. The spatial low-pass
and temporal high-pass filters (Berardino et al., 2002; Devanthéry
et al., 2014; Mora et al., 2003; Sarmap, 2022) were applied to the date-
by-date displacements to remove atmospheric phase components.
Additionally, related products, i.e. RMSE [mm] of the modelled dis-
placements, velocity precision corresponding to the velocity measure-
ment average precision [mm/year], and multitemporal coherence
showing how much the displacement trend fits with the selected model,
were generated. Outlier values treated as unwrapping errors or atmo-
spheric artefacts are filtered or removed based on inadmissible RMSE in
this step.

6) Geocoding.

The displacements in slant range geometry (LOS) were converted to
vertical displacements by division of them by the cosine of radar wave
incident angle and transformed into the geographic coordinate system
(EPSG:4326) with a resolution of 15 m by 15 m.

4. Results

4.1. Description of SBAS products

SBAS results for each image stack (linear displacement model)
generated a geospatial product showing the ground surface velocity
displacements in LOS (Fig. 5). Results for the quadratic and cubic models
are shown in supplementary Figs. S4.2-S4.3, respectively. These maps
show areas indicating an increase in the sensor-to-target slant range
distance in red vs. a decrease in the sensor-to-target slant range distance
in blue and stability in green. The main area in and around the city of
Palangka Raya (2.2◦S, 113.9◦E) shows temporal stability in surface
height in most years. Areas to the North-West (2.2◦S, 113.8◦E) and
South-East (2.3◦S, 114.05◦E) of the city are more variable in terms of
their surface height changes than other regions. Patterns of topographic
change are variable from year-to-year with the years 2018–2020 giving
very different responses, particularly in the area of improved agricul-
tural land (see also Fig. 1) to the South-West (2.2◦S, 113.8◦E) of the city,
which shows an increase in the sensor-to-target distance in 2018–2019
and a decrease in 2020. As a result of the analysis of the full stack
covering the years 2017–2022, the entire study area is stable, with a few
places indicating mild subsidence (for example, 2.25◦S, 113.95◦E). Lack
of coherence in the southeastern area of the AOI during 2021 and 2022
year resulted in missing data points (DS – distributed scatterers) for
these years (Fig. 6). Conversely, the coherence was consistently close to
1.0 around the city of Palangka Raya through the 2017–2022 time-series
meaning that SBAS retrievals were good in this region throughout the
monitoring period (Fig. 6).

Crucially to this study, displacement velocity maps (Fig. 5) show
different effective retrievals of surface displacement (i.e. DS coverage)
for each hydrological year. Forest areas and permanent water bodies
were excluded from the analyses a priori based on annual national land
cover maps provided by KLHK. Area distribution and land cover changes
within the AOI over analysed years 2017–2022 are shown in Fig. 7c, and
land cover maps in Fig. S1 in the supplementary materials. In
2017–2019, the SBAS results covered the biggest areas, from 55 % to 60
% on peat soils and from 33% to 35% on other types of soils (Fig. 7a). In
2020 and 2021, the area coverage by SBAS results dropped to around 40
% on peat soils and 25 % on other soils. The lowest area coverage

M.M. Mleczko et al.
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occurred in 2022 (35 % on peat soils and 20 % on other soils). Note that
surface moisture, a satellite-derived metric from the SEPAL project, is
shown in Fig. 7d and indicates a change between drier conditions
(2017–2019) and wetter conditions (2020− 2022).

Considering the area covered by SBAS results in reference to land
cover classes, the urban area is covered approximately 99 % throughout
the time-series (Fig. 7b). In the years 2017–2019, SBAS results over the
peat-covered open ground were 82 %, whilst the soil-covered open

Fig. 5. Map of velocity displacements based on the linear model for a-f) short stacks representing hydrological years 2017–2022, g) full stack. Areas of surface uplift
are shown in blue, stable areas in green and subsiding areas in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

M.M. Mleczko et al.
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Fig. 6. Map of multitemporal coherence for a-f) short stacks representing separate hydrological years, and g) the full stack covering six hydrological years
2017–2022. This is the absolute, normalised, complex sum of all the flattened (by subtracting the modelled phase) interferograms. The smaller the average residuals
in the flattened interferograms, the higher the multi-temporal coherence value until a maximum value of 1 (when the model perfectly fits the measures, and no
residuals are left).

M.M. Mleczko et al.
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ground was lower at 38–43 %. After which, in 2020 and 2021, both
decreased (45–49 % for peat-covered and 13 % for other open ground),
with further declines in to 4 % for other types of soils in 2022. In turn,
coverage of SBAS results in wetlands, independently of soil type was at
the same level of 55 % in 2017 and 2018, after which it increased to 60
% in 2019 and fell to 6–24 % in 2020–2022. Coverage by SBAS results
over farmlands gradually decreased from 70 % in 2017 to 52 % in 2022
on peat soil and from 24 % to 15 % on other types of soils. A gradual
decrease is also noticed for swamp shrubs, from 43 % in 2017 to 21 % in
2022 on peatlands. Coverage by SBAS results over swamp shrubs on
other types of soils ranges from 10 % to 19 % over the monitored time

period (Fig. 7b).
RMSE maps for the linear model in Fig. 8 (supplementary Figs. S5.2-

S5.3 for quadratic and cubic models, respectively) show that the area
around Palangka Raya has low RMSE (≤3 mm) throughout the years
2018, 2020, and 2021, indicated by dark blue points. The RMSE for this
area increased to 5 mm in 2017, 2019, and 2022. Referencing areas
south of the city of Palangka Raya (2.3◦S, 114.1◦E) affected by subsi-
dence in 2018 and 2019 (Fig. 5b,c), and areas North-West (2.2◦S,
113.8◦E) showing uplift in 2020 (Fig. 5d) show correspondingly higher
RMSE in these years (~10 mm) compared to surrounding areas (Fig. 8b,
c,d). Considering the full stack analysis (Fig. 8g), RSME is higher than in

a)

b)

c)

d)

Fig. 7. a) Area of land cover classes (excluding water bodies and forest) inside the AOI covered by SBAS retrievals, b) Area covered by SBAS retrievals in reference to
land cover classes and soil type, c) Area distribution of land cover classes within the AOI over separately analysed years from 2017 to 2022, d) soil moisture from
SEPAL shows drier conditions 2017–2019 compared to wetter conditions 2020–2022.

M.M. Mleczko et al.
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short stacks, showing widespread deviation from the linear model. 4.2. The correspondence between surface hydrological conditions and
time series of coherence

The dynamics of SM from SEPALmodule and the coherence matrix in

Fig. 8. Map of RMSE showing the fitting quality of the linear displacement model for a-f) short stacks representing separate hydrological years, and the g) full stack
covering six hydrological years 2017–2022. RMSE values are presented only for areas where in any hydrological year, the multitemporal coherence was greater
than 0.2.

M.M. Mleczko et al.
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a time series are shown in Fig. 9. Additionally, observed events are
marked, i.e. the appearance of water above ground level (blue wave
icon) and land cover changes due to fire (red flame icon) and forest
clearance (four green arrows icon). The coherence matrix indicates
coherence for each acquisition in a timeline (0 days on the vertical axis
on the right) in reference to the acquisitions behind and ahead 12, 24,
and 36 days; in other words, for each SAR pair (SP) used in the SBAS

approach. The values of 12, 24, and 36 days result from the S1 satellite
imaging interval and are the closest acquisitions. In our work, we adopt
the following interpretation to the coherence ranges: 0 – no coherence,
0–0.3 negligible coherence, 0.3–0.5 moderate coherence and 0.5–1.0
high coherence. Discontinuities in the SM plot and in the coherence
matrix are related to the lack of data during these periods.

The behaviour of SM dynamics in the time series is similar for all test
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Fig. 9. Time series of soil moisture from the SEPAL module and coherence matrix showing coherence for pairs up to three acquisitions behind and ahead over the
whole measurement period.
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sites across the six hydrological years from 2017 to 2022. SM was stable
during the whole of 2017 with a deviation of 5 percentage points (pp),
except June the 3rd, 2017, when heavy rain was recorded. In 2018 and
2019, when rainfall discrepancies between dry and wet seasons were
significant (i.e. very low precipitation during the dry season and very
high precipitation during the wet season, Fig. 3), the negative trend in
soil moisture throughout the hydrological year is noticeable. Years
2020–2022 experienced abundant rainfall in both the dry and wet sea-
sons, and these years show the highest SM with a deviation up to 10 pp.
The values range from about 5 % in the dry season of 2018 and 2019, up
to 45 % for the years 2020–2022.

Moderate or high coherence is seen across the whole analysed period
for two test sites, S_13 and MS_15 (uncultivated agriculture). The rest of
the test sites are characterised by variable coherence behaviour
depending on the season and the hydrological year. There is moderate
and high coherence for all test sites and SP with a time-lapse of up to 36
days in 2017, except for test site M_30, with a high water level above the
ground, and the wooded agricultural test site M_16_01. In 2018 and
2019, i) the lack of coherence persists for plots M_30 and M_16_01, ii)
high coherence is maintained for plots S_11, MS_15, MS_16_02 and
M_19, but only for pairs with a time-lapse of 12 days, iii) medium and
high coherence for polygons M_32, M_34 and M_35 in the wet season in
pairs with a time-lapse of 12 days, and in the dry season with a time-
lapse up to 36 days. In the years 2020–2022, i) three test sites show a
decrease in the number of SN with moderate and high coherence limited
to a maximum time-lapse of 12 days (M_16_02, M_34, M_35), ii) three
test sites havemoderate and high coherence in pairs with a time-lapse up
to 36 days iii) test sites M_30 and M_32 are characterised by variability
of high and moderate coherence between wet and dry seasons. In the
analysed time series, the relationship of the significant increase in
coherence after the fire for the M_16_01, M_30 and M_32 test sites and
after clearings in the M_19 test site is clearly visible. A slight change in
the increase in coherence is noticeable for S_11, S_13 and MS_15. In
general, the occurrence of water above the ground surface coincides
with temporally stable high coherence, except for the M_30 test site. A
strong dependence of changes in soil moisture on coherence was
observed in 2018 and 2019 for test sites M_34 and M_35, not interrupted
by fires.

4.3. The correspondence between in situ observations of peat surface and
GWL and time series of displacements in tropical peatlands

Due to partial/temporal availability of in situ or other hydrological
data, the analysis of the comparison of SBAS-derived displacements to in
situ peat surface and GWL measurements was performed only for the
selected hydrological years according to the availability of the data (see
Table 2). Only two of the eight available SIPALAGA data measuring
stations (BRG_621103_05 and BRG_627104_06) and six peat cameras
were located in the vicinity of DS generated from the SBAS approach.
Only four test sites had SBAS results that were deemed to be sufficiently
reliable when considering the number of points within the 50 m buffer
zone (BRG_627104_06, CKAL_001, CKAL_002, CKAL_004, CKAL_005).
Measurement points BRG_621103_05, CKAL_003 and CKAL_006 were
also included in comparison, but they do lie further from measurement
stations (up to 250 m).

The plots (Fig. 10) show time series of vertical ground displacements
estimated from SBAS processing (red dots – short stacks, grey dots – full
stack), changes in elevation of peat surface (black line), and GWL (blue
line) from in situ observations. SBAS estimations cover six analysed
hydrological years and are calculated as the mean value of displace-
ments of all DS in the given vicinity. Long discontinuities seen in Fig. 10g
in the SBAS dots are due to the lack of DS points meeting the criteria of
closest vicinity to the measurement station and minimum coherence.
Short discontinuities seen around July 2020 and June 2021 are due to
the lack of S1 acquisitions in this period. GWL from SIPALAGA obser-
vations (BRG stations) span the hydrological year 2019, the wet season

2020, and the dry season 2022. GWL from peat cameras (all CKAL sta-
tions) span the hydrological year 2020 and additionally CKAL_002 spans
2021. The peat surface elevation measurements performed by peat
cameras cover 2019 and 2020 year.

When combining the correspondence analyses from the various sites
in reference to hydrological years (Fig. 11), the correlations between
peat surface elevation measured in situ and by SBAS (Fig. 11a – short
stack, Fig. 11b – full stack) show some linearity particularly for sites
CKAL_001, CKAL_002, CKAL_004 and CKAL_005. The correspondence
between SBAS-derived surface displacements and GWL is much less
clear across a larger number of validation sites (Fig. 11c,d). There is a
very clear but site-specific correlation between water table and peat
surface elevation (Fig. 11e).

4.3.1. Correspondence between SBAS and in situ measured peat surface
displacement

The peat elevation data (Fig. 10a-f, black line) indicate high coherence
among sites with no data gaps (CKAL_001, CKAL_002, CKAL_004,
CKAL_005, CKAL_006). During the wet season at the start of the hydrological
year 2019, all sites exhibited stability (CKAL_003, CKAL_004, CKAL_006)
or slight subsidence (CKAL_001, CKAL_002, CKAL_005), followed by sus-
tained subsidence (from 3.06 cm at CKAL_005 up to 6.93 cm at CKAL_001)
during the severe dry season until the end of November 2019. Subsequently,
all CKAL sites, excluding CKAL_003, rebounded rapidly. CKAL_005 experi-
enced a complete rebound to early 2019 peat elevations, while others had a
partial rebound. The less severe 2020 dry season resulted in most sites
maintaining stable peat surfaces.

The correlation analysis (Fig. 12) was based on three subsets within
each hydrological year: two corresponding to different hydrological
conditions identified with wet and dry seasons separately, and one
corresponding to the hydrological year - wet and dry seasons together
(keeping in mind that the correlation is non-additive, meaning that the
correlation of the sum of samples from the wet and dry seasons is not
equal to the sum of correlations from the wet and dry seasons).

The correlation coefficients vary significantly across different sites
and seasons. In the short stack analysis of the linear displacement model
(Fig. 12a), the correlation ranges from no correlation (r = 0.15, at site
CKAL_002 in the wet+dry season of 2021) to very high correlation (r =
0.99, at CKAL_002 in 2019 wet+dry; CKAL_002 in 2019 dry and
CKAL_004 in 2019 dry). The full stack analysis (Fig. 12b) shows a similar
range, from low correlation (R= 0.18, CKAL_003 in 2020 wet season) to
high correlation (r = 0.94, CKAL_001 and CKAL_002 in 2019 (both
wet+dry)).

Next looking at the sign of correlation coefficient in the short stack
analysis indicates that correlations in 2019 are consistently positive
across various sites (Fig. 12a), while correlations in 2020 are generally
negative, with some exceptions for CKAL_003 and CKAL_006 – these
sites were located at the greater distance of 300 m from SBAS-retrieval
points (Fig. 12a).

Making a comparison of inter-annual responses across hydrological
years for short stacks there is a pattern of higher correlation in 2019 than
in 2020 for the wet + dry subsets, higher correlations in 2020 than in
2019 for wet subsets, and similar correlation or slightly lower values for
the dry subsets in both years 2019 and 2020 (Fig. 12a). Considering the
full stack (Fig. 12b), higher correlation coefficients were found in 2019
than in 2020 for the dry and wet+dry seasons, whilst the opposite is true
for wet seasons.

Finally, querying the data in Fig. 12a from an intra-seasonal
perspective, the correlations vary across different seasons and stack
lengths. In general (regardless of sign), the variance is lower for dry
seasons than for wet or wet+dry seasons.

The correspondence between measurements from in situ and SBAS
was also analysed through a relationship of displacement velocity
(Fig. 13a,b; Table 3) regarding hydrological seasons (wet, dry and
wet+dry). When considering the agreement of displacement directions,
most of the wet+dry season direction signs match (Fig. 13a,b; black dots
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Fig. 10. Time series of peat surface elevation from peat cameras and SBAS-retrieved measurements based on linear model (left y-axis), groundwater level (right y-
axis) a-h) for specific test sites. See Fig. S6.1–6.8 in Supplementary Materials for quadratic and cubic models.
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in the white area of the plots). For the wet and dry season, regardless of
stack length, there is a variety (blue triangles and grey squares in the
white and grey areas).

Looking at the relationship between the displacement velocity of
peat surface changes from in situ and SBAS displacements, data are more

clustered for full stack (Fig. 13b) than for short stack (Fig. 13a). The
error bars (RMSE) show that both the in situmeasurements and the SBAS
displacements have some uncertainty (Fig. 13c,d). Moderate matching
of peat surface velocity to SBAS-retrieved velocity is observed for the
wet+dry season and full stack (Fig. 13d). Generally, displacement

Fig. 11. Scatter plots showing the relationship between, peat surface elevation from in situ and vertical SBAS displacements (interpolated between S1 acquisitions
dates) for a) short stack and b) full stack; water table and vertical SBAS displacements for c) short stack and d) full stack; e) peat surface elevation from in situ and
water table for all validation sites.

M.M. Mleczko et al.



Remote Sensing of Environment 331 (2025) 115009

17

velocities are higher for SBAS measurements than for in situ measure-
ments in dry seasons, and the opposite in wet seasons (Fig. 13c,d).

Analysis of linear seasonal velocities within hydrological years in-
dicates that differences in average peat velocity from in situ and SBAS
range from 0.21 to 5.49 cm/year for short stack and from 0.08 to 4.02
cm/year for full stack (Table 3), noting RMSE sometimes shows high
uncertainty (17.69 cm). The average difference between the peat ve-
locity from in situ and SBAS displacement velocity for the dry season is
smaller for the full stack (− 1.53 cm/year) than for the short stack
(− 3.05 cm/year). Similarly to the wet season, where the average dif-
ference is 2.12 cm/year and 1.61 cm/year for short and full stack,
respectively (Table 3). Taking into account the wet+dry season the
average difference in velocities is slightly smaller for short stack than for
full stack.

Statistically, comparing seasons (Table 4) and looking at Pearson’s
coefficient in the dry season, there is a moderate positive correlation
between peat and SBAS velocity for short stack (0.41), no correlation for

full stack (− 0.11). During the wet season there is weak correlation with
both short and full stack (Table 4). In turn, there is a strong positive
correlation in wet+dry between peat and SBAS velocity for full stack
(0.73) and moderate for short stack (0.62). Considering the paired-
samples t-test, p < 0.05 indicates a statistically significant difference
between the SBAS modelled velocity and in situ peat measurements. The
difference between peat velocity and SBAS velocity for full stack in wet
season is significant (p = 0.043). No significant differences (p > 0.05) is
for other seasons, but wet (short stack) is close to the threshold.

4.3.2. Correspondence between SBAS and groundwater level
Throughout the analysed period, groundwater level fluctuates (in

Fig. 10) and varies from site-to-site. At sites CKAL_001, CKAL_002 and
CKAL_005, GWL rapidly fluctuates with 0.25 m amplitude from
February to July 2020, keeping an overall stable trend. At site
CKAL_004, the range of fluctuations rises until the beginning of the dry
season of 2020, after which it decreases. During the transition from the

a) b)

Fig. 12. Correlation between SBAS time-series of displacements and in situ peat surface observations for a) short stack and b) full stack. Statistical metrics are
divided into three subsets: wet and dry season together (wet + dry) and dry and wet season separately. Vertical lines separate hydrological years. All presented
correlations have p-values (statistical significance) less than or equal to 0.05. See Fig. S7 in Supplementary Materials for quadratic and cubic models.

Fig. 13. The relationship between displacement velocity [cm/year] of peat surface changes from in situ and SBAS measurements for a) short stack and b) full stack.
Error bars represent RMSE. White area means the same directions of velocity, grey area means opposite directions of velocity. See Fig. S9 in Supplementary Materials
for quadratic and cubic models.
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dry to the wet season in 2020, the CKAL_004 experienced a significant 1
m GWL drop. At site CKAL_003, no fluctuations are visible due to the
discontinuity of the acquired data. At sites BRG_621103_05 and
BRG_627104_06 in 2019 and 2020 there is a clearly visible decrease in
GWL between the wet and dry seasons (Fig.10g-h). At points
BRG_621103_05 and BRG_627104_06 in the wet season of 2019 the GWL
fluctuations are significant, and their amplitude varies 0.5 m above and
below the ground. At site BRG_621103_05 during the dry season 2022,
the groundwater level decreases until mid-September, after which the
water rises to above the ground and rapidly fluctuates (twice between
mid-September and the end of October). During this time, the water
level above the soil surface fluctuated between 0 and 50 cm within two
weeks (Fig.10g). In the case of the site BRG_627104_06, the water level
above the soil surface varies from 10 cm to 50 cm within two week
periods throughout the dry season (Fig. 10h). Looking at the co-located
GWL/peat stations (Fig.11e), as the water level below the soil surface
decreases, the peat surface level decreases (Fig. 11e, markers below zero
on the x- and y-axis). When the water level is above the ground, the peat
surface level remains at the same level (Fig. 11e – grey markers above
zero on the y-axis).

The correlation coefficients considered to be statistically significant
(p < 0.05), between GWL from in situ and SBAS measurements vary
significantly across different sites, years and seasons. A span of corre-
lation values and variability occurs from 0.2 to 0.99 (Fig. 14 and

Tables S3a,b).
Looking at the sign of the correlation coefficient, the analysis shows a

mixed pattern in the sign of the correlation coefficient for all stack
lengths. Correlations in 2019 are consistently positive across various
sites for the short linear model (Fig. 14a), while correlations in 2020 are
generally negative, with some exceptions for CKAL_003, CKAL_006, and
BRG_621103_05 located at the greater distance of 300 m from SBAS-
retrieval points.

For most of the test sites for the short stack, linear model (Fig.14a)
for which the water level above ground level was observed throughout
the analysed period (Fig. 14d), and especially for the dates corre-
sponding to the S1 acquisition dates (Fig. 14c), a lack, low correlation or
p> 0.05 is noticeable (see supplementary Table S3a,b). The exception is
the BRG_621103_05 site in 2019, which had a correlation range of 0.72
(dry, wet+dry) to 0.77 (wet).

Considering the displacement velocity, the velocity of the GWL
changes within the season is several times larger than the velocity of the
SBAS-derived displacements (Fig. 15a-b). Considering the displacement
directions, generally, co-located stations with both GWL and peat in situ
measurements (Fig.15c) show agreement in displacement directions for
wet (positive values) and dry season (negative values), but taking into
account dry+wet season, displacement directions don’t match (black
dots). In overall SBAS and GWL measurements at all validation sites, the
displacement directions are more various and velocities are site-specific,
not season-specific (Fig. 15a,b).

5. Discussion

5.1. Does the area-effectiveness and reproducibility of the SBAS approach
on an inter-annual basis depend on hydrological conditions and if so, how?

The fundamental limitations of SBAS Interferometry using C-Band
Sentinel-1 data, resulting from short wavelengths and scattering mech-
anisms in the natural environment, are related to areas where the land
cover is forest and open water. C-band wavelengths interact mainly with
upper sections of the forest canopy and are characterised primarily by
volume scattering that does not show high enough level of the phase
coherence required for InSAR measurements. Surface waters are by
definition excluded from interferometric analyses. In our work,
restricted to tropical peatlands and wetlands covered by vegetation
(Fig. 7c and Fig. S1 in supplementary materials), the area-effectiveness
of the SBAS approach was variable within individual classes and its
changes should be interpreted as changes in the proportionate retrievals
of surface information with respect to those land use classes, i.e. from
year to year there are fluctuations in successful SBAS retrievals across
the site (Fig.7b). This highlights the operational challenges with
applying SBAS to the study of surface displacements in areas with
complex and heterogeneous land cover. The SBAS approach using C-
band SAR has been demonstrated to be able to obtain retrievals of sur-
face displacement from 34.5 % to 60 % of eligible distributed scatterers
within the peat soils (from 390 to 826 km2) and from 20 % to 55 %
within other types of soils of the AOI depending on the hydrological year
analysed (Fig. 7a). It is not possible to compare fully these values with
other works because of specificities in the land cover of different sites,
differences in the way that retrievals are reported (e.g. some studies
report densities of points per km2 (Zhang et al., 2019)), differences in
output pixel size across studies, and in analysed time-frame, which will
deliver different outcomes. However, we see the same pattern of dis-
placements and reduction in the number of coherent scatterers, which is
consistent with the results obtained in the same area in Central Kali-
mantan as in Izumi et al. (2022b) work.

Several important factors, such as i) input data inconsistencies, ii)
processing parameters inconsistencies, iii) transmitting and receiving
SAR signal delay (Doin et al., 2009), and iv) volume scattering and
temporal changes of ground objects, might cause differences in the area-
effectiveness and reproducibility of the SBAS approach over the same

Table 3
Summary of the average differences in velocity displacements and RMSE, esti-
mated from the SBAS approach and velocity of peat surface from in situ mea-
surements in reference to the analysed hydrological season and stack length.

Season Hydroyear Peat velocity from in
situ and SBAS
displacements
velocity
(short stack, linear
model)

Peat velocity from in
situ and SBAS
displacements
velocity
(full stack, linear
model)

Average
diff.
[cm]

RMSE
[cm]

Average
diff.
[cm]

RMSE
[cm]

dry 2019 − 2.92 8.53 − 0.50 17.69
dry 2020 − 3.63 5.09 − 2.83 3.40
dry 2021 − 0.33 0.33 0.08 0.08

dry
whole analysed

period ¡3.05 6.75 ¡1.53 12.24

wet 2019 − 0.62 1.86 − 0.42 1.39
wet 2020 5.49 6.32 3.82 4.38
wet 2021 0.23 0.23 0.58 0.58
wet 2022 0.21 0.21 1.50 1.50

wet whole analysed
period

2.12 4.31 1.61 3.04

wet+dry 2019 − 3.40 4.36 − 4.02 4.80
wet+dry 2020 0.87 3.02 0.24 1.37
wet+dry 2021 − 0.39 0.39 0.42 0.42
wet+dry 2022 0.21 0.21 1.50 1.50
wet þ
dry

whole analysed
period

¡1.10 3.47 ¡1.48 3.29

Table 4
Summary of the t-test comparing averages and Pearson’s coefficient assessing
the strength and direction of the linear relationship between displacement ve-
locity of peat surface changes from in situ and SBAS displacements.

Peat vs SBAS (short stack)
velocity of vertical displacement

Peat vs SBAS (full stack)
velocity of vertical displacement

Season t-test p
value

Pearson’s
coefficient

t-test p
value

Pearson’s
coefficient

dry − 1.75 0.10 0.41 − 0.44 0.67 − 0.11
wet 2.03 0.06 − 0.13 2.25 0.04 0.22
wet+dry − 1.20 0.25 0.62 − 1.82 0.09 0.73
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area. This assumes that the other decorrelation sources are reduced by
using the SBAS technique (Berardino et al., 2002), as mentioned in
Section 3.1. In our approach, we used a similar input dataset (number of
images, image distribution in spatiotemporal baseline network, number
of interferograms, number of connections), the same processing pa-
rameters (coherence threshold, unwrapping method etc.), plus we
removed atmospheric delay by spatiotemporal filtering at the second
inversion. Therefore, we identify the volume scattering and temporal
changes as the main reason for differences in the area-effectiveness and
reproducibility of the SBAS approach on an inter-annual basis. Within
this we can distinguish land cover changes (e.g. vegetation growth, fires,
land management), hydrological peatland condition (e.g. soil moisture,
water table level, inundations), and climate/weather (e.g. rainfall,
wind). Some studies also underline that microtopography (hummocks
and hollows) could be associated with distinct peat surface motion be-
haviours in temperate peatlands (Marshall et al., 2022). In our work, we
include annual land cover maps for each calendar year from 2017 to
2022, and we perform analyses within a given class, presenting results as
percentages rather than absolute values. Therefore, we do not identify
changes in the general land cover classes as sources of SBAS retrieval

reduction. Although the distribution and area size of the land cover class
changes (Fig. 7c), which can also be seen on the maps in Fig. S1, we
don’t connect this with a change in the area covered by SBAS retrieval.
Some classes indeed show a relationship between the reduction of the
class area and the reduction of the number of SBAS retrievals. For
example, the open ground area on peat soils and the wetland class
decreased in 2020 (Fig. 7c), as did the number of SBAS retrievals
(Fig. 7b). In contrast, the open ground area on other soils remained the
same, and the number of SBAS retrievals decreased. The area of agri-
cultural land, neither on peat nor other soil, did not change (Fig. 7c), and
the number of SBAS retrievals decreased (Fig. 7b). Izumi et al. (2022b)
indicate that massive seasonal fire events and vegetation growth mainly
cause decorrelations, we demonstrate that hydrological conditions play
an important role in it as well (Fig. 9). As described in Section 4.1,
displacement velocity maps (Fig. 5) show different effective retrievals of
surface displacement for each hydrological year. We presented that the
area coverage depends on the multitemporal coherence shown in Fig. 6.
In the southeastern part of Palangka Raya (2.6◦ N, 114.1◦ E), there was a
loss of temporal coherence in 2020–2022 compared to 2017–2019
consistent with higher soil moisture variations respectively (see SEPAL

a)

c)

b)

d)
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x
x xx

xx x x
x x x xx

x x x xx xx x x x x

Fig. 14. Correlation between time-series of displacements measured by SBAS and in situ observations groundwater level observations for a) short stacks and b) full
stack. Test sites with water above ground level are marked with x (red); c) Mean, minimum and maximum groundwater level measured for dates corresponding to S1
acquisitions; d) Mean, minimum and maximum groundwater levels measured for all dates within the analysed period. Statistic metrics are divided into three subsets:
wet and dry season together (wet+dry) and dry and wet season separately. Vertical lines separate hydrological years. All presented correlations have p-values (sta-
tistical significance) less than or equal to 0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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data (Fig. 9) and please bear in mind that there were no land cover class
changes (Fig. S1 in supplementary materials)). This would mean that
during periods of conditions when swamps display extreme variability
due to the strength of episodic water inputs i.e. rain (Price et al., 2023),
effective retrievals of surface displacement are weaker. The relationship
between loss of coherence and soil moisture variations has already been
demonstrated in many works (Hrysiewicz et al., 2023; Scott et al., 2017;
Zwieback et al., 2015). Additionally, we noticed that loss of the multi-
temporal coherence in our case study was consistent with an increase of
the soil moisture absolute values (Fig. 7d).

In this study we analysed in detail the evolution of coherence in time
and sources of temporal decorrelation for ten representative test sites, as
phase coherence is the essential requirement for InSAR analysis. Several
general patterns can be identified based on test sites (Fig. 9):

− In wetter conditions, coherence is impacted and this is fairly
consistent regardless of land cover. At the test sites that did not suffer
from fires in 2019 (M_16_02, M_34, M_35, and M_19 until land
clearings in 2022), there is an apparent decrease in coherence from
2020 as the time interval between S1 acquisitions increases (Fig. 9).
After 2020, an increase in the average groundwater level was noted.
GWL oscillated between 0.5 m above and − 0.5 m below ground
(Fig. 10), unlike in 2019, from 0.5 m even to − 1.5 m below ground.

− Wetter conditions also influence inter-seasonal coherence (between
wet and dry seasons). When surface water significantly fluctuates
above the ground in the wet season, the coherence is not sustained
for a long time (only for the closest S1 acquisitions, Fig. 9), whilst the
opposite is the case during the dry season (M_34, M_35 in
2018–2019) when coherence is preserved for longer intervals be-
tween acquisitions. Tampuu et al. (2020a) also reported a relation-
ship between seasonality and decorrelation in temperate peatlands.
Open bogs showed a better correlation when the GWL difference
between the acquisitions was reduced (Tampuu et al., 2020a).

− In swamp sites (e.g.M_34, M_35; Fig. 9) with no floods (water above
the vegetation) or fires during the time sequence, dry periods
correspond directly to improvements in coherence. This is not re-
flected as strongly in agricultural sites M_16_02 and M_19 (Fig. 9),
although those sites were likely to be more dynamic in terms of land
cover changes.

− Fire, which occurred in the very dry season of 2019 generally
increased coherence because vegetation was removed, delivering
greater likelihood of double bounce from lying tree trunks (M_15,
M_16_01; Fig. 9).

5.2. How does the correspondence between SBAS-derived displacement
and in situ observations (ground water level and surface elevation) vary
with hydrological conditions?

Previous studies have demonstrated time-series comparison of
InSAR-derived displacement over non-tropical peatlands using in situ
peat surface elevation (Marshall et al., 2022; Tampuu et al., 2023) or
peat surface with groundwater level (Hrysiewicz et al., 2024; Hrysiewicz
et al., 2023). Umarhadi et al. (2021) extended this approach to tropical
peatlands by converting GWL data to surface elevation. However, our
study is the first to directly validate InSAR results in tropical peatlands
using collocated measurements of both GWL and peat surface elevation.
Unlike prior work, which did not report substantial above-ground water
fluctuations, our study accounts for seasonal hydrological variability,
including periods when water levels exceed the ground surface. Given
that SAR signals reflect the first surface encountered, this variability
introduces uncertainty in interpreting displacement signals. We there-
fore compare GWL and peat surface data to assess the influence of hy-
drological conditions on SBAS-derived displacements across seasons and
hydrological years.

5.2.1. Relationship between SBAS displacements and peat surface
measurements

Reported average difference between InSAR and in-situ peat velocity
over non-tropical peatlands was 1.6 cm/year for Marshall et al. (2022),
2.9 cm/year for Tampuu et al. (2023), 0.7 cm/year for Hrysiewicz et al.
(2024), and tropical peatlands from 1.5 to 2.1 cm/year (depending on
land use class) for Umarhadi et al. (2021). Our study showed a mismatch
from 0.21 to 5.49 cm/year for short stack and from 0.08 to 4.02 cm/year
for full stack for different seasons (Table 3). At this point, supporting the
findings of Hrysiewicz et al. (2024), we confirm that shorter time-series
are associated with greater discrepancies. Analysis of hydrological sea-
sons shows that the wet+dry season is slightly better estimated using
short stack (− 1.10 cm/year) than full stack (− 1.48 cm/year), as shown
in Tables 3 and 4. In the dry season, although the difference in velocity
for the short stack is twice as large (− 3.05 cm/year) as for the full stack
(− 1.53 cm/year), the uncertainty is significantly larger for the full stack
(12.24 cm/year). In the wet season, difference in velocity for the short
stack (2.12 cm/year) is slightly lower than for full stack (1.61 cm/year),
but based on t-test the difference between peat velocity and SBAS ve-
locity for full stack in wet season is significant (0.43), while for short
stack is close to the threshold (0.06). The full stack analysis also shows a
more mixed pattern in the sign of the correlation coefficient of dis-
placements, compared to short stacks (Fig. 12). Moreover, in accordance

a) b) c)

Fig. 15. The relationship between displacement velocity of groundwater level changes from in situ and SBAS displacements for a) short and b) full stack,; c)
relationship between displacement velocity of groundwater level changes and peat surface elevation only from collocated in situ sites. White area means the same
directions of velocity, grey area means opposite directions of velocity. See Fig. S10 in Supplementary Materials for quadratic and cubic models.
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with the work of Izumi et al. (2022b), we have shown that the use of long
time series leads to a significant loss of the number of SBAS points
(Fig. 5) as well as to the loss of fluctuation dynamics in somemodel cases
(supplementary Figs. 4.1–4.3), explaining these patterns. Displacement
estimates derived from SBAS show seasonal biases, with consistent un-
derestimation during dry periods and overestimation during wet seasons
across all models and stack types. This pattern aligns with previous
studies (Alshammari et al., 2018; Marshall et al., 2022; Tampuu et al.,
2023), which also reported displacement underestimation under
drought conditions. The most pronounced underestimation in our study
occurred in 2019 (Fig. 10a,b,d), regardless of the stack length or
displacement model used.

In addition to the quantitative accuracy analysis, we examined the
trends of the displacements from in situ and SBAS measurements. At
some sites, trends did not agree. For example, CKAL_001, CKAL_002,
CKAL_004, CKAL_005 showed high negative correlations between peat
surface and SBAS displacements in all season subsets in 2020 (Fig. 12a).
For CKAL_001 and CKAL_005, this mismatch likely results from high-
frequency hydrological fluctuations near the surface (Fig. 10a,e) com-
bined with phase unwrapping uncertainties - potentially interrelated
factors requiring further investigation. In CKAL_004 the explanation is
more likely to be driven dominantly by hydrological effects; the corre-
lation switches here because of surface water being present above the
ground, causing the SBAS method to measure changes in water level
rather than changes in the elevation of the peat surface (e.g. in Fig. 12a
the peat level remains stable while the water level fluctuates above the
ground). Additionally, soil moisture variations can affect radar phase,
introducing displacement errors of 10–20 % of the radar wavelength
(Zwieback et al., 2017).

5.2.2. Relationship between SBAS displacements and GWL measurements
Groundwater level (GWL) is recognised as the primary driver of peat

surface displacement (Evans et al., 2021; Ledger et al., 2023), and our
test sites confirm this with a clear linear relationship between GWL and
peat surface elevation (Fig. 11e). However, the correlation between
SBAS-derived surface displacements and GWL is less clear across vali-
dation sites and varies by location (Fig. 11c,d). For example, at
BRG_627104_06, BRG_621103_05, CKAL_001, and CKAL_004, GWL
fluctuates without a corresponding SBAS response. This discrepancy
likely stems from site-specific hydrological complexity and land cover
differences (Fig. 2), as well as the smoothing effect of SBAS filtering,
which may oversimplify highly variable water table dynamics (Fig. 10).
Therefore, model selection is critical. No single approach suits all con-
ditions, and models must be tailored and validated for each study period
(see supplementary Fig. S6-S7). Currently, many improvements to the
fundamental SBAS approach have been developed (Li et al., 2022b),
including the integration of machine learning for InSAR time series, e.g.
through the automated selection of high-quality interferograms, which
improves displacement accuracy and reduces noise (He et al., 2021).

The SBAS approach, designed for detecting subtle surface changes,
may not detect large water level changes above ground (e.g., flooding),
especially when rapid fluctuations occur between Sentinel-1 acquisi-
tions. For instance, at site BRG_627104_06, a 40 cm change in water
level within two weeks has been recorded (Fig. 10c), highlighting the
influence of hydrology on displacement responses. We also didn’t
observe rapid deformation due to peat loss, although significant subsi-
dence (51 cm) linked to fire was reported in 2019 (Kusin et al., 2020).
Furthermore, the southeastern area of Palangka Raya, represented by
test sites M_34 and M_35, shows that multitemporal coherence in the
years 2020–2022 is low, while phase coherence occurs but is limited to
the maximum time-lapse of 12 days between SAR acquisitions. This may
mean soil moisture variations or periodic fluctuations in the water level
in the analysed period, with the high RMSE constituting evidence for
this (supplementary Figs. S5.1–5.3). The solution to this can be found in
the synergy of multi-frequency and multi-mission SAR data (e.g.,
Sentinel-1, NISAR, ROSE-L, Biomass) that will provide richer temporal

and spatial coverage, enabling more robust monitoring of dynamic
peatland processes.

To overcome the limitations of InSAR in tropical peatlands due to
vegetation presence, several advanced methods are emerging. Missions
like Biomass (launched in 2025), operating in P-band, are expected to
significantly enhance subsurface sensitivity, though they will require
complex processing techniques such as Tomographic SAR (TomoSAR).
TomoSAR offers the potential to resolve vertical scattering structures,
which is particularly valuable in forested peatlands where volume
scattering dominates. Polarimetric InSAR (PolInSAR) can further
improve discrimination between canopy/vegetation and ground signals,
aiding in more accurate displacement retrieval.

6. Conclusions

SBAS interferometry using Sentinel-1C-band data has previously
been shown to be useful for determining peatland surface displacements
and thus potentially can be a tool for providing proxy values for eco-
hydrological parameters critical in peatland restoration. Nevertheless,
natural areas covered with vegetation are still a challenge in the use of
InSAR, especially when working on short wavelengths (e.g. C-band) and
new methods or improvements are being sought to provide higher ac-
curacy and area efficiency. Regardless of the method chosen, ground
target-based decorrelation sources exist. Our study aimed to fill the gap
in studies about the role of hydrological tropical peatland conditions,
which can change more dynamically than temperate peatlands, i.e., the
amplitude of fluctuations is higher. This is potentially a source of tem-
poral decorrelation in SBAS-derived measurements with potential to
introduce errors in the estimated deformations. Results from this work
are the first to show that when surface water significantly fluctuates
above the ground in the wet season, the coherence is not sustained for a
long time. This is the opposite of the dry season, when coherence is
preserved for longer intervals between acquisitions. The range of cor-
relation values between SBAS-derived displacements and in-situ peat
surface and ground water table measurements is higher for the dry
season than for the wet and whole hydrological year.

We show that the SBAS approach using C-band SAR obtains re-
trievals of surface displacement from 34.4 % to 59.8 % on peat soils of
the tested area (391 to 826 km2), depending on the hydrological year.
Using test sites that were not subject to land cover changes (e.g. land
clearings or fires) we showed the dependence of area effectiveness on
the prevailing hydrological conditions. Whilst area-effectiveness is
perhaps lower than could be achieved in less complex areas, the re-
trievals far exceed current in situ monitoring with stations only sparsely
distributed across a region which is very challenging to access. The SBAS
approach allows for dynamic monitoring throughout the year at 12 day
temporal resolution, which is coarser than in situ records, but spatially-
distributed. The use of the radar interferometry technique and the SBAS
approach can thus significantly complement ground-based measure-
ments, which are difficult to carry out in hard-to-reach places, as is the
case in many tropical peatland areas. The dearth of readily available
validation data for this study emphasises the lack of information about
these factors from ground-based monitoring networks.

To assess the accuracy of the SBAS displacements, we used two types
of data: peat surface and groundwater levels. Such comparisons in
tropical peatlands are not known so far due to the lack of data. The
studies have shown that SBAS-derived surface height values can corre-
spond reasonably well with in situ surface height measurements,
although the degree of agreement may vary depending on site-specific
conditions, e.g. during the dry periods. SBAS surface height measure-
ments showed a more complex relationship to groundwater levels, with
good correspondence in some areas. Observations from a set of in situ
monitoring stations showed however the strong correspondence be-
tween peat surface height and hydrological conditions. This reflects
wider understanding of peatland hydrological dynamics where hydro-
logical status/behaviour has a topographic signature. We note that the
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verification of surface height and GWL was performed on a small
number of validation points. Doing so across a larger validation area
would be favourable but likely highly challenging owing to the complex
spatial dynamics, land use and access within these tropical peatland
areas.

We also demonstrated through examples that appropriate hydro-
logical conditions must be met to determine the change in the water
level above the ground surface. Too large fluctuations in the water level
may not be detected because of wavelength limitations, and outliers
from the assumed linear model may be filtered out or removed due to the
used approach.

Using the short stack approach additionally demonstrates the capa-
bilities of the SBAS approach in tropical peatlands without the need for
time-consuming data collection and subsequent processing, which is
beneficial for rapid operational applications. However, the displacement
model should be carefully chosen as various models can bring different
trend of displacements and accuracies compared to ground validation
data.
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