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Abstract

We present a genome assembly from an individual male Limnaecia
phragmitella (Shy Cosmet Moth; Arthropoda; Insecta; Lepidoptera;
Cosmopterigidae). The assembly contains two haplotypes with total
lengths of 539.22 megabases and 553.78 megabases. Most of
haplotype 1 (98.9%) is scaffolded into 30 chromosomal
pseudomolecules, including the Z sex chromosome. Haplotype 2 was
assembled to scaffold level. The mitochondrial genome has also been
assembled, with a length of 15.26 kilobases. This assembly was
generated as part of the Darwin Tree of Life project, which produces

reference genomes for eukaryotic species found in Britain and Ireland.
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Species taxonomy

Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria;
Protostomia; Ecdysozoa; Panarthropoda; Arthropoda; Mandibu-
lata; Pancrustacea; Hexapoda; Insecta; Dicondylia; Pterygota;

Neoptera; Endopterygota; Amphiesmenoptera; Lepidoptera;
Glossata; Neolepidoptera; Heteroneura; Ditrysia; Gelechioidea;
Cosmopterigidae; Cosmopteriginae; Limnaecia;  Limnaecia
phragmitella Stainton, 1851 (NCBI:txid687102)

Background

Limnaecia phragmitella is a micro-moth in the family

Cosmopterigidae. It is a moth of wet areas in which its food-
plants, Bulrush (Typha latifolia) and Lesser Bulrush (Typha
angustifolia), grow. It is common in suitable habitats through-
out the UK. It is occurs throughout Europe and North America,
with scattered records from New Zealand, Russia and Japan
(GBIF Secretariat, 2025).

The moth is small (forewing length 8-11 mm) with a pale
brown forewing with indistinct markings (Sterling er al., 2023).
It is more easily found in its larval stage as a miner in the seed
heads and stems of its foodplants. The early instar larvae mines
in the leaf sheaf, later moving to the seedheads. The pres-
ence of the larvae can be recognised by the down hanging
from the seed head. The larval silk prevents the down from
being dispersed by the wind (Emmet & Langmaid, 2002).

We present a chromosome-level genome sequence for
Limnaecia phragmitella, the Shy Cosmet Moth. This assembly
is the first high-quality genome for the genus Limnaecia and
one of two genomes available for the family Cosmopterigidae
as of August 2025 (data obtained via NCBI datasets, O’Leary
et al., 2024). The assembly was produced using the Tree of
Life pipeline from a specimen collected in Wytham Woods,
Oxfordshire, United Kingdom (Figure 1). This assembly was
generated as part of the Darwin Tree of Life Project, which
aims to generate high-quality reference genomes for all named
eukaryotic species in Britain and Ireland to support research,
conservation, and the sustainable use of biodiversity (Blaxter
et al., 2022).

Figure 1. Photograph of the Limnaecia phragmitella
(ilLimPhra2) specimen used for genome sequencing.
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Methods

Sample acquisition and DNA barcoding

The specimen used for genome sequencing was an adult
male Limnaecia phragmitella (specimen ID Ox001870,
ToLID ilLimPhra2; Figure 1), collected from Wytham Woods,
Oxfordshire, United Kingdom (latitude 51.765, longitude
—1.335) on 2021-07-20. A second specimen collected on the
same occasionwas used for Hi-C sequencing (specimen ID
0x001869, ToLID ilLimPhral). The specimens were collected
and identified by Douglas Boyes. For the Darwin Tree of Life
sampling and metadata approach, refer to Lawniczak er al.
(2022).

The initial identification was verified by an additional DNA
barcoding process according to the framework developed
by Twyford et al. (2024). A small sample was dissected from
the specimen and stored in ethanol, while the remaining
parts were shipped on dry ice to the Wellcome Sanger Institute
(WSI) (see the protocol). The tissue was lysed, the COI
marker region was amplified by PCR, and amplicons were
sequenced and compared to the BOLD database, confirm-
ing the species identification (Crowley e al., 2023). Following
whole genome sequence generation, the relevant DNA barcode
region was also used alongside the initial barcoding data for
sample tracking at the WSI (Twyford er al., 2024). The standard
operating procedures for Darwin Tree of Life barcoding are
available on protocols.io.

Nucleic acid extraction

Protocols for high molecular weight (HMW) DNA extraction
developed at the Wellcome Sanger Institute (WSI) Tree of
Life Core Laboratory are available on protocols.io (Howard
et al., 2025). The ilLimPhra2 sample was weighed and triaged
to determine the appropriate extraction protocol. Tissue
from the whole organism was homogenised by powermashing
using a PowerMasher II tissue disruptor. HMW DNA was
extracted using the Automated MagAttract v2 protocol. We used
centrifuge-mediated fragmentation to produce DNA fragments
in the 8-10 kb range, following the Covaris g-TUBE proto-
col for ultra-low input (ULI). Sheared DNA was purified by
automated SPRI (solid-phase reversible immobilisation). The
concentration of the sheared and purified DNA was assessed
using a Nanodrop spectrophotometer and Qubit Fluorometer
using the Qubit dsDNA High Sensitivity Assay kit. Fragment
size distribution was evaluated by running the sample on
the FemtoPulse system. For this sample, the final post-shearing
DNA had a Qubit concentration of 1.08 ng/uL and a yield of
140.40 ng.

PacBio HiFi library preparation and sequencing

Library preparation and sequencing were performed at the
WSI Scientific Operations core. Prior to library preparation,
the DNA was fragmented to ~10 kb. Ultra-low-input (ULI)
libraries were prepared using the PacBio SMRTbell® Express
Template Prep Kit 2.0 and gDNA Sample Amplification Kit.
Samples were normalised to 20 ng DNA. Single-strand over-
hang removal, DNA damage repair, and end-repair/A-tailing
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were performed according to the manufacturer’s instructions,
followed by adapter ligation. A 0.85x pre-PCR clean-up was
carried out with Promega ProNex beads.

The DNA was evenly divided into two aliquots for dual
PCR (reactions A and B), both following the manufactur-
er’s protocol. A 0.85x post-PCR clean-up was performed with
ProNex beads. DNA concentration was measured using a Qubit
Fluorometer v4.0 (Thermo Fisher Scientific) with the Qubit
HS Assay Kit, and fragment size was assessed on an Agilent
Femto Pulse Automated Pulsed Field CE Instrument (Agilent
Technologies) using the gDNA 55 kb BAC analysis kit. PCR
reactions A and B were then pooled, ensuring a total mass
of >500 ng in 47.4 pl.

The pooled sample underwent another round of DNA dam-
age repair, end-repair/A-tailing, and hairpin adapter ligation.
A 1x clean-up was performed with ProNex beads, followed
by DNA quantification using the Qubit and fragment size
analysis using the Agilent Femto Pulse. Size selection was
performed on the Sage Sciences PippinHT system, with
target fragment size determined by Femto Pulse analysis
(typically 4-9 kb). Size-selected libraries were cleaned with
1.0x ProNex beads and normalised to 2 nM before sequencing.

The sample was sequenced on a Revio instrument (Pacific
Biosciences). The prepared library was normalised to 2 nM, and
15 uL was used for making complexes. Primers were annealed
and polymerases bound to generate circularised complexes,
following the manufacturer’s instructions. Complexes were
purified using 1.2X SMRTbell beads, then diluted to the Revio
loading concentration (200-300 pM) and spiked with a Revio
sequencing internal control. The sample was sequenced on
a Revio 25M SMRT cell. The SMRT Link software (Pacific
Biosciences), a web-based workflow manager, was used to
configure and monitor the run and to carry out primary and
secondary data analysis.

Hi-C

Sample preparation and crosslinking

The Hi-C sample was prepared from 20-50 mg of frozen
tissue of the ilLimPhral sample using the Arima-HiC v2 kit
(Arima Genomics). Following the manufacturer’s instructions,
tissue was fixed and DNA crosslinked using TC buffer to a
final formaldehyde concentration of 2%. The tissue was homog-
enised using the Diagnocine Power Masher-II. Crosslinked
DNA was digested with a restriction enzyme master mix,
biotinylated, and ligated. Clean-up was performed with
SPRISelect beads before library preparation. DNA concentration
was measured with the Qubit Fluorometer (Thermo Fisher
Scientific) and Qubit HS Assay Kit. The biotinylation
percentage was estimated using the Arima-HiC v2 QC beads.

Hi-C library preparation and sequencing

Biotinylated DNA constructs were fragmented using a Cov-
aris E220 sonicator and size selected to 400-600 bp using
SPRISelect beads. DNA was enriched with Arima-HiC v2
kit Enrichment beads. End repair, A-tailing, and adapter
ligation were carried out with the NEBNext Ultra II DNA
Library Prep Kit (New England Biolabs), following a modified
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protocol where library preparation occurs while DNA remains
bound to the Enrichment beads. Library amplification was
performed using KAPA HiFi HotStart mix and a custom
Unique Dual Index (UDI) barcode set (Integrated DNA
Technologies). Depending on sample concentration and
biotinylation percentage determined at the crosslinking stage,
libraries were amplified with 10-16 PCR cycles. Post-PCR
clean-up was performed with SPRISelect beads. Libraries were
quantified using the AccuClear Ultra High Sensitivity dsDNA
Standards Assay Kit (Biotium) and a FLUOstar Omega plate
reader (BMG Labtech).

Prior to sequencing, libraries were normalised to 10 ng/uL.
Normalised libraries were quantified again and equimolar
and/or weighted 2.8 nM pools. Pool concentrations were
checked using the Agilent 4200 TapeStation (Agilent) with High
Sensitivity D500 reagents before sequencing. Sequencing was
performed using paired-end 150 bp reads on the Illumina
NovaSeq 6000.

Genome assembly

Prior to assembly of the PacBio HiFi reads, a database of
k-mer counts (k = 31) was generated from the filtered reads
using FastK. GenomeScope2 (Ranallo-Benavidez et al., 2020)
was used to analyse the k-mer frequency distributions, pro-
viding estimates of genome size, heterozygosity, and repeat
content.

The HiFi reads were assembled using Hifiasm in Hi-C phasing
mode (Cheng er al, 2021; Cheng et al., 2022), producing
two haplotypes. Hi-C reads (Rao er al, 2014) were
mapped to the primary contigs using bwa-mem?2 (Vasimuddin
et al., 2019). Contigs were further scaffolded with Hi-C data
in YaHS (Zhou et al., 2023), using the --break option for
handling potential misassemblies. The scaffolded assemblies
were evaluated using Gfastats (Formenti er al., 2022), BUSCO
(Manni er al., 2021) and MERQURY.FK (Rhie et al., 2020).

The mitochondrial genome was assembled using MitoHiFi
(Uliano-Silva et al., 2023), which runs MitoFinder (Allio
et al., 2020) and uses these annotations to select the final
mitochondrial contig and to ensure the general quality of the
sequence.

Assembly curation

The assembly was decontaminated using the Assembly Screen
for Cobionts and Contaminants (ASCC) pipeline. TreeVal
was used to generate the flat files and maps for use in cura-
tion. Manual curation was conducted primarily in PretextView
and HiGlass (Kerpedjiev er al., 2018). Scaffolds were visually
inspected and corrected as described by Howe er al. (2021).
Manual corrections included 99 breaks and 177 joins. The
curation process is documented at https://gitlab.com/wtsi-grit/
rapid-curation. PretextSnapshot was used to generate a Hi-C
contact map of the final assembly.

Assembly quality assessment

The Merqury.FK tool (Rhie er al, 2020) was run in a

Singularity container (Kurtzer et al., 2017) to evaluate k-mer

completeness and assembly quality for both haplotypes using
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the k-mer databases (k = 31) computed prior to genome
assembly. The analysis outputs included assembly QV scores and
completeness statistics.

The genome was analysed using the BlobToolKit pipeline, a
Nextflow implementation of the earlier Snakemake version
(Challis et al., 2020). The pipeline aligns PacBio reads using
minimap2 (Li, 2018) and SAMtools (Danecek et al., 2021) to
generate coverage tracks. It runs BUSCO (Manni et al., 2021)
using lineages identified from the NCBI Taxonomy (Schoch er al.,
2020). For the three domain-level lineages, BUSCO genes are
aligned to the UniProt Reference Proteomes database (Bateman
et al., 2023) using DIAMOND blastp (Buchfink er al., 2021).
The genome is divided into chunks based on the density of
BUSCO genes from the closest taxonomic lineage, and each
chunk is aligned to the UniProt Reference Proteomes database
with DIAMOND blastx. Sequences without hits are chunked
using seqtk and aligned to the NT database with blastn (Altschul
et al., 1990). The BlobToolKit suite consolidates all outputs
into a blobdir for visualisation. The BlobToolKit pipeline was
developed using nf-core tooling (Ewels er al, 2020) and
MultiQC (Ewels er al., 2016), with containerisation through
Docker (Merkel, 2014) and Singularity (Kurtzer ez al., 2017).
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Genome sequence report

Sequence data

PacBio sequencing of the Limnaecia phragmitella specimen
generated 46.22 Gb (gigabases) from 5.65 million reads, which
were used to assemble the genome. GenomeScope2.0 analy-
sis estimated the haploid genome size at 486.08 Mb, with
a heterozygosity of 0.66% and repeat content of 24.49%
(Figure 2). These estimates guided expectations for the assem-
bly. Based on the estimated genome size, the sequencing data
provided approximately 87x coverage. Hi-C sequencing pro-
duced 117.68 Gb from 779.36 million reads, which were used
to scaffold the assembly. Table 1 summarises the specimen and
sequencing details.

Assembly statistics

The genome was assembled into two haplotypes using Hi-C
phasing. Haplotype 1 was curated to chromosome level, while
haplotype 2 was assembled to scaffold level. The final assembly
has a total length of 539.22 Mb in 170 scaffolds, with 1 496
gaps, and a scaffold N50 of 18.83 Mb (Table 2).

Most of the assembly sequence (98.9%) was assigned to
30 chromosomal-level scaffolds, representing 29 autosomes

GenomeScope Profile

len:486,082,089bp uniq:75.7%
aa:99.3% ab:0.656%
kcov:43.7 err:0.0869% dup:2.55 k:31 p:2

: i observed
© i full model
o ] unigue sequence
S i errors
© : kmer-peaks
> © !
2 < =
S 2 i
O 1
o i
(I |
© |
o i
+ 1
(0] 1
l i
o |
S
+
o)
o T T
0 50 100 150 200 250
Coverage

Figure 2. Frequency distribution of k-mers generated using GenomeScope2. The plot shows observed and modelled k-mer spectra,
providing estimates of genome size, heterozygosity, and repeat content based on unassembled sequencing reads.

Page 5 of 15


https://pipelines.tol.sanger.ac.uk/blobtoolkit

Wellcome Open Research 2025, 10:509 Last updated: 27 OCT 2025

Table 1. Specimen and sequencing data for BioProject PRJEB85382.

Platform
ToLID

Specimen ID

BioSample (source individual)

BioSample (tissue)

Tissue
Instrument

Run accessions
Read count total

Base count total

PacBio HiFi Hi-C

ilLimPhra2 ilLimPhral
0x001870 0Ox001869
SAMEA10979130  SAMEA10979129
SAMEA10979542  SAMEA10979541

whole organism

whole organism

Revio Illumina NovaSeq 6000
ERR14231588 ERR14242295

5.65 million 779.36 million

46.22 Gb 117.68 Gb

Table 2. Genome assembly statistics.

Assembly name

Assembly accession

Assembly level

Span (Mb)

Number of chromosomes

Number of contigs

Contig N50

Number of scaffolds

Scaffold N50

Longest scaffold length (Mb)

Sex chromosomes

ilLimPhra2.hap1.1
GCA 965195335.1

ilLimPhra2.hap2.1
GCA 965195365.1

chromosome scaffold
539.22 553.78
30 N/A

1 666 11 249
0.56 Mb 0.09 Mb
170 4 445
18.83 Mb 14.83 Mb
28.59 N/A

Z N/A

Organelles

and the Z sex chromosome. These chromosome-level scaffolds,
confirmed by Hi-C data, are named according to size
(Figure 3; Table 3). The Z chromosome was identified based
on BUSCO gene painting with ancestral Merian elements
(Wright et al., 2024).

The mitochondrial genome was also assembled. This sequence
is included as a contig in the multifasta file of the genome
submission and as a standalone record.

For haplotype 1, the estimated QV is 55.5, and for haplotype
2, 57.1. When the two haplotypes are combined, the assem-
bly achieves an estimated QV of 56.2. The k-mer completeness
is 91.42% for haplotype 1, 82.76% for haplotype 2, and
99.36% for the combined haplotypes (Figure 4).

BUSCO analysis using the lepidoptera_odbl0 reference set
(n = 5 286) identified 98.5% of the expected gene set

Mitochondrion: 15.26 kb~ N/A

(single = 97.9%, duplicated = 0.6%) for haplotype 1. The snail
plot in Figure 5 summarises the scaffold length distribution
and other assembly statistics for haplotype 1. The blob
plot in Figure 6 shows the distribution of scaffolds by GC
proportion and coverage for haplotype 1.

Table 4 lists the assembly metric benchmarks adapted from
Rhie er al. (2021) the Earth BioGenome Project Report on
Assembly Standards September 2024. The EBP metric, calculated
for the haplotype 1, is 5.C.Q55.

Wellcome Sanger Institute - Legal and Governance
The materials that have contributed to this genome note have
been supplied by a Darwin Tree of Life Partner. The submission
of materials by a Darwin Tree of Life Partner is subject to
the ‘Darwin Tree of Life Project Sampling Code of
Practice’, which can be found in full on the Darwin Tree of
Life website. By agreeing with and signing up to the Sampling
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Figure 3. Hi-C contact map of the Limnaecia phragmitella genome assembly. Assembled chromosomes are shown in order of size and
labelled along the axes. The plot was generated using PretextSnapshot.

Table 3. Chromosomal pseudomolecules INSDC Molecule Length GC%

in the haplotype 1 genome assembly of accession (Mb)

Limnaecia phragmitella ilLimPhra2.

07239668.1 15 1842 3550

ac‘;-‘;':g . Molecule '-?'cl%t)h GC% 07239669.1 16 18.24 36
07939654 1 : 5039 . 07239670.1 17 18.08 36
07939655 1 5 2010 | 3550 0Z7239671.1 18 1804 3550
07239656.1 3 20.09 36 022396721 19 17.64 36
07239657.1 4 1994 3550 072396731 A ECECC
072396581 5 1977 3550 072396741 21 1631 | 36
02239659.1 6 19.69 3550 CZZEET5. — 1596 | 37
07239660.1 . 1937 36 07239676.1 23 15.69 36
07239661.1 8 1928 3550 Q2RI 7 2 1850 &
07239662.1 9 1927 3650 072336781 25 1333 36
072396631 10 1912 3550 022396791 26 13.06 37
07239664.1 11 18.97  36.50 07239680.1 27 1255  37.50
07239665.1 12 1889 3550 07239681.1 28 12.35 37
07239666.1 13 18.83 36 07239682.1 29 1141 37.50
07239667.1 14 18.60 36 07239683.1 Z 2859 3550
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Figure 4. Evaluation of k-mer completeness using MerquryFK. This plot illustrates the recovery of k-mers from the original read data
in the final assemblies. The horizontal axis represents k-mer multiplicity, and the vertical axis shows the number of k-mers. The black curve
represents k-mers that appear in the reads but are not assembled. The green curve corresponds to k-mers shared by both haplotypes, and
the red and blue curves show k-mers found only in one of the haplotypes.

Scaffold statistics BUSCO lepidoptera_odb10 (5286)
[ Log10 scaffold count (total 171) [l comp. (98.5%) [ Frag. (0.36%)
[E scaffold length (total 539M) 539M W oupl. (0.57%) [ Missing (1.53%)

Il Longest scaffold (28.6M)
[= N50 length (18.8M)
[ N90 length (13.1M) @@“

0%

Scale Composition
O 539M Il GC (36%)

O 28.6M [ AT (63.9%)
Dataset: GCA_965195335.1 Tz LIN (0.03%)

Figure 5. Assembly metrics for ilLimPhra2.hap1.1. The BlobToolKit snail plot provides an overview of assembly metrics and BUSCO
gene completeness. The circumference represents the length of the whole genome sequence, and the main plot is divided into 1 000 bins
around the circumference. The outermost blue tracks display the distribution of GC, AT, and N percentages across the bins. Scaffolds are
arranged clockwise from longest to shortest and are depicted in dark grey. The longest scaffold is indicated by the red arc, and the deeper
orange and pale orange arcs represent the N50 and N90 lengths. A light grey spiral at the centre shows the cumulative scaffold count on
a logarithmic scale. A summary of complete, fragmented, duplicated, and missing BUSCO genes in the set is presented at the top right. An
interactive version of this figure can be accessed on the BlobToolKit viewer.
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Figure 6. BlobToolKit GC-coverage plot for ilLimPhra2.hap1.1. Blob plot showing sequence coverage (vertical axis) and GC content
(horizontal axis). The circles represent scaffolds, with the size proportional to scaffold length and the colour representing phylum
membership. The histograms along the axes display the total length of sequences distributed across different levels of coverage and GC

content. An interactive version of this figure is available on the BlobToolKit viewer.

Table 4. Earth Biogenome Project summary metrics for the Limnaecia phragmitella

assembly.

Measure Value

EBP summary (haplotype 1)  5.C.Q55

Contig N50 length 0.56 Mb

Scaffold N50 length 18.83 Mb

Consensus quality (QV) Haplotype 1: 55.5; haplotype 2: 57.1;
combined: 56.2

k-mer completeness Haplotype 1: 91.42%; Haplotype 2:
82.76%; combined: 99.36%

BUSCO C:98.5% [S:97.9%; D:0.6%]; F:0.4%;

M:1.2%; n:5 286

Percentage of assembly 98.90%
assigned to chromosomes

Benchmark
6.C.Q40

>1Mb

= chromosome N50

> 40

>95%

S>90%; D <5%

>90%
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Code of Practice, the Darwin Tree of Life Partner agrees they
will meet the legal and ethical requirements and standards set
out within this document in respect of all samples acquired
for, and supplied to, the Darwin Tree of Life Project. Further,
the Wellcome Sanger Institute employs a process whereby
due diligence is carried out proportionate to the nature of the
materials themselves, and the circumstances under which they
have been/are to be collected and provided for use. The pur-
pose of this is to address and mitigate any potential legal and/or
ethical implications of receipt and use of the materials as part
of the research project, and to ensure that in doing so we align
with best practice wherever possible. The overarching areas of
consideration are:

e FEthical review of provenance and sourcing of the
material

e [egality of collection, transfer and use (national and
international)

Each transfer of samples is further undertaken according to
a Research Collaboration Agreement or Material Transfer
Agreement entered into by the Darwin Tree of Life Partner,

Wellcome Open Research 2025, 10:509 Last updated: 27 OCT 2025

Genome Research Limited (operating as the Wellcome Sanger
Institute), and in some circumstances, other Darwin Tree of
Life collaborators.

Data availability

European Nucleotide Archive: Limnaecia phragmitella (bulrush
cosmet). Accession number PRJIEB85382. The genome sequence
is released openly for reuse. The Limnaecia phragmitella
genome sequencing initiative is part of the Darwin Tree of
Life Project (PRJEB40665), the Sanger Institute Tree of Life
Programme (PRJEB43745) and Project Psyche (PRJEB71705).
All raw sequence data and the assembly have been deposited in
INSDC databases. The genome will be annotated using
available RNA-Seq data and presented through the Ensembl
pipeline at the European Bioinformatics Institute. Raw data
and assembly accession identifiers are reported in Table 1
and Table 2.

Production code used in genome assembly at the WSI Tree of
Life is available at https://github.com/sanger-tol. Table 5 lists
software versions used in this study.

Table 5. Software versions and sources.

Software Version
BEDTools 2.30.0
BLAST 2.14.0
BlobToolKit 4.4.5
BUSCO 5.7.1
bwa-mem?2 2.2.1
Cooler 0.8.11
DIAMOND 218
fasta_windows 0.2.4
FastK 1.1
GenomeScope2.0 2.0.1
Gfastats 1.3.6

GoaT CLI 0.2.5
Hifiasm 0.19.8-r603
HiGlass 1134
MerquryFK 1.1.2
Minimap2 2.28-r1209
MitoHiFi 3

MultiQC 1.14;1.17 and 1.18
Nextflow 24104
PretextSnapshot N/A

Source

https://github.com/arg5x/bedtools2
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/
https://github.com/blobtoolkit/blobtoolkit
https://gitlab.com/ezlab/busco
https://github.com/bwa-mem?2/bwa-mem?2
https://github.com/open2c/cooler
https://github.com/bbuchfink/diamond
https://github.com/tolkit/fasta_windows
https://github.com/thegenemyers/FASTK
https://github.com/tbenavil/genomescope2.0
https://github.com/vgl-hub/gfastats
https://github.com/genomehubs/goat-cli
https://github.com/chhylp123/hifiasm
https://github.com/higlass/higlass
https://github.com/thegenemyers/MERQURY.FK
https://github.com/Ih3/minimap2
https://github.com/marcelauliano/MitoHiFi
https://github.com/MultiQC/MultiQC
https://github.com/nextflow-io/nextflow

https://github.com/sanger-tol/PretextSnapshot
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https://identifiers.org/ena.embl/PRJEB85382
https://www.ensembl.org/
https://github.com/sanger-tol
https://github.com/arq5x/bedtools2
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/
https://github.com/blobtoolkit/blobtoolkit
https://gitlab.com/ezlab/busco
https://github.com/bwa-mem2/bwa-mem2
https://github.com/open2c/cooler
https://github.com/bbuchfink/diamond
https://github.com/tolkit/fasta_windows
https://github.com/thegenemyers/FASTK
https://github.com/tbenavi1/genomescope2.0
https://github.com/vgl-hub/gfastats
https://github.com/genomehubs/goat-cli
https://github.com/chhylp123/hifiasm
https://github.com/higlass/higlass
https://github.com/thegenemyers/MERQURY.FK
https://github.com/lh3/minimap2
https://github.com/marcelauliano/MitoHiFi
https://github.com/MultiQC/MultiQC
https://github.com/nextflow-io/nextflow
https://github.com/sanger-tol/PretextSnapshot

Software Version
PretextView 0.2.5
samtools 1.21
sanger-tol/ascc 0.1.0
sanger-tol/blobtoolkit v0.7.1

sanger-tol/curationpretext  1.4.2

Seqtk 1.3

Singularity 3.9.0
TreeVal 1.4.0
YaHS 1.2.2
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This manuscript describes the sequencing and assembly of Limnaecia phragmitella, a
lepidopteran insect.

The methodology is identical to the one used by other DToL projects. All assembly metrics (N50,
completeness, QV, BUSCO, blobplot) show that the assembly quality is very good.

Recently, I have come to realize that providing a genome assembly without an accompanying
gene set is of limited to most scientists; very few are either interest in the genome sequence per
se, or know how to perform gene prediction.

Related to the above, the authors mention that "The genome will be annotated using available
RNA-Seq data...". What are these RNAseq data? Are they from the same organism? Because if
they're not I would guess that the resulting gene set would be of relatively low quality.
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The data note describes the genome sequencing of the Shy Cosmet Moth, Limnaecia phragmitella.
The authors have used long-read sequencing and Hi-C mapping to obtain a high-quality genome
sequence. The assembly reported here is of size 539.22 Mb spread among 30 chromosomes. Since
a male specimen has been used for sequencing, the authors have captured only the Z sex
chromosome. A female specimen could have been used. The mitogenome has also been
presented of size 15.26 kb. The annotations were yet to be released in Ensembl. The genome
sequence achieved a EBP summary metric of 5.C.Q55. However, the contig N50 value is less
compared to the benchmark. The BUSCO completeness percentage of 98.5 indicates that the
genome is near-complete with respect to sequences in the database.
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