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ABSTRACT 

 An unstructured mesh finite element model of the sea region off the west coast of 

Britain is used to examine the storm surge event of November 1977.  This period is chosen 

because accurate meteorological data to drive the model, and coastal observations for 

validation purposes are available.  In addition previous published results from a coarse grid 

(resolution 7 km) finite difference model of the region and high resolution (1 km) limited 

area (namely eastern Irish Sea) model are available for comparison purposes.  To enable a 

“like with like” comparison to be made, the finite element model covers the same domain and 

has the same meteorological forcing as these earlier finite difference models.  In addition the 

mesh is based on an identical set of water depths. 

 Calculations show that the finite element model can reproduce both the “external” and 

“internal” components of the surge in the region.  This shows that the “far field” (external) 

component of the surge can accurately propagate through the irregular mesh, and the model 

responds accurately, without over- or under-damping, to local wind forcing.  Calculations 

show significant temporal and spatial variability in the surge in close agreement with that 

found in earlier finite difference calculations.  In addition root mean square errors between 

computed and observed surge are comparable to those found in previous finite different 

calculations.  The ability to vary the mesh in nearshore regions, reveals appreciable small 

scale variability that was not found in the previous finite difference solutions.  However the 

requirement to perform a “like with like” comparison using the same water depths means that 

the full potential of the unstructured grid model to improve resolution in the nearshore region 

is inhibited.  This is clearly evident in the Mersey estuary region where a higher resolution 

unstructured mesh model, forced with uniform winds, had shown high topographic variability 

due to small scale variations in topography that are not resolved here.  Despite the lack of 

high resolution in the nearshore region the model showed results that were consistent with the 
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previous storm surge models of the region.  Calculations suggest that to improve on these 

earlier results a finer nearshore mesh is required based upon accurate nearshore topography. 

1. INTRODUCTION 

 Following on from the major flooding caused by the 1953 U.K east coast storm surge 

event, the main focus in storm surge modelling has been the prediction of storm surge 

elevations on the European shelf.  Of particular importance has been their accurate prediction 

in shallow coastal regions where flooding can occur during major storms.  In regions such as 

the Irish Sea and North Sea, early research showed that limited area finite difference models 

failed to reproduce the observed surge due to their neglect of shelf wide wind events (the 

external surge).  Consequently early storm surge computations were performed with shelf 

wide finite difference models (e.g. Davies and Flather 1977), that necessarily used coarse 

grids due to computational limitations, hence their resolution was poor in coastal regions.  

Since the main objective of these models was the computation of surge elevations, the two 

dimensional hydrodynamic equations were used. 

 With enhancements in computing power, finite difference grids in shelf wide models 

were refined to the order of 12 km (Davies et al. 1998, 2000) and local (e.g. west coast of 

Britain) models of grid resolution 7 km (Davies and Jones 1992a, hereafter DJ92) or less 

(Jones and Davies 1996, Jones and Davies, 1998, hereafter JD98) were developed.  However, 

such local models required open boundary input from a coarser shelf wide model, or a model 

which could account for changes produced by shelf wide winds.  For example DJ92 used a 7 

km resolution west coast of Britain model to simulate the November 1977 major surge event.  

For this simulation far field effects were taken into account using observations along the open 

boundaries.  However, results showed that the 7 km grid of this model was not sufficiently 

fine to accurately resolve the local increase in storm surge elevation in the eastern Irish Sea.  

Consequently in subsequent work, this model was used to provide boundary conditions for a 
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limited area eastern Irish Sea model of 1 km resolution, resulting in improved surge accuracy 

in the region (JD98).  A similar approach of using a high resolution (of order 1 km) limited 

area model of the North Channel of the Irish Sea, forced by a coarse grid large area model, 

was used by Davies et al (2001) for a detailed study of tidal and wind forced currents in that 

area.  Although this approach of nesting a high resolution limited area finite difference model 

within a coarser grid model enables a local improvement in resolution, if the nesting is two 

way then there may be problems at the interface between the two grids.  In addition as shown 

by Davies and Hall (2002) in regions of rapidly changing current magnitude and direction 

produced by local changes in topography, a nesting approach could give rise to significant 

errors in the currents.  An alternative approach, the method examined here, is to use a finite 

element technique in which the grid resolution varies gradually in space.  By this means a 

coarse mesh can be used in offshore regions where the water is deep and surge elevations and 

currents show little spatial variability.  As the water shallows and surge intensity and spatial 

variability increase in the nearshore regions then the grid is refined in these regions.  In 

addition surge propagation into estuaries can be readily accomplished without nesting. 

 The finite element model with its ability to refine the mesh in nearshore regions has 

been very successful in a number of problems (e.g. Werner 1995, Ip et al 1998, Jones 2002, 

Fernandes et al 2002, 2004, Walters 2005, Levasseur et al 2007, Nicolle and Karpytchev 

2007).  Although in theory the grading of the mesh is arbitrary, in practice the computation of 

an optimal mesh is complex (e.g. Greenberg et al 2007, Legrand et al 2006, 2007 and Hagen 

et al 2001, 2002) and in the calculations presented here in order to make rigorous 

comparisons with earlier finite difference and finite element models, no attempt was made to 

produce an optimal mesh. 

 Previous calculations using a finite element (TELEMAC) model of the west coast of 

Britain showed that it could reproduce the dominant (M2 component) tide in the region (Jones 
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and Davies 2005), to an accuracy comparable to an existing finite difference model (Davies 

and Jones 1992b).  Also recent calculations showed (Jones and Davies 2007a) that the model 

was comparable in accuracy to both west coast (Davies and Jones 1992b) and high resolution 

eastern Irish Sea models (Jones and Davies 1996) at reproducing the M2, S2, N2, K1 and 01 

components of the tide.  In addition by refining the element size in the eastern Irish Sea 

region the higher harmonics of the tide could be accurately reproduced (Jones and Davies 

2007b).  Also tidal residual currents in the region could be accurately simulated (Jones and 

Davies 2007c) and the artificial flow in the nearshore region due to the “stair case” 

representation of the coast in finite difference models (Davies and Jones 1996) was not 

present.  Recent calculations (Jones and Davies 2006) using this finite element model of the 

west coast of Britain, showed that its response to steady orthogonal wind forcing was 

consistent to that found with well established and proven finite difference models (Jones and 

Davies 2003a,b).  In addition the finer Eastern Irish Sea resolution in the finite element model 

showed small scale wind induced circulation features that were not present in the finite 

difference model (Jones and Davies 2003a,b). These calculations suggest that the finite 

element model developed previously should be able to reproduce storm surges in the eastern 

Irish Sea to an accuracy comparable to the nested high resolution (1 km) eastern Irish Sea and 

coarser (7 km) finite difference west coast models used previously. 

 Besides investigating the response of the west coast of Britain to wind forcing, the 

objective of these earlier calculations namely Jones and Davies (2003a), Jones and Davies 

(2006, 2008) was to examine the processes influencing surges in the region and the role of 

tide-surge interaction.  However, the objective of this paper is to use the previous west coast 

finite element model, that has been validated against a range of tidal constituents, to examine 

the mechanisms (namely external and internal surge generation) producing the storm surge of 

November 1977.  In addition because this surge event has been computed with a range of 



 6 

finite difference models, the relative accuracy of the finite element model can be examined 

by comparing with observations and finite difference solutions.  To ensure that this is a 

meaningful comparison, the same regional extent, open boundary forcing and meteorological 

forcing to that used previously (DJ92 and JD98) was applied.  In addition the topography 

used in the model was identical over the Irish and Celtic Seas to that used in DJ92, and in the 

eastern Irish Sea to that in JD98.  By this means a rigorous comparison with these earlier 

finite difference models could be performed.  The surge of November 1977 was chosen 

because an accurate meteorological data set was available with which to force the model. 

 The finite element model is discussed in the next section, with following sections 

describing the meteorological forcing and detailed model/data comparisons.  A final section 

summarises the main results. 

2. THE FINITE ELEMENT MODEL AND FORCING 

 Since the focus of the paper is the application of a finite element model to the 

prediction of surge elevations in the Irish Sea for the major storm events in November 1977 it 

is sufficient to solve the two dimensional vertically integrated hydrodynamic equations.  

However since the region (Fig. 1) spans a range of latitudes, spherical coordinates were used 

as in earlier finite difference models.  As the form of the non-linear hydrodynamic equations 

using these coordinates is given elsewhere (DJ92, JD98) they will not be repeated here.  As 

details of the numerical methods used in TELEMAC to solve the hydrodynamic equations 

have been reviewed in Jones and Davies (2006, 2007a,b,c) and references therein, they will 

not be repeated here.  In order to compare results with previous finite difference solutions, the 

region covered by the model was identical to that used in DJ92.  In addition the water depth 

distribution was based on DJ92, with the addition of more accurate water depths and coastal 

resolution in the eastern Irish Sea taken from JD98. 
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 The water depth distribution in the region is characterized by depths of the order of 

100 m in the Celtic Sea, deepening to 150 m at the south west of this region (Fig. 1).  Within 

the Irish Sea on its western side there is a deep channel, with water depths up to 100 m, 

although on its eastern side the water is much shallower (less than 50 m) with extensive 

nearshore regions where the water depth is below 25 m (Fig. 2).  In these nearshore regions, 

“wetting and drying” occurs over the tidal cycle.  Water depths in the North Channel can 

exceed 150 m (Fig. 1) with average depths to the north of this of order 100 m. 

 As tidal friction and tide-surge interaction are important in the region, the five 

dominant tidal constituents, namely M2, S2, N2, K1 and O1 were included within all the 

calculations as input along the open boundary.  This is consistent with the finite difference 

solution given in DJ92.  It is important to note that this tidal forcing was used in all 

calculations, namely those including the computation of the external, internal and total surge 

(see later).  Previous tidal calculations (Jones and Davies 2007a) showed that the finite 

element grid used in the present calculations (Fig. 3) could accurately reproduce these 

constituents and the associated higher harmonics produced by non-linear interaction in the 

region.  Although in the eastern Irish Sea storm surge calculations of JD98, using a limited 

area high resolution (1 km) model of the region, the input storm surge on the open boundary 

was taken without adjustment from the coarser (7 km) west coast model, the tidal input along 

the boundary was adjusted to give an accurate representation of the tide in the region.  In the 

present finite element calculation no tidal or storm surge adjustments were made to try and 

improve model accuracy, nor was the topography modified from that used in JD98. 

 To be consistent with DJ92 and JD98, identical meteorological forcing for the period 

7-17 November 1977 was used, and the surge was computed by subtracting a tide only 

solution from one involving tidal and meteorological forcing.  As a detailed discussion of the 

meteorological forcing is presented in DJ92, it will not be given here.  However, as shown in 
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DJ92 the surge within the region covered by the west coast model (Fig. 3) is influenced by 

both local winds and “far field” effects produced by wind forcing outside the model and the 

resulting flow into the region.  Consequently as in DJ92 it is necessary to take account of this 

external effect along the open boundary of the model.  To be consistent with DJ92 this was 

accomplished by linearly interpolating observed surge elevations from Castletownsend and 

Newlyn along the southern boundary of the model.  In addition observations from Malin were 

imposed along the northern boundary of the model. 

 To understand the influence of the external surge, and local wind forced surge, upon 

the total surge, three calculations were performed with the finite element model using the grid 

given in Fig. 3.  Initially (Calc 1) the model was run with only boundary forcing to determine 

far field effects (external surge).  Subsequently (Calc 2) only local meteorological forcing 

was applied (internal surge) and finally (Calc 3) the full surge was determined. 

3. STORM SURGE CALCULATIONS 

3.1 External surge 

In an initial calculation (Calc 1) the model was forced using only the external surge 

taken from observations (see DJ92 for details), applied along the open boundary, although as 

stated previously tidal forcing through the open boundary was included.  Consequently no 

wind or atmospheric pressure gradient forcing was applied over the model domain.  In this 

calculation to be consistent with the coarse grid (7 km resolution) finite difference model of 

the whole domain (Fig. 1), observations from Castletownsend and Newlyn were interpolated 

along the southern boundary of the model.  Observations from Malin were imposed along the 

northern boundary.  This forcing was identical to that used in the coarse grid model of DJ92. 

Time series (Fig. 4a) of the storm surge elevation at a number of ports in the eastern 

Irish Sea (for locations see Fig. 2) showed that although some of the main features of the 

surge at Douglas could be reproduced through open boundary forcing (the external surge), the 
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model significantly underestimates surge peaks, which occurred at times of maximum wind 

forcing.  However, at other times surge elevations were reproduced, suggesting that these 

arose from “far field forcing” that propagated into the region through the open boundaries.  In 

addition the underestimation of the surge increased rapidly at shallow water locations such as 

Liverpool, Workington and Hilbre, suggesting that local wind forcing in the regions was a 

major contributor to the surge. 

3.2 Internal surge 

In a subsequent calculation (Calc 2), no external surge was applied along the open 

boundary, although as previously tidal forcing was included, however now meteorological 

forcing was provided by wind stresses and pressure gradients.  Time series at all the eastern 

Irish Sea ports (Fig. 4b) show that the model could reproduce the major features of the 

observed surge.  In particular the rapid increase in surge elevations to give peak values at 00 

hr 12/Nov and during 14/Nov at times of strong wind forcing were reproduced.  However at 

other times of weak wind forcing the model failed to reproduce the small negative external 

surge.  As discussed above this was due to external forcing.  Although the observed time 

variation of the surge is reproduced by the computed internal surge its magnitude is below the 

observed.  However, the magnitude of the computed surge increases as the water shallows, 

suggesting that the contribution of the internal surge to the total surge elevation will be more 

important in shallow than deep water regions. 

3.3 Total surge 

In a final calculation (Calc 3) the model was forced with both the open boundary 

surge elevation as in Calc 1 and with the meteorological forcing as in Calc 2.  As previously 

(Calcs 1 and 2) tidal forcing was included in the model.  Time series at Douglas (Fig. 4c), 

located in deeper water on the western side of the eastern Irish Sea shows that the finite 

element model can reproduce the observed features of the surge at this location.  In particular 
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the surge peaks that occur at 00 hr 12/Nov and during the 14/Nov.  In addition the time series 

is in close agreement with that computed by JD98.  It is interesting that both the time series 

computed with the present finite element model and the finite difference model (FREISM) of 

JD98 are in such good agreement considering that JD98, used a large area coarse grid model 

(7 km) of the region shown in Fig. 1, to provide boundary conditions for a 1 km model of the 

eastern Irish Sea.  In this 1 km model the N2 and S2 tides together with the higher harmonics 

of the tide along the open boundary had been adjusted to give the best possible solution in the 

interior.  In the present finite element model, no such adjustment was made, and tide and 

surge have been propagated through the whole domain and into the eastern Irish Sea.  This 

suggests that both the tide (a freely propagating wave) and the storm surge (a 

meteorologically forced event) can accurately propagate through the unstructured finite 

element mesh (Fig. 3).  At shallow water locations e.g. Liverpool, both the present and 

previous (JD98) solutions exhibit similar features, with both models failing to reproduce the 

full magnitude of the surges that occurred at 00 hr 12/Nov and during the 14/Nov.  This could 

be due to a lack of detailed local meteorological forcing in the region, which Calc 2, has 

shown to be important in shallow water, or a lack of local resolution.  In the case of the local 

eastern Irish Sea finite difference model this was limited to 1 km.  Although the finite 

element model uses finer elements in this region, in order to perform a “like with like” 

comparison identical topography based on a 1 km grid was used.  This suggests that in order 

to take full advantage of the finite element model’s ability to refine the grid in nearshore 

regions, with a possible improvement in accuracy, higher nearshore bathymetry is required.  

Although differences in the two solutions are evident at Liverpool, the two solutions are in 

closer agreement at Heysham and Workington.  Interestingly at Heysham the finite element 

model shows some higher frequency “spikes” between 18 hr 11/Nov and 00 hr 12/Nov that 

were not present in the finite difference solution.  The reason for this will be discussed later, 
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when the dynamics of the surge in the Morecambe Bay area and its distribution over the 

whole west coast are examined. 

In order to quantify the accuracy of the storm surge computed with the finite element 

model, and compare with earlier finite different solutions (Jones and Davies (2001)) root 

mean square (rms) errors based on differences between observed and computed surge were 

determined at Douglas and Liverpool.  These ports were chosen to represent deep and 

shallow locations, and because a continuous observed time series was available.  Besides 

computing errors for the whole period (Table 1), sub-periods as in Jones and Davies (2001) 

were used.  The first period is from 00h 9/Nov to 11h 12/Nov covering the first peak.  The 

second is an extended version of the first, namely from 00h 9/Nov till 23h 13/Nov, in essence 

the period up to the start of the second peak.  The third period again starts at 00h 9/Nov, until 

23h 14/Nov and hence covers both surge peaks. 

From rms errors in Table 1 it is evident that at Liverpool for all the periods, and the 

total, the rms error from the finite difference calculation is slightly less than that from the 

finite element model.  There was however no significant difference in rms errors at Douglas 

which is located in deeper water.  The fact that both models use the same topography, and no 

attempt was made to improve the accuracy of the finite element model by enhancing local 

topography, suggest that the difference in rms errors at Liverpool is not due to resolution.  As 

discussed previously in the 1 km model of the eastern Irish Sea used by Jones and Davies 

(2001), the tidal input had been adjusted along the open boundary to given an optimal 

solution in the interior.  Since in the present finite element model no such adjustment was 

made, and tide-surge interaction in the eastern Irish Sea has an important influence on the 

surge at Liverpool but not Douglas, it suggests this may account for the very small difference 

in rms errors between the models at Liverpool. 
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Although calculations (Jones and Davies 2008) have shown that tide-surge interaction 

is important in this region and hence a realistic storm surge could not be produced without 

including the tide, calculations showed that when the external and internal storm surges were 

added together (in essence time series in Figs. 4a and 4b) then the total surge was not 

significantly different (differences of less than 5 cm in the time series) from that found in the 

full surge calculation.  This arises mainly from the fact that a large domain model was used, 

and hence the external surge was small and only significant at times when the internal surge 

was negligible. 

4. STORM SURGE DYNAMICS 

In order to understand the time variation of the surge within the eastern Irish Sea, and 

compare its offshore distribution in detail with that from the 7 km west coast model (DJ92) 

and 1 km eastern Irish Sea model (JD98) it is essential to consider the time varying response 

of the whole region to storm forcing. 

Consideri initially the first major wind period (namely 12 hr 11/Nov to 06 hr 12/Nov, 

see DJ92 for detailed meteorological charts).  During this period there were winds from the 

south-west over the region that forced water from the Celtic Sea, into the Irish Sea giving rise 

to an increase in sea level in the eastern Irish Sea, particularly in the Solway estuary and 

Morecambe Bay regions.  It is evident from Fig. 5a, that although sea level rises at the 

entrance to the Solway estuary, Morecambe Bay and the Mersey estuary, the storm surge has 

not yet fully propagated into these shallow water regions.  In addition there is significant 

spatial variability in the storm surge elevation in these regions, reflecting local changes in 

bottom topography.  In the Heysham region situated at the southern end of Morecambe Bay 

there is significant small scale variability in the surge produced by local topography.  As the 

surge enters the region, “wetting and drying” can occur giving rise to short period oscillations 

in the surge elevation as shown at this time in Fig. 4c.  The magnitude and spatial variability 
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of the storm surge elevation in the eastern Irish Sea is consistent with that found in the high 

resolution 1 km local area model of JD98 (compare Fig. 5a, with Fig. 14a of JD98). 

 Current vectors over the whole region (Fig. 6a(i)) show water flowing from the Celtic 

Sea into the eastern Irish Sea in the region to the south of the isle of Man.  In addition some 

of the water that flows into the Irish Sea continues north along the east coast of Ireland, 

leaving the region through the North Channel.  To the north of the Isle of Man, water leaves 

the eastern Irish Sea, and flows out through the North Channel.  The ability of the finite 

element model to refine the mesh in regions such as the North Channel, where previous work 

(Davies et al 2001) required the nesting of a local high resolution model, is a significant 

advantage over earlier work using regular finite difference grids.  In addition refining the 

mesh within the eastern Irish Sea allows more detail of the flow fields to be observed in the 

nearshore region (Fig. 6a(ii)).  It is evident from Fig. 6a(ii), that there is a significant increase 

in current intensity in the nearshore region, with currents flowing parallel to the coastal 

boundary.  As shown previously for the case of tidal residuals (Jones and Davies 2007c) 

coastal irregularities produced by finite difference “stair case” effects can introduce spurious 

eddies in near coastal regions.  Complex spatial variations are evident in the currents close to 

the entrances to shallow water estuaries as can be seen in expanded plots of the Morecambe 

Bay (Fig. 6a(iii)) and Liverpool Bay (Fig. 6a(iv)) regions.  At the entrance to Morecambe 

Bay (Fig. 6a(iii)), namely at about 54.05N, -3.1W (close to Heysham) currents change from 

2.5 cm s-1 to over 12.5 cm s-1 over one element.  This suggests that to resolve exchange 

between these estuaries and the outside region, and within the estuaries fine mesh resolutions 

of the order of 50 m or less are required.  A similar complex distribution of currents is 

evident in the Liverpool Bay area at the entrance to the Mersey estuary.  This clearly shows 

that although storm surge elevations may vary smoothly in space, the currents exhibit 
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significant small scale variability that must be taken into account in any measurement 

programme. 

 Although the present model cannot take account of detailed topographic variations in 

the Mersey estuary, since to be consistent with earlier finite difference work (JD98) the 

topography in this region is taken from the 1 km grid of JD98, it is evident (Fig. 6a(v)) that 

there is some spatial variability in the currents within the Mersey.  This suggests that to 

reproduce storm surge events at Liverpool a more accurate description of the Mersey such as 

that used by Jones and Davies (2006) is required. 

 In essence the surface elevation and current distributions shown in Figs. 5a and 6a, 

were produced by south westerly winds.  However by 00hr 12/Nov the wind direction 

changed to one from the northwest.  This gave rise to a rapid increase in elevations in the 

eastern Irish Sea (Fig. 5(b)), although elevations decreased in the Celtic Sea.  The alignment 

and distribution of elevation contours in the deep water regions (Fig. 5b) corresponds very 

closely with those found in the coarse grid (7 km) model of DJ92 (compare Fig. 5b with Fig. 

6b in DJ92).  In the eastern Irish Sea, where the mesh is much finer, elevation contours are in 

good agreement with the high resolution (1 km) model results of JD98 (compare Fig. 5b with 

Fig. 14b in JD98). 

 Current vectors at 00 hr 12/Nov, reveal (Fig. 6b(i)) that unlike previously (Fig. 6a(i)) 

at this time there is an inflow of water into the Irish Sea through the North Channel, driven by 

the winds from the northwest.  Some of this water flows due south in the deep region to the 

west of the Isle of Man, whilst some water flows into the eastern Irish Sea in the region to the 

south of the Isle of Man.  An outflow from the eastern Irish Sea is evident to the north of the 

Isle of Man.  Associated with this inflow and outflow a current gyre develops in the eastern 

Irish Sea to the northwest of the Isle of Man (Fig. 6b(ii)).  As previously in coastal regions 
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the flows are parallel to the coast, with intensity increasing very rapidly as the water 

shallows. 

 In the Morecambe Bay region (Fig. 6b(iii)) there is less spatial variability in the 

currents than previously (Fig. 6a(iii)) with a flow to the north in the shallow regions, and an 

elevation gradient forced flow out of the bay in the deeper central channel.  Similarly in 

Liverpool Bay (Fig. 6b(iv)) there is a more spatially coherent directly wind forced flow (Fig. 

6b(iv)), although at the entrance to the Mersey and within it the current (Fig. 6b(v)) has 

similar spatial variability to that found previously (Fig. 6a(v)). 

 As illustrated at 18hr 11/Nov, although surge elevation contours show a uniform 

distribution there is significant variability in the currents.  This current variability tends to 

decrease at times of strong wind forcing due to the large scale wind which is spatially 

coherent, setting the space scale, rather than local elevation gradients in nearshore regions 

which have a small space scale due to variation in topography.  However, as will be shown 

later, in terms of flow away from coastal effects, where elevation gradients are more uniform, 

the large scale pressure gradient forced flow is often spatially uniform. 

 By 06hr 12/Nov the wind’s magnitude has decreased, although surge elevations in the 

eastern Irish Sea remain significant (of order 30 cm) (Fig. 5c).  The presence of an 

appreciable west-east elevation gradient across the Irish Sea, comparable to that found in 

JD98 (compare Fig. 5c and Fig. 14c in JD98), and between the Irish Sea and the region 

beyond (compare Fig. 5c with Fig. 6c in DJ92), drives water out of the eastern Irish Sea, both 

to the north and south of the Isle of Man (Fig. 6c(i)).  In addition in the north there is a net 

outflow from the Irish Sea, both through the North Channel and along the west coast of 

Scotland.  A similar net outflow is evident in the south where water flows from the Irish Sea 

to the Celtic Sea.  At this time the wind field over the region is negligible, and hence the 

storm surge elevation gradient that has developed over the region cannot be supported and 
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forces flow out of the eastern Irish Sea.  It is evident from Figs. 6c(i) and 6c(ii) that away 

from coastal boundary regions the spatial variability of this elevation pressure driven flow is 

appreciably less than that found at times of wind forcing.  However in some regions, notably 

off the northeast corner of the Isle of Man there is a bifurcation in the flow with some flow 

going to the north and another flow to the south, which leads to local small scale variability.  

Similarly in shallow coastal regions such as Morecambe Bay (expanded plot not shown) and 

the entrance to the Mersey in Liverpool Bay (expanded plot not shown) there is some local 

small scale variability.  In particular in both these regions current vectors show a strong 

offshore and out of estuary flow in the deeper water.  Within the Mersey (expanded plot not 

shown) there is a near uniform outflow as sea surface elevations within the estuary decrease. 

 Calculations showed that as the depression that produced the surge of 00hr 12/Nov, 

moved out of the region, surge elevations decreased to near zero.  However at 12hr 13/Nov, 

winds from the northwest moved over the region, and their intensity increased and their 

direction changed to winds from the north over the following 18 hrs. 

 By 12hr 14/Nov these winds had produced a decrease in elevation to the south of 

Ireland (Fig. 5d) with an increase in elevation to the north of Ireland and along the west coast 

of Scotland (Fig. 5d).  The magnitude and spatial distribution of elevation contours associated 

with this wind event, computed with the finite element model over the west coast region (Fig. 

5d) correspond very closely with those computed with the coarser mesh 7 km finite 

difference grid of DJ92 (compare Fig. 5d with Fig. 6d of DJ92).  Similarly in the near coastal 

region of the eastern Irish Sea the computed surge elevation is in good agreement with that 

computed by JD98 using a limited area high resolution (1 km) model (compare Fig. 5d with 

Fig. 14d of JD98).   

 As surface wind stresses over the region decreased and changed to a wind stress from 

the north, the elevation gradient to the north of the North Channel could not be maintained 



 17 

and water flowed from the west coast of Scotland region, through the North Channel and into 

the Irish Sea (Fig. 6d(i)).  A significant proportion of this water flows south in the deep 

channel to the west of the Isle of Man, with some water entering the eastern Irish Sea (Fig. 

6d(i)).  Within the eastern Irish Sea, as previously, away from the coastal boundary layer the 

flow field is fairly spatially uniform, although it changes rapidly in the region of estuaries 

(Fig. 6d(ii)).  Within estuaries, see for example Morecambe Bay there is appreciable small 

scale variability in the currents (expanded plot not shown), associated with changes in 

topography.  Similarly at the entrance to the Mersey (expanded plot not shown) and within 

the Mersey (expanded plot not shown) there is some spatial variability.  However, since the 

wind field at 12hr 14/Nov has declined from its previous maximum value of 1 Pa (see JD98, 

for details of wind stress), and the flow is mainly surface elevation gradient forced into the 

Mersey from Liverpool Bay the distribution of current vectors in the Mersey is substantially 

smoother than that found previously. 

 The change in wind direction and increase in magnitude between 12h and 18h 14/Nov 

gives rise to a positive surge in the eastern Irish Sea at 18hr 14/Nov (Fig. 5e).  However the 

winds from the north, namely offshore winds in the region to the south of Ireland produce a 

negative surge of about 50 cm to the south of Ireland (Fig. 5e).  The location and magnitude 

of this negative surge and the distribution of elevation contours in the Celtic and Irish Sea 

(Fig. 5e) is in close agreement with that computed in DJ92 with the 7 km finite difference 

grid (compare Fig. 5e, with Fig. 6e in DJ92).  Similarly in the eastern Irish Sea the rapid 

increase in surge elevation as the coast is approached and the subsequent decrease within the 

estuaries corresponds to that computed by JD98 using the fine grid model of the region 

(compare Fig. 5e, with Fig. 14e in JD98). 

 The influence of the strong wind from the north at this time (18h 14/Nov) is to force 

water from the west of Scotland, through the North Channel and into the Irish Sea (Fig. 
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6e(i)).  Within the Irish Sea, there is a flow to the south in the deep channel (Fig. 1) to the 

west of the Isle of Man, that enters the Celtic Sea (Fig. 6e(i)).  Some of the water flowing 

through the Irish Sea, enters the eastern Irish Sea along the northern and southern coastal 

regions of the Isle of Man (Fig. 6e(i)).  Within the eastern Irish Sea there is significant spatial 

variability in the currents (Fig. 6e(ii)), produced by a combination of local sea level rise along 

the coast, which in Liverpool Bay produces an offshore flow, and wind forced flow from the 

Irish Sea entering the region.  In addition directly wind forced currents within the eastern 

Irish Sea contributed to this spatial variability.  The net effect of this combined forcing is to 

produce a large current gyre to the east of the Isle of Man, and a number of near shore gyres 

(Fig. 6e(ii)).  Within Morecambe Bay (expanded plot not shown) there is significant spatial 

variability in both current magnitude and direction due to variations in topography and the 

interplay between local elevation gradient forced flow and that due to direct wind forcing. 

Similarly in Liverpool Bay (expanded plot not shown) away from the nearshore 

region there is a uniform offshore flow, however in the nearshore region a detailed 

examination shows that the currents exhibit significant spatial variability.  Nevertheless 

within the Mersey estuary a more uniform distribution of currents is evident.  The uniform 

flow in the Mersey found in the present calculations primarily arises from a lack of resolution 

in this region.  This is due to the fact that in order to compare surge solutions derived with the 

finite element model with those computed by JD98, identical topography was used within the 

Mersey.  As shown by Jones and Davies (2006) for the case of the response of the Mersey to 

uniform wind forcing, when more detailed and accurate topography together with element 

sizes of order 50 m are used in the Mersey then a more complex spatial pattern arises.  

However the whole region surge plots clearly show that there was significant spatial and 

temporal variability in both the surge elevations and currents during the November 1977 

storm surge event.  This variability arises from time and space variations in the meteorology 
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and the significant changes in water depth over the region.  The existence of an accurate 

meteorological data set for model forcing and coastal gauges for comparison makes it an 

ideal period for testing models, and inter-comparing their performance. 

Comparison with a previous coarse grid large area model (DJ92) and a high resolution 

limited area Eastern Irish Sea model (JD98), showed that the finite element model with its 

graded mesh could reproduce the large scale variability of the surge over the region.  In 

addition its finer mesh in the eastern Irish Sea could resolve the small scale variability of the 

surge in this region. 

CONCLUDING REMARKS 

 An unstructured mesh finite element model of the sea region off the west coast of 

Britain has been used to model the storm surge event of November 1977.  This period was 

chosen because an accurate meteorological data set was available to drive the model and 

coastal gauge data could be used to validate the model.  In addition the solution from a large 

area coarse grid (7 km) finite difference model covering an identical region, and a limited 

area (eastern Irish Sea) high (1 km) model was available for comparison.  By covering the 

same area as the coarse grid model and using identical water depth distributions to those used 

in the coarse and high resolution limited area model, a valid comparison with earlier finite 

difference solutions could be made, since all models used the same forcing. 

 Calculations showed that the external component of the surge was significant at all 

locations, although in the eastern Irish Sea, wind forcing, namely the internal surge was a 

major contributor.  Consequently in any storm surge simulation, the model had to accurately 

propagate the surge into the eastern Irish Sea and account for wind forcing in the region, and 

local changes in topography.  The finite element model with its ability to vary the mesh could 

accurately resolve narrow channels such as the North Channel (Figs. 1 and 3) where 

previously nested high resolution models had been used (Davies et al 2001) and the nearshore 
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region of the eastern Irish Sea.  This area had previously been modelled with a limited area 

high resolution (1 km) model (JD98). 

 Time series of the storm surge elevations at ports in the eastern Irish Sea, showed that 

the finite element model with its fine mesh in this region could reproduce surge elevations 

with comparable accuracy to the 1 km model of JD98.  Similarly surface elevation contours 

both within the eastern Irish Sea and the region beyond where the mesh was much coarser 

could be reproduced by the model and were in close agreement with those computed in DJ92 

and JD98.  By using the same region, open boundary and meteorological forcing together 

with identical water depths showed that the solution was independent of the numerical 

method used to derive it (namely finite difference or finite element).  In addition the close 

agreement in the solutions showed that the finite element model with its irregular mesh, could 

accurately reproduce the storm surge propagation through the region and account for local 

changes due to wind forcing and nearshore fine scale topography. 

 Although the use of identical topography enabled a valid model inter-comparison to 

be made, the use of a coarse representation of the nearshore region of Liverpool Bay and the 

Mersey as in JD98, meant that the storm surge was not accurately resolved in this region.  

The importance of high resolution in the Mersey in resolving details of the wind induced flow 

in this area has recently been reported by Jones and Davies (2006) for the case of uniform 

steady wind forcing.  This suggests that in any future calculations of storm forced flow in the 

Liverpool Bay and Mersey estuary, an enhanced mesh refinement in this region as in Jones 

and Davies (2006) is required.  This effect of such a mesh enhancement on storm surges is 

currently being investigated. 

 Certainly the ability of the finite element model to refine the mesh in regions of 

rapidly changing topography where high resolution and accuracy is required (e.g. the 

nearshore region or within an estuary) is a major advantage over the nested finite difference 
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approach used previously (JD98, Davies et al 2001).  As shown here, at the entrance to many 

estuaries, there is significant spatial variability in the flow, suggesting that nesting a fine 

mesh finite difference model of an estuary within a larger model would be very difficult.  As 

shown by Davies and Hall (2002), nesting a local area model within a coarser model in 

regions of rapidly varying flow can significantly influence and sometimes reverse the flow in 

the limited area model. 

 These calculations suggest that the use of an unstructured mesh model with a 

progressively finer grid in the nearshore region should improve storm surge prediction, 

provided detailed and accurate bottom topography is available in these areas.  However, as 

the mesh is refined, other processes such as wave-current interaction (Davies and Lawrence 

1995, Jones and Davies 2001) and the three dimensional nature of the flow become important 

(JD98) and may need to be considered, in order to significantly improve storm surge 

prediction in an irregular mesh model. 
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Fig. 1:  Water depths in the region covered by the model and places named in the text. 

FIGURE CAPTIONS 

Fig. 2:  Detailed topography of the eastern Irish Sea and location of tide gauges. 

Fig. 3:  Finite element grid used in the calculations. 

Fig. 4: Time series of computed surge at a number of eastern Irish Sea locations 

computed with (a) “external” surge introduced through the open boundary, (b) 

“internal” surge due to local meteorological forcing and (c) the “total” surge. 

Fig. 5: Elevation contours over the whole region at (a) 18hr 11/Nov, (b) 00hr 12/Nov, 

(c) 06hrs 12/Nov, (d) 12hrs 14/Nov and (e) 18hr 14/Nov. 

Fig. 6a: Current vectors at 18hrs 11/Nov over (i) whole region, (ii) expanded plot in 

eastern Irish Sea, (iii) expanded plot in Morecambe Bay, (iv) expanded plot in 

Liverpool Bay, (v) expanded plot in Mersey estuary. 

Fig. 6b: As Fig. 6a, but at 00hr 12/Nov. 

Fig. 6c: As Fig. 6a, but omitting expanded plots (iii), (iv) and (v) at 06hr 12/Nov. 

Fig. 6d: As Fig. 6a, but omitting expanded plots (iii), (iv) and (v)  at 12hr 14/Nov. 

Fig. 6e: As Fig. 6a, but omitting expanded plots (iii), (iv) and (v)  at 18hr 14/Nov. 
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Table 1: Root mean square errors (cm) from the finite difference model (FD calc) 

(Jones and Davies (2001)) and finite element model (FE calc) at Liverpool and  

Douglas 

 

  Period  

Calc Port 1 2 3 Total 

FD Liverpool 

Douglas 

17.0 

10.6 

19.1 

11.3 

22.7 

10.6 

22.9 

10.3 

FE Liverpool 

Douglas 

21.5 

10.0 

23.2 

11.8 

28.9 

11.2 

27.7 

11.0 
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FIG 4b: 
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FIG 4c: 
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FIG 5c: 
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FIG 5d: 
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FIG 5e: 
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FIG 6a(i): 
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FIG 6a(ii): 
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FIG 6a(iii): 
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FIG 6a(iv): 
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FIG 6a(v): 
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FIG 6b(i): 
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FIG 6b(ii): 
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FIG 6b(iii): 
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FIG 6b(iv): 
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FIG 6b(v): 
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FIG 6c(i): 
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FIG 6c(ii): 
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FIG 6d(i): 
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FIG 6e(i): 
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