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A B S T R A C T

Citizen science is increasingly important in the collection of biological data. However, to understand the broader 
utility of the growing number of citizen-derived records, we need to understand exactly how recorder behaviour 
affects the geographic distribution of records made. Here, we apply an optimal foraging model to citizen science 
data from the UK to determine how likely a recorder (predator) is to visit any given kilometre square and record a 
butterfly (prey). By defining the square with the highest density of an individual’s records as their ‘origin’, we 
show that the probability of visiting a given site depends on its distance from the origin and the rarity-weighted 
species richness of the species thought to be present. This pattern of behaviour differs between recorders visiting 
more than or fewer than five squares, termed broad and narrow-range foragers. The model shows that recorder 
behaviour is driven, in part, by a simple trade-off between distance travelled and the rarity-weighted species 
richness. This collective behaviour helps explain over-recording by broad-ranging foragers in protected areas at 
distance and under-recording, by narrow-range foragers, in the wider countryside. It also implies that estimating 
parameters describing rare species’ distributions (e.g. mean occupancy) will be challenging, since sample in
clusion depends on occupancy itself. Mapping rare species’ distributions should be simpler, since the sites at 
which they can be found tend to be well-sampled, but the same is unlikely to be true of common species, which 
also occupy areas that are unlikely to be sampled. More work is needed to understand how widely our results can 
be generalised beyond the UK and the dataset considered.

1. Introduction

Knowledge of species’ distributions is fundamental to both ecolog
ical research and practical conservation efforts (Powney and Isaac, 
2015). Activities such as biodiversity assessments, spatial conservation 
prioritisation, and environmental impact assessments all require infor
mation on how species are distributed geographically. While a map of a 
species’ distribution may be purely empirical or obtained using a model, 
most ultimately derive from data on where particular species were 
observed (hereafter ‘biological records’). It is therefore critical to 
recognise that biological records reflect the combined distribution of the 
species and the recorders themselves and that our knowledge of species 
distributions will therefore be biased by the spatial pattern of recording 
(Cretois et al., 2021; Geldmann et al., 2016; Hughes et al., 2021; Meyer 

et al., 2016; Sicacha-Parada et al., 2021; Tiago et al., 2017).
Disentangling the distribution of the species and the recorders re

quires information on what motivated the recorders to collect data 
where they did (Boyd et al., 2025; Simmonds et al., 2020). While each 
recorder will have their own motivations, there are likely to be common 
factors that apply universally or at least approximately so. Since trav
elling incurs a cost (in terms of time and money), one obvious factor is 
the distance of the sampled location from where the recorder either lives 
or does most recording within the sampled area, which we term here as 
the recorder origin (Dennis and Thomas, 2000). Another is the perceived 
attractiveness of the location in terms of the species that might be seen 
there. Locally rare species, for example, might be perceived as high 
value targets (Dennis and Thomas, 2000; Bowler et al., 2022).

In many ways, the act of a recorder searching for ‘interesting’ species 
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resembles a predator foraging for desirable prey. In both cases, in
dividuals respond to attractants—such as rare species for recorders or 
high prey density for predators—and are deterred by other factors, like 
travel distance or competition. These conceptual similarities suggest 
that predator–prey theory may offer useful insights into patterns of 
biological recording.

In population and community models, site profitability is sometimes 
defined using a functional response (Boyd et al., 2020; Politikos et al., 
2015). Basic forms describe how prey density affects ingestion rate 
(Holling, 1959), while more complex variants incorporate inhibitory 
effects, such as competitor density (e.g. Beddington et al. (1975), 
DeAngelis et al. (1975)). Since these models balance attractants and 
deterrents, they are a natural framework for understanding trade-offs in 
recorder behaviour.

Here, we use a simplified Beddington–DeAngelis-style functional 
response (Boyd et al., 2020) to examine why some sites are visited by 
citizen scientists while others are not. The model captures a trade-off 
between site desirability—defined as rarity-weighted species rich
ness—and distance from the recorder’s origin. We focus on a subset of 
records submitted via the iRecord Butterflies app by citizen scientists, 
defined here as volunteer recorders making unstructured visits to sites of 
their choosing. Which species are recorded at sampled sites is not 
something that we consider.

2. Methods

2.1. Data sources

To assess how distance from the square at which most records were 
made and site desirability influence the probability that a given site was 
visited by a citizen scientist, we used data from two sources. The first 
dataset was derived from the iRecord Butterflies app, managed by the 
UK Centre for Ecology & Hydrology in partnership with Butterfly Con
servation. This dataset consists of 51,045 records made by 1770 indi
vidual observers within Devon and Cornwall (Watsonian Vice Counties 
1, 2, 3 and 4). Records spanned the period from 14 July 2011 to 1 April 
2024. All records were included in our analysis, regardless of verifica
tion status, though most have been verified by local experts.

To estimate local species frequencies for the purpose of calculating 
site desirability (see below), we used a subset of the Butterflies for the 
New Millennium (BNM) national recording scheme, again focused on 
Devon and Cornwall. This subset comprises 785,582 records collected 
between 1796 and 31 December 2020. Only records that had been 
verified as correct or considered correct were retained for analysis. The 
BNM data serve as a more complete representation of local species oc
cupancy, enabling us to derive measures of rarity-weighted species 
richness across 1 km × 1 km squares.

2.2. Square-specific metrics

We calculated three square-specific metrics to quantify site-level 
butterfly recording patterns: the number of individual records (N), the 
number of unique species recorded (S) and rarity-weighted species 
richness (R). The first two metrics, N and S, were derived from the 
iRecord Butterflies dataset. For R, we defined rarity-weighted species 
richness as the reciprocal of species frequency, where frequency was 
calculated as the number of 1 km squares in Devon and Cornwall where 
a given species was recorded in the BNM dataset. For a given square, the 
rarity-weighted species richness was the sum of these reciprocal values 
across all species recorded there from BNM dataset. This approach pri
oritises squares containing species that are locally rare, thereby 
providing a proxy for the desirability of a square to potential recorders.

2.3. Observer-specific metrics

To quantify recording behaviour at the level of individual observers, 

we defined each observer’s origin as the 1 km square in which they 
recorded most total number of records. Using this as a spatial reference 
point, we calculated the cumulative number of records (N), species (S), 
and rarity-weighted species richness (R) as functions of distance from 
the origin square. For each observer, we determined the distance at 
which 50 % and 95 % of their total N, S, and R were accumulated. These 
values are referred to as 0.5 N and 0.95 N, 0.5S and 0.95S, and 0.5R and 
0.95R, respectively. To illustrate this process, we constructed cumula
tive sampling curves for three known recorders based in Devon or 
Cornwall (Richard Fox, Marcus Rhodes, and Richard ffrench-Constant) 
using UK-wide data from iRecord. These examples are intended for 
demonstration only and were not included in the core analysis, which 
focused exclusively on Devon and Cornwall.

2.3. Trade-off between distance and desirability

We used a simplified version of the Beddington-DeAngelis functional 
response (Beddington et al., 1975; DeAngelis et al., 1975) to model the 
trade-off between distance travelled from the observer origin square to 
each sampled square and the sum desirability of that square based on the 
rarity-weighted species richness. Importantly, we assume that recorder 
behaviour is primarily driven by this trade-off and that other potential 
influences such as accessibility and previous experience are negligible; 
the deterrent in our case is simply the distance from the recorder’s 
origin.

Let Yij be a binary variable indicating whether observer j visited site i, 
and let P

(
Yij

)
be the probability thereof. Then, we have 

P
(
Yij

)
=

Ri

Ri + hj + cjDij
,

where Ri is the rarity-weighted species richness of site i, Dij is the dis
tance between site i and observer j’s origin, hj represents observer j’s 
baseline recording propensity (lower values imply greater propensities 
to record conditional on the effect distance) and cj reflects the extent to 
which observer j is deterred by distance from their origin (higher values 
imply a reluctance to travel). The variables Ri and Dij were derived as 
described above. Assuming the Yijs are independent Bernoulli trials, we 
used maximum likelihood estimation to obtain values for hj and cj.

We divided the individual recorders into two cohorts, narrow-range 
and broad-range foragers for simplicity, defined as those visiting fewer 
than or more than five squares beyond their origin square, respectively. 
We then fitted the predator prey model to each of the 1770 recorders 
individually and recorded their values of h and c. Finally, to examine the 
strength of the model in discriminating between sampled and non- 
sampled locations for the two different groups of recorders, we exam
ined the area under the receiver-operator curve (AUC) for broad- and 
narrow-ranged foragers alike. The AUC takes a value between 0 and 1, 
with values closer to 1 indicating a better fit. To evaluate model per
formance for individual recorders, we also calculated both AUC and the 
correlation between predicted and observed values separately for each 
recorder, regardless of whether they were classified as broad- or narrow- 
ranged foragers.

We also reran our analysis using two alternative metrics of site 
attractiveness. The first was raw, unweighted species richness. The 
second was a subjective measure of cumulative species ‘charisma’, 
defined by one of the authors with extensive experience in butterfly 
recording in the region, and calculated as the sum of the charisma scores 
for all species present at the site.

3. Results

3.1. The number of records and distance travelled

Maps of either the total number of iRecord Butterflies records, the 
total number of species or rarity-weighted species richness present per 1 

M. Li et al.                                                                                                                                                                                                                                       Ecological Modelling 510 (2025) 111344 

2 



Fig. 1. Maps showing number of records (N), number of species (S) and the rarity-weighted species richness (R) for all species recorded from that kilometre square.
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km square (Fig. 1) show a clustered distribution. In fact, the strength of 
each signal around Penryn, which is the location of the Cornwall campus 
of the University of Exeter, suggests that the university may be a major 
local source of recorders and that these maps therefore represent the 
density and behaviour of individual recorders. As an example of how to 
quantify the distance travelled by individual recorders to make records, 
Fig. 2 shows the distance across the UK travelled to record 50 % or 95 % 
of records for three known recorders based in Devon or Cornwall. This 
simple illustration clearly shows that some recorders travel further to 
make their records than others, demonstrating that these metrics can be 

used to quantify recorder behaviour in terms of distance travelled from 
their origin square. When these same 50–95 % metrics are used to 
examine the distribution of distance travelled by the combined popu
lation of all the 1770 observers in the iRecord Butterflies data for Devon 
and Cornwall (Fig. 3), we note that the statistics for most recorders are 
zero inflated in terms of distance. This shows that most recorders in 
Devon and Cornwall do not travel far from the kilometre square in which 
they do most of their recording.

Fig. 2. Illustration of the cumulative sampling approach and metrics derived. Cumulative curves are shown for the number of records (N), species (S) and rarity- 
weighted species richness (R) recorded at distance (kilometres) from the observer origin square. Data are given for three known individual observers as three 
known recorders based in Devon or Cornwall. A. Richard Fox, B. Marcus Rhodes and C. Richard ffrench-Constant. All three observers are based in either Devon (RF) 
or Cornwall (MR and Rff-C) but records are drawn from across the whole of the UK. The dashed lines represent the distance travelled to record 50 or 95 % of each 
metric (0.5 or 0.95 N, 0.5 or 0.95S and 0.5R or 0.95R). This same approach was then used to show the distance travelled by all observers within Devon and Cornwall 
only, see Fig. 3 and text for discussion.
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Fig. 3. Stack plots showing the distribution of 50 and 95 % values for the number of records (N, as 0.5 N and 0.95 N), number of species (S, as 0.5S and 0.95S) and 
rarity-weighted species richness (R, as 0.5R and 0.95R) for all 1700 recorders in the iRecord Butterflies dataset. The white diamond represents the mean and the 
vertical grey bar represents one standard deviation. The y-axis gives distance in km whereas counts are simply represented as ticks on the x-axis. Note that most 
recorders are zero inflated in terms of distance, suggesting most don’t travel far from their origin square.

Fig. 4. Theoretical outputs from the predator-prey model showing the trade-off between rarity-weighted species richness (panel A) and distance from origin (panel 
B) in calculating the probability ( %) that any given recorder will visit any given kilometre square in the sampled area. For panel A distance is fixed at 10 km, and the 
two constants h and c have values of − 0.13 and 22.48 respectively. Whereas for panel B, rarity-weighted species richness is fixed at 10 and h = − 0.13 and c= 22.48. 
Note that the two curves work in opposite directions and that the probability of any square being visited by any given observer is a therefore a trade-off of distance 
travelled and the desirability of the species target(s).
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3.2. The trade-off between distance and desirability

To illustrate the likely trade-off between distance travelled from the 
square with the highest density of records and the desirability of species 
sought by the individual observer, we fitted the functional response to 
the iRecord Butterflies data. As an illustration of the model, by fixing the 
rarity-weighted species richness (perceived desirability) of species pre
sent at a relative value of 10, we show how increasing distance from the 
origin square decreases the probability that any given square will be 
sampled (Fig. 4A). Likewise, by fixing the distance travelled by an 
observer to an arbitrary 10 km we show how increasing the rarity- 
weighted species richness (desirability) increases the probability that 
any given square will be visited by the observer (Fig. 4B). The fit of the 
model in terms of AUC and corr(Y, P̂[Y]) (see supplementary material) 
suggests that distance from their origin square and the rarity-weighted 
species richness explain a large proportion of the variation in where 
citizen scientists recorded.

3.3. Individual recorder behaviour

Plotting distance from observer origin against desirability of species 
present against the probability that any given square is visited (Fig. 5), 
we can see that narrow-range foragers record very close to, or within, 
their origin square. In contrast, broad-range foragers travel further (up 
to 250 km) to record species with higher perceived rarity. This effect can 
be quantified by examining the relative distribution of the constants h 
and c between the two different groups of recorders (Fig. 6). Broad-range 
foragers have lower values of c, showing that they are less deterred by 
travelling greater distances to record. In terms of h, narrow-range for
agers sample fewer grid squares, and therefore appear less motivated in 

terms of spatial coverage. However, after accounting for the deterrent 
effect of distance, the model may still assign them lower h values 
(Fig. 6). In this sense, h functions as a normalizing constant. The 
Receiver Operating Characteristic (ROC) analysis gives area under the 
curve (AUC) values of 0.97 for narrow-range foragers and 0.89 for 
broad-range foragers using the rarity-weighted species richness as the 
basis (Fig. 7).

We also tested the alternative metrics. When using raw, unweighted 
species richness, the model achieved an AUC of 0.88 for narrow-range 
foragers and 0.94 for broad-range foragers. Using a subjective mea
sure of cumulative species charisma, defined by an experienced butterfly 
recorder as the sum of desirability scores for all species present, the AUC 
values were 0.84 and 0.93 respectively. In comparison, the model based 
on rarity-weighted species richness showed higher AUC values for both 
forager types, indicating better performance than either alternative 
metric (see supplementary figures).

4. Discussion

We applied a functional response, previously used to describe the 
dependence of predator consumption rate on competitor and prey 
density, to understand the geographic distribution of butterfly records 
made by citizen scientists in the UK. The model is built on first principles 
and supposes that recorders trade-off the perceived attractiveness of a 
site (in terms of rare species present) with its distance from their origin 
when deciding whether it is worthwhile visiting. We fitted the models to 
data for each recorder and on aggregate for two groups of recorders: 
‘broad-ranged’ foragers, who have visited more than five 1 km squares, 
and ‘narrow-ranged’ foragers, who have visited fewer than five 1 km 
squares. The models explained a surprisingly large amount of the 

Fig. 5. Three-dimensional plot of the probability of any given square being visited by a recorder against distance from their likely origin and rarity-weighted species 
richness known from that square. The yellow curve represents recorders visiting <5 squares (termed narrow-range foragers) and the blue curve represents those 
visiting >5 squares beyond their origin (broad-range foragers). Note that experts are prepared to travel greater distances to visit any given square.
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variation in which sites were sampled, although the models for some 
individual recorders did not perform well (supplementary material).

It is not surprising that some of the models for individual recorders 
did not perform well. Some recorders will be motivated by factors not 
included in our models, such as the desire to record species that they 
have not previously observed (Goldstein and Stoudt, 2025). And for 
those recorders not deterred by the need to travel and the absence of rare 
species, the models are naturally less able to discriminate between 
sampled and non-sampled sites. Indeed, August et al. (2020) showed 
that many users of the iRecord Butterflies app do not focus on rare 
species and collect data over vast geographic areas. The models might 
also perform poorly for transient recorders (e.g. holidaymakers), whose 
origins might change over time; transient recorders often dominate 
citizen science datasets (Dimson and Gillespie, 2023), and Devon and 
Cornwall are popular tourist destinations. Nevertheless, it is clear that, 
on aggregate, distance from recorders’ origins and the rarity-weighted 
species richness present are two key determinants of which sites are 
featured in the iRecord Butterflies dataset.

We use rarity-weighted species richness as the measure of site 
attractiveness in our model. The estimation of parameters h and c was 

conducted under the assumption that recorders have imperfect knowl
edge of this index, as such imperfect knowledge is implicitly embedded 
in the spatial structure of the data and influences the locations that re
corders choose to visit. As a result, the parameter estimates already 
reflect this cognitive bias to some extent, and this bias, together with the 
distribution of rarity-weighted species richness, shapes the way ob
servers perceive site attractiveness. The strong fit of the model to the 
observed data further supports the validity of this metric.

The model parameters (h and c) have different values for different 
types of recorders. This may lie in variation in recorder skill and field
craft (Kühn et al., 2024). Individuals with greater taxonomic knowledge 
and field experience are likely to detect and identify a wider range of 
species while casual recorders or those with limited identification ability 
may tend to focus on a narrower subset of more recognisable or easily 
observed species (Kühn et al., 2024). Because more skilled recorders are 
able to identify a wider range of species, including rare ones, they may 
be more likely to visit sites with higher species diversity or those known 
to support particular target species (Bowler et al., 2022).

Our results have two major implications, the first being that esti
mating parameters describing rare species’ distributions is 

Fig. 6. The distribution of the two constants h and c from the predator-prey model for all recorders in the dataset with recorders again divided into broad-range 
foragers and narrow-range foragers. The constant c represents the strength of the deterrence of distance on recorders and h is the baseline probability that any 
given square will be sampled. Note that broad-range foragers have lower values of c, showing that they are less deterred by distance and are therefore more likely to 
sample squares at distance. The constant h is addressed in the main text.
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fundamentally compromised by non-ignorable sampling. According to 
our theory, sites occupied by rare species are specifically targeted 
(Fig. 5), which means the outcome variable (occupancy of a rare species) 
at a given site directly affects the probability that is sampled. This is a 
classic case of Missing Not At Random (MNAR): the process that de
termines whether a site appears in the dataset depends on the outcome 
(Bowler et al., 2025; Little and Rubin, 2019). Under MNAR, statistical 
corrections are not possible without very strong assumptions, which are 
usually untestable. The silver lining is that, because sites at which rare 
species can be found are often well-sampled, mapping their distributions 
may still be feasible—even if unbiased estimation of descriptive pa
rameters (e.g. mean occupancy) is not.

The second major implication of our results is that thoroughly 
mapping commoner species is likely to be difficult. The probability that 
any given site was sampled was determined by its proximity to re
corders’ origin squares and rarity-weighted species richness. Common 
species are likely to occupy sites not occupied by rare species and far 
from where people do most of their recording. Hence, many areas that 
appear to be unoccupied by common species will in fact just not be 
sampled.

Of course, rather than mapping the distribution of records or esti
mating parameters describing species’ distributions naively, one might 
apply some sort of statistical correction. Most correction procedures 
involve controlling for variables that induced the bias in the first place. 
Examples include species distribution modelling (assuming the biasing 
variables are included as covariates), quasi-randomisation (i.e. pro
pensity score weighting) and poststratification (Boyd et al., 2024).

Our findings have important implications for the effectiveness of 
statistical correction procedures that control for biasing variables. We 
showed that rare species’ populations are preferentially sampled, which 
is a classic case of non-sampled sites being Missing Not At Random. For 
these species, controlling for biasing variables will not be sufficient to 
eliminate bias, and alternative approaches that require stronger as
sumptions will be needed (see e.g. Bailey (2023)). For commoner spe
cies, our findings imply that one should control for rare species’ 
distributions where these can be approximated (e.g. from an Atlas, a 
field guide or based on knowledge of habitat requirements).

Alternative approaches to mitigating spatial sampling biases that do 
not require controlling for biasing variables might also be considered. 
When additional data sources, with different or even no biases are 
available, these might be integrated with the original sample. Alterna
tively, where one has some control over where new data are collected, 

adaptive sampling of underrepresented habitats might be considered 
(Callaghan et al., 2019).

Our model, of course, has some limitations. While distance from the 
origin was a useful proxy for recording effort, it did not fully account for 
spatial and temporal variability in effort. Factors such as accessibility by 
public transport (Mair and Ruete, 2016; Sicacha-Parada et al., 2021; 
Mandeville et al., 2022) might also shape where and how recording 
would take place. Secondly, our study used distance from the origin 
square as a proxy for competition among recorders. However, this 
approach does not fully capture the complexity of recorder behaviour 
(Isaac and Pocock, 2015) and multiple competing biases between re
corders may affect model predictions (Bowler et al., 2022). Thirdly, the 
relative dominance of a particular forager type within a dataset might 
significantly influence model outcomes (August et al., 2020). If there are 
loads of narrow ranged foragers, then the dataset will be dominated by 
areas with high population density; if the dataset is dominated by broad 
ranged foragers, the dataset will be dominated by places where there are 
rare species. Lastly, our model was based on opportunistic monitoring, 
where observers were free to choose where, when and what to report 
(Soroye et al., 2018). The current model would not be applicable for 
volunteers following systematic protocols that direct location of 
recording, such as those used in the UK Butterfly Monitoring Scheme. 
Therefore, such limitations and bias might indicate competitive dy
namics among recorders and should be explored in the future.

In future work, we also intend to extend the current framework to 
account for the selection of species recorded once a site is visited. This 
component of recorder behaviour is likely shaped by taxonomic pref
erences (Goldstein et al., 2024), preference for recording previously 
unseen species (Soroye et al., 2018), sampling completeness 
(Sánchez-Fernández et al., 2021) and an emphasis on rare species (Habel 
et al., 2025). Capturing these dimensions would require the develop
ment of a new model that goes beyond spatial decision-making and 
describes species level choices made by observers. This represents an 
important next step toward a more comprehensive understanding of bias 
in opportunistic data collection.

A further promising direction for future work is to test the model’s 
transferability to a different, yet comparable, taxonomic group. In 
Britain, the Cerambycidae is a family roughly similar in size to butter
flies and with many species readily identifiable from photographs 
(Alexander, 2019). Importantly, occurrence records for Cerambycidae 
are openly available via iRecord. Utilizing these opportunistic datasets 
allows us to evaluate observer behavior patterns and model performance 

Fig. 7. Receiver Operating Characteristic (ROC) curves evaluating the ability of a cumulative rarity-based model to predict butterfly presence, separated by observer 
experience. The left panel shows results for broad-range foragers (observers with ≥5 recording sites), and the right panel for narrow-range foragers (<5 recording 
sites). Differences in Area Under the Curve (AUC) values reflect variation in model performance between the two observer groups (see text for discussion).
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beyond butterflies, thus strengthening the generality and applicability of 
our framework.

It is clear that the geographic distribution of records in the iRecord 
Butterflies dataset is influenced by the trade-off between the perceived 
desirability of a given 1 km square and its distance from recorders’ or
igins. It follows that non-sampled squares are ‘Missing Not At Random’ 
and that drawing accurate inferences about species’ distributions from 
the dataset will be challenging. Further work is needed to understand 
whether this fundamental trade-off applies to other citizen science 
datasets around the world.

File 4 – Supplementary material (hosted on Figshare)
The term “Supplementary material” in our repository refers to an 

internal folder within our Figshare archive, not separate journal-hosted 
supplementary files. The dataset and associated scripts are archived at 
Figshare DOI: 10.6084/m9.figshare.28847306.
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