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Abstract: Habitat fragmentation, where contiguous forests are broken into smaller, isolated patches, 25

threatens biodiversity by disrupting species movement, shrinking populations, and altering ecosystem 
dynamics. Past assessments suggested declining global fragmentation, they relied on structure-based 
metrics that overlook ecological connectivity. Here, we analyze global forest fragmentation from 2000 to 
2020 using complementary metrics capturing patch connectivity, aggregation, and structure. 
Connectivity-based metrics reveal that 51–67% of forests globally–and 58–80% of tropical forests–30 

became more fragmented, nearly twice the rate suggested by traditional structure-focused methods (30–
35%). Aggregation-focused metrics confirm increases in 57–83% of forests. Human activities such as 
agriculture and logging drive this change. Yet, protected tropical areas saw up to an 82% reduction in 
fragmentation, underscoring the potential of targeted conservation. 
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Main Text: 
 
Introduction  
Forests are essential to global biodiversity and climate regulation (1-6). Yet, human activities increasingly 
threaten them, not only by reducing forest area but also by fragmenting forests into smaller, isolated 40 

patches (7-10). This process, known as habitat fragmentation (hereafter “fragmentation”), reduces species 
richness and carbon storage (11-13). Its importance, particularly regarding ecological connectivity and 
integrity, is emphasized in global policy frameworks such as the Aichi Target 11 and the Kunming-
Montreal Global Biodiversity Framework (14, 15). Accurately quantifying fragmentation is critical not 
only to understand its global extent but also to identify high-risk regions and guide conservation efforts. 45 

Fragmentation arises through multiple pathways: patches may shrink, split, vanish, stretch into 
complex shapes, or grow more distant (Fig. 1A-E). These changes often co-occur, as in ongoing Amazon 
deforestation (Fig. 1F & S2), and affect biodiversity through three main mechanisms (16-21). First, new 
edges change microclimates and disturbance regimes, often making forests warmer and drier (22, 23). 
Second, shrinking core areas threaten species dependent on large, intact habitats (11). Third, increased 50 

patch isolation disrupts connectivity and reduces movement, often leading to long-term population 
declines (24-26). While edge effects vary, losses of core habitat and connectivity consistently harm forest 
specialists (11, 17). 

To assess these impacts, researchers use a range of landscape metrics (27-32), broadly categorized 
into structure, aggregation, and connectivity (7, 11). Structure-focused metrics quantify habitat 55 

subdivision, including patch number, size, and edge length, but often neglect the habitat extent and spatial 
arrangement (7). Aggregation-focused metrics assess how clustered patches are but may also overlook 
overall extent. Connectivity-focused metrics incorporate both patch area and spatial configuration, 
offering a more ecologically relevant perspective. Since each captures different aspects of fragmentation, 
selecting ecologically meaningful metrics is critical to accurately track progress toward conservation goals60 

(27, 33).
Connectivity- and aggregation-focused studies suggest that fragmentation has increased in recent 

decades, particularly in the tropics (34-36). For example, Hansen et al. (2020) found consistent tropical 
forest patch loss from 2001 to 2018, with smaller patches disappearing fastest (35). Edge habitat also 
expanded from 2000 to 2010, increasing exposure to disturbances (36). However, global assessments 65 

using structure-focused metrics reported declining fragmentation in 75% of forests from 2000 to 2020 (7)
despite a net forest loss of 101 Mha (37). This discrepancy arises because structure metrics define 
fragmentation by patch number and size, interpreting fewer, larger patches as reduced fragmentation (Fig. 
1C, F), even when ecologically critical patches are lost (7, 33, 38, 39). Such losses reduce connectivity 
and harm species that depend on stepping-stone habitats for dispersal and persistence (11, 13, 19).70 

In conservation biology, debate persists over whether habitat configuration (Fig. 1A) or total area 
plays a greater role in shaping biodiversity (13, 17-19). Structure-focused metrics are valuable for isolating 
the effects of fragmentation per se—that is, changes in patch structure without habitat loss (11, 19).
However, they often overlook critical aspects like connectivity and aggregation, limiting their ability to 
capture how landscape change affects species movement, resource access, and population viability (7, 11, 75 

13). As such, they can misrepresent fragmentation trends over time. A comprehensive global assessment 
must therefore integrate connectivity- and aggregation-focused metrics to fully reflect fragmentation’s 
ecological impacts and its drivers.

Here, we quantify global forest fragmentation from 2000 to 2020 using a comprehensive set of metrics
representing habitat connectivity, aggregation, and structure (Table. 1, Fig. 1 & S1). We calculated nine 80 

widely used fragmentation metrics (7, 27-30, 32), grouped into three categories based on their ecological 
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focus. Connectivity metrics included TCA (total core forest area), LPI (largest patch index), and LDI 
(landscape division index; probability that two randomly placed individuals occur in the same forest patch
(29)). Aggregation metrics included AI (aggregation index), PLADJ (patch-to-edge length adjacency), and 
ENN (mean Euclidean nearest neighbor distance among patches). Structural metrics included MPA (mean 85 

patch area), ED (edge density), and NP (number of patches) (see Table 1 and Table S1 for detailed 
description). To capture broader fragmentation trends, we synthesized these into three composite indices: 
the Connectivity-based Fragmentation Index (CFI), the Aggregation-based Fragmentation Index (AFI) 
(27-30, 32), and the Structure-based Fragmentation Index (SFI, formerly termed the Forest Fragmentation 
Index (FFI) in ref(7)). We first demonstrate how each metric responds to hypothetical and real-world 90 

landscape-changes, demonstrating their ecological relevance. We then apply them to high-resolution (30 
m) global forest cover data (37) to map trends in fragmentation, identify key drivers (8), and evaluate the 
effectiveness of protected areas in mitigating fragmentation. 

 
Results 95 

Fragmentation metrics respond differently to landscape change 
Fragmentation metrics responded differently depending on the type of landscape alteration (Fig. 1). All 
metric groups detected increased fragmentation when forest patches were subdivided without significant 
forest loss, with structure-focused metrics showing the strongest response to patch division (Fig. 1A). In 
contrast, connectivity-focused metrics consistently indicated increased fragmentation in scenarios 100 

involving shrinking patches (Fig. 1B), the disappearance of patches (Fig. 1C), and real-world deforestation 
(Fig. 1F). In these cases, structure-focused metrics often suggested reduced fragmentation, highlighting 
their insensitivity to losses in habitat connectivity. Aggregation-focused metrics were especially 
responsive to increases in patch shape complexity (Fig. 1D) and patch distance (Fig. 1E), but indicated 
reduced fragmentation when patches disappeared (Fig. 1C), resulting in variable outcomes in real-world 105 

scenarios (Fig. 1F & S2). Notably, only the aggregation-focused ENN and the composite AFI detected 
increased fragmentation when patch separation increases without loss of area (Fig. 1E), underscoring their 
unique sensitivity to spatial configuration. 

To quantify how these fragmentation dimensions manifest globally, we conducted a Principal 
Component Analysis (PCA) on all individual and composite metrics. We also incorporated 110 

Metapopulation Capacity (MPC)—a measure of functional connectivity reflecting a landscape's ability to 
support species persistence (25, 31). The PCA biplot revealed three statistically distinct metric clusters 
(MANOVA p-value < 0.001), corresponding to habitat connectivity, aggregation, and structure (Fig. 2A).
Connectivity-focused metrics aligned closely with MPC (Fig. 2A, S10C), confirming their strength in
capturing functional connectivity and ecologically meaningful fragmentation (Fig. 2A, S10C). This 115 

underscores the importance of incorporating connectivity-based approaches in global fragmentation
assessments to better understand biodiversity impacts and conservation priorities.
 
Trends of global fragmentation from 2000 to 2020 
To quantify global forest fragmentation trends, we assessed the proportion of forest area showing 120 

increased fragmentation from 2000 to 2020 at multiple spatial resolutions (5, 10, 20, and 40 km). We used 
three composite indices—CFI, AFI and SFI—to capture trends globally and across major forest biomes 
(tropical, temperate, and boreal). The results reveal stark differences among metric types. The CFI
indicates that, depending on grid size, 51-67% of forests globally (Fig. 2C), and 58-80% of tropical forests 
(Fig. 2D), have become more fragmented. Similarly, the AFI suggests that 57-83% of global forests 125 

became more fragmented, reflecting declines in spatial proximity and ecological connectivity, both crucial 
for species movement and habitat continuity. In contrast, the SFI suggests that only 30-35% of forests 
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worldwide became more fragmented over the same period (Fig. 2C), aligning with earlier findings (7).
This discrepancy arises because the SFI interprets the loss of small or connecting patches as reduced 
fragmentation, due to its focus on patch number and size rather than ecological connectivity. 130

Fragmentation estimates from the CFI and AFI were scale-dependent, with higher fragmentation 
detected at coarser resolutions (10–40 km; Fig. 2C–D). This reflects the edge-driven nature of 
fragmentation: as grid size increases, fewer cells fall within intact cores, increasing the apparent
fragmentation rate. By contrast, the SFI remained largely scale-insensitive, even indicating slight declines 
in fragmentation at larger scales (Fig. 2C-D). 135

To examine how fragmentation metrics respond to deforestation, we related each composite metric
to forest cover at a 5 km resolution for the year 2000 (Fig. 2B) and 2020 (Fig. S5). CFI and AFI values 
declined with increasing forest cover, aligning with ecological expectations that larger, contiguous forests 
are less fragmented (11). By contrast, the SFI indicated reduced fragmentation in areas with both low and 
high forest cover, thus equating severe deforestation with reduced fragmentation and highlighting its 140

limitations in capturing deforestation-driven fragmentation. Spatial analysis confirms that these 
discrepancies between metrics are most pronounced across the pan-tropical regions (Fig. S9), where 
deforestation is severe (8, 35). 
 
Drivers of forest fragmentation 145 

Forest fragmentation and cover loss arise from various processes that can be broadly classified into 
permanent conversion and temporary disturbances (8). Permanent conversion includes commodity-driven 
deforestation (e.g., mining, energy development) and urban expansion, resulting in lasting land-use change. 
Temporary disturbances, such as shifting agriculture (agricultural conversion followed by abandonment), 
forestry (clearcutting or selective logging), and wildfires, often allow for forest regrowth over time. 150 

To quantify the contribution of these drivers, we integrated data from the Global Forest Watch dataset
(8), which maps primary deforestation drivers from 2000 to 2023 (Fig. 3). Results were consistent with 
earlier assessments (8) from 2000 to 2015 (Figs. S12–S13), confirming the growing influence of 
anthropogenic disturbance, especially shifting agriculture, commodity-driven deforestation, and forestry.
We used the CFI at 5-km resolution (the finest available) for this analysis and the subsequent assessment 155 

of protected areas, as it best aligned with ecological indicators of fragmentation (Fig. 2A-B, S10). 
Globally, shifting agriculture (37% of grids with increased fragmentation) and forestry (34%) were 

the dominant drivers of increased fragmentation (Fig. 3), followed by wildfires and commodity-driven 
deforestation (both 14%). In the tropics, fragmentation was overwhelmingly driven by shifting agriculture 
(61%), while temperate forests were mainly affected by forestry (81%). In boreal regions, wildfires (62%) 160 

and forestry (38%) were the primary drivers. Permanent conversions from commodity-driven 
deforestation and urbanization accounted for less than 15% of fragmentation globally. Identifying these 
region-specific drivers is essential for designing targeted and effective conservation strategies. 
 
Fragmentation status within and outside protected areas 165 

To examine how protection status influences forest fragmentation, we integrated data from the World 
Database on Protected Areas (WDPA) (40). Area-based protection remains a cornerstone of biodiversity 
conservation (41, 42), and previous studies suggest that protected tropical forests face fewer human 
disturbances (43). However, whether this translates into reduced fragmentation rates over time remains 
unclear.170 

We classified 5-km forest grid cells into protected and non-protected categories and applied a 
matching approach to control for environmental and socio-economic differences (42, 44-46)  (Fig. S14–
S16). Fragmentation trends from 2000 to 2020 were analyzed across four categories: strictly protected, 
protected, matched non-protected, and all non-protected. Given distinct fragmentation drivers, tropical 
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and non-tropical forests were analyzed separately. 175 

In the tropics, fragmentation increased in all categories but remained significantly lower in protected 
areas. Strictly protected areas experienced 82% less fragmentation than matched non-protected areas, 
while less strictly protected areas saw a 45% reduction (Fig. 4A). These patterns align with reduced human 
activity: shifting agriculture was 59% and 16% lower in strictly and less strictly protected areas, 
respectively, while forestry was 10% and 58% lower (Fig. 4B). These results highlight the effectiveness 180 

and importance of tropical protected areas in limiting human-driven fragmentation, and underscore the 
urgent need to expand protection across tropical regions in line with international conservation targets, 
including Aichi Target 11 and the “30x30” goal of the Kunming-Montreal Global Biodiversity Framework 
(14, 15).

In contrast, non-tropical forests showed slightly higher fragmentation in strictly protected areas 185 

compared to non-protected ones (Fig. 4C), alongside a 63% increase in forestry activity (Fig. 4D). This 
may reflect inconsistencies in how protection status is defined across jurisdictions, with some areas 
allowing logging still classified as strictly protected (43, 47). 

Discussion  190 

A recent study using structure-focused metrics suggested that 75% of the world’s forests are becoming 
less fragmented as patch counts decline with forest loss (7) (Fig. 1F). While this conclusion is 
mathematically valid, our analysis incorporating connectivity and aggregation reveals the opposite: most 
forests, especially in the tropics, have become more fragmented over the past two decades. These findings 
align with prior studies showing increasing fragmentation in the tropics, with declining cover, more edge 195 

habitats, and reduced core areas (34-36). This trend holds across varying forest cover thresholds used to 
define forest grid cells (Fig. S17) and is primarily driven by declining connectivity and aggregation. 

The divergences among fragmentation metrics highlight the importance of assessing not only forest 
areas but also the spatial arrangement of patches to evaluate changes in landscape integrity (11, 12). 
Structure-focused metrics, such as the SFI, capture a distinct and meaningful dimension of fragmentation 200 

related to patch size, number, and edge complexity (Fig. 2A). They are especially valuable for isolating 
fragmentation per se from habitat loss (11, 17-19), and for comparing sites with similar forest cover but 
differing patch structures (13). However, they reflect only one of three critical axes–structure, aggregation, 
and connectivity (Fig. 2A)–and can yield misleading results when forest cover changes alongside 
fragmentation, whether over time or across space. For example, they may indicate reduced fragmentation 205

when patch numbers decline, even as habitat loss degrades connectivity and ecosystem function (Fig. 1C).
In contrast, connectivity- and aggregation-focused metrics offer a more ecologically meaningful 

perspective for detecting and interpreting fragmentation over time. They show stronger alignment with 
key ecological indicators such as metapopulation capacity and net primary productivity (Fig. S10), and 
directly reflect functional landscape properties that affect biodiversity persistence (25, 31). Notably, the 210 

strong correlation between the CFI and metapopulation capacity suggests that the CFI offers a 
computationally efficient proxy for ecological connectivity.

These differences among fragmentation metrics underscore the need for ecologically meaningful 
indicators in conservation planning (11, 19). For instance, both the CFI and AFI detect increased 
fragmentation across pantropical regions, consistent with high deforestation rates (42), and reveal 82% 215 

and 79% lower fragmentation in strictly protected areas compared to matched non-protected ones, 
respectively (Fig. 4A, S18). These reductions were largely driven by declines in agricultural activity (Fig. 
4B). In contrast, the SFI suggests declining fragmentation both within and outside tropical protected areas 
(Fig. S18), illustrating how reliance on structure-based metrics alone can obscure ecological degradation
and potentially mislead conservation efforts. To fully evaluate forest fragmentation and its ecological 220 
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consequences, all three dimensions—structure, aggregation, and connectivity—must be considered in 
tandem. However, metrics that capture connectivity and aggregation offer greater ecological relevance for 
understanding functional landscape change and guiding effective conservation. 

Given the ecological relevance of connectivity-focused metrics, we used the CFI to assess the primary 
drivers of fragmentation and the effectiveness of protected areas across forest biomes. Our analysis shows 225 

that permanent forest conversion accounts for only 15% of global connectivity-focused fragmentation, 
while wildfires—intensified by climate change—contribute another 14% (Fig. 3). The remaining 71% was 
primarily driven by agricultural and forestry activities that can often represent temporary transitions, 
highlighting opportunities for restoration (3, 8). Protected areas mitigate these impacts, though their 
effectiveness varies by biome. Tropical forests benefit most, with reduced fragmentation primarily due to 230 

lower agricultural encroachment. By contrast, temperate and boreal forests show slight increases in 
fragmentation within protected areas, mainly driven by ongoing forestry. These patterns underscore the 
need for biome-specific conservation strategies that reflect distinct regional pressures.  

While our study provides important insights into global forest fragmentation and its ecological 
implications, several limitations may affect the accuracy of our estimates. Landsat-derived data likely 235 

underestimates fragmentation by failing to detect narrow barriers, such as roads less than 30 meters wide 
(48, 49). Additionally, this forest cover product does not distinguish between natural forests and 
agroforestry, potentially underestimating natural forest loss (37). Conversely, using a 5-meter height 
threshold to define forests may not fully capture restoration trends, as degraded forests with slow regrowth 
below this height remain undetected (37). 240 

In conclusion, our study reveals widespread declines in forest ecological integrity over the past two
decades, driven largely by human activity. The stark divergence among fragmentation metrics 
underscore the urgent need for ecologically relevant tools to accurately assess and address these 
changes. As human pressures on nature intensify, such tools will be essential for guiding effective 
conservation and reversing global trends in fragmentation and biodiversity loss. 245 
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Fig. 1 | Responses of fragmentation metrics to simulated (A-E) and observed (F) landscape change scenarios. A, 420 
Transition from a single forest patch with 60% canopy cover to multiple smaller patches with minimal cover loss. B, 
Reduction of a single forest patch from 60% to 20% cover. C, Removal of one of three equally-sized forest patches. D, 
Transformation of a circular patch with 60% cover into an irregular shape with the same coverage but a longer perimeter. 
E, Increased distance between two previously proximate patches. F, Observed deforestation in an Amazon forest site 
from 2000 (left, 72% cover) to 2020 (right, 26% cover); similar patterns occur in other sites (Fig. S2). Our analysis shows 425 
that scenarios 2 and 3 are the most prevalent globally, affecting 18% and 46% of forests experiencing cover loss, 
respectively (Fig. S3). While scenarios 4 and 5 are hypothetical and may not frequently occur in real forested landscapes, 
they help illustrate how aggregation-focused metrics respond to changes in patch shape and distance compared to 
connectivity- and structure-focused metrics. For each scenario, changes were assessed using 12 normalized fragmentation 
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metrics (scaled from 0 to 1, see Tables 1 and S1 for details), categorized into three groups: connectivity-focused, 430
aggregation-focused and structure-focused metrics. Positive values indicate increased fragmentation. Red signifies a 
fragmentation increase, blue indicates a decrease, and white indicates no change, with darker shades representing greater 
magnitude. The CFI, AFI, and SFI, representing integrated indices for connectivity, aggregation, and structure, are 
highlighted in bold.

435

Fig. 2 | Classification and analysis of fragmentation metrics. A, The major axes of forest fragmentation: Principal 
Component Analysis (PCA) Biplot showing the distribution of various fragmentation metrics applied to a 10% random 
sample of all grid cells (forest cover > 0) for the year 2000. Metrics are color-coded based on their focus: connectivity-
focused in red, aggregation-focused in orange, and structure-focused in blue. The integrated indices—Connectivity-based 440 
Fragmentation Index (CFI), Aggregation-based Fragmentation Index (AFI), and Structure-based Fragmentation Index 
(SFI, formerly termed FFI from Ma et al., (2023))—are highlighted in darker shades within their groups. Forest cover (in 
dark cyan) is also included. A Pair-wise Multivariate Analysis of Variance (MANOVA) confirms significant differences 
among loadings of these three groups (p < 0.001), indicating distinct clustering. The Metapopulation Capacity (MPC; 
depicted in black), a critical metric for functional connectivity, aligns closely with connectivity-focused metrics. See Fig. 445 
S3 for PCA biplots on the 12 fragmentation metrics across all grid cells in both years 2000 and 2020. B, Relationship 
between the observed fragmentation degree (based on the CFI, AFI and SFI) and canopy cover for all analyzed forest 
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grid cells in the year 2000. Solid lines represent mean fragmentation values, the shaded areas represent mean ± std. C,
Proportion of global forest grid cell areas with increased fragmentation between 2000 and 2020 at different grid cell 
scales, based on the CFI, AFI and SFI. D, Proportion of forest grid cell areas with increased fragmentation (mean ± std, 450
over different grid cell scales) between 2000 and 2020 across global forest grid cells and in different forest biomes, based 
on the CFI, AFI and SFI. Panels C and D include only forest grid cells with forest cover >30% in 2000. Results remained 
consistent across different forest cover thresholds used to define forest grid cells (Fig. S17).

455 

 
 

Fig. 3. Drivers of forest fragmentation trends (2000–2020) across biomes. Total area of forest regions (grid cells 460 
with >30% canopy cover at 2.5 arc-min [~5 km] resolution, the finest resolution available) affected by different 
fragmentation drivers at global and biome scales. “No CFI increase” represents forest regions where fragmentation levels 
have remained stable or decreased. "Zero or minor cover loss" includes areas where fragmentation slightly increased due 
to unknow cause but with minor or no forest cover loss. All other categories represent regions with increased 
fragmentation driven by specific factors, including i) “Wildfire”, where forest burning occurred without subsequent 465 
human conversion or agricultural activity, ii) “Forestry”, representing large-scale harvesting within managed forests with 
signs of regrowth, iii) “Shifting agriculture”, referring to small- to medium-scale forest conversion for agriculture, later 
abandoned and followed by forest regrowth, iv) “Deforestation”, characterized by permanent forest loss due to 
commodity-driven activities such as agriculture, mining, or energy infrastructure, and v) “Urbanization”, where forests 
have been converted for urban expansion. The drivers are arranged from “Wildfire” (top) to “Urbanization” (bottom) to 470 
reflect the increasing degree of irreversible forest loss.  
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 475

 

480 
Fig. 4. Forest fragmentation trends (2000–2020) inside and outside protected areas. A and C, Changes in the degree 
of fragmentation (indicated by the CFI, mean ± 3 se) across forest grid cells (at 2.5 arc-min [~5 km] resolution) in strictly 
protected areas, loosely protected areas, matched non-protected areas, and all non-protected areas in tropical (A) and 
extratropical (C) forests. Kruskal-Wallis and post-hoc Mann-Whitney U tests (Table S4-5) show that in tropical forests 
(A), fragmentation levels significantly differ across all protection categories (p < 0.001), while in extratropical forests 485 
(C), only the “Strictly Protected” group is significantly different from all other groups (p < 0.05). B and D, Proportions 
of forest regions experiencing fragmentation due to different drivers across different protection categories in tropical (B) 
and extratropical (D) regions. "No CFI increase" represents areas where fragmentation levels have remained stable or 
decreased. "Zero or minor cover loss" includes areas where fragmentation slightly increased due to unknow cause but 
with minor or no forest cover loss. All other categories represent regions with increased fragmentation driven by specific 490 
factors such as forestry, shifting agriculture, deforestation, or urbanization. To address spatial autocorrelation, we only 



15 
 

included forest grid cells at least 40 km apart. 
 
 
 495
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Table 1. Overview of landscape-level fragmentation metrics.
 Metric Full name Description Reference 

 Canopy  
cover

Forest cover 
percentage

The percentage of the landscape 
covered by forests.

McGarigal et al. (2002) 
(27)

 
 
 
 

Connectivity- 
focused 

TCA Total core area 

The sum of core areas of all 
patches belonging to forests. A 
cell is defined as core area if all of 
its neighboring cells are forests.

McGarigal et al. (2002) 
(27) 

LPI Largest patch index 
The percentage of the landscape 
covered by the corresponding 
largest patch of forest. 

McGarigal et al. (2002) 
(27) 

LDI 
Landscape division 

index 

The probability that two randomly 
selected cells are not located in 
the same patch of forest.

Jaeger (2000) (29) 

CFI
Connectivity-based 
fragmentation index Synthetic metric integrating TCA, 

LPI and LDI. 

This paper

 
 
 
 
 

Aggregation- 
focused 

 

AI Aggregation index 

The number of like adjacencies 
divided by the theoretical 
maximum possible number of like 
adjacencies for forest cells. 

He et al. (2000) (30) 

PLADJ 
Percentage of Like 

Adjacencies 

The number of adjacencies 
between forest cells divided by the 
number of adjacencies between 
forest and non-forests cells.

McGarigal et al. 
(2002) (27) 

ENN 
Mean of Euclidean 
nearest-neighbor 

distance

The mean Euclidean distance to 
the nearest neighboring patch for 
each forest patch.  

McGarigal et al. 
(2002) (27) 

AFI  
Aggregation-based 

fragmentation index 

Synthetic metric integrating AI, 
PLADJI and ENN. 
 

This paper 

 
 
 
 

Structure- 
focused 

NP Number of patches 
Number of distinct forest patches. 

McGarigal et al. (2002) 
(27)

MPA Mean patch area
The mean of all patch areas 
belonging to forests.

McGarigal et al. (2002) 
(27)

ED Edge density 

The length sum of all edges of 
forest divided by the landscape 
area (In our study the landscape 
area is the grid cell area).

McGarigal et al. (2002) 
(27) 

SFI 
Structure-based 

fragmentation index 

Synthetic metric integrating NP, 
MPA and ED. This index was 
called FFI in Ma et al. (2023).

Ma et al. (2023) (7) 

 
Functional 

connectivity MPC 
Metapopulation 

capacity 

A relative measure of the ability 
of a spatially explicit landscape to 
support long-term species 
persistence based on connectivity 
and area of habitat. 

Hanski & Ovaskainen 
(2000) (31) 

 
500 
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Materials and Methods 
Data processing 
High-resolution (30 m) global tree cover data for 2000 and 2020 were sourced from the Global Land Cover and Land Use 
(GLCLU) dataset (37)530 
pixels, aligning with the FAO definition (37). These data were processed into binary forest maps for both years and subdivided 
into 5807257 grid cells with a resolution of 2.5 arc-minutes (~ 5 km in the equator) in geographic coordinates (EPSG: 4326). 
Within these cells, twelve fragmentation-related landscape metrics (see Tables 1 and S1) were computed using the 
“landscapemetric” R package (52). 
 535 
Standardization of fragmentation metrics 
We compiled a set of nine widely-used fragmentation metrics from previous studies (7, 27-32) (see Table S1 for details). These 
metrics include: 

Mean Patch Area (MPA): Average size of individual patches.
 Edge Density (ED): Total edge length per unit area.  540 

Number of Patches (NP): Total count of forest patches.
 Total Core Area (TCA): Total area of core forest patches. 
 Largest Patch Index (LPI): Percentage of the landscape occupied by the largest patch. 
 Landscape Division Index (LDI): Probability that two randomly placed points fall in different patches. 
 Aggregation Index (AI): Degree of patch aggregation. 545 
 Percentage of Like Adjacencies (PLADJ): Measures patch connectivity based on patch-to-edge length adjacency. 
 Mean of Euclidean Nearest Neighbor distance (ENN): Average distance between patches. 

These metrics were computed for each grid cell with forest cover > 0% across the entire dataset for the years 2000 and 2020, 
using the “landscapemetric” R package (52). To facilitate interpretation, we classified these metrics into three broad 
categories: The nine fragmentation metrics can be broadly classified into three classes:  550 
1. Structure-focused metrics (NP, ED, MPA) capture changes in patch structure but are less sensitive to the total habitat area. 
2. Connectivity-focused metrics (TCA, LPI, LDI) assess the extent and spatial arrangement of core forest areas. LDI 

specifically measures the probability that two randomly placed individuals reside within the same contiguous forest patch. 
3. Aggregation-focused metrics (AI, PLADJ, ENN) characterize spatial clustering and edge-to-core relationships, reflecting 

landscape aggregation patterns. 555 
This classification allows for a nuanced interpretation of fragmentation dynamics, distinguishing between changes in patch 
isolation, connectivity, and spatial clustering. 

Given that the remote sensing tree cover product used in this study has a resolution of 30 m (37), forest patches were 
considered separate if their edge-to- 2 (equivalent 
to one pixel). To ensure consistency and comparability, we applied the same normalization procedure as in Ma et al. (2023). 560 
Specifically, we determined the upper and lower limit values of each fragmentation metric in 2020 using the following formulas: 

= + 1.5 × (1) 
= 1.5 × (2) 

where  and represent the upper and lower limit values for each metric, respectively;  is the 25th percentile 
(lower quartile);  is the 75th percentile (upper quartile) of each landscape pattern metric; and  denotes the difference 565 
between and  . This method captures the distribution of the data in a realistic and intuitive manner, considering that 
landscape pattern metrics typically do not follow a normal distribution. We set pixel values exceeding the upper and lower 
limits to their corresponding limit values to mitigate the influence of extreme outliers. 

To allow direct comparisons between the two study years, we applied the upper and lower limit values established for 
2020 as a standard reference, and processed the 2000 data using the same approach. The normalization process was carried out 570 
using the following equation:  

=  

,     

1 ,     

(3) 

where  represents the normalized values for each of the nine fragmentation metrics, with values ranging from 0-1, where 
higher values indicate higher levels of fragmentation;  is the original value of each fragmentation metric; and and 
are the corresponding maximum and minimum values for that year. 575 

In the next step, we derived integrated metrics for each of the three fragmentation classes: Structure-based Fragmentation 
Index (SFI), Connectivity-based Fragmentation Index (CFI), and Aggregation-based Fragmentation Index (AFI). These indices 
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were computed by aggregating the normalized values of the three individual metrics within each class using the following 
equations: 

=
+ +

3
(4) 580 

=
+ +

3
(5) 

 

=
+ +

3
(6) 

where EDnor, NPnor, MPAnor, LDInor, TCAnor, LPInor, ENNnor, PLADJnor, EDnor, NPnor, MPAnor, LDInor, TCAnor, LPInor, ENNnor, 585 
PLADJnor, and AInor represent the normalized values of the respective fragmentation metrics.

We then conducted a principal component analysis (PCA) to explore relationships among fragmentation metrics and assess 
their distinct contributions. The PCA was performed on a dataset containing the nine individual fragmentation metrics plus the 
three integrated indices (SFI, CFI, and AFI) for both the years 2000 and 2020 (Fig. S4A-B). The PCA results confirm that the 
three metric groups—structure, connectivity, and aggregation—form distinct and well-defined dimensions in the PCA space 590 
(Fig. 2A and S4), highlighting their unique contributions to understanding forest fragmentation. This classification helps 
disentangle different fragmentation patterns and improves the interpretability of fragmentation trends over time. 
 
Metapopulation capacity 
To determine which group of fragmentation metrics best represents connectivity, we calculated a well-developed and widely-595 
used landscape-level connectivity metric, metapopulation capacity (MPC). Rooted in metapopulation theory (31, 53, 54), MPC 
quantifies the combined effects of habitat amount (Fig. S19) and configuration on species’ metapopulation dynamics, which 
are driven by the processes of extinction and colonization of local populations within habitat patches. MPC is computed using 
the following equations: 

=   600 

=
,   

,   =
(7) 

where is the leading eigenvalue of a square ‘landscape matrix’ , in which each element  reflects connectivity between 
patches   and patch   as a function of patch attributes. These attributes include: patch area and in m2, a dispersal 
probability function of interpatch distance ( ), and an extinction probability constant , commonly set to 0.5 (24). The 
dispersal probability function is modeled with a negative exponential kernel: 605 

= exp (8) 
where   is the inverse mean gap crossing distance and is the edge-to-edge Euclidean distance weighted by resistance 
between patches  and  in the habitat network.  

For species-specific applications,  should be calibrated to species-specific traits. In our study, as we do not focus on 
specific species, we used a representative  value of 317 m, consistent with prior studies (55, 56), which represents the  average 610 
dispersal distance for a wide range of terrestrial animals (20, 55-58). To model resistance, we used a global human footprint 
index map from the year 2000 (59). Due to the high computational cost, we calculated MPC for a 10% random subsample of 
forest grid cells within each forest type (tropical, temperate and boreal) for the year 2000. This process required several months 
to complete on the Euler Cluster at ETH Zurich.  

To facilitate comparison with other metrics, we normalized MPC using equation (3) to ensure values range from 0 to 615 
1 and increase with fragmentation. We then added the normalized MPC to the PCA biplot, which also included the 12 selected 
fragmentation metrics (Fig. 2A). The PCA biplot shows that connectivity-focused metrics (in red) are closely aligned with 
MPC, underscoring their ability to represent functional connectivity effectively. 
 
Comparison of fragmentation metrics using landscape simulations 620 
To evaluate the behavior of different fragmentation metrics under varying landscape configurations, we used the “landscapeR” 
R package (60) to create a series of 200,000 simulated landscapes. These landscapes varied in forest cover (from 0.1% to 100% 
in increments of 0.1%) and in the number of forest patches (from 1 to 200).  

For each simulated landscape, we calculated the CFI, AFI and SFI, along with the other nine fragmentation metrics from 
which these integrated indices were derived. All 12 metrics were normalized to a range of 0-1, where higher values indicate 625 
higher levels of fragmentation.  

To illustrate the behavior of these metrics, we selected five distinct landscape change scenarios that represent major types 
of fragmentation (Fig. 1): 
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(1) Transition to multiple patches with retained coverage: A single forest patch with 60% coverage transitions into tens of 
diverse patches while retaining the 60% coverage (Fig. 1A). 630 

(2) Forest shrinkage: A forest patch with 60% coverage shrinks to 30% coverage (Fig. 1B). 
(3) Patch loss: One of three equally-sized forest patches is removed (Fig. 1C). 
(4) Increased edge complexity: Change from a circular forest patch with 60% coverage to a more irregularly shaped patch 

with longer edges but the same coverage (Fig. 1D). 
(5) Increased patch separation: Two spatially proximate forest patches move further apart, increasing the inter-patch distance 635 

while maintaining the same coverage (Fig. 1E). 
While scenarios (4) and (5) are hypothetical and may not fully reflect real-world landscapes, they provide valuable insights 
into how different metrics respond to specific fragmentation patterns. 
 
Quantifying global fragmentation trends 640
To analyze global forest fragmentation trends, we first applied a filter to the raw dataset, retaining only forest grid cells with 
over 30% canopy cover in the year 2000. This resulted in a total of 3,233,983 grid cells at 2.5 arc-minute (5 km) resolution. 
For these cells, we calculated the differences in fragmentation metrics and forest cover between 2000 and 2020. 

To quantify the sensitivity of different fragmentation metrics to forest cover changes, we performed simple linear 
regression to predict changes in each fragmentation metric as a function of forest cover change across forest grids within each 645 
ecoregion (41). The sensitivity of the metrics was quantified using the coefficients of determination (R2) from these regressions.

For each of the 12 fragmentation metrics, we calculated the proportions of forest grid cell areas (corrected for latitudinal 
differences) that experienced increased fragmentation globally, as well as within tropical, temperate, and boreal forests (Fig. 
2C-D). Biome classification followed the WWF system (61) (Fig. S21-22), with the following definitions:  

 Tropical forests include “Tropical and Subtropical Moist Broadleaf Forests”, “Tropical and Subtropical Dry 650 
Broadleaf Forests”, “Tropical and Subtropical Coniferous Forests”, and “Tropical and Subtropical Grasslands, 
Savannas, and Shrublands”.  

 Temperate forests include “Temperate Broadleaf and Mixed Forests”, “Temperate Coniferous Forests”, 
“Mediterranean Forests, Woodlands and Scrub”.  

 Boreal forests include “Boreal Forests/Taiga”. 655 
Detailed biome classifications are provided in Table S2. 
 
Dependence on scale and forest cover thresholds 
To investigate the scale-dependence of different fragmentation metrics, we replicated the above analysis using grid cell scales 
of 5, 10, and 20 arc-minutes, corresponding approximately to 10, 20, and 40 km at the equator (Fig. 2C-D). The largest scale, 660 
40 km, was chosen because it encompasses the maximum home range (approximately 1600 km²) of large mammals with strong 
movement capabilities, such as wolves (62). 

To explore the effects of canopy cover thresholds used to define forest grid cells, we replicated the analysis using cover 
thresholds of 10%, 20% and 40% (Fig. S17). The results remained consistent with those obtained using the 30% cover threshold 
(Fig. 2C-D). 665 
 
Spatial visualization of fragmentation trajectories 
To capture the spatial variation in fragmentation trends, we created maps of changes in fragmentation based on the CFI, AFI 
and SFI at 5 km resolution using geographic coordinates (EPSG: 4326) and the R package “raster”. We categorized all forest 
grid cells into six distinct landscape-change scenarios based on their forest cover and fragmentation trajectories (Fig. S9): 670 
(1) No forest loss: Grid cells with no forest cover loss during 2000-2020. 
(2) Increased fragmentation (all metrics): Grid cells with decreased forest cover where CFI, AFI and SFI all indicate 

an increase in fragmentation. 
(3) Inconsistent SFI: Grid cells with decreased forest cover where the CFI and AFI indicate increased fragmentation, 

but the SFI indicates a decrease. 675 
(4) Inconsistent AFI: Grid cells with decreased forest cover where the CFI and SFI indicate increased fragmentation, 

but the AFI indicates a decrease. 
(5) CFI-only increase: Grid cells with decreased forest cover where the CFI indicates increased fragmentation, but 

both the AFI and SFI indicate a decrease 

(6) CFI decrease: Grids with decreased forest cover where the CFI indicates a decrease in fragmentation. 680 
Our analysis of spatial patterns in global forest fragmentation and cover trends at a 5 km scale from 2000 to 2020 shows 

that 48% of forest grid cells experienced stable or increasing forest cover, while the remaining 52% saw a decline (Fig. S9A). 
In regions where forest cover remained stable or increased, the connectivity-focused CFI and structure-focused SFI indicate 
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fragmentation increased in only 5% and 10% of these areas, respectively. In contrast, the aggregation-focused AFI suggests 
increased fragmentation in 32% of these areas, highlighting its tendency to interpret forest cover increases as reduced 685 
aggregation (Fig. S11).  

In regions experiencing forest cover loss, the CFI and AFI report increased fragmentation in 94% and 74% of grid cells, 
respectively. By contrast, the SFI indicates increased fragmentation in only 52% of these areas, resulting in notable 
discrepancies: The SFI disagrees with the CFI and AFI in 42% and 37% of forest grids with declining cover, respectively. These 
discrepancies (red- and orange-colored regions in Fig. S9A) are most prevalent in pan-tropical regions, such as the Amazon, 690 
Congo, and Indonesian rainforests, as well as in boreal zones. Geographically, the most substantial discrepancies between the 
CFI and SFI are found at low latitudes (from 15°N to 25°S) and high latitudes >50°N (Fig. S9B). The AFI disagrees with the 
CFI in 27% of grid cells where forest cover has decreased, following a similar latitudinal pattern but with a smaller magnitude 
of change (Fig. S9). This analysis underscores the limitations of structure-focused metrics such as the SFI, which can 
underestimate fragmentation trends in deforested areas by equating reductions in the number and size of patches with decreased 695 
fragmentation. This assumption fails to capture the ecological reality of habitat fragmentation, where patch loss often leads to 
greater isolation and reduced connectivity, exacerbating the negative impacts on biodiversity and ecosystem functionality (11). 
 
 
Quantifying contributions of different drivers to increased fragmentation 700 
To investigate the drivers of forest fragmentation, we distinguished between permanent land conversions, like deforestation 
and urban expansion, and temporary disturbances, such as forestry operations and wildfires. Curtis et al. 2018 developed a 
global map of forest loss drivers, derived from 30m-resolution Google Earth imagery between 2000 and 2015 using a machine-
learning algorithm (8). This dataset was later updated on Global Forest Watch using the same methodology to extend coverage 
to 2000-2023 (Fig. 23; https://data.globalforestwatch.org/documents/gfw::tree-cover-loss-by-dominant-driver-2023/about). 705 
Details regarding validation and uncertainty assessments of the driver estimations are provided in Curtis et al. (2018). 

Using these datasets, we quantified the impact of different drivers on CFI-based fragmentation trends for the periods 2000-
2015 (Fig. S12) and 2000-2023 (Fig. 3). We extracted the primary driver of forest loss and fragmentation for each grid cell and 
classified them into seven categories based on the dominant cause and fragmentation trends:  
 Uncertain: cases where the cause of increased fragmentation could not be determined. 710 
 Wildfire: areas where fragmentation is driven by natural fire-related disturbances without human-induced land 

conversion. 
 Forestry: Large-scale forestry activities that cause fragmentation but show signs of regrowth. 
 Shifting agriculture: transient agricultural conversion with eventual regrowth. 
 Deforestation: permanent conversions to non-forest land uses, such as agriculture, mining or infrastructure projects. 715 
 Urbanization: expansion of urban areas. 
 No increase: regions where fragmentation did not increase over the past 20 years. 

 
Comparison of forest loss and fragmentation between protected and non-protected areas. 
Forests within protected areas are expected to experience fewer human disturbances due to conservation policies and lower 720
population densities, which should result in reduced deforestation and degradation compared to non-protected forests. To assess 
whether these reduced disturbances in protected areas result in decreased forest fragmentation, we used the World Database on 
Protected Areas (WDPA) (40). We identified forest grid cells within protected areas established before 2010, allowing at least 
a decade for the effects of protection to manifest (Fig. S20). We then categorized forests into three groups:  
 Strictly protected areas: including the most stringent IUCN protection categories (Ia: strict nature reserve, Ib: 725 

wilderness area, and II: national park). 
 Protected areas: includes IUCN categories that allow for some resource use (III: natural monument or feature, IV: 

habitat or species management area, V: protected landscape or seascape, and VI: protected area with sustainable use 
of natural resources).  

 Non-protected areas: forests outside any official protection status. 730 
To ensure fair comparisons between fragmentation rates inside and outside protected areas, we implemented a matching 
procedure that created counterfactuals outside protected areas based on environmental and social-economic covariates (42, 44-
46). For this analysis, we combined the strictly protected and protected categories into a single "protected" group. We measured 
changes in forest fragmentation using the change in the Connectivity-based Fragmentation Index ( = ). 
To address spatial autocorrelation, we only included forest grid cells at least 40 km apart (45, 46, 63), as Moran’s I analysis 735 
indicated negligible spatial autocorrelation in model residuals at this distance (Fig. S14). The spatial model used here predicts 
protection status (whether a grid cell is inside a protected area or not) using a binomial logistic regression model with 
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environmental and socio-economic covariates, including mean annual temperature (64), annual precipitation (64), temperature 
seasonality (64), precipitation seasonality (64), aridity (64), population density (65) and fire frequency (66) from 2000 to 2020, 
and accessibility to cities in 2015 (67).740

We employed a control intervention with matching analysis design (46, 68, 69) to compare protected vs. non-protected 
areas, defining control units as forest grid cells outside protected areas. To identify potential cofounding variables influencing 
protection status, we performed a binomial logistic regression and assessed multicollinearity among predictor variables, 
retaining only those with Variance Inflation Factor (VIF) < 0.65 (70, 71). Model selection was optimized using backward and 
forward stepwise regression based on the Akaike Information Criterion (AIC) (70). The final model included average values 745
of mean annual temperature (64), annual precipitation (64), population density (65) and fire frequency (66) from 2000 to 2020, 
and accessibility to cities in 2015 (67).

Using the MatchIt package (72) in R, we applied Propensity Score Matching (45, 46, 68-70) to create a statistically 
balanced counterfactual sample for evaluating the impact of protection on forest fragmentation. Diagnostic statistics confirmed 
the robustness of the matching process (Fig. S15-16), ensuring that the covariate imbalance index for each variable after 750
matching was within acceptable limits (< 25%) (46, 73, 74). This matching procedure resulted in a new grid cell category: 
“matched non-protected”. We then compared CFI change and the primary drivers of fragmentation across the following four 
categories: Strictly protected, Protected, Matched non-protected (statistically similar non-protected areas) and All non-
protected areas. Since the fragmentation rates across different categories did not follow a Gaussian distribution, we used the 
Kruskal-Wallis test followed by post-hoc Mann-Whitney U tests (75) to assess differences between groups.755

760
Fig. S1 | Relationship between forest cover and normalized fragmentation metrics. This figure illustrates the 
relationship between forest canopy cover and nine normalized fragmentation metrics based on global forest data from 
the year 2000. Each normalized fragmentation metric scaled from 0 to 1, with larger values indicate higher fragmentation, 
see Tables 1 and S1 for details. A, Total core area (TCA). B, Largest patch index (LPI). C, Landscape division index 
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(LDI). D, Aggregation index (AI). E, Percentage of like adjacencies (PLADJ). F, Mean Euclidean distance between 765
patches (ENN). G, Number of patches (NP). H, Edge density (ED). I, Mean patch area (MPA). In each panel, the solid 
black line represents the median trend, while the shaded area denotes the 2.5th to 97.5th percentiles, capturing the 
variability in fragmentation metrics across different levels of forest cover. 
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 770

Fig. S2 | Observed deforestation and fragmentation trends in the Amazon (2000-2020). This figure shows observed 
deforestation across four sites in the Amazon from 2000 (left panels) to 2020 (right panels). Each site illustrates different 
patterns of forest loss and fragmentation. In all cases, connectivity-focused fragmentation metrics indicate an increase in 
fragmentation (red), while structure-focused metrics suggest a decline (blue), as they primarily measure patch count 775 
rather than spatial configuration. Aggregation-focused metrics exhibit mixed trends, reflecting variations in spatial 
clustering and edge distribution. The color intensity in the metric tables represents the magnitude of change, with darker 
shades indicating stronger fragmentation shifts.  
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Fig. S3 | Proportion of landscape change scenarios in global forests between 2000 and 2020, based on changes in 780 
forest cover and the number of patches (NP). Both forest cover and NP can either remain unchanged, decline, or 
increase, leading to a total of nine possible scenarios. Each colored segment in the pie chart represents the percentage of 
forest grid cells falling into each scenario. 
 

785 
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Fig. S4 | PCA space of fragmentation metrics. A, PCA biplot of 12 fragmentation metrics across all grid cells with 
forest cover > 0 in the year 2000. B, The same PCA analysis for the year 2020. Connectivity-focused metrics are shown 
in red, aggregation-focused metrics are in orange, and structure-focused metrics are in blue. The integrated indices—
Connectivity-based Fragmentation Index (CFI), Aggregation-based Fragmentation Index (AFI), and Structure-Focused 790
Index (SFI)—are emphasized in darker shades within their respective groups. A Pair-wise Multivariate Analysis of 
Variance (MANOVA) confirms significant differences among loadings of these three metric groups (p < 0.001), 
indicating that connectivity, aggregation, and structure metrics form distinct clusters in both years.

795

Fig. S5 | Relationship between fragmentation and canopy cover. This figure illustrates the relationship between the 
degree of forest fragmentation and canopy cover (%) for all grid cells with forest cover > 0 in 2020, based on the CFI, 
AFI and SFI. The solid line represents the median degree of fragmentation at each canopy cover percentage, while the 

shaded areas indicate the 2.5th and 97.5th percentiles, capturing the variability in fragmentation levels.800
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Fig. S6 | Relationship between changes in connectivity-focused fragmentation metrics and forest cover change.
This figure presents histograms of the coefficients of determination (R² values) from simple linear regression models 
predicting changes in connectivity-focused fragmentation metrics as a function of forest cover change across 610 
ecoregions (each has at least 50 forest grid cells inside) from 2000 to 2020. A-D, Relationships between forest cover 805
change and changes in Connectivity-based Fragmentation Index (CFI) (A), Total Core Area (TCA) (B), Landscape 
Division Index (LDI) (C), and Largest Patch Index (LPI) (D).
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Fig. S7 | Relationship between changes in aggregation-focused fragmentation metrics and forest cover change.810
This figure presents histograms of the coefficients of determination (R² values) from simple linear regression models 
predicting changes in aggregation-focused fragmentation metrics as a function of forest cover change across 610 
ecoregions (each has at least 50 forest grid cells inside) from 2000 to 2020. A-D, Relationships between forest cover 
change and changes in Aggregation-based Fragmentation Index (AFI) (A), Mean of Euclidean nearest-neighbor distance 
(ENN) (B), Aggregation Index (AI) (C), and Percentage of Like Adjacencies (PLADJ) (D).815
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Fig. S8 | Relationship between changes in structure-focused fragmentation metrics and forest cover change. This 
figure presents histograms of the coefficients of determination (R² values) from simple linear regression models 
predicting changes in structure-focused fragmentation metrics as a function of forest cover change across 610 ecoregions 820
(each has at least 50 forest grid cells inside) from 2000 to 2020. A-D, Relationships between forest cover change and 
changes in Structure-based Fragmentation Index (SFI) (A), Number of Patches (NP) (B), Edge Density (ED) (C), and 
Mean Patch Area (MPA) (D).

825

Fig. S9 | Global patterns of forest fragmentation change from 2000 to 2020. A, Map of six landscape-change 
categories at 2.5 arc-min (~5 km) resolution (in geographic coordinates EPSG: 4326). Blue pixels: no forest loss. In all 
other regions (purple, yellow, orange, brown, red), forest cover has declined. Purple: declines in CFI. Yellow: All three 
metrics (CFI, AFI and SFI) agree on increased fragmentation. Orange: CFI and AFI indicate increased fragmentation, but 830
SFI reports a decrease (as in Fig. 1F). Brown: CFI and SFI indicate increased fragmentation, while AFI shows a decrease. 
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Red: CFI suggests increased fragmentation, whereas both AFI and SFI indicate decreased fragmentation, representing 
mismatch scenarios similar to Fig. 1C. B, Latitudinal distribution of changes in CFI, AFI and SFI, showing the means 
(solid line), confidence intervals (± 3 standard errors, dark shadow) and standard deviations (light shadow). 

835

Fig. S10 | Relationships between fragmentation metrics (CFI, AFI or SFI) and net primary productivity (NPP) or 
Metapopulation Capacity (MPC) across different biomes. A-C, Relationships between NPP (year 2000), NPP (2020), 
and MPC (2000) with CFI for the respective year. D-F,  Relationships between NPP (year 2000), NPP (2020), and MPC 
(2000) with AFI. G-I, Relationships between NPP (year 2000), NPP (2020), and MPC (2000) with SFI. Insets show 840
coefficients of determination (R2) and p-values from linear regression. NPP data were derived from the MODIS 
MOD17A3HGF.061 product at 500m resolution, aggregated to 5 km resolution for analysis (76).
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Fig. S11 | Changes in fragmentation metrics (CFI, AFI and SFI) in relation to forest cover change between 2000 845 
and 2020. A, Global distribution of forest cover change. This pie chart represents the proportion of forest grid cells where 
canopy cover has decreased (52.8%), increased (37.4%), or remained unchanged (9.8%). B-D, Agreement and 
discrepancies among fragmentation metrics. Proportion of grid cells for which the CFI, AFI and SFI agree or disagree on 
fragmentation trends across regions where forest cover has decreased (B), increased (C), and remained unchanged (D). 
Each color represents a specific combination of metric trends, highlighting areas where CFI, AFI, and SFI indicate similar 850
or conflicting patterns in fragmentation changes. The legend at the bottom categorizes these trends based on whether 

 
 
 
 855 
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Fig. S12. Drivers of forest fragmentation trends (2000–2020) across biomes (same as Fig. 4 but using the 2000-
2015 instead of the 2000-2023 driver map). Total area of forest regions (grid cells with >30% canopy cover) affected 
by different fragmentation drivers at global and biome scales. “No CFI increase” represents forest regions where 
fragmentation levels have remained stable or decreased. "Zero or minor cover loss" includes areas where fragmentation 860
slightly increased due to unknow cause but with minor or no forest cover loss. All other categories represent regions with 
increased fragmentation driven by specific factors, including i) “Wildfire”, where forest burning occurred without 
subsequent human conversion or agricultural activity, ii) “Forestry”, representing large-scale harvesting within managed 
forests with signs of regrowth, iii) “Shifting agriculture”, referring to small- to medium-scale forest conversion for 
agriculture, later abandoned and followed by forest regrowth, iv) “Deforestation”, characterized by permanent forest loss 865
due to commodity-driven activities such as agriculture, mining, or energy infrastructure, and v) “Urbanization”, where 
forests have been converted for urban expansion. The drivers are arranged from “Wildfire” (top) to “Urbanization” 
(bottom) to reflect the increasing degree of irreversible forest loss.
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870
Fig. S13. Forest fragmentation trends (2000–2020) inside and outside protected areas (same as Fig. 4B,D but using 
the 2000-2015 instead of the 2000-2023 driver map). Proportions of forest regions experiencing fragmentation due to 
different drivers across different protection categories in tropical (A) and extratropical (B) regions. "No CFI increase" 
represents areas where fragmentation levels have remained stable or decreased. "Zero or minor cover loss" includes areas 
where fragmentation slightly increased due to unknow cause but with minor or no forest cover loss. All other categories 875
represent regions with increased fragmentation driven by specific factors such as forestry, shifting agriculture, 
deforestation, or urbanization.

Fig. S14 | Spatial autocorrelation in protection status predictions. This figure presents the residual spatial 880
autocorrelation (Moran’s I) when predicting protection status (whether a grid cell is inside a protected area or not) using 
a binomial logistic regression model with environmental and socio-economic covariates, including mean annual 
temperature, annual precipitation, temperature seasonality, precipitation aridity, population density and fire frequency 
from 2000 to 2020, and accessibility to cities in 2015. The black line represents Moran’s I values across different distances. 
The shaded region indicates the confidence interval obtained from 100 bootstrap samples. The red dashed line at ~40 km 885
marks the threshold distance where spatial autocorrelation becomes negligible. Since positive spatial autocorrelation was 
observed up to ~40 km, this distance was applied as a buffer radius in the spatially buffered sampling for modeling, 
ensuring that data points used in the analysis are spatially independent.
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890

Fig. S15 | Covariate imbalance before and after the matching procedure. The covariates used in the matching model 
include mean annual temperature (MAT_mean), annual precipitation (TAP_mean), population density (PPP_mean) and 
fire frequency (fireFreq_mean) from 2000 to 2020, and accessibility to cities in 2015 (Accessibility). The index of 895
covariate imbalance quantifies the degree of imbalance for each variable, with the red dashed line at 25% representing 
an acceptable threshold. The results indicate that before matching (blue), several covariates exhibit high imbalance, 
particularly Accessibility and MAT_mean. After matching (red), all covariates are well balanced, ensuring a more robust 
comparison between protected and non-protected areas.

900
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Fig. S16 | Distribution of propensity scores before and after matching. This figure illustrates the distribution of 
propensity scores for forest grid cells inside (green) and outside (yellow) protected areas before and after applying the 
matching procedure. A, Pre-Matching: A clear imbalance in propensity scores is observed between protected (green) and 905 
non-protected (yellow) areas, indicating systematic differences in environmental and socio-economic covariates. B, Post-
Matching: After matching, the distributions of propensity scores in protected and non-protected areas are more aligned, 
ensuring a balanced comparison between the two groups. This balance improvement confirms that the matching approach 
successfully reduces confounding effects, allowing for a more robust evaluation of the impact of protected areas on forest 
fragmentation. 910 
 



36

Fig. S17 | Forest areas with increased fragmentation under different forest cover thresholds. Proportion of forest 
grid cell areas with increased fragmentation between 2000 and 2020 at 2.5 arc-second (~5 km) resolution, based on the 915
CFI, AFI and SFI across different biomes (All, Tropical, Temperate, and Boreal). Each panel represents different forest 
cover thresholds used to define forest areas: A, Forest cover > 10%; B, Forest cover > 20%; C, Forest cover > 40%. This 
figure is analogous to Figure 2D, but examines the sensitivity of fragmentation trends to different forest definitions. The 
results are similar across different forest cover thresholds, showing consistent fragmentation trends.

920
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925 
Fig. S18 | Changes in tropical forest fragmentation across protection categories. This figure compares changes in 
tropical forest fragmentation (mean ± 3 se) from 2000 to 2020 across different protected and non-protected areas, using 
the CFI, AFI and SFI. The x-axis represents protection categories based on the World Database on Protected Areas 
(WDPA): Strictly Protected (IUCN Categories Ia, Ib, II), Protected (IUCN Categories III–VI), Matched Outside 
(statistically matched non-protected areas), All Outside (all non-protected areas). The y-axis shows the change in 930 
fragmentation metric values. Values above the dashed zero line indicate increased fragmentation. Values below the line 
indicate decreased fragmentation. The CFI and AFI indicate increased fragmentation in non-protected areas, with the 
highest increase in All Outside regions. Strictly Protected areas show minimal fragmentation increases for CFI and AFI. 
The SFI indicates decreasing fragmentation across all protected and non-protected areas, suggesting that structure-
focused metrics may underestimate actual fragmentation trends. 935 
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Fig. S19 | Relationship between normalized metapopulation capacity and canopy cover. Coefficients of 
determination (R2) and p-value are shown for the linear regression line (red). Metapopulation capacity was normalized 940
to range from 0 to 1. Higher values correspond to higher fragmentation and lower habitat connectivity. The relationship 
was derived from a 10% subsample of forest grid cells in the year 2000.

945
Fig. S20 | Global distribution of strictly protected, protected, and non-protected forest areas. Strictly protected 
forests are shown in yellow, protected forests in green, and non-protected forests in dark purple. The pie chart in the 
bottom left corner summarizes the proportion of forest grid cells in each category. Only protected areas established before 
2010 were included in this map. Data from the World Database on Protected Areas (WDPA)

950
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Fig. S21 | Global ecoregion map from Dinerstein et al. 2017(41). Different colors represent distinct ecoregions. 
Ecoregions are biogeographic units that reflect unique ecological and climatic characteristics, influencing biodiversity 
and ecosystem dynamics. 
 955 
 

 
Fig. S22 | Global forest biome map. Forest biome classification was based on the terrestrial biome map from Olson et 
al. 2001 (61), which serves as the standard for WWF biome classification. The three major forest biomes are shown in 
different colors: tropical forests in red, temperate forests in light green and boreal forests in dark blue. 960 
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Fig. S23. Primary drivers of forest cover loss from 2000 to 2023. This map illustrates the dominant drivers of forest 
cover loss from 2000 to 2023, derived from Global Forest Watch based on Curtis et al. (8). Different colors represent 965
specific drivers: commodity-driven deforestation (red) indicates long-term, permanent conversion of forests to agriculture, 
mining, or infrastructure; shifting agriculture (yellow) represents temporary forest clearing followed by regrowth; 
forestry (green) reflects areas affected by large-scale timber harvesting with evidence of regeneration; wildfires (orange) 
show areas impacted by fire without subsequent human-driven conversion; and urbanization (purple) denotes forest loss 
due to the expansion of urban areas.970
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Table S1. Overview of selected landscape-level fragmentation metrics. 

Metrics Full name Description Formula Reference  

TCA Total core area 

The sum of core 
areas of all patches 
belonging to 
forests. A cell is 
defined as core area 
if all of its 
neighboring cells 
are forests.

= × ( ), 

where here is the core area in 
square meters. McGarigal et 

al. (2002) 
(27) 

LPI 
Largest patch 

index 

The percentage of 
the landscape 
covered by the 
corresponding 
largest patch of 
forest.

= ,…,
( )

× 100,

where is the area of the patch of 
class  in square meters and  is the 
total landscape area in square 
meters.

McGarigal et 
al. (2002) 
(27) 

LDI 
Landscape 

division index 

The probability that 
two randomly 
selected cells are 
not located in the 
same patch of 
forest.

= (1 ( ) ), 

where is the area of the patch of 
class  in square meters and  is the 
total landscape area in square 
meters. 

Jaeger (2000) 
(29) 

CFI 

Connectivity-
focus 

fragmentation 
index 

 
Synthetic metric 
integrating TCA, 
LPI and LDI. 

= , 

where here , ,  
are normalized metrics ranging from 
0 to 1, and increase with 
fragmentation. 

This paper 

AI Aggregation index 

The number of like 
adjacencies divided 
by the theoretical 
maximum possible 
number of like 
adjacencies for 
forest cells. 

=
 [ ]

× 100,  

where is the number of like 
adjacencies based on the single-
count method and max [ ] is the 
classwise maximum possible 
number of like adjacencies of class 
.

He et al. 
(2000) (30) 

PLADJ
Percentage of Like 

Adjacencies 

The number of 
adjacencies 
between forest cells 
divided by the 
number of 
adjacencies 
between forest and 
non-forests cells.

= ( ) × 100, 

where is the number of 
adjacencies between cells of class  
and is the number of adjacencies 
between cells of class  and . 

McGarigal et 
al. (2002) 
(27) 

ENN 
Mean of 

Euclidean nearest-
neighbor distance 

The mean 
Euclidean distance 
to the nearest 
neighboring patch 
for each forest 
patch. 

= ( [ ]),  
where [ ] is the 
euclidean nearest-neighbor distance 
of each patch. 

McGarigal et 
al. (2002) 
(27) 

AFI  
Aggregation-focus 

fragmentation 
index 

 
Synthetic metric 
integrating AI, 
PLADJI and ENN. 
 

= , 

where here , , 
 are normalized metrics 

ranging from 0 to 1, and increase 
with fragmentation. 

This paper 
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NP 
Number of 

patches 
Number of distinct 
forest patches.

= , 
where is the number of patches.

McGarigal et 
al. (2002) 
(27)

MPA Mean patch area

The mean of all 
patch areas 
belonging to 
forests.

= ( [ ]), 
where [ ] is the area of 
each patch in hectares. 

McGarigal et 
al. (2002) 
(27) 

ED Edge density 

The length sum of 
all edges of forest 
divided by the 
landscape area (In 
our study the 
landscape area is 
the grid cell area).

= × 10000,  

where is the total edge length in 
meters and  is the total landscape 
area in square meters. 

McGarigal et 
al. (2002) 
(27) 

SFI 
Structure-focused 

fragmentation 
index 

 
Synthetic metric 
integrating NP, 
MPA and ED. This 
metric was called 
FFI in Ma et al. 
(2023). 
 
  

= , 

where here , , 
are normalized metrics ranging from 
0 to 1, and increase with 
fragmentation. 

Ma et al. 
(2023) (7) 

MPC 
Metapopulation 

capacity 

A relative measure 
of the ability of a 
spatially explicit 
landscape to 
support long-term 
species persistence 
based on 
connectivity of 
habitat. 
 

=   

=
,   

,   =
 

where  is the leading eigenvalue 
of a square ‘landscape matrix’ , in 
which elements  reflect rates of 
change for the occupancy of patches 
 ( ) as a function of patch 

attributes (often patch area in m2, 
and ), a dispersal probability 
function of interpatch distance 

( ) and an extinction probability 
constant (commonly set to 0.5).

Hanski & 
Ovaskainen 
(2000) (31) 

975 
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Table S2. Forest biome definition used in this study based on the WWF biome classification (61). 
Biomes

Tropical 
forests 

 
 

Tropical and Subtropical Moist Broadleaf Forests

Tropical and Subtropical Coniferous Forests

Tropical and Subtropical Grasslands, Savannas, 
and Shrublands 

 
Temperate 

forests 
 

Temperate Broadleaf and Mixed Forests 

Temperate Coniferous Forests

Mediterranean Forests, Woodlands and Scrub 

Boreal 
forests 

Boreal Forests/Taiga 

 
 
Table S3. Drivers of forest loss based on Curtis et al. (2018) (8). 

Driver Description 

Permanent 
conversion 

Urbanization
Forest conversion for the expansion and intensification of 
existing urban centers. 

Deforestation

Commodity-driven deforestation, defined by the long-
term, permanent conversion of forest to non-forest land 
use such as agriculture (including oil palm), mining, or 
energy infrastructure, etc.

Temporary 
transition 

 

Shifting 
Agriculture

Small- to medium-scale forest conversion for agriculture 
that is later abandoned and followed by subsequent forest 
regrowth. 

Forestry 
Large-scale forestry operations, such as clearcutting and 
selective logging, occurring within managed forests with 
evidence of forest regrowth in subsequent years.

Wildfire 
The burning of forest vegetation with no visible human 
conversion or agricultural activity afterward.

980
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Table S4. P-value of Kruskal-Wallis test followed by post-hoc Mann-Whitney U tests for 
fragmentation rate within and outside tropical protected areas. 

All non-protected 
(ANP) 

Matched non-
protected (MNP)

Loosely protected 
(LP) 

Matched non-
protected (MNP)

<2e-16 - - 
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Loosely protected 
(LP)

<2e-16 0.0096 - 

Strictly protected 
(SP)

<2e-16 <2e-16 <2e-16 

990

Table S5. P-value of Kruskal-Wallis test follower by post-hoc Mann-Whitney U tests for 
fragmentation rate within and outside nontropical protected areas.

All non-protected 
(ANP) 

Matched non-
protected (MNP)

Loosely protected 
(LP)

Matched non-
protected (MNP)

1 - - 

Loosely protected 
(LP)

0.53024 1 -

Strictly protected 
(SP)

7.2e-06 0.00018 0.03047 
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