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Modelling snow algal habitat
suitability and ecology under
extreme weather events on
the Antarctic Peninsula
Andrew Møller Gray1,2*, Alex Innes Thomson3, Claudia Colesie1,
Peter Convey4,5,6, Peter Fretwell4, Alison G. Smith7,
Lloyd S. Peck4 and Matthew P. Davey3

1Global Change Institute, School of GeoSciences, University of Edinburgh, Edinburgh, United
Kingdom, 2Terrestrial Ecology Section, Norwegian Institute for Nature Research—NINA, Oslo, Norway,
3Scottish Association for Marine Science (SAMS), Oban, United Kingdom, 4British Antarctic Survey
(BAS), Natural Environment Research Council, Cambridge, United Kingdom, 5Department of Zoology,
University of Johannesburg, Johannesburg, South Africa, 6Millennium Institute Biodiversity of
Antarctic and Sub-Antarctic Ecosystems, Santiago, Chile, 7Department of Plant Sciences, University of
Cambridge, Cambridge, United Kingdom
Snow algae form extensive blooms within Antarctica’s coastal snowpacks and are

a crucial contributor to its scarce terrestrial ecosystems. There is limited

knowledge about the factors that contribute to snow algal bloom occurrence,

distribution, ecological niche thresholds, or the prevalence of suitable conditions

for bloom formation. To address these knowledge gaps and gain a clearer

understanding of the current and potential future distribution of blooms, a

habitat suitability model, using a Bayesian additive regression tree approach,

was established. The model incorporated remotely sensed observations of

blooms, physical environmental predictor variables, and snow melt modelling

based on different climate scenarios. This was used to describe the ecological

niche of snow algae and predict its occurrence at a landscape scale across the

Antarctic Peninsula. The findings revealed that most habitable snow was

predicted north of latitude 66° S, with patch density, area, and habitable

elevation decreasing poleward. Factors that strongly influenced bloom

presence were days of snow melt and aspect, with blooms of red-colored

algae being associated with longer seasons and north-facing slopes. The

model outputs also suggested heterogeneous preferences for environmental

conditions amongst red and green snow algae blooms, suggesting a diversity of

ecological niches for bloom-forming algae. Long-term climate-change impacts

were difficult to discern as extreme summer temperatures and melt during the

timeframe of this study in 2021 exceeded the projected 2100 temperatures for

parts of the Antarctic Peninsula. However, warmer conditions produced a greater

area of potentially habitable snow at higher elevation and latitude. Conversely,
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small and low-lying islands were predicted to lose habitable snow under a

warming scenario. Model and training imagery both indicated that algal

blooms are forming on snow-covered icecaps in the South Shetland Islands,

suggesting greater potential for glacier-based algal blooms in the future, should

recent trends for extreme summer temperatures persist.
KEYWORDS

snow algae, remote sensing, species distribution model, extreme weather events,
Antarctica, climate change
1 Introduction

The Antarctic Peninsula is a crucial indicator region for global

climate change, having experienced exceptionally rapid warming in

recent decades (González-Herrero et al., 2024; Clem et al., 2022).

Increasing temperatures are changing the Peninsula’s landscape, with

significant consequences for its ecosystems, generating greater snow

and ice melt, along with increased occurrence of extreme weather

events (Siegert et al., 2023), increased precipitation and new ice-free

areas becoming available (Lee et al., 2017; Robinson, 2022). Antarctic

snow and ice habitats have been particularly affected by climate

change as warming temperatures have driven accelerated melting, as

well as changes to seasonal melt dynamics, snow structure, chemistry,

and precipitation patterns (Colesie et al., 2023).

Terrestrial snow and ice habitats in Antarctica, particularly in

coastal regions, can be host to a variety of microorganisms such as

bacteria, fungi and algae, as well as meiofaunal and invertebrate

species (Pugh and Convey, 2008; Davey et al., 2019; de Menezes

et al., 2019; Chown and Convey 2016). The algal component of the

snow ecosystem is useful as a sentinel system for climate change, as

thawing conditions within the snow can cause blooms to form in

high densities and over large areas (Figure 1). In this state, the snow

appears green or red and can be detected and monitored using

satellite imagery (Hashim et al., 2016; Huovinen et al., 2018; Gray

et al., 2020, 2021). Predictive models have forecast increasing loss

and retreat of ice over the next century, with up to a 300% increase

(depending on warming scenario) in ice-free territories across the

Peninsula region from 2014 to 2100 (Lee et al., 2017). At the same

time the zero-degree isotherm, north of which snow melt occurs, is

shifting southwards (González-Herrero et al., 2024), potentially

opening up new areas for bloom formation. Warmer

temperatures and loss of ice and summer snowpacks will change

the timing of availability and distribution of snow habitats along the

Peninsula and could result in the disappearance of these habitats in

some areas. Terrestrial snow and ice algae play important ecological

roles in their environment, ranging from contributing to primary

production and wider biogeochemical cycles, to influencing the

albedo and physical structure of the snow or ice surface (Hodson

et al., 2008; Gray et al., 2020; Khan et al., 2021). The consequences
02
of major changes or loss of such habitat could, therefore, be

ecologically significant for the region.

Although snow algae occur in polar and alpine areas globally

(Benning et al., 2014; Hoham and Remias, 2020), Antarctic snow

algae display several unique features, including regular bloom

occurrence in coastal, nutrient rich snowpacks, and a higher

proportion of endemic species compared to elsewhere in the

world (Vyverman et al., 2010). Their contribution to ecological

function in Antarctic and sub-Antarctic areas is also highly

significant given the extent of the cryospheric habitat, and the

limited presence of other photosynthetic life in the region. Despite

their significance in Antarctica, our understanding of the processes

and factors governing snow algal bloom occurrence remain limited

due to the paucity of and challenges in obtaining regular in situ or

remote sensed datasets. Snow melt duration (Roussel et al., 2024),

light (Lavoie et al., 2005) and nutrient availability (Lavoie et al.,

2005; Gray et al., 2020; Phillips-Lander et al., 2020; Roussel et al.,

2024) have all been identified as important elements for production

and bloom formation, though we lack the explicit link between

Antarctic blooms and environmental conditions to assess what role

these factors play, or to understand how prevalent bloom forming

conditions are in Antarctica.

Previous distribution maps of snow algal blooms using remote

sensing methods (Walshaw et al., 2024; Gray et al., 2020; Hashim

et al., 2016; Huovinen et al., 2018) show the presence of green snow

algae (GSA) across large parts of the coastal western Antarctic

Peninsula region. However, satellite detection has limitations, as

freely available imagery is generally too spatially coarse to detect

small blooms, and too spectrally coarse to detect red snow algae

(RSA) over very large areas without confounding false positives. For

example, strong signals arising from iron-rich mineral debris within

snow, when using band ratios to detect RSA (Chen et al., 2023).

Higher resolution satellites, such as the WorldView platforms, are

valuable assets for studying Antarctic ecology (e.g., Gray et al., 2021;

Jawak et al., 2019; Sun et al., 2021). Their higher spectral resolution

(relative to Sentinel 2 and Landsat) enables the detection of RSA

alongside GSA (Gray et al., 2021), but the images are costly, and

snapshots of a specific point in time meaning that it is difficult to

view detailed changes in the dynamic snow habitat. On a physical
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level, all optical remote sensing methods are hampered by frequent

cloud cover over the Antarctic Peninsula, limiting the number of

available snapshots.

Habitat suitability modelling can complement remote sensing

studies, addressing limitations in temporal resolution, spatial

coverage, and data availability. Such models can explore how

different environmental predictor variables influence occurrence,

predict ecological preferences and distributions over a landscape

scale, and forecast responses to climatic variability. For RSA, for

example, Onuma et al. (2022) developed a model to estimate

occurrence and growth dynamics on a global scale. However, the

model differed mechanistically from a habitat suitability model, and

related to the ecology of red blooms common in Arctic and alpine

areas rather than the unique coastal green and red blooms found in

Antarctica. Chen et al. (2023) explored seasonal RSA bloom

development over King George Island with respect to climatic

conditions but included significant areas of mineral debris within

snow in their analysis, due to difficulties isolating RSA in Sentinel 2

imagery. An alternative approach to exploring the relationship

between environmental factors and snow algae occurrence in

Antarctica is to use models such as Bayesian additive regression

trees (BART). BART provides a flexible and robust framework for

ecological analysis due to its ability to handle nonlinear

relationships, incorporate prior knowledge, and quantify

uncertainty (Carlson, 2020; Chipman et al., 2010). In addition,

due to the workflow wrapper developed by Carlson (2020), BART

models have been gaining traction as a tool for modelling species

distributions, including those of trees (Ahmadi et al., 2023) and

marine invasive species (Poursanidis et al., 2022).

Our aim in this study was to understand the key factors

contributing to the distribution of snow habitats capable of

supporting blooms of snow algae throughout the Antarctic

Peninsula region. To achieve this, we combined high-resolution

satellite observations of snow algal blooms into a BART-based

habitat suitability model. This model was then used to explore

how environmental variables influenced potential bloom formation

as well as distribution shifts (losses and gains) associated with inter-

annual variability caused by contemporary extreme weather events

as well as long-term predicted trends in climate. To test the factors

affecting distribution, variables were chosen to represent growth

requirements such as liquid water availability (cumulative snow

melt, days of melt), potential nutrient availability (distance to the

coast, distance from an animal colony) as well as physical attributes

(surface type, slope, aspect).
2 Methods

To construct our model, we derived presence and absence

observations of GSA and RSA blooms using satellite imagery

from six different locations (Robert Island, Nelson Island (for

validation), Trinity Island, Melchior Island, Neumayer Channel,

and Ryder Bay) across the Antarctic Peninsula (Figure 1A) and six
Frontiers in Ecology and Evolution 03
summer growth seasons (2013, 2017, 2019, 2020, 2021 and 2023).

These were used to train a BART-based species distribution model

using seven predictor variables based upon abiotic and bioclimatic

factors, as described below and in the workflow schematic

(Figure 2). Posterior distributions, showing the modelled

probability of occurrence, were then mapped across the Antarctic

Peninsula using actual climate conditions for 2021 and projected

climatic conditions for 2100.
2.1 Remote sensing presence/absence
training data

WorldView imagery (Maxar Technologies) was used to detect

snow algae for training the model. It has a high spatial resolution

(1.84 m (WorldView 2); 1.24 m (WorldView 3)) and has previously

been used to identify GSA and RSA blooms in Antarctica (Gray

et al., 2021). Table 1 shows the dates and locations of the scenes

used in this study. Each image was an 8-band multispectral scene

from WorldView 2 or 3 and was corrected to surface reflectance

using the Py6s-derived Atmospheric and Radiometric Correction of

Satellite Imagery (ARCSI v4.0.0) (Bunting and Clewley, 2022)

software. 6S parameters were set as in Gray et al. (2021).

Snow algae were detected within the images following the

methodology of Gray et al. (2021). First, band thresholds were

used to isolate snow and ice from ocean, rock, and vegetation. Algae

were identified within snow- or ice-containing pixels utilizing the

characteristic absorption of light by chlorophyll-a pigments within

the algae, which occurs at around 680 nm, or Band 5 of the

WorldView’s multispectral sensor. Instead of using a spectral

angle mapper (SAM) approach (Gray et al., 2021) to distinguish

GSA from RSA, we adapted the red-green normalized difference

index (RGND) approach of Engstrom et al. (2022) for the

WorldView sensor i.e., RGND =   Band   5−Band   3Band   5+Band   3, to differentiate

bloom color. This approach simplified classification and does not

require in situ reference spectra. Clean and mineral-laden snow, for

use as absence data in the model, were also identified within each

image, and were defined as snow that did not contain a detectable

chlorophyll signal. Remote sensed outputs underwent validation

against in situ observations of 361 snow and ice algae blooms made

between 30th January 2023 and 13th February 2023 on Robert

Island, South Shetland Islands (locations shown in Figure 3A). A

confusion matrix and Cohen’s Kappa coefficient were used to assess

classification accuracy against bloom location, recorded by

handheld GPS at the bloom center.

Pixels for each class, GSA, RSA and snow with no visible algal

presence, were randomly chosen from each image to use as training

data within the model. For each image, about 1% of the classified

pixels were used for training, with visual inspection removing

obviously misclassified pixels. The final per-image pixel counts

are shown in Table 1. In total, 1777 pixels containing GSA, 1273

pixels containing RSA, and 1226 containing clean snow were used

to train the BART model.
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2.2 Assembly of predictor variables

Seven variables (summarized within Table 2) were selected to

describe habitable snow conditions using the BART model. Principal

component analysis (PCA) (RStudio (version 2022.02.3)) was used to

ensure that predictor variables lacked collinearity across the training

dataset (Supplementary Figure S1). The BART model was trained

using 8 m resolution data at the locations shown in Figure 1, to more

closely match the resolution of the remote sensed presence/absence

data, and to maximize interpretation of microtopographic niches.

Posterior predictive maps were produced at 100 m resolution for the

Antarctic Peninsula, rather than 8 m resolution, due to the significant

computational requirement. All predictors of snow algal blooms were

processed as raster datasets and were derived as described below.
Frontiers in Ecology and Evolution 04
2.2.1 Physical-based variables
The 8 m Elevation Model of Antarctica (REMA) (Howat et al.,

2019) and 100 m gapless REMA (Dong et al., 2022) were used to

derive slope (degrees) and aspect (degrees azimuth) variables using

the gdaldem tool (GDAL version 3.4.3). Distance to the coast (in

meters) was calculated from the high-resolution coastline polygon

(Gerrish et al., 2020) included in the Quantarctica dataset

(Matsuoka et al., 2018). Distance to animal colonies (in meters)

was calculated using combined data from the Mapping Application

for Penguin Populations and Projected Dynamics (MAPPPD)

database (Humphries et al., 2017), Important Bird Areas (Harris

et al., 2015; Matsuoka et al., 2018), Emperor penguin colonies

(Fretwell and Trathan, 2021; Matsuoka et al., 2018), petrel breeding

sites (Schwaller et al., 2018) and Weddell seal population data
FIGURE 1

Study locations and bloom sites in the western Antarctic Peninsula region. (A) WorldView 2 and 3 image sites are shown in red, Robert Island ground
validation site is highlighted in bold. Coordinates of these images are given in Table 1. (B) Example of a red snow algal bloom on Robert Island. (C)
Example of a coastal green snow algal bloom at Anchorage Island, Ryder Bay. Photo credits (B) A. Gray, (C) M. Davey.
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(LaRue et al., 2021). The surface type was a binary input, relating to

whether a bloom occurred on permanent snow/ice or a seasonally

snow-covered rocky outcrop or soil. For the 2021 model run, the

rock outcrop map derived from Landsat 8 data was used to create an

ice/rock vector layer (Burton-Johnson et al., 2016). For the 2100

run, modelled ice-free areas from Lee et al. (2017) under RCP 8.5

climate predictions (Lopez, 2016) were used.

2.2.2 Snow melt model variables – climate data
and GlacierSMBM model

In trial model runs (data not shown), unprocessed air temperature

or solar radiation variables were used, but were too spatially coarse to

have predictive power in the complex mountainous terrain of the

Antarctic Peninsula. We therefore include snow melt parameters in

our model, using downsampled, high resolution climate data, as snow

melt directly influences liquid water availability and habitat stability

for snow algae. Simplified snow melt modelling was undertaken using

the GlacierSMBM R package (Groos et al., 2017). This uses daily

temperature (°C) and net radiation (W m-2) data as factors within a

degree day model to estimate the daily melt of snow and/or ice on a

per-pixel basis. Note that we were unable to predict the melt-out and

disappearance of snow patches, as initial snow depth and

accumulation data were not available for the region at high enough

resolution. Instead, we aimed to improve the predictive value of the

climate variables within the BART model by enhancing their

resolution and interpreting their effects upon physical processes

within the snowpack.

Daily mean 2 m air temperature and net solar radiation data

were generated from the fifth generation ECMWF atmospheric

reanalysis of the global climate (ERA5) hourly dataset in 0.5 x 0.25

degrees resolution (Hersbach et al., 2020) for 2013, 2017, 2019,

2020, 2021 and 2023, to correspond to the WorldView image dates.

For the 2100 analysis, 2 m air temperature data from the CMIP5
Frontiers in Ecology and Evolution 05
daily data on single levels (Lopez, 2016) were used (RCP 8.5

warming scenario; HadGEM2-CC UK Met Office model, 1.875 x

1.25 degrees resolution).

Over the area used for training, temperature data were

downsampled from their native resolution using the SAGA Lapse

Rate Based Temperature Downscaling tool (SAGA v8.5.1). The 8 m

Elevation Model of Antarctica (REMA) (Howat et al., 2019) was

used as an elevation layer for down-sampling in the training

datasets, whereas the 100 m REMA dataset was used for the

Peninsula-scale posterior analysis. Lapse rates were either set as

0.68 °C per 100 m (Martin and Peel, 1978) or, in the case of Robert

Island and Nelson Island images (see Figure 1A for locations), set as

0.8 °C per 100 m, calculated using Hobo MX2202 loggers installed

across Coppermine Peninsula on Robert Island, from 2 m elevation

to 130 m elevation, during the 2023 austral summer season (see

Figure 3A for locations).

Solar radiation was used over global radiation to simplify

downsampling, as shortwave radiation is more affected by

topographic shading effects (Robledano et al., 2022). Net solar

radiation data were downsampled using a sky view factor,

generated using the 8 m or 100 m elevation models in SAGA.

The sky view factor is a measure of terrain shading and was used to

improve the model’s ability to simulate melt within topographic

microclimates such as nival hollows and meltwater channels. Net

solar radiation from 2021 was used in both 2021 and 2100 melt

model runs, due to high uncertainty in future cloud cover and

albedo conditions.

The Glacier SMBM melt model was run in RStudio on a daily

interval at 8 m resolution from the 1st November (preceding the

image date) up until the time of the WorldView image used for

training. In the case of modelling melt across the Antarctic

Peninsula for posterior analysis, this point was set to 21st January

2021 or 2100, which reflects austral mid-summer, and the model
TABLE 1 The date, WorldView (WV) sensor, location and remote-sensed area estimates of red snow algae (RSA) and green snow algae (GSA) within
the images used for training and evaluating the BART model.

Date Sensor Image location GSA area (km²) RSA area (km²)
Training pixels (n)

GSA RSA Absence

2013-03-13 WV2 Robert Island (62.4°S, 59.7°W) 0.09 0.07 0 114 358

2019-03-16 WV2 Robert Island (62.4°S, 59.7°W) 0.02 0.11 200 214 334

2023-02-06 WV2 Robert Island (62.4°S, 59.7°W) 0.03 0.95 207 213 324

2021-02-03 WV3 Nelson Island* (62.3°S, 59.2°W) 0.04 1.03 333 333 333

2020-03-07 WV2 Trinity Island (63.9°S, 60.8°W) 0.16 0.69 30 208 384

2020-02-09 WV3 Melchior Islands (64.3°S, 62.9°W) 0.03 0.16 61 105 378

2021-01-22 WV2 Neumayer Channel (64.8°S, 63.6°W) 0.01 0.02 184 206 634

2017-12-28 WV2 Ryder Bay (67.6°S, 68.2°W) 0.01 0.001 34 4 31

2020-02-16 WV3 Ryder Bay (67.6°S, 68.2°W) 0.22 0.06 61 180 40

Totals 743† 1273† 2483†
Also shown are the numbers of pixels used from each image for training and validation. Rows in descending latitude order.
*Nelson Island data were for validation only.
†Not including validation data.
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was run at 100 m resolution. The model outputs daily snow melt in

meters, which was aggregated into a sum of melt for the “cumulative

snow melt” predictor. The number of days where melt occurred in

the snowpack on a per-pixel basis was aggregated into the “days of

snow melt” predictor.
2.3 BART model processing

To build the training dataset, WorldView training pixels were

converted into point data and used to sample each predictor

variable raster layer. Cumulative snow melt and days of snow

melt variables were specific to each image. For Robert Island and

Ryder Bay imagery, this meant being mapped over the same

location but using climate data corresponding to the date of each

image. Sampled points were combined and exported as a table for

input into our model. BART was run in RStudio using the

embarcadero package (Carlson, 2020), a workflow wrapper for

using BART for species distribution modelling. BART models

were run using 200 trees and 1000 Markov Chain Monte Carlo

(MCMC) iterations. Posterior model projections were mapped at

100 m resolution for the Antarctic Peninsula, using 2021 and 2100
Frontiers in Ecology and Evolution 06
temperature data as the basis of the snow melt variables in the raster

stack used for prediction. The true skill statistics (TSS) and the area

under the receiver operating characteristic curve (AUC) were used

to assess model performance (Allouche et al., 2006). 95% credible

intervals, i.e. the range over which a value has 95% probability were

also produced using embarcadero and used to assess predictor and

model performance. Binary maps of habitable snow were created

using a threshold value based upon the maximum true skill statistic

values (see Supplementary Figure S2). These values were 0.29

probability for GSA and 0.39 probability for RSA. Partial

response curves for each predictor variable were constructed by

running the model for a single variable whilst holding the other

variables at their mean values.

We evaluated the model using three separate datasets. First, we

ran model inference on a raster stack of training variables for Robert

Island to produce a map of modelled habitable area that coincided

with fieldwork conducted in 2023, then we compared this to the in

situ sample locations for GSA and RSA taken between January and

February 2023 (see Figures 3A, C, E). Secondly, we used remote-

sensed locations of red and green blooms from within a WorldView

image that wasn’t used for training the model (Harmony Point,

Nelson Island; see Table 1 and Figure 3 for details). Here, a
FIGURE 2

Workflow diagram of the construction of a BART model to produce current and future snow algae bloom probability distribution maps. Training
variables overlap the spatial extent and temporal range of each WorldView image used to derive presence/absence data. Predictor variables, used to
map habitable snow with the model, cover the Antarctic Peninsula. Model runs (inference) over the Antarctic Peninsula were performed using 2021
and 2100 data.
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FIGURE 3

Model evaluation. (A) True color WorldView image of the Coppermine Peninsula region of Robert Island from 6th February 2023. Circles show the
GPS sampling locations of in situ blooms, January and February 2023. (B) True color WorldView image of the Harmony Point region of Nelson Island
from 3rd February 2021. (C, E) show cumulative modelled habitable snow for green snow algae (GSA) and red snow algae (RSA) on Robert Island.
Points show the location of in situ observations of GSA (C) or RSA (E), color coded based on agreement with the BART model. (D, F) show observed
GSA and RSA on 3rd February 2021 as well as cumulative modelled habitable snow between 1st November 2020 and 3rd February 2021. Remote
sensed blooms are shown by overlain GSA (bright green pixels) and RSA (blue pixels) to allow comparison of modelled and observed blooms. Inset
shows the South Shetland Islands, with the extent of a, c, and e shown in blue and b, d and f shown in red.
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https://doi.org/10.3389/fevo.2025.1474446
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


TABLE 2 Model components, data source, processing summary, units, and rationale for inclusion within the modelling framework.

Variable Data source Processing Units Rationale for inclusion

20, 2021 and 2023.
Atmospheric correction, classification
of GSA and RSA, extraction of
training points

Binary presence/absence points
High resolution red and green algal
bloom observations.

(REMA) gdaldem Degrees
Sunlight availability, controls on melt
rate and melt onset

gdaldem Degrees
Surface stability, liquid water
availability, light availability.

adiation);
re)

GlacierSMBM, daily melt rates
generated using topographically
downsampled temperature and solar
radiation data

meters
Liquid water availability, surface
stability

Derived from daily maps of melt. days
Liquid water availability, surface
stability

1 projection.
2100 projection.

Rasterization of vector layer binary ice surface/rocky outcrop Ice/snow patch preference

meters Nutrient input from marine sources

guin colonies, snow
meters Nutrient inputs from birds/seals

rediction over the Antarctic Peninsula.
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WorldView imagery Maxar Technologies. Imagery from 2013, 2017, 2019, 20

Aspect 8 m or 100 m Reference Elevation Model of Antarctica

Slope 8 m or 100 m REMA

Cumulative snow melt
ECMWF, ERA5 hourly dataset (2m temperature, solar r
CMIP5 daily data RCP 8.5 projection (2m air temperatu
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confusion matrix was applied using 1000 randomly chosen GSA,

RSA, and clean snow pixels within the WorldView image and

assessed against modelled habitable area using Cohen’s Kappa

coefficient. Finally, we assessed the map of 2021, Peninsula-scale

GSA habitat suitability by testing cooccurrence of modelled

habitable areas with remote sensed GSA locations, observed

within 2021 Sentinel 2 imagery taken from Walshaw et al. (2024).

There is no commensurate RSA dataset available for Peninsula-

scale RSA validation.
3 Results

3.1 Remote-sensed training data

There was substantial agreement between remote-sensed bloom

locations and in situ GPS measurements taken on Robert Island in

2023 (GSA: k = 0.78; RSA: k = 0.73). Combined, the maximum total

area of GSA and RSA identified within the WorldView images

(excluding overlapped regions) was 3.4 km². The overlapped

regions in the training imagery, both on Robert Island and in

Ryder Bay, had marked differences in bloom area between different

years and at different stages of the growth season (see Table 1).

Robert Island, for example, had substantially more RSA coverage on

6th February 2023 (0.95 km²) compared to 16th March 2019 (0.11

km²) and 13th March 2013 (0.07 km²), despite the earlier timing of

the image.
3.2 Model evaluation

The BART model performed well at predicting habitable snow

for GSA and RSA across the Antarctic Peninsula. The true skill

statistics (TSS) and the area under the receiver operating

characteristic curve (AUC) values were high (i.e close to 1) and

similar between GSA (TSS = 0.80; AUC = 0.96) and RSA (TSS =

0.84; AUC = 0.98) model runs, indicating good overall predictive

accuracy with both sets of training data. Model performance is

summarized in Supplementary Figure S2. Binary habitat suitability

maps, where the mapped probability was above the model’s

maximum TSS value, had good agreement with validation

datasets. Comparing to in situ bloom GPS positions on Robert

Island in 2023, all observed green snow algae (n = 57) were within

the predicted areas habitable for GSA (Figure 3C), whereas 91% of

in situ RSA observations (n = 140) were within areas predicted

habitable for RSA (Figure 3E). Similarly, there was good agreement

between modelled habitat suitability and remote-sensed GSA or

RSA observations, respectively, Kappa scores of 0.76 and 0.75 (n =

1000) were observed for the Nelson Island WorldView validation

image (Figures 3B, D, F). For the spatially coarser 2021 Peninsula-

scale habitat suitability maps, 76% of remote sensed GSA blooms (n

= 784) (Walshaw et al., 2024) were within areas indicated as

habitable by the BART model.

The modelled extent of habitable snow was larger than the

extent of the remote-detected algal blooms (Figures 3D, F). This was
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expected, first as the model does not capture all the environmental

parameters determining algal bloom formation, and second as the

model output is aggregated for the 2021 summer season whereas the

remote sensed blooms are a snapshot from 3rd February 2021.

Crucially, the upper elevation range of modelled habitable snow was

similar to that over which blooms were observed and so the model

captured the environmental envelope where snow was melting,

enabling blooms to form.
3.3 Predictor variable importance

Figure 4 shows the predictor variable partial response curves,

visualizing their relative contribution to the model across the range of

values used for each predictor in training. Higher 95% credible

intervals for distance to the coast, distance to animal colonies, and

slope variables towards the extreme ends of their ranges are a result of

low sample density there. Otherwise, the 95% credible interval was low

(< 0.2) across the range of values observed within the training dataset.

Except for the distance to coast and distance to animal colony

predictors, the ranges in Figure 4 reflect the range of values

observed within the Peninsula-scale posterior analysis. However, the

flattening out of the relationship between occurrence and these two

variables, also shown in Figure 4, shows that the training data captured

the full extent of variation. This indicates that the scope of the model is

suitable for predicting probabilities across this larger spatial extent.

Figure 4 also shows the relative importance of each variable, with days

of snow melt and aspect identified as the most important predictors

for both GSA and RSA blooms.
3.4 Antarctic Peninsula-scale mapping of
habitable snow

Based on 2021 climate conditions, habitable snow for GSA

(Figures 5B, C) and RSA (Figures 5F, G) was distributed across

much of the coastal regions of the western and north-eastern

Antarctic Peninsula, as well as the South Shetland Islands and

South Orkney Islands. The 95% credible intervals for GSA and RSA

are shown in Figures 5A, E, respectively, and were generally low

(95% credible interval < 0.5) across most of the Peninsula (mean

95% CI: 0.51 GSA; 0.46 RSA), though uncertainty was greater (>

0.8) across the Larsen ice shelf on the east of the Peninsula, and the

Wordie, George VI, Wilkins, Bach, and Stange ice shelves towards

the south-west of the Peninsula. Due to high uncertainty, and a lack

of in situ observations of algal blooms on ice shelves, they were

masked out of the area calculations shown in Figure 5 and discussed

herein. Total habitable area under 2021 conditions was 479 km² for

GSA and 1194 km² for RSA.

The overall distribution trend across latitudes was similar in

2100 and 2021 for both GSA and RSA (Figures 5C, G), though a

greater number of habitable areas were evident towards the south of

the Peninsula in 2100. This was particularly true of RSA, which

showed an increase in habitable area between 66°S and 70°S in 2100

versus 2021. Despite these trends, total habitable area for the
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Peninsula was smaller in the 2100 analysis than in 2021, with GSA

predicted across 423 km² and RSA predicted across 924 km² in

2100. This is evident in Figures 5D, H, which show decreased

habitable area concentrated in the north of the Peninsula. However,

these findings should be viewed in the context of a strong, positive,
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temperature anomaly during the 2021 melt season, centered north-

east of the Peninsula (Clem et al., 2022) which caused greater melt

in some regions of the Peninsula in 2021 than predicted for 2100.

The marker line in Figures 5D, H show the boundary between

regions experiencing greater (east of the line) or lesser (west of the
FIGURE 4

Partial response curves for the environmental variables used within the BART model. Individual predictor responses illustrate the shape of the
relationship between the probability of occurrence and each environmental predictor for the green snow algae (GSA - light blue) and red snow
algae (RSA - pink) model runs. Shaded area shows the 95% credible interval. Also shown, bottom right, is the relative predictive importance of the
different environmental variables used within the BART model, shown for GSA and RSA.
frontiersin.org

https://doi.org/10.3389/fevo.2025.1474446
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Gray et al. 10.3389/fevo.2025.1474446
line) melt. This anomaly resulted in a mixed picture of change in

habitable areas across the Peninsula, and masked Peninsula-

wide trends.

The 2021 density distributions of GSA and RSA by latitude

(Figures 6A, D, respectively) show that most habitable snow was

found north of 66°S, with presence becoming patchier further

south. However, the model predicted habitable snow for both

GSA and RSA as far as 73°S, close to the 74°S extent of the

analysis. Figures 6B, C (GSA) and 6e and 6f (RSA) also show a

tendency for habitable areas to decrease in elevation and patch size

at higher latitudes. The drop in habitable area density seen south of

66°S (Figure 6A) is accompanied by significantly lower lying (t

(6421) = 15.3, p < 0.01) and smaller (t(6421) = 1.8, p = 0.07) patches

of habitable snow, with the decreasing trend continuing from 66°S

to 74°S. Most habitable area was at low elevation, with 54%

occupying snow less than 50 m elevation. Smaller patches were

picked out at higher elevations, particularly at around 64°S where

there is a lot of higher elevation land adjacent to the ocean (e.g.,

Anvers Island, Brabant Island and mountainous terrain on the

Danco Coast). The higher elevations shown in Figures 6B, E exceed

field observations of bloom elevations in Antarctica, though not

elsewhere (e.g., Onuma et al., 2022; Vimercati et al., 2019), but are

predominantly (60%) one or two isolated pixels, indicative of model

noise. RSA habitable areas (Figure 6F) were significantly higher (97

versus 48 m; t(6421) = 4.6, p < 0.01) and larger (0.038 versus 0.037

km2 t(6421) = 5.6, p < 0.01) than GSA (Figure 6C).

To examine the influence of warming in context of the 2021

temperature anomaly, we focused our analysis on modelled

habitable areas that were predicted to be warmer in 2100 than in

2021. Total area increased with warming for both GSA (270 km²

versus 217 km²) and RSA (711 km² versus 367 km²). However, there

was no significant increase in the area of individual habitable

patches of snow (GSA: t(8378) = 0.20, p = 0.84; RSA: t(9267) =

1.1, p = 0.27), indicating that total area increased as a result of a

greater number of regions along the Antarctic Peninsula becoming

habitable for snow algae.

Blooms also increased in elevation within warmed areas of the

Antarctic Peninsula in 2100. Average elevation was significantly

higher, GSA rising from 43 m to 57 m (t(8378) = -13.50, p < 0.01)

and RSA from 50 m to 70 m (t(9267) = -7.91, p < 0.01). Similar

patch sizes between 2100 and 2021 indicate that this change resulted

from a shift in range rather than an expansion of patch area. Snow

at higher elevations became more habitable as more and longer melt

occurred there, at the same time as blooms at lower elevations

became less prevalent. In the case of islands that experienced

warming, the model predicted GSA to decrease in area on 70% of

them (n = 559) and disappear from 43%, and RSA to decrease in

area on 40% of them and disappear from 20%. This loss was

compounded on small and low-lying islands, with GSA and RSA

decreasing 69% and 42%, respectively, for islands less than 5 km²,

and 87% and 64%, respectively, on islands lower than 50 m in

elevation. This range shift is illustrated in Figure 7, which shows an

area of islands south of Anvers Island (64.8°S to 65.1°S) and the

change in distribution of GSA and RSA between 2021 and 2100.
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4 Discussion

4.1 The ecological niche of Antarctic snow
algae

We have included a wide range of physical variables in a habitat

suitability model and compared those variables against a large dataset

of snow algal bloom observations, collected over multiple years.

Through this, we have been able to generate output response

curves for predictor variables that offer insight into the habitat

characteristics and ecological processes that govern the occurrence

of seasonal snow algal blooms across the Antarctic Peninsula, the

South Shetland Islands and South Orkney Islands. This work is the

first landscape scale model to explore the mechanisms that influence

the distribution of Antarctica’s unique red and green snow algal

ecosystems, as well as to map their potential future changes.

Days of snow melt was identified as an important predictor

variable for both GSA and RSA (Figure 4). The influence of longer

periods of snow melt, in particular for RSA, suggests the need for

longer periods of melt and warm temperatures for blooms to

develop. This has been noted previously, and likely relates to

bloom requirements for time to grow and multiply, as well as

time to undertake the processes of secondary carotenoid formation

and encystment, which is potentially critical for year-on-year re-

dispersal and seeding (Onuma et al., 2022; Soto et al., 2023). Melt

reflected the intensity of warming, and therefore melt rate, within

the snowpack. Modelling snow melt to derive total cumulative snow

melt and days of snow melt predictors instead of using elevation,

temperature, and solar radiation layers directly, provided the BART

model with more directly relevant information with respect to

conditions for algal growth. This was because the temperature

within melting snow will not vary significantly from 0 °C,

whereas the melt model allows quantification of the duration and

intensity of melt. The response curves for cumulative snowmelt and

days of snow melt displayed an interesting interplay whereby

habitable probability was reduced by higher amounts of melt,

whereas a greater number of melt days was influential (Figure 4).

This again suggests a scenario where lower daily melt over a longer

period provides a more stable snow environment for blooms to

develop and complete their life cycle (Soto et al., 2023).

Aspect was another important predictor for both GSA and RSA.

The partial dependence plots (Figure 4) show that GSA had little

preference for a specific aspect when other variables were set to their

mean values, indicating interaction with other variables i.e. aspect

may be interdependent with slope, or may depend on the time point

within a melt season. RSA showed a preference for occurrence on

north facing slopes. Secondary carotenoid pigments, which drive

the coloration of RSA blooms, have been shown to confer additional

UV-A and UV-B photo-protection in encysted snow algae

(Procházková et al., 2020). RSA bloom-forming taxa are therefore

likely to be better adapted to high-irradiance conditions found in

surface snow layers on north-facing aspects. Additionally, on

higher-elevation snow, where air temperatures are below 0 °C, the

radiative forcing of algal cells within the snowpack may be sufficient
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to initiate localized melting around the cell (Dial et al., 2018;

Halbach et al., 2022). In this instance, direct irradiance may play

a larger role in bloom formation than our modelled snow melt,

which did not factor albedo into its prediction. Habitable areas for

RSA were predicted at higher elevations relative to GSA (Figure 6E),

possibly because this enhanced albedo-mediated melt was captured

within the RSA training data set. Future work could incorporate

albedo and melt effects relating to algal presence into an improved

melt model to disentangle the effects of radiative heat transfer and

aspect upon snow melt and habitat suitability.

The presence of multimodal distributions in the response curves

for days of snow melt, melt depth and aspect, suggested heterogenous
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responses and preferences to variables within GSA and RSA

communities (Figure 4). The clustering of training images in similar

months was not responsible for the multimodality. Instead, snow

melt-based predictor variables exhibited considerable spatial variation

across the sampling range, resulting in an even distribution of inputs.

The GSA response for days of snow melt shows an even distribution

between an initial preference peak for short seasons of melt (mean ~30

days) and a second preference for longer seasons (mean ~110 days).

Due to a lack of snow depth information, the model was unable to

predict the total melt out of snowpacks. Shorter melt season lengths

therefore reflected snow patches exposed to fewer days above melting

temperature, rather than shorter seasons due to melt-out of the snow.
FIGURE 5

Habitable snow area changes across the Antarctic Peninsula. 50 km hexagonal grids showing the sum of area of habitable snow for green snow
algae (GSA – (B, C)) and red snow algae (RSA – (F, G)) under 2021 (B, F) and predicted 2100 (C, G) climate conditions. Habitable area is cumulative
from 1st November to 21st January (2021 or 2100). Maps (A) and (E) show the length of the 95% credible interval for areas that meet the models’
threshold criteria. Maps (D) and (H) show whether habitable area increased or decreased between 2021 and 2100 within each 50 km grid cell. The
triangle marker line is the boundary of greater melt in 2021 than in 2100, where melt was greater to the east of the line and less to the west. Map
insets are of the South Orkney Islands and are a different scale (also depicting a 50 km hexagonal grid). The map overview in h shows the extent of
the main map views of the Antarctic Peninsula and of the South Orkney Islands inset in yellow.
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The long-season peak is indicative of GSA communities that require

melt over longer periods of time to form. The late-summer timing of

most of the WorldView images used (Table 1) points to these blooms

having occurred in long-lasting snowpacks which have experienced

melt throughout the summer.

In contrast, a response peak at c. 30 days of snow melt for GSA

(Figure 4) reflects occurrence in snowpacks with much shorter

melting seasons, or in shaded aspects. In such cases opportunistic

species that can capitalize on the short melting season are more

likely to be the drivers of bloom formation. Field observations

indicate that certain snow algae, such as Hydrurus spp. and

Raphidonema spp., can grow rapidly to take advantage of

saturated snow at the melting edge of snowpacks (Remias et al.,

2013; Kol, 1972). These often manifest as smaller, more localized
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blooms, forming along snowpack margins and melt out zones (Luo

et al., 2020; Remias et al., 2013). Increased detection of blooms in

high resolution WorldView imagery similarly suggests that small

blooms are more frequent than previously reported for the region

(Gray et al., 2021).

The response curves for melt intensity and a preference for

terrestrial snow packs highlighted a general preference of GSA for

higher melt environments than RSA. This agrees with the concept of

opportunistic GSA taking advantage of rapidly melting patches towards

the end of the season, as well as supporting the hypothesis of GSA

occurring in patches with longermelt seasons preferring saturated layers

below the snowpack surface (Hoham and Remias, 2020). One exception

among recorded red blooms in Antarctica is the occurrence of blooms

dominated by the ciliated red chlorophyteChlainomonas spp (Luo et al.,
FIGURE 6

Latitude ((A) GSA, (D) RSA), elevation ((B) GSA, (E) RSA) and habitable patch (a contiguous habitable area) area ((C) GSA, (F) RSA) distribution of
habitable areas for all blooms on the Antarctic Peninsula under 2021 conditions between 1st November and 21st January. Plots a and d show the
latitudinal probability density distribution of pixels determined as habitable from model threshold values. Plots (B, E) show 2-dimensional density
distribution of the elevation of each habitable pixel versus latitude. Plots c and f show 2-dimensional density distribution of the area of individual
patches of habitable snow.
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2020; Ling and Seppelt, 1993). Chlainomonas spp. elsewhere in the

world are known to prefer wet snow conditions (Remias et al., 2016; van

Hees et al., 2023). The secondary peak in the melt response curve for

RSA might therefore reflect the presence of Chlainomonas-like species

blooms in the observation dataset with a preference for more saturated

snow conditions.

Multimodal distributions in the variable response curves

highlight the heterogeneous community nature of the GSA and

RSA bloom categories. The model is simplified to look at algal

blooms as either green or red, though in reality there is a significant

variety of communities, with many distinct species comprising a

bloom regardless of its dominant color (Davey et al., 2019; Soto

et al., 2023, 2020). The presence of multimodal distributions for

days of snow melt, cumulative snow melt, and aspect suggest

species- or group-specific responses within GSA or RSA are

present. Determining how our modelled ecological niche reflects
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actual habitat niches for different snow algal species and functional

groups remains a challenge for the future. These will require

additional ecological and physiological studies both in situ and in

the laboratory (Chevrollier et al., 2022; Halbach et al., 2022).
4.2 Distribution of habitable snow

Across the Antarctic Peninsula region, modelled habitable snow

was generally on north-facing, low-lying and coastal slopes, though

it was also present on other slope aspects. Seasonally snow-covered

rocky outcrops provide suitable habitats for both GSA and RSA,

whereas RSA had a greater probability of occurrence on snow-

covered Antarctic glaciers than GSA (e.g. Chen et al., 2023).

Exceptions to the latter observation were found on the lower

latitude and low-lying ice caps of Signy, King George, Nelson,
FIGURE 7

A close-up view of the vicinity of Anvers Island showing habitable snow for GSA (A, B) and RSA (C, D), for model runs using 2021 (A, C) and 2100
(B, D) conditions. Contours show 50 m intervals. Inset shows Anvers Island, with the extent of (A–D). shown in red.
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and Robert Islands, where cumulative snow melt and days of snow

melt variables also provided habitable snow for GSA blooms. This is

consistent with in situ and remote sensing observations, with GSA

observed on Robert Island ice cap in 2023 and Robert Island and

Nelson Island ice caps within Sentinel 2 imagery (Gray et al., 2020).

The 3.4 km² maximum snow algal area observed over a 463 km²

area within WorldView imagery was almost double the area of GSA

previously reported (1.95 km²) using coarser resolution Sentinel 2

imagery over the entire Antarctic Peninsula (35,000 km² area)

(Gray et al., 2020). This highlights the benefits of using high-

resolution satellites, such as WorldView, to complete this type of

ecological study, both in terms of their ability to classify red blooms

and in detecting smaller blooming areas with greater confidence.

The modelled extent of habitable snow was significantly greater

than the observed bloom area. This is to be expected as the model

parameters tested do not capture the full array of environmental

factors which constrain habitat suitability for the algae, for instance

omitting nutrient availability or precipitation. This relationship also

suggests that stochastic processes of dispersal and recruitment,

including mechanisms such as wind, birds, and precipitation

(Marshall and Chalmers, 1997; Procházková et al., 2019; Gupta,

2021; Tesson and Šantl-Temkiv, 2018) may also limit the formation

of new blooms. The elevation range of habitable snow was primarily

influenced by the most important predictor, days of snow melt, as it

defined snowpacks that were in a melting state long enough for

blooms to form (see Figure 4 for the shape of that relationship).

Therefore, in the case of larger, high elevation habitable areas within

our model, snow may be suitable for bloom formation, but algae

have yet to disperse upwards or establish at higher elevations.

Alternatively, blooms may be present in higher elevation

snowpacks, but only cross thresholds for remote-sensed detection

during extreme summer seasons, for example within the 2023

Robert Island image used for training (Supplementary Figure S1A).
4.3 Climate change and extreme weather
event effects upon habitable snow

The positive temperature anomaly in 2021 coupled with the

modelled habitable snow area for 2021 versus 2100 predictions,

highlights the ecological effects of extreme summer weather events

and interannual climate variability experienced in the Antarctic

Peninsula region. The 2021 anomaly was caused by a combination

of low pressure drawing warmer northerly winds over the Peninsula

and low sea ice concentrations in the Bellingshausen Sea region

(Clem et al., 2022). Sea ice acts as a barrier to exchange of heat and

moisture from the sea into the atmosphere, and low sea ice extent

has been shown to negatively influence snow accumulation in the

western Antarctic Peninsula region (Porter et al., 2016; Thomas

et al., 2017). Sea ice in the Bellingshausen Sea has been in decline

over the past century (Porter et al., 2016; Turner et al., 2022).

Should this trend continue, this may lead to less snow cover and

fewer low-lying snow patch habitats persisting through the summer.

Our model indicated that habitable snow could expand

southwards in range with climatic warming and indeed the zero-
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degree isotherm is predicted to increase in latitude over the next 80

years (González-Herrero et al., 2024). Summer temperatures in the

west and north-east of the Antarctic Peninsula also experience

significant non-seasonal climate variability and positively correlate

with the phase of the Southern Annular Mode (SAM) (Clem et al.,

2016). The SAM was in a positive phase during the 2021 summer,

where strengthening and a poleward shift of westerly winds lead to

warmer temperatures and contribute to anomalously high melt

during the summer (Clem et al., 2016). Climate reconstructions

suggest an increasing positive trend in summer SAM phase

throughout the last century (Fogt and Marshall, 2020). Though

there is significant uncertainty as to how this trend will continue to

affect the Antarctic climate (Fogt and Marshall, 2020), it does seem

to be forced by anthropogenic climate change (King et al., 2023).

Our modelling work, with supporting evidence from remote-sensed

observations from Robert and Nelson Island ice caps, as well as

King George Island (Chen et al., 2023), indicates that extreme

weather events such as in 2021 and 2023 enabled widespread

blooms to form at higher elevations on snow-covered glaciers,

and indeed we saw a preference for RSA forming on snow

covered glacier/permanent snow surfaces. Research in the Arctic,

particularly in Greenland, has shown that algal growth on snow and

ice can contribute significantly to the darkening and enhanced melt

of glaciers and ice sheets (Cook et al., 2020; Halbach et al., 2022,

Williamson et al., 2019). More heatwaves on the Antarctic

Peninsula, coupled with recent observations of ice algal species in

Antarctica (Thomson et al., 2025), may, therefore, point to future

increases in biological darkening and enhanced melt of glaciers and

ice caps in the region.

Precipitation patterns across the Antarctica Peninsula are

predicted to change significantly with warming in the next

century, with summer rainfall and extreme snowfall events

becoming increasingly common across the region (Turner et al.,

2019; Vignon et al., 2021). The effect on habitable range and snow

algal bloom formation is uncertain. However, seasonal field

measurements of bloom development have shown strong

correlation between summer snowfall events and the retardation

of bloom formation (Onuma et al., 2022). In addition, anecdotal

field observations have reported fewer blooms and the wash-out of

existing blooms following rain events in Antarctica and elsewhere

(Stibal et al., 2017). Such weather events may introduce new

selection pressures - for instance favoring opportunist species -

and destabilize bloom formation processes, with unknown

consequences for longer-term bloom re-occurrence (Soto et al.,

2023). Such feedback mechanisms and uncertain trends represent

unknown factors in the future habitable range for snow algae and

remain difficult processes to integrate into forecasting models.
4.4 Model advantages, limitations, and
future considerations

This model aimed to capture the conditions that allow the

formation of snow algal blooms on the Antarctic Peninsula by

parameterizing variables relating to water availability, sunlight, and
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nutrient supply. The use of high spatial resolution data enabled us to

capture habitat suitability in landscape features where snow persists

throughout the summer, such as hollows, valleys and below cliffs,

potential refugia for snow algae on low-lying islands. This was evident

in Figure 3, where river valleys in the low-lying southern reaches of the

Coppermine Peninsula and Harmony Point had a greater probability

of occurrence than the surrounding area and were indeed filled with

snow and GSA/RSA in the WorldView images. The improvement

comes from the use of a sun view factor to normalize the net solar

radiation component of the snow melt model, producing longer melt

periods but with less snowmelt over shaded landforms. This fine scale

was not captured within the 100 m posterior analysis, however, as the

influence of smaller topographic features uponmelt was averaged over

the coarser model resolution.

Our simplified snow melt modelling approach was limited by the

omission of feedbacks between snow algal presence and albedo. Snow

algal cells absorb solar radiation (Chevrollier et al., 2022; Halbach

et al., 2022), meaning that melt would be greater than our model

predictions where algal blooms were present. Since the net solar

radiation dataset we used was based upon a fixed albedo over the study

region, this is a systematic uncertainty and does not affect the spatial

interpretation presented here. However, algal presence may decrease

the time taken for a snowpack to melt completely or increase the area

and magnitude of melt by increasing the amount of solar energy

absorbed by the snow (Cook et al., 2020; Halbach et al., 2022). A

second limitation derived from the simplification of our model runs,

which omitted snow accumulation and depth information as well as

longwave radiation. Moreover, terrestrial snow patches will experience

greater heat transfer from surrounding or underlying rock versus

snow on glacial surfaces, causing enhanced melt that was not

characterized within our melt model. Biases resulting from these

limitations were partially addressed within the scope of the BART

model by the inclusion of specific GSA and RSA absence training data,

within areas that experienced high modelled melt. Ultimately, future

work should aim to improve melt model accuracy, incorporating

regional climate data, locally defined lapse rate and photon transport

models to estimate short and longwave radiation distribution. Over

smaller areas where baseline snow depth information is present, this

would greatly improve the spatial precision of habitable snow

estimation by the BART model.

The use of remotely sensed data for model training allowed us

to capture a large sample size that encompassed a wide range of

geographic and climatic conditions, and it enabled the use of

observed absences rather than generated pseudo-absences.

However, this approach also introduces detection limitations that

may influence model output. GSA can bloom beneath fresh snow or

be overlain by red RAS, obscuring GSA from satellite view (Gray

et al., 2020). Because most of our training scenes were late-season,

to allow seasonal snow to melt and expose the underlying blooms

(Gray et al., 2020), our training dataset likely underrepresents early-

season and sub-surface GSA and is biased toward lower snowpack

margins. Although random selection of training points and one

early-season training image helped to mitigate this detection bias, it

likely persists, causing posterior estimates to underestimate the

elevation and extent of GSA habitat suitability, especially for
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predictions over shorter time intervals. Mechanistically, this bias

(i) underestimates early-season and sub-surface GSA, and (ii) biases

low-elevation/coastal patches downward. This issue is less

pronounced for RSA, which typically blooms at the snow surface

(Hoham and Remias, 2020; Gray et al., 2021; Onuma et al., 2022),

though transient burial by summer snowfall may have reduced the

observable RSA extent in some training scenes. Finally, although we

attempted to include data from multiple points in the growth

season, remaining gaps may contribute to multimodality in some

responses. For example, in Figure 7 the 2100 map shows GSA not

extending to sea level, and at low elevations the “days of snow melt”

predictor is ~50, coinciding with a trough in its partial response.

These uncertainties could be reduced by expanding the training set

to earlier-season scenes and adding drone or in situ time series.

A key assumption of the model is that the absence of a

detectable bloom infers non-habitable conditions. In reality, the

occurrence of blooms is thought to be determined by stochastic

processes of dispersal and seeding success, as well as the availability

of a suitable environment (Soto et al., 2023; Onuma et al., 2022).

Absence data can be the result of dispersal or settlement barriers in

otherwise habitable snow. The inclusion of these points in training

the model can lead to the underestimation of habitable range, and

lower confidence in predictors (summarized in Table 3). However,

the stochastic nature of these absences means the effects on the

model output are small. One area of exception is the reduced

probability of dispersal inland and to higher elevations as animal-

vector and aeolian input become less likely (Bokhorst et al., 2019).

This may create a systematic bias and underestimation of habitable

snow inland and at higher elevations. The model design can also

lead to the conflation of factors determining the absence of blooms

(Table 3). The conflation of physical and snow chemistry factors in

determining snow algae absence highlights the need for integrated

snow chemistry and biology sampling in the development of such

models, though achieving comparable scales of sampling to remote

sensing approaches remains a challenge in extreme environments.

Incorporating nutrients within the model proved difficult due to

a lack of direct nutrient observations that could be mapped at scale.

Distances to animal colonies or the coastline were used as proxies

for nutrient availability within the model, as isotope analysis has

previously shown snow algae to utilize guano as a nutrient source

(Gray et al., 2020; Bokhorst et al., 2019). The modelled relationship

between occurrence probability and distance to animal colonies or

the coast (shown in Figure 4) suggested that blooms within the

training dataset were close to both potential nutrient sources,

though both variables were assigned low importance. Proximity

alone failed to account for actual nutrient concentrations within

snow melt and we acknowledge that there are gaps within animal

colony records. Moreover, mineral dust within the snow or nitrogen

fixation by cyanobacteria may also provide nutrients, unrelated to

marine or animal inputs (McCutcheon et al., 2021; Murakami et al.,

2022; Phillips-Lander et al., 2020).

Using the model to predict future habitable areas was

predominantly based upon predicted air temperature for the region,

which in turn fed into the snow melt model for 2100. Improvements

could therefore bemade by includingmore complex temporal feedback
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TABLE 3 Mechanisms, effects, and outcomes of different forms of true and false detection from remote sensing observation in the model.

Detection result Description Likelihood/effect Outcome

sing – true habitable site n/a Increased accuracy model

ot habitable snow n/a Increased accuracy model

ot habitable snow – but
asured factor (e.g. nutrients,
tor)

Uncertain – effect on overall mapping minor – effect on
predictor scores more significant – a conflating effect

Underestimate of habitable range - Reduced confidence
scores in measured predictors (noise)

sing – not snow algae (mineral/
Rare – often detectable or deducible – minimal effect Overestimation of habitable area

sing – not habitable snow Rare – semi-systematic – minimal effect as physical
displacement small

Minor spatial mismatch – underestimation of habitable
range - in particular elevation

ut bloom present - under snow/
al

Common - semi systematic as often within snow above
exposed bloom - minimal effect

Underestimation of habitable range

ut bloom present previously - Common - mitigated by inclusion of early season and
late season imagery – uncertain effect

Underestimation of habitable range at lower elevations at
season end

ut habitable snow

Common – governed by stochastic factors of occurrence
(dispersal and seeding) – minor effect overall – though
possibly systematic at higher elevations and inland
(lower dispersal probability), or where GSA blooms
under surface snow cover.

Potential underestimation of habitat range inland/higher
elevations/GSA
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effects into the model, such as changes to the wider ecosystem and

precipitation patterns in the region. Shifting animal colonies and the

increase in vegetation in the Antarctic Peninsula, for example, may

influence vectors of dispersal, re-seeding processes from soils, and

nutrient dynamics for snow algae (Archer et al., 2019; Newsham et al.,

2016; Robinson, 2022). In return, the predicted increase in habitable

range for snow algae may result in increased organic input to Antarctic

habitats, with the potential to drive successional processes in newly

exposed soils and ice surfaces (Garrido-Benavent et al., 2020).

Crucially, this model aims to map the prevalence of physical

conditions that allow snow algal blooms to form, rather than

predicting occurrence. Likewise, it does not aim to model

seasonal growth, though aspects of seasonal bloom development

are captured in the frequency of bloom detection and the

probability of presence across the season in the model output.

Rather, this model is a tool that expands our previous work

mapping snow algal blooms in Antarctica, upscaling RSA bloom

extent estimates, exploring bloom niche requirements, and

providing a method to explore seasonal, interannual, and long-

term patterns in distribution.
5 Conclusions

We utilized a Bayesian additive regression tree model to explore

large-scale distribution controls on snow algal blooms across the

Antarctic Peninsula. This modelling approach provides a means to

gap-fill the discontinuous observations made by field surveys, satellites

or drones as well as enabling future distribution changes to be explored.

Modelling indicated that the primary controls on distribution were the

number of days of snow melt and aspect, with most habitable snow

being north of 66° S, the relatively warmer conditions there providing

larger patches of habitable area, and patches at higher elevations that

were suitable for bloom formation. Future work should refine the

model, using smaller areas for training with better-defined snow

accumulation information, adding albedo feedback mechanisms into

the snow melt model component and incorporating occurrence

information weighted by remotely estimated cell density. Moreover,

running the model over the continental Antarctic coastline, much of

which exists close to 66° S, or specific ice bodies, would provide greater

insight into the extent of Antarctica’s cryospheric biology.

The impacts of long-term climate change on bloom distribution

were obscured by the anomalous extreme summer temperatures and

melt rates experienced during the beginning of the 2021 summer,

which exceeded predicted 2100 temperatures in the north and east of

the Antarctic Peninsula. However, we determined that there was an

increase in the number, size and elevation of habitable areas in regions

that had experienced warming, though we also observed significant

losses of habitable areas on smaller islands where summer snow is

unlikely to persist through the summer under warmer conditions. The

higher elevation areas in which our model detected habitable snow

were predominantly glaciers or island icecaps and indicate the

potential for Arctic-style glacial blooms to become established on

the Antarctica Peninsula, changing the landscape of snow algae on the

continent and increasing glacial melt rates.
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