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Abstract
Peatlands store approximately one-third of the world’s soil carbon (C), but their functioning is
highly variable at fine spatial scales due to differences in vegetation cover and environmental
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conditions such as water table depth. This fine-scale heterogeneity plays a key role in carbon
dynamics yet capturing it—particularly in relation to green leaf phenology (GLP)—is
challenging with traditional remote sensing methods. To address this, we developed a
smartphone-based methodology and community-science project called the PeatPic Project. We
gathered over 3700 photographs from 27 sites across 10 countries in 2021 and 2022, representing
different peatland types (bog, fen, and swamp), at 1–2 week intervals. We calculated GLP metrics,
such as the data of the start of the season and end of the season, based on the red-blue-green
bands from these photographs. We found that GLP metrics varied significantly across peatland
types and dominant vegetation communities. Notably, peak greenness at bog sites occurring
approximately 10 days later in the year compared to fen sites. Furthermore, variables relation to
peatland/vegetation type and energy balance were key predictors of peatland GLP. The PeatPic
Project’s readily available methodology offers low-cost opportunities for further research into
peatland phenology, enabling the calculation of additional phenological indices and integration
with other data types. By refining our understanding of peatland GLP, we can improve predictive
C modelling and better assess the impacts of future changes on these important ecosystems.

1. Introduction

Peatlands are a type of wetland ecosystemwith a thick
layer of partially decomposed organic matter. They
cover approximately 400 million hectares (∼3%) of
the world’s surface but store disportionately large
amount of the world’s soil carbon (C)—estimated at
∼600 Gt of C, or 21% of the total global soil C stock
(Page et al 2011, Yu 2012, Scharlemann et al 2014).
Their ability to store such large amounts of C means
that peatlands have the potential to significantly influ-
ence the climate-C cycle feedback (Moore et al 1998),
act as a nature-based solution to climate change
(Strack et al 2022, Girkin and Davidson 2024), and
influence global C budgets (e.g. Saunois et al 2025).
To understand peatland roles in local and global C
cycling, there has been increased focus on investig-
ating peatland functioning, particularly in relation
to interactions between hydrological conditions and
C storage (van Bellen and Larivière 2020). However,
less attention has been directed to understanding
how peatland vegetation communities’ function with
regards to green leaf phenology (GLP: the phenology
of leaf traits, e.g. timing of leaf out, timing of peak
greenness and leaf fall) which is an important driver
of terrestrial C cycling (Hufkens et al 2012).

Changes in temperature and precipitation pat-
terns are altering phenological events in peatlands,
potentially affecting their C sequestration capacity
(Koebsch et al 2020, Davidson et al 2021, Köster
et al 2023, Simpson et al 2025). For example, increas-
ing global air temperatures are leading to substan-
tial changes in the timing and duration of eco-
system processes, including plant green-up in the
spring and senescence in the autumn (Schädel et al
2023), and an overall lengthening of the growing
season in many regions (Richardson et al 2018,
Collins et al 2021). However, these investigations

typically focus on ecosystem-scale phenology, where
trends in tree-dominated systems may overshadow
the dynamics of low-statured understory species
(e.g. mosses, shrubs, and graminoids), which dom-
inate peatland productivity in many northern sites.
While small statured, these plants can often dom-
inate net primary productivity budgets in peatlands
(e.g. Griffiths et al 2017). Thus, the GLP of under-
story plants and its variation across peatlands remains
elusive.

Changes in GLP can have significant impacts on
net annual C uptake (Hanson et al 2020, Koebsch et al
2020, Simpson et al 2025). Early leaf-out and exten-
ded growing seasons may increase C uptake but also
result in higher C release during dry periods (Hanson
et al 2020). Moss-dominated peatlands, such as bogs,
generally green up more slowly than graminoid- and
shrub-dominated peatlands (e.g. fens), resulting in
lower photosynthetic activity earlier in the growing
season and impacting C cycling rates through faster
C turnover (Blodau 2002, Peacock et al 2019). Slow-
growing Sphagnummosses can lengthen the growing
season in peatlands, extending C sequestration fur-
ther into the autumn period (Kivimäki et al 2008).
Different vascular plant species can also be physiolo-
gically active at various times of the year, with knock-
on effects on C source/sink behaviour (Ström et al
2005). The changes in growing season length have also
been linked to peat accumulation rates (Gallego-Sala
et al 2018), suggesting that understanding how plant
communities green-up and growing season lengths
vary in space and time (and how they are changing in
response to climate change) is critical to monitoring
long-term peatland C storage (Charman et al 2013).
Disturbance impacts on peatland vegetation can also
alter greenness trajectories, through both changes in
the greenness timing of the vegetation present, as
well as shifts within the community that can lead to
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different greenness characteristics compared to the
previous undisturbed community (Davidson et al
2021). Thus, the impacts of global change processes
on peatland phenology are highly uncertain but likely
to be dependent on peatland type, climate, disturb-
ance regime, and other factors.

Digital red–green–blue (RGB) photography is a
non-destructive method that can be used to measure
and understand plant GLP (Crimmins andCrimmins
2008). Photographs provide visual evidence and
detailed records of phenological events in an eas-
ily accessible, standardisable, and low-cost manner.
They allow for the verification and calibration of
observational data and improve accuracy (Barve et al
2020) including within prediction and estimation of
plot-scale C fluxes (Gutekunst et al 2019, Davidson
et al 2021). There have been ecosystem scale stud-
ies looking at peatland vegetation GLP (Peichl et al
2015, Koebsch et al 2020) using high temporal res-
olution image archives and studies synthesizing data
from networks such as Phenocam (Wingate et al
2015, Richardson et al 2018) but there are very few
plot-scale studies looking at peatland vegetation GLP
(Peichl et al 2018, Davidson et al 2021, Garisoain
et al 2023). Peatlands are inherently heterogeneous,
including a variety of peatlandmicroforms and veget-
ation communities, associated sub-metre changes in
C flux (Riquelme Del Río et al 2024), that vary in
their response to changing water table and temper-
ature regimes (Strack and Waddington 2007, Munir
et al 2015). Thus, understanding small-scale (⩽1 m2)
resolution of peatland GLP is key to monitoring and
predicting peatland functional changes.

Therefore, there is a need for a comprehens-
ive global network of datasets to understand the
spatial and temporal variations in peatland GLP at
the square-metre scale, to provide a baseline for
long-term monitoring to track global change effects.
Advances in smartphone technology and online plat-
forms have facilitated the widespread collection and
sharing of phenological data through photographs
(Hufkens et al 2019, Barve et al 2020, Tonnang et al
2020, Liu et al 2022). This method thus provides a
promising avenue for peatland GLP research, and one
particularly well suited to both community science
due to the readily available nature of smartphones
(Klinger et al 2023) and advances in image processing
driven by machine learning algorithms (Fang et al
2019, Reichstein et al 2019).

Here, we use a standardised smartphone photo-
graphy method and a community science approach
(the PeatPic project) to investigate how peatland
greenness trajectories, specifically, day of year at
peak greenness, varies across different peatland types.
Additionally, we test for site characteristics and envir-
onmental factors as predictors of GLP.

We hypothesise that (1) graminoid-and shrub-
dominated systems peak in greenness earlier than
moss dominated systems, (2) peak greenness will be

earlier in warm climate peatlands compared to cool
climate and (3) peatlands at lower latitudes are expec-
ted to reach peak greenness earlier than peatlands at
higher latitudes.

2. Methods

2.1. Community photographs
During 2021 and 2022, we recruited project par-
ticipants via email, social media, and word of
mouth amongst the peatland research community.
Participants collected plot-scale (0.036–1 m2) photo-
graphs of the dominant vegetation communities at
their peatland research sites (figure 1) using the stand-
ardised PeatPic protocol developed by the project lead
(see supplementary information for details).

All sites had between 4–12 plots. Plots were either
permanent locations for monitoring vegetation or
measuring C fluxes (e.g. collars), or were tempor-
arily marked using quadrats, flags or other mark-
ers (examples for each site shown in figure S1).
Photographs were collected on a weekly to bi-weekly
basis across most sites, dependent on remoteness
and logistics, and at all sites photography began
before the growing season and continued into the
autumn senescence periodwhere logistically possible.
Participants were required to have the image acquis-
ition mode set to auto white balance and autofo-
cus, photograph under as clear or overcast sky con-
ditions as possible and to avoid including any shad-
ows in the photo where possible. Photographs were
consistently taken from a nadir angle (directly over-
head), approximately 1 m above the ground-layer
canopy. While different camera/phone sensors were
used across sites, for a given site, only one phone or
camera type was used.

Alongside the photographs, participants were
asked to provide information on the peatland type
(bog, fen or swamp), the dominant vegetation com-
munity (Sphagnum-, feather moss-, graminoid- or
shrub-dominated), the microform type (hummock,
lawn or hollow), whether the site had tree cover (at
site level), whether it was underlain by permafrost (at
plot level), and whether there was any evidence of dis-
turbance impact (at plot level).

2.2. RGB photography analysis
Weused the R packagePhenopix version 2.4.4 (Filippa
et al 2016) to calculate the greenness index:

Greenness index = GDN/RDN +GDN +BDN (1)

where the RDN, GDN and BDN are the average red,
green and blue digital numbers respectively. This
index was chosen as it is more robust than other
indices with regard to scene illumination and shad-
ows (Sonnentag et al 2012, Davidson et al 2021). Any
photos that included snow cover or standing water
were omitted from the analysis (approximately 0.2%
of the total number of submitted photographs).
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We used the R package’s DrawROI function to
hand-identify and delineate a Region-Of-Interest of
the dominated vegetation community within the des-
ignated plot in each photograph. We then used its
ExtractVIs function to calculate the index on a per-
pixel basis (Toomey et al 2015). To compare the sea-
sonal trajectories of the greenness indices between
the different peatland types and four vegetation com-
munity groups, we fitted a Gaussian model to our
measured greenness values by day of the year (DOY;
Davidson et al 2021). We used the following model to
fit data at each unique plot for each year (hereafter,
plot-year):

Modelled greenness index= a x e−0.5

[
DOY− b

c

]2
(2)

where a, b and c are parameters describing the sea-
sonal trajectory of the greenness index; the peak value
(a), DOY at peak greenness, (b) and the growth rate
of the curve (c). The parameters allowed us to com-
pare the peak, timing of peak, and progression of GLP
across all plots. We focus primarily on the DOY at
peak greenness as a descriptor of changes to GLP pat-
terns because sites varied in their specific phone or
camera sensor and their greenness values would not
be comparable. However, the trajectory of greenness
within a site and day of peak value are comparable.
For calculating the day of peak greenness, we only
used model outputs from equation (2) when p-value
<0.05. Out of our total 319 plot-years where we fit
the equation (2) model, we had to remove 96 unique
plot-years because their model fit p-value was>0.05.
Note that to standardise comparisons of southern and
northern hemisphere growing seasons, we adjusted
the southern hemisphere DOYs by adding 182.5 to
any DOY less than 182.5 and by subtracting 182.5
from any DOY greater than 182.5. This allowed for
an alignment of the growing season trajectories in
both the hemispheres that was necessary for fitting
equation (2) to the data.

2.3. Predictor data
For predictor data, we used a range of site-reported
peatland characteristics and climate reanalysis data
from ERA5 (Muñoz Sabater 2019; Download date
18 February 2025). The resolution of the ERA5 data
is 0.25◦ × 0.25◦. We downloaded monthly aver-
aged data (from hourly data) for the years of our
photographs (2021 and 2022) for the entire globe
and extracted the data for the pixel in which our
sites occurred using the terra R package (Hijmans
2024). We extracted variables related to our hypo-
theses (table 1), namely, snow depth, snow albedo,
soil and air temperature, incoming solar radiation,
surface sensible and latent heat flux, soil moisture,
and precipitation. We then averaged all the months

within 2021 or 2022 to obtain an annual average value
for each site and year. The only exception was pre-
cipitation, which we summed instead of averaged.
Note that our precipitation metric is monthly aver-
aged precipitation (based on what the ERA5 product
provides) summed annually for the measurement
year (2021 or 2022).

2.4. Data analyses
All analyses were performed using R version 4.4.2
(R Core Team 2024). We conducted Kruskal–Wallis
tests to examine differences between categories, for
example, to compare mean DOY at peak greenness
values across our three peatland types and vegetation
communities. This was followed by pairwise compar-
isons using a Steel–Dwass post-hoc test to determine
significant differences between individual peatland
types and vegetation communities. Statistical signific-
ance was set at p< 0.05 for all tests.

We implemented Generalised Additive Mixed
Models (GAMMs) in R using the mgcv package
(Wood 2011) to determine the best predictors of peak
greenness. We selected GAMM because it accom-
modates non-linear relationships between predict-
ors and response variables, while also allowing for
random effects to account for hierarchical structure
and repeated measurements in the data. To minim-
ise overfitting and multicollinearity, we first reduced
the full set of environmental covariates (see table 1)
by selecting the representative and least collinear vari-
ables. We applied a hierarchical clustering approach
using the ClustOfVar package (Chavent et al 2012),
which grouped variables into fourmain clusters based
on shared variance (figure S2). To explore model per-
formance across combinations of predictors, we ran
1000 GAMM iterations. In each iteration, we ran-
domly selected one variable from each of the four
clusters to include fixed effects, while treating year
and camera type as random intercepts to account for
temporal and equipment variability. This approach
allowed us to address potential issues with multicol-
linearity, repeated measures, and overparameteriza-
tion. Each model was trained on 70% of the data
(training set) and evaluated on the remaining 30%
(test set) of the data to test model predictive per-
formance.We then quantified the predictive perform-
ance of each model iteration by computing the coef-
ficient of determination (R2) from predicted versus
observed greenness peak values in the test set. Finally,
we selected the best-performing GAMM across the
1000 iterations (highest test-set R2) and used its
four selected covariates to fit a final GAMM to the
entire dataset. Our 1,000 GAMM iterations had rel-
atively good predictive strength, with a mean cross-
validation of R2 = 0.18 ± 0.13. Finally, we used the
function gam.hp (Lai et al 2024) to assess the partition
of variance explained by each predictor in our best
GAMMmodel.
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Table 1. Predictor variables included in the Generalised Mixed Effects Additive Models (GAMMs).

Name Description Units Source
Rationale for using as
predictor

Latitude Geographic coordinate
specifying the
north-south position of
the site

Degrees (◦) Site PI reported Determines climatic
zone and seasonal
patterns, affecting the
timing of peak
vegetation greenness.

Permafrost presence Indicates whether
permafrost is present at
the site

Binary (Y/N) Site PI reported Permafrost affects soil
temperature and
moisture regimes,
influencing plant root
systems and the timing
of peak vegetation
greenness.

Disturbance Indicates whether
disturbance is present
at the site

Binary (Y/N) Site PI reported Influences a variety of
plant growth factors,
including phenology

Tree cover Indicate whether
peatland had a
dominant cover of trees
or was open

Binary (Y/N) Site PI reported Influences understory
plant community
characteristics

Peatland type Indicates what type of
peatland the plot was in

Bog, fen or swamp Site PI reported Linked to site
hydrology and nutrient
status, which influence
plant phenology

Dominant
vegetation type

Indicates the dominant
vegetation type in the
plot

Shrub, Sphagnum,
feather moss or
graminoid dominated

Site PI reported Plant taxonomic
groups have varying
phenological traits

Microform Indicates where plot
was located on the
landscape

Hummock, hollow or
lawn

Site PI reported Influences a variety of
plant growth factors,
including phenology

Mean annual air
temperature

Annual average air
temperature at the site

Degrees Celsius (◦C) Climate reanalysis
(ERA5)

Influences the length of
the growing season and
the timing of
vegetation
development, affecting
when peak greenness is
achieved.

Mean annual soil
temperature

Annual average soil
temperature at the site

Degrees Celsius (◦C) Climate reanalysis
(ERA5)

Affects root growth,
nutrient uptake, and
soil microbial activity,
which are critical for
plant health and the
timing of peak
vegetation greenness.

Annual precipitation Total annual rainfall
received at the site

Millimetres (mm) Climate reanalysis
(ERA5)

Determines soil
moisture levels,
influencing plant
growth cycles and the
timing of peak
greenness.

Volumetric soil water
content

Water content in the
soil within the 0–7 cm
layer

Cubic metres per cubic
metre (m3/m3)

Climate reanalysis
(ERA5)

Impacts plant moisture
and nutrient
availability, affecting
the timing of peak
vegetation health.

(Continued.)
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Table 1. (Continued.)

Snow Albedo Reflectivity of snow
cover at the site

Dimensionless (0–1) Climate reanalysis
(ERA5)

Influences soil
temperature and
moisture by affecting
the amount of solar
radiation absorbed,
thereby impacting the
start and peak of the
growing season.

Snow depth Thickness of snow
cover at the site

Metres (m) Climate reanalysis
(ERA5)

Affects the duration of
snow cover, which can
delay or advance the
onset of the growing
season and influence
the timing of peak
greenness.

Surface net solar
radiation

Net solar energy
received at the ground
or water surface

Joules per square metre
(J m−2)

Climate reanalysis
(ERA5)

Determines the energy
available for
photosynthesis,
influencing plant
growth rate and the
timing of peak
vegetation.

Surface latent heat flux Energy transfer
associated with phase
changes of water at the
surface

Joules per square metre
(J m−2)

Climate reanalysis
(ERA5)

Influences soil
moisture and
temperature
regulation, affecting
plant growth cycles and
peak greenness timing.

Surface sensible heat
flux

Energy transfer related
to temperature changes
at the surface

Joules per square metre
(J m−2)

Climate reanalysis
(ERA5)

Affects microclimatic
conditions, influencing
plant metabolism and
the timing of peak
vegetation greenness.

3. Results

3.1. Description of collected data
In total, over 3700 photographs (2433 in 2021 and
1306 in 2022) were contributed to this project
from participants across 164 unique plots distrib-
uted among 27 different sites in 10 different coun-
tries (figure 1/table S1). Most photographs were col-
lected from bogs (11 open and 3 with trees) and
fens (8 open and 4 with trees), with one swamp
site (figure S3). Four sites had photographs for both
2021 and 2022 (Bonanza Creek, Cloncrow, Degerö
and Senda Darwin). In our dataset, plots were dis-
tributed across various vegetation types, microforms,
permafrost presence, and tree cover. The majority of
data come fromgraminoid-dominated (33%), shrub-
dominated (18%), and sphagnum-dominated (17%)
plots. Plots with permafrost present comprise 23%
of the data, while treed plots comprise 6% of the
data. Regarding microforms, hummocks account for
24% of the data, lawns for 18%, hollows for 11%,
while the rest are not specified. Disturbances included
historical or modern, e.g. drainage, grazing, oil and
gas exploration activities and wildfire. Individual plot

greenness values per site are shown in figure 2 and
the mean± SE greenness values for plots across all 27
sites, averaged by day of year, is shown in figure 3. The
remaining results focus on our key phenology metric,
DOY at peak greenness, that we calculated for each
unique plot-year (Methods in section 2.2).

3.2. Variability in GLP
Day of year at peak greenness was significantly dif-
ferent between peatland types (figure 4(A); Chi-
square = 34.2; p < 0.0001), indicating bog and fen
are phenologically significantly different (Z =−5.07,
p < 0.0001). Bog sites had a wider range, with peak
greenness occurring a median of 10 d later in the year
compared to fen sites. Note that the swamp greenness
data were only from one site (Davidson et al 2024).
Peak greenness also varied among vegetation types
(figure 4(B); Chi square = 10.91; p = 0.012) with
Sphagnum- and graminoid-dominated plots show-
ing significant differences (Z = −3.16, p = 0.0016).
Contrary to our hypothesis, graminoid-dominated
plots peaked in leaf greenness approximately one
week later than Sphagnum-dominated ones.
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Figure 1. Location and photographs of study sites: 1) Bonanza Creek (∗), 2) Burns Bog 1 (∗), 3) Burns Bog 2 (∗), 4) Harmon
Valley (∗), 5) Harmon Valley (∗∗), 6) Poplar (∗∗), 7) Prairie Creek (∗), 8) Heaven (∗∗∗), 9) Fletcher (∗∗), 10) Sprucedale (∗∗),
11) Sallie’s Fen (∗∗), 12) Burrishoole (∗), 13) Cloncrow (∗), 14) Ladderfoot (∗), 15) Blackburn (∗), 16) Leadburn Wood (∗),
17) Ǐskoras (∗∗), 18) Degerö (∗∗), 19) Sjödyn (∗∗), 20) Våxmossen (∗), 21) Isosuo (∗), 22) Tervalamminsuo (∗∗), 23)
Slåtmossen (∗∗), 24) Benediktbeuern (∗∗), 25) Counozouls (∗∗), 26) Senda Darwin (∗∗) and 27) Heathy Spur (∗∗). ∗ Indicates
bog, ∗∗ indicates fen and ∗∗∗ indicates swamp. Note where site names are duplicated (i.e. Burns Bog, Harmon Valley), these
represent two distinct sub-sites with different conditions (e.g. different vegetation communities, different experimental
manipulations, different disturbance histories). All photographs provided by co-authors.
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Figure 2. Raw greenness index values for all 27 sites across peatland types. Each point represents an individual plot. Day of year
adjusted for both southern hemisphere sites (Senda Darwin and Heathy Spur). Circles represent data collected in 2021 and
triangles represent data collected in 2022. Four sites collected photographs for both years of the study (Bonanza Creek, Cloncrow
Bog, Degerö and Senda Darwin). Note that our Gaussian fits on these data were done on the unique plot-level and not on
site-level (see equation (2) in methods).

3.3. Predictors of GLP
The GAMM had a predictive strength of R2 = 0.40
and a deviance explained at 48%. The domin-
ant site characteristics-related predictors of DOY

at peak greenness across our sites were vegetation
(16% of total deviance explained) and peatland type
(21% of total deviance explained) (figures 4 and 5).
Furthermore, surface net solar radiation (46%of total
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Figure 3.Mean± SE greenness index for plots across all 27 sites (coloured by peatland type, bog n= 145, fen n= 154 and swamp
n= 14), averaged by day of year. The southern hemisphere day of the year has been adjusted to match the northern hemisphere
(see Methods).

Figure 4. (a) Day of year (DOY) at peak greenness for all three peatland types (each point represents a different plot) and (b) for
all four vegetation community types. Horizontal black bars indicate the median day of year. Lowercase letters indicate significant
differences between categories (Kruskal–Wallis and pairwise comparisons using a Steel–Dwass post-hoc test. Statistical
significance was set at p< 0.05 for all tests).

deviance explained) and latitude (17% of total devi-
ance explained)were themost important factors driv-
ing GLP across peatlands (figures 5(A)–(C)). As per
our hypothesis that peak greenness will be earlier in
warm sites compared to cool sites, we found thatDOY
at peak greenness strongly decreased with increasing
surface net solar radiation (figure 5(C)). Similarly,
we had expected that DOY at peak greenness would
increase going from equator to poles, but this trend
was nonlinear, and our results did not support our
hypothesis (figure 5(B)), while noting the difference
in site distribution along latitude.

4. Discussion

Here, we investigated climatic, environmental and
vegetation controls on peatland plant community
GLP using photographs collected via a community
science approach.

4.1. Drivers of peatland GLP
Overall, our model explained 48% of variation in
peak greenness, indicating that peatland type, vegeta-
tion type, latitude and surface solar net radiation are
the strongest predictors of DOY at peak greenness.
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Figure 5. (A) Variance partitioning modelling evaluating the portions of variation in green leaf phenology and response of day of
year (DOY) at peak greenness to (B) changing latitude and (C) surface net solar radiation. The y-axis indicates the relative
influence of the explanatory variables on the prediction based on partial residuals from the GAMM. Shaded area shows a 95%
confidence interval while the line shows the smooth or linear trend. All continuous environmental variables shown were
standardised before GAMMmodel fitting. The partial effects (y-axis) reflect these standardised scales (x-axis).

The variation in DOY at peak greenness was larger
in bogs than in fens (figure 4(A)), likely linked to the
dominant plant species present. Linked to the strong
control of peatland type onGLP, differences in vegeta-
tion composition across latitudes also influence GLP.
The dominant species in the bog sites in this study,
(Sphagnum mosses—figure S3), often have slower
growth rates and delayed phenological phases, such as
leaf emergence and senescence (Garisoain et al 2023),
resulting from lower nutrient availability (Aerts et al
1992). Bog species are adapted to these nutrient poor-
conditions and exhibit conservative growth strategies
(Laine et al 2021), including prolonged periods of
leaf retention while having reduced rates of photo-
synthesis (Huth et al 2021), meaning they may stay
‘greener’ or more productive for longer than other
peatland types. However, our bog or fen sites were
not strictly Sphagnum or graminoid dominated as
we had expected. Instead, both site types had a mix
of different dominant vegetation which may explain
this variability (figure S3). Additionally, Sphagnum
communities may not appear ‘green’ when product-
ive due to either species present or location on land-
scape (hummock vs. hollow for example) (Letendre
et al 2008). Contrary to our hypothesis, we observed
that Sphagnum-dominated plots green up earlier than

graminoid-dominated plots. This could be in part
due to the range of climates that the Sphagnum-
dominated plots spanned, alongside the moss already
being green when the snow disappears in compar-
ison to vascular plants that needmore time to develop
their green biomass.

The typically higher pH and nutrient availab-
ility of fens means they support not only a wider
diversity in plant species but are primarily dominated
by species that favour more rapid growth character-
istics i.e. sedges and non-ericaceous shrubs such as
Salix spp., with different phenological timing. These
species often display earlier leaf-out in spring com-
pared to more moss-dominated peatlands (Leppälä
et al 2008) and faster cycles of growth, senescence, and
productivity (Davidson et al 2021). Species-specific
phenological responses to changing environmental
conditions and photoperiods may also vary between
peatland types (Peichl et al 2018). For example,
sedge-dominated fens may exhibit greater sensitiv-
ity to air/soil temperature fluctuations and extensions
to the growing season, promoting earlier green up
(Thayamkottu et al 2024).

Although disturbances such as permafrost thaw
or tree cover were not found to be significant
controls on plot-scale GLP in this study (likely due

10



Environ. Res. Lett. 20 (2025) 114002 S J Davidson et al

to limited replication of permafrost versus non-
permafrost peatland or treed versus non-treed peat-
land sites), these variables could still impact peatland
GLP. For example, permafrost thaw could substan-
tially alter peatland GLP by modifying hydrological
conditions, soil thermal regimes, and nutrient avail-
ability (Keuper et al 2012), thereby affecting plant
growth timing and duration. As the permafrost
degrades, increased active layer thickness and altered
water tables may favour species with different phen-
ological strategies, reshaping community-level GLP
patterns. Additionally, vegetation structure, particu-
larly tree cover, could also play a critical role in medi-
ating GLP. Davidson et al (2021) demonstrated that
the removal of tree cover in boreal peatlands follow-
ing oil and gas exploration disturbances led to a reor-
ganization of the entire vegetation community, rather
than a direct alteration of phenology alone, suggest-
ing that GLP responses are often emergent proper-
ties of broader community shifts rather than isolated
trait-level changes.

As per our hypothesis, warmer sites greened
earlier than cool sites, as indicated by surface net
solar radiation having a strong influence on DOY of
peak greenness. Surface net solar radiation determ-
ines the energy available for photosynthesis and
thermal regulation, thereby influencing the onset,
intensity, and duration of peak peatland vegetat-
ive activity (Leonard et al 2021, Gu et al 2023).
Earlier peak greenness often coincides with increased
springtime radiation inputs, enhancing photosyn-
thetic efficiency and promoting early canopy devel-
opment (Ren et al 2024). Variability in the DOY of
peak greenness at our sites will affect plant productiv-
ity and community dynamics, especially in peatlands
across northern latitudes, where vegetation is espe-
cially sensitive to microclimatic conditions and water
availability (Walther et al 2018). Shifts in solar radi-
ation regimes due to climate change could there-
fore alter the phenological trajectory and ecological
functioning of peatland systems over time (Antala
et al 2022).

Our hypothesis that DOY at peak greenness
would be later going from equator to poles was
not supported. Our results indicate that DOY at
peak greenness was earlier in the northern peat-
land sites (Alaska, northern Canada, Norway and
Finland) compared to mid-latitude sites such as the
UK or southern Sweden. Alongside the controls on
vegetation types present in these peatlands, latitude
can also play a critical role through its influence
on photoperiod, temperature regimes, and growing
season length (Koebsch et al 2020). At higher latit-
udes, extreme seasonal variation in day length exerts
a strong control on phenological events (Collins et al
2021), with long photoperiods in summer promoting
rapid canopy development and short autumn days
triggering earlier senescence (Estiarte and Peñuelas
2014). In these regions, temperature constraints often

delay spring green-up due to prolonged snow cover
and cooler soil temperatures, while early frosts can
prompt premature leaf senescence, leading to a com-
pressed growing season (Bigler and Bugmann 2018).

In contrast, the lower-latitude sites may exper-
ience milder climates with longer and more stable
growing seasons (Hudson et al 2022). These condi-
tions will allow for earlier leaf emergence and exten-
ded periods of vegetation greenness, potentially sup-
porting multiple growth peaks depending on hydro-
logical conditions as found in forest ecosystems by
Denham et al (2023). At the plot scale, local microto-
pographic variation (e.g. hummocks versus hollows)
can modulate these latitudinal effects by altering soil
temperature, water table depth, and light availability
(van der Molen et al 1994, Villa et al 2019), leading
to spatial heterogeneity in phenological patterns even
within a single site.

4.2. A low-cost method and peatland GLP database
using smartphone photography
Using a standardised, community science approach,
we collected over 3,700 photographs of peatland
vegetation at the plot/microform level from a diverse
array of sites. Our analysis demonstrates that smart-
phones are capable of tracking peatland phenology by
capturing variations in greenness index across chan-
ging seasons. Such plot-scale phenology, particularly
for the small-statured keystone peatland species such
as Sphagnum, cannot be observed using more tradi-
tional, satellite-based methods (Hufkens et al 2019).
Although advances in unmanned aerial vehicle tech-
nology means high resolution imagery (<5 cm) can
be collected for these vegetation communities, it is
still likely to bemore costly and time-consuming than
using the smartphone methodology we present here.
We therefore recommend using a combination of
these methodologies at different scales. Furthermore,
connecting GLP using this readily availablemethodo-
logy to other time series data such as eddy covariance-
basedmeasurements of net ecosystem exchange could
also help upscale phenology at sites that do not
have eddy covariance towers but have resources for
photo-based analyses as a low-cost alternative to the
Phenocam platform (Richardson et al 2018). Our
analysis focuses on spatial differences across sites, but
with future additional data, our database can enable
a better understanding of interannual variability in
phenology at sites and on-going response to climate
warming.

Peatlands have been subject to widespread his-
torical (Fluet-Chouinard et al 2023) and ongoing
drainage and degradation (Page et al 2022), rewet-
ting and restoration (Andersen et al 2017), grazing
(Valdés-Barrera et al 2019), climate disturbances such
as warming (Müller and Joos 2021) and permafrost
thaw (Varner et al 2022). Long-term monitoring is
key to understanding how these perturbations affect
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peatland functioning, but this is typically expens-
ive and difficult to implement (Minasny et al 2024).
Smartphone photographs offer a viable, low-cost
and simple method that can be used by research-
ers, practitioners, and community scientists alike,
to track these long-term changes by recording GLP.
Furthermore, GLP can be directly related to peat-
land C flux (Peichl et al 2015, Järveoja et al 2018,
Davidson et al 2021) and thus this method could be
combined with methods that offer ecosystem scale
insights (such as optical remote sensing) to capture
both community and ecosystem responses, including
canopy changes that are missed with ground-based
photography, to estimate multi-year C dynamics.

4.3. Limitations
However, we note that there are some uncertainties
with the methods used in this study. Despite using
a greenness index that is robust to differing light-
ing conditions (Sonnentag et al 2012), we acknow-
ledge that the use of different sensors used to collect
photographs may impact the greenness values meas-
ured. As mentioned previously, we do not compare
the absolute values of greenness among sites, rather
we have focused on comparing DOY at peak green-
ness. Furthermore, some participants sent photos
weekly across the summer, while others were sent on
bi-weekly or monthly intervals. We advise research-
ers who wish to use this methodology in their own
research to use the same sensor each time they take
a photograph of their plots (see the PeatPic Protocol
for more details). Last but not the least, as is the case
in all studies attempting to draw general conclusions
across broad regions with limited data, we acknow-
ledge that our sites have limited coverage compared
to the global distribution of northern peatlands. As
such, the GLP drivers that we identified are biased to
the environmental conditions found in the sites that
we happened to have data from.

5. Conclusions

Our low cost and low effort smartphone photo-
graphy method offers various proxies of peatland
GLP, and additional future research opportunities to
understand peatland phenology beyond just green-
ing. Our study suggests that latitude, surface net
solar radiation, peatland type, and vegetation type
can predict leaf greening patterns across global peat-
lands. GLP has implications for C fixation in peat-
lands and therefore could influence future peat-
land carbon sink capacity. These results can help us
understand responses of peatland ecosystem func-
tions to future environmental change. Lastly, bet-
ter refining patterns of peatland GLP will also
help refine parameters of Earth system models that

currently either do not parametrise peatlands or use
simplistic phenology functions taken from upland
systems.

Data availability

The data and code supporting this study will be
made available via the Dryad Digital Repository:
DOI: https://doi.org/10.5061/dryad.cz8w9gjgp.
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