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Abstract
Given the pressures on water resources caused by global climate change and human activities, the assessment and 
management of groundwater resources in mountainous region have become increasingly important. The central 
mountainous region of Taiwan, as one of the significant sources of groundwater recharge, plays a critical role in 
overall water resource management due to its groundwater storage capacity and recharge capability. Addressing 
the challenges of limited survey and observational data in mountainous groundwater assessments, this study 
uses the lumped parameter groundwater model AquiMod to analyze long-term groundwater level changes at 
23 monitoring stations in mountainous areas of central Taiwan. This study is based on long-term groundwater 
level monitoring data (2010–2021) analyzing the relationship between groundwater levels and precipitation, and 
performs model calibration and prediction. The results indicate a strong correlation between groundwater levels in 
mountainous areas and precipitation. While the model predictions were satisfactory for most monitoring stations, 
obtaining Nash Sutcliffe efficiency scores of between 0.5 and 0.9 at 14 of the 23 monitoring stations. However, 
poorer performance at several stations reflects limitations arising from data gaps, complex local geology, and the 
inability of the lumped model to represent lateral recharge or anthropogenic influences. Model sensitivity analysis 
further highlights the critical role of unsaturated zone parameters, such as rooting depth, soil storage and upper-
layer saturated hydraulic conductivity, in shaping groundwater responses. In summary, the lumped parameter 
groundwater model has proven practical for evaluating groundwater in Taiwan’s mountainous regions and can 
serve as a reference for the sustainable management of future water resources.
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1  Introduction
Mountainous groundwater is an important source of 
water for drinking, agriculture and industry for many 
regions and their downstream end users. It is essential for 
water resource protection and environmental conserva-
tion, and plays a significant role in disaster prevention, 
geological stability, and climate change adaptation (Tay-
lor et al. 2013). Groundwater is crucial in mountainous 
hydrological systems, serving as a stable and significant 
water source of recharge for surface water. Its contribu-
tion is particularly pronounced during the dry season, 
when groundwater often dominates streamflow and sus-
tain river runoff. Furthermore, groundwater possesses 
certain natural recovery capabilities (Somers et al. 2019), 
which are contingent upon precipitation and infiltration 
processes. However, it is also susceptible to long-term 
climate change impacts and variations in human activi-
ties across different environments and time scales (de 
Jong 2015). With the increasing demand for water, Vivi-
roli et al. (2020) indicated that water resources in lowland 
areas will become increasingly dependent on mountain-
ous regions. Persistent groundwater depletion could lead 
to severe water use risks. Under climate change, changes 
in precipitation patterns and increased evaporation could 
lead to a decline in groundwater reserves, subsequently 
reducing mountainous runoff and threatening water 
resources (Carroll et al. 2024). Therefore, protecting and 
managing mountainous groundwater resources is crucial 
for addressing climate change and ensuring the sustain-
ability of water resources.

Extensive and continuous groundwater level data are 
essential for understanding and managing groundwater 
resources (Alley et al. 2002). Groundwater level is a direct 
and straightforward measure of groundwater availabil-
ity and accessibility. Groundwater level encompasses a 
comprehensive response to various climate, topographi-
cal, and hydrogeological factors and their interactions, 
making the simulation of groundwater level a challenging 
task (Afzaal et al. 2019; Davamani et al. 2024). Multiple 
groundwater modelling approaches have been employed 
to simulate groundwater levels, among which physi-
cally based process-driven models continue to be the 
most widely used (Gogu et al. 2001; Ashraf and Ahmad 
2008; Khan et al. 2017; Condon et al. 2021). These mod-
els simulate groundwater flow based on the physical laws 
of fluid dynamics, typically involving complex equations. 
Their advantage lies in the fact that the parameters are 
often related to known hydrogeological characteristics 
(Kresic and Mikszewski 2012; Anderson et al. 2015). 
Solving these equations usually involves numerical meth-
ods to approximate values over a multi-dimensional spa-
tial grid and time, resulting in significant computational 
demands and the need for extensive data. As a result, 
the modeling and execution costs are high, with a strong 

sensitivity to data quality and model parameters (Ojha et 
al. 2015). Hence, a thorough understanding of the physi-
cal processes involved is crucial for selecting an appro-
priate model (Kirchner 2006; Menichini et al. 2022).

Another approach is the use of data-driven (empirical) 
models, which do not require prior knowledge of physi-
cal processes but instead rely on empirical relationships 
between groundwater levels and one or more predictor 
variables (Shirmohammadi et al. 2013; Wu et al. 2021; 
Sarma and Singh 2022; Tao et al. 2022). Common meth-
ods include time series analysis (Mirzavand and Ghazavi 
2015; Dadhich et al. 2021; Zarinmehr et al. 2022), regres-
sion models (Sahoo and Jha 2013; Huang et al. 2019; 
Elbeltagi et al. 2022), and machine learning approaches 
(Kenda et al. 2018; Müller et al. 2021; Osman et al. 2022). 
Although these models are relatively easy to implement 
and computationally cost-effective, they often lack the 
capability to provide a mechanistic understanding of sys-
tem behaviour. They are typically applied in situations 
where data is abundant and the physical processes are 
difficult to capture (Wei et al. 2020). Data-driven mod-
els require training prediction models using observed 
data and are often considered black-box models due to 
their lack of explicit physical processes and mechanisms. 
As a result, they are generally unsuitable for predicting 
groundwater levels in complex environments (Yin et al. 
2021).

Lumped parameter groundwater models represent 
an alternative approach that retain some physical prin-
ciples of groundwater systems while simplifying some 
of the complexities inherent in physically based models 
(Mackay et al. 2014). These models are typically repre-
sented by a conceptual framework that describes the 
hydrological system, composed of storage modules that 
represent key hydrological processes such as precipita-
tion, infiltration, and groundwater flow. This framework 
allows for the configuration of different model structures 
(Birtles and Reeves 1977). Furthermore, these models can 
be evaluated and constrained based on field data, offering 
advantages of rapid operation and low cost. They require 
minimal specialized modeling knowledge and are suit-
able for situations with limited data availability (Ejaz et 
al. 2022). Their runtime efficiency also makes them ideal 
for application to large (e.g., national-scale) groundwater 
level monitoring datasets (Collenteur et al. 2023). Its sim-
plicity and practicality make it highly valuable for prelim-
inary assessments and management decisions. AquiMod 
is a lumped groundwater model developed by the British 
Geological Survey (Mackay et al. 2014, 2022). The model 
simulates groundwater level time series at boreholes in 
unconfined aquifers by integrating simple conceptual 
hydrological algorithms for soil drainage, water transport 
through the unsaturated zone, and groundwater flow. A 
key feature of AquiMod is its ability to represent multiple 
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groundwater flow pathways and incorporate vertically 
heterogeneous hydraulic conductivity parameters. It 
has been demonstrated to effectively capture nonlinear 
groundwater level dynamics across a range of hydro-
geological environments (Prudhomme et al. 2017). The 
model has been successfully applied to seasonal ground-
water level forecasting (Mackay et al. 2015), groundwa-
ter level reconstruction (Jackson et al. 2016; Ascott et al. 
2020), assessing the impact of climate change on ground-
water levels (Ascott et al. 2022), and evaluating ground-
water recharge rates (Seidenfaden et al. 2023).

Approximately 70% of Taiwan’s land area consists of 
mountainous and hilly terrain. With the ongoing social 
and economic development, the water resources in the 
plains have gradually become insufficient to meet the 
growing demand. Over-abstraction of groundwater has 
led to land subsidence issues in some plain areas (Hsu 
et al. 2015; Shih et al. 2019; Lu et al. 2020). The devel-
opment of water resources in Taiwan is constrained by 
social pressures, with the construction of reservoirs and 
watershed facilities facing significant obstacles. As a 
result, groundwater resources have emerged as a poten-
tially important alternative water source. The precipita-
tion characteristic of Taiwan’s mountainous regions are 
significantly influenced by monsoon and orographic 
effects, with an average annual precipitation of approxi-
mately 2500  mm, considerably higher than the global 
average. Precipitation is unevenly distributed in both 
time and space, primarily concentrated during Mei-Yu 
season (May to June) and typhoon season (July to Octo-
ber). Orographic lifting often enhances rainfall with 
increasing elevation, leading to annual precipitation 
exceeding 3000  mm in some high-altitude areas (Chen 
and Chen 2003; Agyakwah and Lin 2021). These char-
acteristics make Taiwan’s mountainous regions critical 
recharge zones for surface and groundwater resources, 
playing a vital role in water resource management. 
Mountainous areas serve as crucial recharge sources for 
Taiwan’s coastal plain aquifers, and the groundwater stor-
age capacity and recharge ability of these regions are vital 
for overall water resource management (Yeh et al. 2009, 
2014; Huang et al. 2013; Chen et al. 2022). Since 2010, 
the Geological Survey and Mining Management Agency, 
Taiwan has initiated a “Comprehensive Project on the 
Investigation and Research of Mountainous Groundwa-
ter Resources in Taiwan.” This project involves collecting 
hydrological and geological data at the watershed scale, 
constructing monitoring wells in mountainous areas to 
gather continuous groundwater level data, and devel-
oping a hydrological and geological database for these 
regions. These data represent a unique mountain ground-
water monitoring dataset and a unique opportunity to 
evaluate the potential for using conceptual groundwater 

models for simulating groundwater level dynamics in 
mountain aquifers.

This study focuses on developing a groundwater level 
prediction model for the central mountain region of Tai-
wan to support the sustainable management of water 
resources. Due to the general lack of high-altitude hydro-
logical and meteorological data at the watershed scale 
in mountainous regions, this study uses AquiMod to 
develop a point-scale groundwater level model for assess-
ing groundwater in these areas. This study is guided by 
two core hypotheses. First, long-term trends in ground-
water levels are significantly influenced by precipitation 
pattern, and analyzing these trends can provide insights 
into the sustainability of groundwater resources in 
mountainous regions. To test this, we analyzed long-term 
groundwater level data to identify trends and assessed 
the relationship between groundwater levels and pre-
cipitation. Second, a simple lumped conceptual ground-
water can effectively simulate groundwater dynamics in 
mountain aquifers, despite the inherent geological and 
hydrological complexities. To evaluate the hypotheses, 
we employed the lumped conceptual groundwater model 
AquiMod to simulate and predict groundwater levels, 
assessing its performance under various geological and 
hydrological conditions. The findings of this study can 
contribute to future research and management of moun-
tainous groundwater resources.

2  Materials and methods
2.1  Study area and groundwater level observations
2.1.1  Hydrogeological background
The study area is located in the Choushui River Basin in 
the central mountain region of Taiwan, covering an area 
of approximately 3,156 square kilometers, making it the 
second-largest river basin in Taiwan (Fig.  1). The basin 
exhibits significant elevation differences. In the upstream 
region, the elevation changes from approximately 
3,500 m above sea level to around 500 m, with an average 
river slope of about 0.03. In the midstream, the elevation 
decreases from 500 m to around 50 m, with an average 
river slope of about 0.01. In the downstream, the eleva-
tion changes from 50  m to approximately 0  m, with an 
average surface slope ranging from 0.001 to 0.003 (Water 
Resources Planning Branch 2003).

The Choushui River Basin’s geology varies across its 
upper, middle, and lower reaches, corresponding to three 
different geological regions of Taiwan, as shown in Fig. 1. 
The upper and middle reaches are situated in the western 
foothill geological region, where the strata are primarily 
composed of Tertiary and Quaternary sedimentary rocks. 
The main lithologies include sandstone, shale, sandy 
shale interlayers, and conglomerate layers. In the lower 
reaches, the geology consists primarily of unconsolidated 
modern alluvial deposits, including clay, silt, sand, and 
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gravel, with the gravel mainly composed of sandstone or 
quartzite. These modern alluvial deposits are predomi-
nantly found in the riverbed and the alluvial fan areas 
along both banks, particularly in the lower reaches of the 
Choushui River. The geological formations of the basin, 
from west to east, include Miocene to Pliocene sandy 
shale layers, Eocene to Oligocene slate and quartzite lay-
ers, and Miocene shale and metamorphic sandstone lay-
ers. Due to the widespread distribution of slate and hard 
shale, which are prone to weathering and erosion, the 
Choushui River frequently carries significant amounts of 
silt and sediment, resulting in turbid river water (Kao and 
Milliman 2008; Kuo et al. 2017; Deng et al. 2020).

The aquifer systems in this region is generally shal-
low and unconfined, consisting of colluvial deposits that 
range in thickness from a few meters up to several tens 
of meters. These deposits typically overly fractured and 
less-permeable bedrock composed of slate, shale, or 
meta-sandstone, forming a complex hydrogeological set-
ting characterized by variable hydraulic conductivity and 
heterogeneity(Chen et al. 2022).

Groundwater recharge primarily occurs via direct 
infiltration of precipitation, given the steep topogra-
phy and the absence of significant irrigation or ground-
water abstraction in the mountainous region. The area 
receives annual precipitation of over 2,000  mm, mostly 
from typhoons and the summer monsoon, contributing 
to rapid infiltration into the colluvial layer and down-
ward percolation along fractures or faults. The recharge 
is strongly influenced by slope aspect, vegetation cover, 

and antecedent moisture conditions, leading to spatially 
variable recharge rates.

Previous groundwater studies in the Choushui River 
Basin have mainly focused on the alluvial plains or 
regional-scale water balance assessments(Yu and Chu 
2010; Ke 2014; Yeh et al. 2022), with fewer investigations 
targeting the mountain regions(Chen et al. 2023). Chen 
et al. (2022) evaluated the response of shallow aquifers 
in hilly terrain and suggested the dominance of local 
flow systems and high recharge sensitivity to precipita-
tion. This study focusses on the middle to upper reaches 
of the basin, where monitoring wells are located in shal-
low colluvial deposits and fractured bedrock. In this 
mountainous region with limited hydrogeological data, 
groundwater levels are expected to be primarily influ-
enced by climatic inputs such as precipitation. This study 
uses groundwater level observations from wells in shal-
low colluvial deposits and fractured bedrock to explore 
the feasibility of simulating groundwater dynamics using 
a simplified conceptual model.

2.1.2  Groundwater monitoring well information
The study area includes 29 groundwater monitor-
ing wells, as listed in Table 1, and the locations of these 
wells are indicated in Fig.  1. The data are sourced from 
the Taiwan Hydrological and Geological Information 
System. As of 2022, 6 wells are decommissioned, and 23 
are actively in use. These wells are primarily designed as 
screened well, enabling the measurement of groundwa-
ter level within specific geological unit. The screening 

Fig. 1  Geological map of the Choushui River Basin
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locations of the wells are specifically intended to monitor 
changes in groundwater levels within the colluvial layer 
and the fracture bedrock areas connected to this layer. 
The screening depth and filter pack depth for each well, 
along with their corresponding monitoring zone and 
lithology, are presented in Table 1. Among the wells cur-
rently under monitoring, 6 are located in bedrock (BH-
10, BH-18, BH-24, BHW-19, BHW-21, CHW-16), while 
the remaining wells are situated in regolith. This study 
used data from the 23 wells with continuous monitor-
ing for subsequent analysis. The groundwater level data 
used in this study were not interpolated or gap-filled; 
instead, the original observations were retained to pre-
serve the authenticity of hydrological variations. No 
artificial pre-processing methods, such as imputation or 

smoothing, were applied. To ensure consistency across 
the 23 selected stations, uniform data selection criteria 
were adopted, and the observation periods were aligned 
accordingly. This approach emphasizes the use of actual 
measured data and reflects the inherent variability and 
limitations of field-based hydrological monitoring in 
mountainous regions.

2.2  Groundwater level trend analysis
2.2.1  Mann-Kendall trend test
The Mann-Kendall (MK) trend test (Mann 1945; Kend-
all 1975) is a non-parametric method used to identify 
and assess the significance of monotonic trends in a time 
series, without assuming normal distribution or linear-
ity. Unlike parametric tests, the MK trend test does not 

Table 1  Status of groundwater monitoring stations in the study area
Station No. TWD97_X 

(m)
TWD97_Y 
(m)

El-
evation 
(masl)

Screened 
depth (m)

Filter 
pack 
depth 
(m)

Monitor-
ing Zone

Lithology Record 
period

Status

B105W-01 230708.6 2601451.5 2203.81 30 ~ 42 7 ~ 45 Regolith Sandstone-dominated interbedded 
sandstone and shale

2016–2022 Active

BH-04 224828.0 2630459.0 406.27 15 ~ 27 11 ~ 43 Regolith Sandstone 2010–2022 Active
BH-05 232953.0 2633304.0 286.88 27 ~ 39 6 ~ 43 Regolith Colluvium; Accumulated debris; 

Debris
2010–2022 Active

BH-07 228464.0 2629142.0 327.69 12 ~ 20; 24 ~ 28 11 ~ 52 Regolith Argillaceous sandstone 2010–2022 Active
BH-08 233519.0 2630322.0 835.02 20 ~ 32 6 ~ 36 Regolith Sandstone 2010–2014 Inactive
BH-10 243875.0 2632065.0 375.46 27 ~ 39 8 ~ 43 Bedrock Quartzite 2010–2022 Active
BH-18 219129.0 2616045.0 631.53 27 ~ 39 8 ~ 39 Bedrock Sandstone 2010–2022 Active
BH-20 228331.0 2615107.0 1662.91 48 ~ 60 8 ~ 68 Bedrock Sandstone 2010–2018 Inactive
BH-22 235382.0 2613460.0 934.10 16 ~ 24; 28 ~ 32; 

36 ~ 40; 48 ~ 52
11 ~ 56 Bedrock Sandstone 2010–2013 Inactive

BH-24 218025.0 2611566.0 752.45 22 ~ 34 8 ~ 37 Bedrock Sandstone 2010–2022 Active
BH-26 242597.0 2606512.0 1141.16 13 ~ 25 12 ~ 29 Regolith Siltstone; Interbedded sandstone 

and shale
2010–2021 Inactive

BH-27 221545.0 2629230.0 186.06 22 ~ 34 7 ~ 38 Regolith Sandstone 2010–2014 Inactive
BHW-01 227444.0 2633698.0 218.29 33 ~ 45 7 ~ 48 Regolith Argillaceous sandstone 2010–2022 Active
BHW-02 235877.0 2638191.0 455.27 6 ~ 18 5 ~ 24 Regolith Shale 2010–2022 Active
BHW-03 216180.0 2628261.0 139.71 40 ~ 52 34 ~ 55 Regolith Gravel 2010–2022 Active
BHW-06 228027.0 2623089.0 781.17 13 ~ 25 7 ~ 25 Regolith Sandstone 2010–2022 Active
BHW-09 235284.0 2629120.0 388.61 37 ~ 49 7 ~ 52 Regolith Colluvium; Accumulated debris; 

Debris
2010–2022 Active

BHW-11 244048.0 2632254.0 385.45 44 ~ 56 15 ~ 59 Regolith Gravel 2010–2022 Active
BHW-16 218249.0 2617868.0 281.38 27 ~ 39 14 ~ 42 Regolith Sandstone 2010–2022 Active
BHW-19 234849.0 2620592.0 510.55 24 ~ 36 18 ~ 39 Bedrock Sandstone 2010–2022 Active
BHW-21 238016.0 2617172.0 632.62 41 ~ 53 17 ~ 56 Bedrock Quartzite 2010–2022 Active
BHW-23 238638.0 2610213.0 769.66 9 ~ 21 6 ~ 24 Regolith Sandstone 2010–2022 Active
BHW-25 221853.0 2605875.0 644.03 25 ~ 37 15 ~ 40 Regolith Sandstone 2010–2022 Active
BHW-29 229407.0 2618409.0 1182.97 30 ~ 42 18 ~ 45 Regolith Colluvium; Accumulated debris; 

Debris
2011–2022 Active

CH-20 258061.0 2649975.0 801.19 31 ~ 43 5 ~ 47 Bedrock Sandstone 2011–2014 Inactive
CHW-16 266254.0 2658270.0 1240.41 60 ~ 72 6 ~ 75 Bedrock Slate 2011–2022 Active
CHW-17 263060.0 2652166.0 930.66 13 ~ 25 5 ~ 28 Regolith Slate 2011–2022 Active
CHW-18 266496.0 2650239.0 1170.75 33 ~ 45 5 ~ 48 Regolith Slate 2011–2022 Active
CHW-19 254772.0 2645796.0 723.56 18 ~ 30 3 ~ 33 Regolith Slate 2011–2022 Active
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require residuals to be normally distributed, making it 
robust for trend analysis (Hirsch and Slack 1984). It is 
effective in detecting significant upward or downward 
trends over time, even when data points are independent, 
not serially correlated, or contain missing values.

For a given time series {xi, i = 1, 2…, n}, the MK test 
assesses whether the data points are independently dis-
tributed (null hypothesis H0) or if there is a monotonic 
trend (alternative hypothesis H1). The test statistic S is 
calculated as follows:

	
S =

n−1∑
i

n∑
j=i+1

sign (xj − xi)� (1)

where n is the number of data points in the time series, 
and the sign(• ) is the sign function, defined as:

	
sign(xj − xi) =

{ 1 if xj − xi > 0
0 if xj − xi = 0
−1 if xj − xi < 0

� (2)

when 𝑛 ≥ 8, the test statistic S approximately follows a 
normal distribution (Mann 1945; Kendall 1975). The 
mean E (S) and variance V ar (S) of the statistic are 
given by the following:

	 E (S) = 0� (3)

	 V ar (S) =
n (n − 1) (2n + 5) −

m∑
i=1

ti (ti − 1) (2ti + 5)

18
� (4)

where m is the number of tied groups and ti represents 
the number in the i-th group. The standardized test sta-
tistic Z is calculated as follow:

	

Z =




S−1√
V ar(S)

0
S+1√
V ar(S)

if




S > 1

S = 0

S < 1

� (5)

when |Z| > Zα/ 2, it indicates a statistically significant 
trend in the time series. A positive 𝑍 value signifies an 
upward trend, while a negative 𝑍 value indicates a down-
ward trend. Here, α represents the significance level, with 
α = 0.05 used in this study as the threshold for signifi-
cance. Thus, if |Z| > 1.96, it denotes a statistically signifi-
cant upward or downward trend in the time series.

2.2.2  Theil-Sen estimator
The Theil-Sen estimator (Sen 1968, Theil 1950) is a 
robust statistical method for estimating the slope of a lin-
ear trend. It calculates the median of all possible slopes 

between pairs of data points, providing a resistant esti-
mate to outliers and non-normal data distributions. 
Widely regarded as the most popular nonparametric 
technique for estimating linear trends, it often outper-
forms simple linear regression, even in normally distrib-
uted datasets.

The median slope is calculated as follows:

	
β = median

(
xj−xi

j−i , if xi ̸= xj , 1 ⩽ i < j ⩽ n
)

j = 1, 2, ..., i + 1..., i = 1, 2, ..., n
� (6)

where β is the median of all slopes between xjand xi cor-
responding to the time j and i. When the slope β is posi-
tive, it indicates an upward trend in the data; conversely, 
when the slope β is negative, it indicates a downward 
trend.

2.3  Cross correlation analysis between rainfall and 
groundwater level
The cross-correlation between two time series is a statis-
tical measure used to assess the correlation between one 
time series and another at different time lags (Box et al. 
2015). Specifically, cross-correlation quantifies the lin-
ear relationship between two time series as one is shifted 
in time relative to the other. In this study, the continu-
ous groundwater level data is first processed through dif-
ferencing to remove daily trends from the time series. 
Subsequently, the differenced groundwater levels are ana-
lyzed for correlation with precipitation data. The lagged 
cross-correlation function can be expressed as:

	
CorrXY (τ) =

∑T −τ
t=1

(
Xt+τ − X

) (
Yt+τ − Y

)
√∑T −τ

t=1
(
Xt+τ − X

)2 ∑T −τ
t=1

(
Yt+τ − Y

)2 � (7)

where τ  represents the time lag, T is the total length 
of the time series, X  and Y  represent the mean val-
ues of X and Y, where X denotes precipitation 
and Y denotes the differenced groundwater levels 
(Gdiff (t) = G (t) − G (t − 1)) in this study. CorrXY (τ) 
value ranges from − 1 to 1, with values closer to 1 or − 1 
indicating a stronger correlation of the sequence at lag τ .

2.4  Groundwater modeling
2.4.1  Groundwater model development
In this study, the lumped groundwater model AquiMod 
was used. AquiMod is specifically designed for modeling 
groundwater level time series at observation boreholes 
(Mackay et al. 2014). As illustrated in Fig. 2, the concep-
tual framework of AquiMod consists of three modules: 
soil drainage, unsaturated zone water transport, and sat-
urated groundwater flow. Soil drainage is estimated using 
the FAO method with a simplified soil water balance 
approach(Allen et al. 1998), followed by the assessment 
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of the unsaturated zone using the Weibull distribution 
function. Saturated zone flow is calculated based on 
Darcy’s law, with the ability to represent variations in 
hydraulic conductivity with depth using up to three lay-
ers. The model requires time series of precipitation and 
potential evapotranspiration (PET) as driving data, along 
with observed groundwater level time series for calibra-
tion. For a complete description of the AquiMod, please 
refer to Mackay et al. (2014).

In term of aquifer conceptualization, AquiMod sup-
ports two main representations: (1) an unconfined 
aquifer mode, which simulates dynamic changes in 
groundwater level and saturated thickness, allowing 
for vertical heterogeneity; and (2) a simplified confined 
aquifer mode with fixed transmissivity, simulating only 

hydraulic head changes without considering multi-layer 
confined flow or variable storage properties.

This study focuses on groundwater level dynam-
ics in the mountainous region of central Taiwan. Given 
that most monitoring wells are install on the regolith or 
unconfined systems, and considering the limited resolu-
tion and completeness of available hydrogeological data, 
this study adopted the unconfined aquifer conceptualiza-
tion. For the saturated zone simulation, this study imple-
mented a two-layer configuration was chosen based on 
the regional geological setting and available data resolu-
tion, which is sufficient to capture the main features of 
groundwater dynamics in the study area.

Additionally, while AquiMod can support multiple flow 
pathway structures and simplified flow direction model-
ling, the available data in this study were limited to time 

Fig. 2  Conceptual framework of AquiMod. (Mackay et al. 2014)

 



Page 8 of 21Yang et al. Terrestrial, Atmospheric and Oceanic Sciences           (2025) 36:28 

series observations, precluding the detailed representa-
tion of subsurface flow networks. Therefore, rainfall was 
treated as the primary recharge source, and processes 
such as groundwater pumping or additional recharge 
mechanisms were not included. These simplifications 
improve the model’s applicability under data-scared con-
dition but also represent key limitation of this study.

2.4.2  Model calibration
Due to the sparse distribution of meteorological stations 
in mountainous areas and the lack of long-term, stable 
climate data, this study adopts gridded climate observa-
tion data provided by the Taiwan Climate Change Pro-
jection Information and Adaptation Knowledge Platform 
(TCCIP). The TCCIP data integrates various station data 
through statistical modeling, data imputation, and inter-
polation to provide long-term, continuous, high-reso-
lution climate information, as summarized in Table  2. 
The TCCIP precipitation data, with a spatial resolution 
of 0.01 degrees of latitude and longitude, were derived 
from a total of 2,247 stations provided by various agen-
cies, including the Central Weather Bureau, Environ-
mental Protection Administration, Water Resources 
Agency, Forest Research Institute, Civil Aeronautics 
Administration, and Taiwan Power Company. The 
daily observational data, encompassing both active and 
decommissioned stations, were interpolated to generate a 
high-resolution gridded dataset from 1960 to 2022.

Evapotranspiration data were calculated using the 
FAO-56 method (Allen et al. 1998) with a spatial reso-
lution of 0.02 degrees of latitude and longitude. Climate 
data were derived from the TReAD (Taiwan ReAnaly-
sis Downscaling Data) dataset, created by dynamically 
downscaling ERA5 reanalysis data with the Weather 
Research and Forecasting (WRF) model. TReAD pro-
vides high resolution climate data for Taiwan, covering 
the period from 1980 to 2021 and addressing limitations 
due to uneven station distribution. For additional details 
on TReAD’s methodology, variable and correction tech-
niques, refer to Taiwan Climate Change Projection Infor-
mation and Adaptation Knowledge Platform (2023).

The model calibration parameter ranges in this study 
are detailed in Table 3. The catchment length is defined 

as the distance from the monitoring station to the nearest 
downstream river. Due to the lack of site-specific data for 
unsaturated soil properties, default ranged were applied. 
The range of saturated hydraulic conductivity (K) was set 
to encompass the results of hydraulic tests. To ensure 
smooth model calibration, we extended the upper limit 
and assumed that the K values in the upper layer were 
higher than those in the lower layer. The top outlet ele-
vation Z2 is positioned within the range of groundwater 
level fluctuations, while the bottom outlet elevation Z1 
is set 5–20 m below the lower boundary of Z1. Calibra-
tion was performed using the SCE-UA global optimiza-
tion algorithm (Duan et al. 1993), which is recognized 
for its robustness and efficiency in hydrological modeling 
(Yapo et al. 1998; Muttil and Jayawardena 2008; Huang et 
al. 2018). This study adopts the Nash-Sutcliffe Efficiency 
(NSE) scores to account for uncertainties in model struc-
ture and parameter selection. Only models having NSE 
scores exceeding 0.5 being considered acceptable.

3  Result and discussion
3.1  Trend analysis of groundwater levels and precipitation 
influence
The trend analysis aims to test the first hypothesis, 
whether long-term trends in groundwater levels are 
significantly influenced by precipitation patterns. By 
examining the relationships between precipitation and 
groundwater levels over time, this study aims to deter-
mine the extent to which precipitation drives groundwa-
ter dynamics in this region. Table 4 presents the results 
of groundwater level trend analysis and its interaction 
with precipitation. Detailed correlation analysis between 
precipitation and groundwater levels at each station is 
provided in Appendix A. Significant increasing trends 
in groundwater levels were observed at BH-24, BHW-
09, and CHW-19, while BHW-06 showed no significant 
trend. All other stations exhibited significant decreasing 
trends. To further explore the influence of precipitation, 
this study conducted a cross-correlation analysis between 
daily precipitation and groundwater levels. The results 
show that cross-correlation coefficients are highest and 
significant at lags of − 1 or 0 for most stations, suggest-
ing that precipitation on the previous day and the current 

Table 2  Data information
Dataset Time scale Resolution Period Data variables
Gridded observation data Daily 0.01° 1960 ~ 2022 • Precipitation
Taiwan historical climate reconstruction data Daily 2 km 1980 ~ 2021 • Average wind speed

• Relative humidity
• Average temperature
• Maximum temperature
• Minimum temperature
• Surface air pressure

TReAD solar radiation bias correction Daily 0.01 1979 ~ 2021 • Solar radiation
Mountain groundwater in Choushui River Basin Daily Station 2010 ~ 2022 • Groundwater



Page 9 of 21Yang et al. Terrestrial, Atmospheric and Oceanic Sciences           (2025) 36:28 

day are the main factors influencing daily groundwater 
level variations. Only CHW-16 showed a lag of 2 days. 
The daily groundwater data analysis indicates a strong 
correlation between precipitation and groundwater levels 
at the mountainous stations. These findings suggest that 
while some stations demonstrate positive groundwater 
responses to precipitation, the majority exhibits declin-
ing trends.

The observed decreasing trends at most stations may 
be attributed to long-term variations in precipitation, 
seasonal drought, or sustained groundwater abstraction, 
which can gradually lower groundwater storage over 
time. Additionally, land use changes such as reduced 
infiltration capacity or increased impervious surfaces 
may also contribute to declining trends. In contrast, 
the increasing trends observed at BH-24, BHW-09, and 
CHW-19 could be related to localized recharge condi-
tions, reduced pumping activities or specific hydrogeo-
logical settings that promote groundwater accumulation 
in these areas. These factors together suggest that the 
groundwater dynamics in the study region are influenced 
by both climatic variability and anthropogenic impacts.

This trend analysis also serves to identify long-term 
non-stationarity in groundwater levels, which can bias 
correlation results if not considered. By first assess-
ing these trends, this study ensures that the correlation 

analysis isolates the short-term groundwater responses to 
precipitation from any underlying long-term declines or 
increases.

3.2  Groundwater model calibration and validation
This study employed a 3-year spin-up period to ensure 
the model reaches dynamic balance before evaluation 
(Mackay et al. 2022). Daily observed precipitation and 
PET data from the three years preceding the simula-
tion start date were used as driving data. The available 
groundwater level time series was divided into two sub-
sets: 70% of the data was used for model calibration, and 
the remaining 30% for independent validation to verify 
model performance. Prediction was conducted using 
a set of optimal parameters for AquiMod that met the 
threshold of NSE > 0.5. Since solar radiation deviation 
data are available only up to 2021, the model evaluation 
in this study was conducted up to the end of 2021. The 
model performance metrics, including the Nah-Sutcliffe 
Efficiency (NSE) scores and normalized indictors, are 
summarized in Table 5. These metrics provide a quanti-
tative assessment of the model’s fit to observed ground-
water levels. These metrics encompass NSE, Normalized 
Amplitude Error (NAE), and Normalized Percentile 
Error (the normalized 5th and 95th percentile errors), 
providing a concise evaluation of the model’s capability 

Table 3  List of aquimod model parameters and calibration ranges
Station No. Module

Soil Unsaturated 
zone

Saturated zone

Δx (m) BFI (–) FC (–) WP (–) Zr (mm) p (–) k (–) λ (–) K1 (m d–1) K2 (m d–1) S (–) Z1 (MASL) Z2 (MASL)
B105W-01 1459 0.1–0.9 0.1–0.3 0.3–0.8 100–3000 0.1–0.9 1–7 1–5 0.001–100 0.1–500 0.001–0.1 2150–2160 2160–2192
BH-04 407 370–385 385–400
BH-05 6 160–270 270–280
BH-07 76 315–318 318–324
BH-10 130 350–360 360–370
BH-18 1624 580–595 595–618
BH-24 3141 735–740 740–745
BHW-01 60 210–212 212–214
BHW-02 15 440–448 448–452
BHW-03 1088 130–132 132–136
BHW-06 540 760–769 769–778
BHW-09 640 345–355 355–372
BHW-11 400 360–365 365–375
BHW-16 88 260–265 265–271
BHW-19 180 480–487 487–491
BHW-21 160 586–590 590–598
BHW-23 150 755–760 760–768
BHW-25 250 620–625 625–630
BHW-29 230 1150–1162 1162–1175
CHW-16 400 1175–1182 1182–1192
CHW-17 180 910–919 919–927
CHW-18 190 1130–1150 1150–1158
CHW-19 70 710–717 717–720
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Table 4  Results of groundwater trend analysis and cross-correlation with precipitation
Station Period Daily GWLmean

(masl)
Fluctuation
(m)

Z β Lag Time
(days)

Corrmax

B105W-01 2016–2021 2181.29 32.61 –9.48*** –0.00157 0 0.265
BH-04 2010–2021 384.55 26.41 –40.76*** –0.00289 0 0.531
BH-05 2010–2021 273.79 16.85 –34.03*** –0.00363 –1 0.332
BH-07 2010–2021 321.67 6.29 –2.47* –0.00005 –1 0.405
BH-10 2010–2021 364.92 10.95 –4.65*** –0.00016 –1 0.465
BH-18 2010–2021 603.00 23.77 –10.60*** –0.00060 0 0.471
BH-24 2010–2021 741.95 5.24 13.91*** 0.00015 0 0.643
BHW-01 2010–2021 212.48 3.33 –35.75*** –0.00028 0 0.327
BHW-02 2010–2021 449.00 5.16 –6.10*** –0.00007 0 0.531
BHW-03 2010–2021 134.04 4.12 –10.33*** –0.00008 –1 0.767
BHW-06 2010–2021 771.76 9.95 1.53ns 0.00004 0 0.428
BHW-09 2010–2021 356.32 20.07 10.78*** 0.00033 –1 0.544
BHW-11 2010–2021 368.76 9.13 –30.21*** –0.00057 –1 0.707
BHW-16 2010–2021 264.39 7.69 –9.31*** –0.00006 –1 0.563
BHW-19 2010–2021 486.75 6.77 –5.07*** –0.00002 –1 0.611
BHW-21 2010–2021 590.45 10.07 –54.03*** –0.00064 –1 0.711
BHW-23 2010–2021 761.53 8.44 –6.78*** –0.00006 –1 0.672
BHW-25 2010–2021 627.92 4.58 –14.38*** –0.00024 –1 0.540
BHW-29 2011–2021 1164.73 14.42 –2.41* –0.00006 –1 0.632
CHW-16 2011–2021 1185.32 10.91 –10.75*** –0.00025 –2 0.562
CHW-17 2011–2021 921.58 8.68 –15.84*** –0.00033 –1 0.545
CHW-18 2011–2021 1153.05 22.93 –24.77*** –0.00087 –1 0.178
CHW-19 2011–2021 717.25 5.39 4.30*** 0.00005 –1 0.421
Fluctuation: GWLmax - GWLmin. Significance level α = 0.05. p < 0.05 is denoted by *, p < 0.01 by **, p < 0.001 by ***; and p > 0.05 by ns (not significant)

Table 5  Summary of NSE score and normalized metrics
Station No Calibration Validation

NSE NAE Normalized_5th_error Normalized_95th_error NSE NAE Normalized_5th_error Normalized_95th_error
B105W-01 0.91 0.41 0.006 0.104 0.91 0.33 0.072 0.054
BH-04 0.37 0.30 0.101 0.046 -0.04 0.32 0.218 0.056
BH-05 0.46 0.41 0.209 0.042 -4.12 0.52 0.689 0.239
BH-07 0.70 0.36 0.038 0.026 0.80 0.13 0.077 0.027
BH-10 0.85 0.16 0.007 0.026 0.82 0.06 0.004 0.073
BH-18 0.85 0.38 0.096 0.014 0.84 0.15 0.126 0.057
BH-24 0.19 0.67 0.098 0.197 0.16 0.51 0.009 0.048
BHW-01 0.34 0.36 0.125 0.087 -1.34 0.30 0.285 0.007
BHW-02 0.59 0.28 0.053 0.018 0.61 0.37 0.194 0.026
BHW-03 0.89 0.09 0.023 0.034 0.92 0.04 0.109 0.016
BHW-06 0.84 0.23 0.002 0.094 0.85 0.08 0.035 0.167
BHW-09 0.73 0.13 0.021 0.023 0.82 0.23 0.012 0.008
BHW-11 0.85 0.15 0.043 0.010 0.20 0.17 0.180 0.160
BHW-16 0.84 0.21 0.021 0.020 0.79 0.21 0.049 0.017
BHW-19 0.90 0.08 0.019 0.029 0.76 0.22 0.015 0.046
BHW-21 0.57 0.18 0.050 0.032 -1.09 0.25 0.188 0.212
BHW-23 0.94 0.13 0.010 0.015 0.91 0.13 0.019 0.008
BHW-25 0.73 0.12 0.079 0.050 0.85 0.06 0.029 0.005
BHW-29 0.86 0.25 0.010 0.057 0.88 0.25 0.018 0.006
CHW-16 0.83 0.35 0.018 0.045 0.87 0.11 0.019 0.041
CHW-17 0.82 0.20 0.011 0.027 0.88 0.10 0.076 0.023
CHW-18 0.28 0.66 0.384 0.025 0.24 0.47 0.453 0.050
CHW-19 0.66 0.12 0.062 0.176 0.40 0.13 0.051 0.242
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to capture both amplitude and extremes of groundwater 
level fluctuations. The formula of NAE and percentile 
errors are presented below:

	

Normailized Percentile Error

= |Observed Percentile − Modeled Percentile|
Observed Max − Observed Min

� (8)

	

Normailized Amplitude Error

= |Observed Amplitude−Modeled Amplitude|
Observed Amplitude

� (9)

The analysis of the groundwater model’s performance 
across 23 monitoring wells is summarized in Table  5. 
While the Nash-Sutcliffe Efficiency (NSE) how well the 
model reproduces temporal variations in groundwater 
levels, the Normalized Amplitude Error (NAE) reflects 
its accuracy in capturing the magnitude of fluctuations. 
Figures 3 and 4 illustrate the spatial distribution of NSE 
and NAE values, respectively, based on the model’s per-
formance during the validation period. These figures 
highlight the spatial variability in model accuracy across 
the 23 monitoring wells, with NSE indicating temporal fit 
and NAE representing fluctuation magnitude errors.

During the calibration period, 15 out of 23 monitor-
ing wells exhibited NSE values greater than 0.7, indicat-
ing good to very good model performance in capturing 
the temporal dynamics of groundwater levels. In con-
trast, poor performance was observed at wells such as 
BH-04, BH-05, BHW-01, BH-24 and CHW-18, where 

NSE values were below 0.5, suggesting that local hydro-
logical processes or data limitations may not have been 
adequately represented. During the validation period, 
model performance remained relatively stable, with 14 
wells maintaining NSE values above 0.7. However, several 
wells experienced marked declines in predictive accu-
racy, most notably BH-05 (NSE = -4.12), BHW-01 (NSE = 
-1.34), BHW-21 (NSE = -1.09), and BH-04 (NSE = -0.04). 
These negative NSE values may indicate model overfit-
ting during calibration or temporal changes in hydrologic 
conditions, such as pumping activities variability, that 
were not accounted for in the model setup.

Closer inspection suggests that the negative validation 
performance at BH-04 and BH-05 may be attributed to 
data gaps during the calibration period, which limited the 
model’s ability to capture representative system behav-
iour. In contrast, BHW-01 and BHW-21 showed distinct 
downward trends in groundwater levels, possibly driven 
by long-term abstraction or seasonal deficits, which may 
not have been properly accounted for in the model struc-
ture. These issues likely led to suboptimal calibration and 
thus contributed to poor validation performance, high-
lighting the model’s sensitivity to data completeness and 
trend stability.

The spatial distribution of NAE values during the vali-
dation period reveals that most wells exhibit relatively 
low NAE, typically below 0.4, indicating that the model 
can reasonably capture the amplitudes. Meanwhile, 
the Normalized Percentile Error—representing devia-
tions at the 5th and 95th percentiles of groundwater 

Fig. 3  Best model’s NSE for monitoring wells in the study area
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levels—provides insight into the model’s capability to 
reproduce extreme low and high water levels. As illus-
trated in Table 5, most wells showed NPE values within 
± 20%, suggesting a satisfactory representation of both 
dry and wet period conditions. However, a few stations, 
particularly those with low observed amplitudes or sharp 
fluctuations, exhibited higher percentile errors. This dis-
crepancy may result from local-scale influences not cap-
tured by the lumped model.

The performance of the groundwater model at well 
CHW-18 further highlights the challenges in simulating 
groundwater fluctuations in certain complex hydrogeo-
logical conditions. Located in the slate region on the west-
ern flank of Central Mountain Range, CHW-18 is situated 
in an area where the regional geology is characterized by 
well-developed cleavage. The strata have been folded due 
to gravitational forces along the cleavage planes, leading to 
tensile fractures and the formation of potential fault zones. 
These geological features contribute to the pronounced 
groundwater level fluctuations observed at CHW-18, which 
are significantly more extreme than those at nearby moni-
toring wells. The relatively low NSE score of 0.29 at CHW-
18 suggests that the model struggles to accurately replicate 
the temporal trends of groundwater levels in this region. 
This is further evidenced by the relatively high NAE value of 
0.57, indicating that the model also faces challenges in cap-
turing the amplitude of groundwater level fluctuations. The 
presence of noticeable data gaps and trend changes in the 
groundwater hydrograph for CHW-18 may also contrib-
ute to the model’s difficulty in representing groundwater 

behaviour at this location. These factors, coupled with the 
geological complexity of the site, underscore the need for 
further refinement of the model to better account for local 
hydrogeological conditions at CHW-18.

Additionally, for some wells, the calibrated model fails 
to capture the full range of observed groundwater level 
extremes, including both maximum and minimum values. 
This discrepancy may reflect uncertainties in the observed 
groundwater levels, such as measurement errors, tem-
poral resolution in monitoring, or localized disturbances 
that are not accounted for in the model. For instance, 
incomplete or low-quality observation data could result 
in an inaccurate representation of groundwater level 
fluctuations. Furthermore, these wells may exhibit dis-
tinct characteristics in terms of groundwater recharge. 
Such characteristics could include variations in recharge 
sources (e.g., direct precipitation versus lateral inflow), dif-
ferences in aquifer properties like permeability and storage 
capacity, or the presence of preferential flow paths such as 
fracture or faults. These factors can significantly influence 
the timing and magnitude or recharge events, leading to 
discrepancies between observed and simulated extremes.

Due to practical considerations in the placement of 
monitoring wells, these groundwater monitoring stations 
are typically located in accessible, flat areas near rivers in 
the mountain valley. These locations may be influenced 
by surface-groundwater interactions and lateral recharge 
(Markovich et al. 2019). Although Taiwan’s mountainous 
regions experience less human activity compared to the 
plains, there is still local groundwater abstraction to meet 

Fig. 4  Normalized groundwater level fluctuation amplitude and mean NAE
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the water demands of settlements and the tourism indus-
try. Most wells in Taiwan, except for public and certain 
water rights wells, lack water meters to record abstraction 
volumes, making it difficult to accurately assess ground-
water usage. According to data from the Water Resources 
Agency in Taiwan, the average annual registered ground-
water abstraction in the study area is approximately 
198.36 million cubic meters per year, equivalent to a daily 
abstraction rate of around 0.132 mm/day. In comparison, 
the average annual rainfall in the study area is 2,007 mm, 
equivalent to a daily average of 5.5  mm/day. Although 
rainfall significantly exceeds groundwater abstraction 
on a basin-wide scale, the concentrated groundwater 
abstraction in populated and flat area, particularly near 
river channels, may lead to localized groundwater deple-
tion. Therefore, abstraction rates may surpass the natural 
recharge from precipitation, causing a decline in ground-
water levels. Therefore, despite the overall abundant 
rainfall in this region, careful management of groundwa-
ter resources is essential to prevent potentially negative 
impacts such as localized over-extraction and the resul-
tant decrease in groundwater levels.

3.3  Sensitivity analysis of model parameters
A sensitivity analysis was conducted to evaluate the 
influence of individual model parameters on simula-
tion performance across different geological settings. 
The analysis was based on a Monte Carlo framework in 
which 100,000 parameter sets were sampled uniformly 
within predefined ranges and evaluated using a lumped 
conceptual groundwater model. To identify behavioural 
parameter sets, an objective function threshold of 0.5 for 
the Nash–Sutcliffe Efficiency (NSE) was applied, and the 
number of acceptable models was limited to the top 1000 
simulations that exceeded this threshold. The result-
ing dotty plots illustrate the relationship between each 
parameter and model performance, allowing the identifi-
cation of parameters with a substantial impact on model 
efficiency. As shown in Fig. 5, the results reveal distinct 
differences in parameter sensitivity across geological 
settings—regolith (sandstone), bedrock (quartzite), and 
bedrock (slate)—highlighting both common and site-spe-
cific controls on model behaviour.

Rooting depth (Zr) exhibited a clear influence on model 
efficiency, particularly in the regolith–sandstone domain. 
High NSE values were primarily concentrated when Zr was 
less than 1500 mm, suggesting that shallow effective rooting 
depth facilitates better simulation of groundwater dynam-
ics. This may reflect the rapid infiltration and recharge pro-
cesses typical in unconsolidated or weakly cemented layers.

Soil storage coefficient (S) was another consistently 
sensitive parameter across all settings. In the sandstone 
region, high model performance was associated with 
S > 0.06, indicating that the capacity of the soil to retain 

moisture strongly governs the timing and magnitude 
of recharge reaching the saturated zone. Similarly, in 
quartzite and slate terrains, although the influence of S 
was less pronounced, it still exhibited a positive relation-
ship with NSE.

Upper-layer saturated hydraulic conductivity (K1) 
showed strong sensitivity in the sandstone unit, where 
better performance was observed when K1 exceeded 
6  m/d. This suggests that more conductive upper lay-
ers allow for quicker drainage and recharge, supporting 
timely groundwater level response to rainfall inputs. The 
relationship in quartzite was more moderate, while in 
slate terrains, K1 appeared less influential, potentially due 
to the dominance of vertical recharge limitations in frac-
tured bedrock.

In contrast, lower-layer conductivity (K2) had weaker 
influence overall, with only a mild preference for higher val-
ues in the sandstone domain. This implies that deep drainage 
processes play a limited role in short- to mid-term ground-
water dynamics under the current model configuration.

Other parameters such as the depletion factor of catch-
ment vegetation (p), baseflow index (BFI), and Weibull 
shape parameter (k) exhibited negligible or inconsistent 
influence on model efficiency across all geological units. 
Their dotty plots were characterized by scattered distribu-
tions with no clear trends, suggesting either a low sensitivity 
or the presence of parameter equifinality. These parameters 
may be less critical in this study context, where the primary 
control on groundwater response is governed by shallow 
subsurface properties and recharge mechanisms.

Overall, the results underscore the importance of 
unsaturated zone and upper aquifer properties (i.e., Zr, S, 
and K1) in shaping groundwater level dynamics, particu-
larly in more permeable geological settings. These find-
ings not only inform parameter prioritization in future 
model calibration but also help constrain uncertainty by 
focusing efforts on the most influential factors.

4  Conclusions
This study demonstrates the feasibility of applying a 
lumped conceptual groundwater model, AquiMod, to 
simulate groundwater level dynamics in the mountain-
ous region of central Taiwan, where monitoring wells 
are mostly installed in unconfined or regolith systems 
and data availability is limited. Long-term trend and cor-
relation analyses reveal that precipitation exerts a domi-
nant control on groundwater variations, with significant 
decreasing trends observed at the majority of stations, 
likely reflecting a combination of climatic variability, 
land-use changes, and local abstraction. The model cap-
tures temporal and amplitude fluctuations of ground-
water levels reasonably well in most wells, particularly 
where observation records are complete and local hydro-
geological settings are less complex. Model performance 
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Fig. 5  Dotty plots illustrating the sensitivity of each parameter. Blue dots represent indi-vidual simulation results obtained through Monte Carlo sam-
pling, while the red dot indicates the parameter set yielding the highest model efficiency
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is strongly influenced by unsaturated zone parameters 
such as rooting depth, soil storage, and upper-layer satu-
rated hydraulic conductivity, highlighting their critical 
role in shaping groundwater responses to rainfall inputs.

Nevertheless, simulation performance deteriorates in 
some locations with complex geology, pronounced data 
gaps, or unmonitored anthropogenic influences, empha-
sizing the limitations of lumped models in representing 
localized processes. These findings underscore the neces-
sity of incorporating site-specific hydrogeological knowl-
edge and improving observation coverage to enhance 
model reliability.

Importantly, beyond scientific insights, the results carry 
practical implications for groundwater management in 

data-scarce mountainous regions. By identifying domi-
nant controls on groundwater fluctuations and highlight-
ing where simplifications break down, the study provides 
a framework for prioritizing monitoring efforts, guiding 
model calibration, and informing adaptive management 
strategies in similar hydrogeological contexts. The dem-
onstrated utility of a parsimonious model like AquiMod 
in such settings offers a cost-effective tool for preliminary 
assessments, resource planning, and policymaking, espe-
cially where comprehensive hydrogeological investigations 
are not feasible. Future efforts should focus on improving 
model integration with land-use dynamics, groundwater 
abstraction data, and geological heterogeneity to better 
support sustainable groundwater resource management. 

Appendix A. Correlation between precipitation and GWL
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