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Abstract

Little is known about biological soil crust (BSC) formation during the early stages of primary succession following glacial retreat. Here,
we report on focused sampling of twelve discrete BSC colonies near the snout of a retreating glacier in the High Arctic and show that
BSC colonies had significantly higher 16S and 18S rRNA gene diversity than the simpler communities of bare sediments sampled next
to each colony. Surprisingly, the colonies also had a higher degree of community dispersion than the more clustered bare sediment
controls. There were only eight 16S amplicons that showed 100% prevalence in all 12 of the colonies, and the three most abundant of
these keystone amplicons were cyanobacteria, including a nitrogen fixing Nostoc. The only 18S amplicon common to all colonies was
a diatom related to Sellaphora. This prominence of phototrophs indicates that early-successional BSC colonies are being supported
by photosynthesis rather than ancient- or aeolian-derived organic matter. Co-occurrence network analysis among the phototrophs
and fungi identified several potential early-successional soil lichens. Overall, our fine-scaled sampling revealed new insights into
community assembly and function in actual communities of interacting microbes (as opposed to mixed communities in bulk soil
samples) during the early stages of primary succession.
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Introduction

Glacial retreat has formed proglacial forefields where ecosystem
succession and pedogenesis can be observed with a chronose-
quence (space-for-time substitution) approach. Studies applying
the chronosequence approach to the earliest stages of succession
have revealed that microorganisms can drive carbon and nutri-
ent sequestration that fuels later stages of primary succession
of plants (Schmidt et al. 2008, Bradley et al. 2014). Microbial pri-
mary succession is particularly evident and important in colder
and drier environments—including high latitudes and high eleva-
tions, where plant succession can be extremely slow and minimal
plant cover may take many decades to develop (Nemergut et al.
2007, Schmidt et al. 2016). In many cold, dry, polar and/or high-
elevation environments, biological soil crusts (BSCs) and mosses
are the dominant form of ground cover during early primary suc-
cession and may even be the climax community in developed soils
(Costello et al. 2009, Boy et al. 2016, Solon et al. 2021, Vimercati et
al. 2022, Schmidt et al. 2024). BSCs contribute to the process of
pedogenesis by adding nutrients to the soil, enhancing water re-
tention, and stabilizing fine-textured soils (characteristic of post-

glacial sediments) (Schmidt et al. 2008, Weber et al. 2022, Cao et
al. 2023). Despite the importance of BSCs to primary successional
processes, there is almost nothing known about how these com-
munities assemble and function on newly uncovered sediments
following glacial retreat.

Whilst it is generally accepted that interspecies interactions
(such as within lichens and plant associations with nitrogen-
fixing bacteria) are important during early successional stages, lit-
tle is known about how interactions at the microbial-community
scale may be driving the early stages of primary succession. A ma-
jor impediment to understanding microbe-microbe interactions
early in chronosequence studies is that the scale of investiga-
tion and sample collection is rarely congruent with the scale at
which microbes interact with each other in nature. For exam-
ple, typical chronosequence studies of primary succession are
based on analyses of homogenized, bulk samples from the top
5-10 cm of soil that include many different ecological niches,
habitat types, and associated microbial communities. If we de-
fine a community as “a group of potentially interacting species
that co-occur in space and time” (Nemergut et al. 2013), a prin-
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cipal goal of microbial community ecology is to be able to define
the boundaries of a community to understand how organisms are
interacting with each other to drive processes such as primary
succession.

A step towards sampling a community of interacting species
is to sample at a fine enough scale to capture potentially inter-
acting species. For example, phototrophic microbes usually drive
primary production during early stages of succession even before
microbial crusts are visible (Schmidt et al. 2008, Freeman et al.
2009b); and since photosynthetically active radiation only pene-
trates several millimeters into soil (Ciani et al. 2005, Mitter 2013),
these photoautotrophic communities are limited to the upper
several millimeters of early successional soils. Likewise, micro-
bial communities that depend on aeolian derived organic matter
(Freeman et al. 20093, Swan 1992, Mladenov et al. 2012) may also
need to be near the soil surface to compete for access to these sub-
strates. It is therefore not surprising that microbial assemblages
found at or near the soil surface differ significantly from those
found deeper in the soil during the pre-plant stage of primary
succession following glacial retreat (Rime et al. 2015). However,
bulk-sampling approaches common to studies of microbial suc-
cession mix vastly different community types together creating
a homogenous sample and thus masking finer-scale community-
level ecological characteristics.

The present study focuses on phototroph-dominated BSC com-
munities that are colonizing the forefield of a retreating glacier
(Midtre Lovénbreen) in the High Arctic (~79°N). As this glacier
recedes, it is leaving behind a mosaic of geomorphological fea-
tures (Glasser and Hambrey 2001, Hambrey et al. 2005), including
1-to-10-meter diameter patches of fine textured sub-glacially de-
rived sediments known as glacial flour (Fig. 1). These sediment
patches are initially water-saturated following glacier retreat re-
sulting in the formation of a flat surface (with a texture reminis-
cent of agar) that is conducive to colonization by microorganisms.
During early October 2022, we observed that these flat sediment
patches near the terminus of Midtre Lovénbreen were being col-
onized by discrete microbial colonies that were green to black in
color (Fig. 1 and Suppl. Fig. S1). We sampled an array of these small
colonies as well as the bare sediment immediately adjacent (2 cm)
to the colonies (Suppl. Fig. S1). This paper describes the molecu-
lar characterization of these discretely bounded BSC communities
and the still bare sediments that they are colonizing. This novel
comparative approach provides an opportunity to illuminate the
earliest stages of primary succession at the microbial community
level—in an ecosystem undergoing rapid environmental changes
due to climate warming.

Methods
Study site and field sampling

Midtre Lovénbreen is a polythermal valley glacier in a north-
facing catchment located 4-5km SE of Ny-Alesund research sta-
tion (78° 53’ N, 11°59" E), Svalbard (Suppl. Fig. S2). The dominant
rock formations in the Midtre Lovénbreen catchment are con-
glomerations of felsic igneous fragments and meta-sediments,
including carbonate rocks and coal seams (Harland et al. 1997).
Mean annual air temperature at Ny-Alesund has increased from
—5.6°C (1993 to 2002) to —2.5°C (2013 to 2022), whereas mean an-
nual precipitation has not increased in the last 30years, averag-
ing about 420 mm annually (Seklima 2022). In addition, soil tem-
peratures increased by 3.6°C between 1998 and 2017 (Boike et al.
2018). The glacier has been receding since about 1890 and has left

behind a mosaic of landforms, including patches of sub-glacial
sediments, linear trains of supra-glacial debris, moraine mounds,
small lakes, and braided outwash streams (Hambrey et al. 2005).
The focus of the present study is the patches of formerly sub-
glacial sediments (Fig. 1) near the receding front of Midtre Lovén-
breen. Based on previous work, these sediments consist of ~25%
clay, 40% silt, 35% sand, have a low cation exchange capacity (2.6
meq/100 g) and pH of about 8 (Cimpoiasu et al. 2024). More chem-
ical and physical attributes of these sediments can be found in
Cimpoiasu et al. (2024, 2025).

Two sediment patches were chosen for this study (Fig. 1) based
on the presence of distinct colonies (0.5-1 cm in diameter) on the
surface of the sediments in each patch. Patch 1 (78°53.7512 N,
12°03.5424 E) is 2.8 meters long (north to south) atits longest point
and 2.1 m wide in the middle. Patch 2 is located 3.7 m to the ESE
of patch 1 and is 2.0 m long (north to south) at its longest point
and 2.1 m wide in the middle. The sediment patches had been un-
covered by the glacier within the last 5-14 years (Cimpoiasu et al.
2024, Trejos-Espeleta et al. 2024).

On 4 October 2022, 6 intact microcolonies (~1 c¢cm wide by
0.3 cm deep) from each sediment patch were lifted off the soil
using a sterile spatula and placed in 2 ml sterile tubes. A simi-
lar sized piece of bare sediment was collected from 2 cm away
from each microcolony, as controls. Three black colonies and three
green colonies were sampled from each sediment patch, making a
total of 12 sampled colonies and 12 controls. These samples were
placed in a field cooler and transported by foot to the UK Arctic
Research Station in Ny-Alesund, Svalbard where they were frozen
(-20°C) within 4 h of collection. The samples were transported
frozen to the University of Colorado and kept frozen until they
were processed as described below.

DNA sequencing and bioinformatics

A Qiagen PowerSoil DNA Extraction kit (Qiagen, Hilden, Germany)
was used for extractions, and DNA concentration was quantified
with a Qubit 3.0 Fluorometer. DNA was amplified (in triplicates)
with 16S rRNA gene (515f-806r) for bacteria and archaea and 18S
rRNA gene (1391f-EukBr) for eukaryotes. These 16S and 18S rRNA
gene primers were chosen to allow us to directly compare our
data to other recent studies of deglaciating terrain where these
same primers were used (Hu et al. 2021, Solon et al. 2021, Vimer-
cati et al. 2022, Trejos-Espeleta et al. 2024). Amplified triplicates
were pooled and normalized to equimolar concentrations using
a SequalPrep Normalization Plate Kit (Thermo Fisher Scientific,
Waltham, MA, USA) and sequenced in the Fierer Lab, University of
Colorado, Boulder on an Illumina MiSeq setup for 16S rRNA gene
amplicons (2x250 bp) and 185 rRNA gene amplicons (2x150 bp).
Raw sequence reads were demultiplexed using idemp (https://
github.com/yhwu/idemp), primers removed with cutadapt, v. 1.18
(Martin 2011), and amplicon sequence variants (ASVs) assigned
with DADA?2, v.1.26.0 (Callahan et al. 2016). Forward and reverse
16S rRNA gene reads were trimmed to 253 bp, while 18S rRNA
gene forward and reverse were trimmed to 125 bp. ASVs were as-
signed taxonomy with the SILVA 138 database for 16S rRNA gene
sequences (Quast et al. 2013) and the PR2 5.0 database for 18S
rRNA gene sequences (Guillou et al. 2012). The mctoolsr R package
was used to remove chloroplast and mitochondria ASVs from the
16S dataset as well as any misassigned sequences (e.g. bacteria)
in the 185 rRNA gene dataset (Leff 2017). All sequences were de-
posited under NCBI BioProject PRINA1180576, accession numbers
SRR31184266 to SRR31184289 (16S rRNA ASVs) and SRR31184516
to SRR31184539 (18S rRNA ASVs).
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Figure 1. (A) The two sediment patches sampled for the present study; patch 2 is in foreground, and patch 1 is between patch 2 and instrument site 1,
visible 40 m to the west (Cimpoiasu et al. 2024, 2025). Midtre Lovénbreen is to the south (left) of the patches. (B) Patch 2 with boots for scale at the
south end (bottom) of the picture. (C) Spatula pointing at a colony that was sampled (sample P2-6A) for this study. Spatula is 7 mm wide at its widest
point. Other colonies are also visible throughout the photo, and colonies can be seen merging with each other towards the bottom of the photo.

Table 1. Presumptive lichens based on the network analyses across all twelve pigmented colonies and on observations of high co-relative
abundances of algae (e.g. ASV 13) and fungi (e.g. ASV 68) known to form lichens in other environments.

Photo- Blast match NCBI Acc. number NCBI Acc. number

biont (% match) (reference) Myco- biont Blast match (%) (reference) Source
ASV_13 Chloroidium MH551496 ASV_68 Strigula MW375719 Suppl. Fig. S3
(18S) (100%) (Darienko et al. 2018) (96.12%) (Jiang et al. 2022) P2.2A
ASV_296 Chloromonas LC683781 ASV_68 Strigula MW375719 P1.5A

(18s) (93%) (Prochazkova et al. 2023) (96.12%) (Jiang et al. 2022)

ASV_45 Gloeobacteraceae FJ977153 ASV_7 Exophiala CP034379 Fig. 6

(16S) (100%) (Jungblut et al. 2010) (100%) (Schultzhaus 2019)

ASV_924 Chlamydomonas AB290339 ASV_497 Ascomycota AJ496252 Fig. 6

(18S) (100%) (Nakada and Nozaki 2007) (94.6%) (unpublished)

NCBI accession numbers and references are for the closest BLAST match.
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Figure 2. PCA plots of the 12 colonies (green and black) and the 12 controls (bare) for each colony. (A) is the eukaryotic (185 rRNA genes) communities,
and (B) is the 16S TRNA communities. The green and black communities were significantly different from the bare soils for both the 18S and 16S rRNA
communities (P < .002, PERMANOVA), but the green and black communities were not significantly different from each other. As is evident from the
plots, the colonies also showed much higher community dispersion than the control (bare) sediments (P < .001 for 18S data, P < .03 for 16S data,
PERMDISP).
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Figure 3. Rank abundance box plots of the top 15 16S ASVs in the control sediments (A) and the colonies (B). Asterisks (x) denote the mean, the boxes
encompass the middle two quartiles of data, and the open circles are outliers. Green boxes are cyanobacteria, brown are heterotrophs, grey are
chemoautotrophs, and purple are photoheterotrophs. The top 15 ASVs made up 30% and 26% of the total community for the colonies and the controls,
respectively.

Community composition and richness tion test for homogeneity of multivariate dispersion (PERMDISP)
Differences in community composition between black, green,and ~ (Anderson 2006, Anderson.2017). FHOINED analyses, the robust
control communities were determined with a permutational mul- ~ centerlogratio transformation was applied to both 165 rRNA gene
tivariate analysis of variance test (PERMANOVA) and a permuta- and 18S rRNA gene datasets to account for differences in library

GzZ0z Jequeydeg z| uo Jasn ybinquipg AeAing [eoibojoss) ysnug Aq | 286G 1 8//004eIX/OWSWaY/Sa0 L 0L /10p/a[01le/saqololwswa)/wod dnoolwspede//:sdijy wolj papeojumoq



250

[ (A)

200}

150

100[

16S ASVs observed

Colonies Bare Sediments

Schmidtetal. | 5

35

[ (B)

30}

20

15}

10F

18S ASVs observed

Colonies Bare Sediments

Figure 4. ASV richness for 16S rRNA gene (A) and 18S rRNA gene (B) rarefied data for the 12 colonies (green) and 12 control (brown) sediment samples.
Asterisks (x) denote the mean, and different letters represent significant differences in pairwise comparisons (Welch t-tests, P < .001).
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Figure 5. Rank abundance box plot of potential keystone species, that is,
the only 16S ASVs that showed 100% prevalence (12 out of 12 colonies).
Asterisks (x) denote the mean relative abundance for each ASV. Green
boxes are cyanobacteria, and brown represents presumed heterotrophs
in the Alphaproetobacteria (Sphingomonas, Bosea, and Brevundimonas) and
Deinococcota (Deinococcus). In contrast, ASV 11 (Sphingomonas 11) was the
only 16S ASV found in all 12 control (bare) samples (data not shown).

size (Martino et al. 2019). These tests were computed in the R pro-
gramming language, v.4.2.3 (R Core Team 2021), with the vegan
package, v.2.6.4 (Oksanen et al. 2024), and RVAideMemoire, v.0.9-
83-7 (Herve 2023) package. Ordinations were generated with prin-
cipal components analysis (PCA) in vegan and visualized with gg-
plot from the tidyverse (v.2.0.0) package (Wickham et al. 2019).
Differences in ASV richness among colonies and adjacent con-
trols were tested with Welch t-tests. Before the t-tests, rarefac-
tion by subsampling without replacement was performed to ac-
count for differences in library size (Schloss 2024). Data were rar-

efied with the phyloseq package, v1.48.0 (McMurdie and Holmes
2013), with a sequencing depth of 4231 as the cut-off for 16S
and a depth of 133 for 18S data sets. Observed richness of ASVs
(S) and Shannon diversity (H') were computed with the vegan
package (v2.6.10), and Pielou evenness (') was calculated as J =
H'/In(S). Code for the above community analyses can be found at:
https://github.com/adam-solon/Schmidt-et-al_in-review/.

Co-occurrence network analysis

Network analysis was performed using sparse inverse covariance
estimation with the SPIEC-EASI R package (Kurtz et al. 2015). To
simplify the communities and focus on the most relatively abun-
dant taxa in the BSCs, we took the top 100 most relatively abun-
dant ASVs from the 16S and 18S datasets, from just the BSC sam-
ples, and combined them into a concatenated dataset of read
counts to input into the SPIEC-EASI program. The SPIEC-EASI pro-
gram first performs a center log ratio transformation. We used the
Meinshausen-Buhlmann’s neighborhood selection method with
50 subsamples. To describe the topology of the resulting network,
a set of measures (e.g. average node connectivity, average path
length, clustering coefficient, etc.) were calculated. The networks
were visualized using the Igraph R package (Csardi and Nepusz
2006). We visualized the complete network with 200 taxa (nodes),
as well as a subset of that network with just positive relationships
of among algae, cyanobacteria, and fungi, which could represent
potential lichen associations. R code for the network analyses can
be found at: https://github.com/cliffbueno/Svalbard.

Results
Community composition and richness

Community analyses of the entire data set (12 colonies and 12
adjacent controls) showed that colony color (black or green) and
patch location (patch 1 or patch 2) did not determine phylogenetic
structure of the colonies or controls. For example, as visualized by
the spread of the data shown in Fig. 2, the bare (control) commu-
nities were tightly clustered and were significantly different from
the colonies (P < .002 for both 16S and 18S data sets, PERMANOVA).
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Figure 6. (A) ASV co-occurrence networks based on correlation analysis among 18S and 16S data sets for the colonies. Red lines are positive
correlations, while blue lines are negative correlations. Each symbol represents an ASV, and the size is proportional to the number of connections. (B)
Positive correlations among phototrophs and fungi (in all samples) possibly indicating the formation of lichen associations.
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In contrast, the colonies showed an unexpectedly broad range of
community types that did not correspond with colony color (Fig. 2)
and had a significantly higher degree of community dispersion
than the bare soils using a Permutation test for Homogeneity of
Multivariate Dispersion (PERMDISP, P < .001 for 18S data, and <
.03 for 16S data). Given these results, the rest of the analyses re-
ported in this paper are based on pairwise comparisons of the 12
colonies to the 12 adjacent control samples regardless of color or
location.

Taxonomic comparisons of the colonies to adjacent control
sediments show higher overall richness and higher relative abun-
dance of phototrophs in the colonies compared to the controls. For
example, comparison of the top 15 165 ASVs shows a shift towards
a community dominated by phototrophs in the colonies (Fig. 3,
Suppl. Fig. S1), whereas the 18S community shifted more towards
a dominance by fungi in the genus Exophiala (Herpotrichiellaceae,
Eurotiomycetes) in the colonies compared to the control sedi-
ments (Suppl. Figs. S3, S4). Total ASV richness of rarefied data
(Fig. 4) was significantly higher in the colonies for both the 16S
and 18S rRNA gene data sets (Welch t-tests, P < .001). Shannon
diversity for the 16S data was also significantly higher (P < .02) in
the colonies (4.2, SE 0.05) than the bare sediments (3.7, SE 0.17),
but not for the 18S data, where both had Shannon diversity of 1.6.
Evenness of the 16S data for colonies and bare sediments were
0.81 and 0.83, respectively, whereas evenness for the 18S data was
significantly higher (P < .005) in the bare sediments (0.85, SE 0.03)
than the colonies (0.55, SE 0.06).

Keystone community members

To further understand which ASVs are key to community assem-
bly of the microcolonies, we determined which were found in all
twelve colonies (i.e. showed 100% prevalence). Surprisingly, there
were only eight 16S ASVs (out of 1800 total 16S ASVs) that were
found in all twelve colonies (Fig. 5), and all of these had a rel-
ative abundance of greater than 0.2% in every colony. The top
3 of these keystone colonizers were cyanobacteria, and the rest
were presumptive heterotrophs in the Alphaproteobacteria and
Deinoccaceae (Fig. 5). In contrast, only one 16S ASV (ASV_11, a
Sphingomonas) was found in all twelve of the control (bare) sam-
ples.

Among eukaryotes (185 rRNA gene ASVs), only one phylotype
was found in all 12 colonies, a diatom (ASV_146) related to the
genus Sellaphora (which was also found in 6 of 12 bare controls). A
fungus (Exophiala ASV_9) in the Herpotrichiellaceae was the only
ASV that was more relatively abundant than ASV 146 in the bare
soils, and it was present in 11 of the 12 control samples. Rep-
resentatives of Exophiala (ASV_7 and ASV_9) were also the most
relatively abundant eukaryotes in both the controls and colonies
(Suppl. Fig. 54).

Cross-domain networks

An inter-domain network analysis of the twelve pigmented
colonies was also done to determine if there were significant pos-
itive and negative interactions among the most relatively abun-
dant 16S and 185 ASVs in the colonies. There were 283 within
and cross domain associations (164 positive, 119 negative), with
mean number of connections (‘degrees”) of 2.8 and a clustering
coefficient of 0.093 (Fig. 6a). Taxa with the most connections and
betweenness centrality (extent to which a node lies on paths be-
tween other nodes) included ASVs from the SAR supergroup (e.g.
the diatom Sellaphora), and the green alga Scherffelia, and the Aci-
dobacteriota genus Blastocatella. There were 2 potential lichen as-
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sociations identified—one between the cyanobacterium Gloeobac-
ter and a fungus in the Herpotrichiellaceae, and one between the
alga Chlamydomonas and unidentified Ascomycete fungus (Fig. 6b,
Table 1). Two other potential lichens were identified from observa-
tions of co-occurring dominant species, as shown in Suppl. Fig. S3.

Discussion

The work presented here is the result of the serendipitous dis-
covery of discrete, spatially independent, early successional mi-
crobial biocrust colonies forming on the foreland of a retreating
glacier (Midtre Lovénbreen) in the High Arctic. This glacial fore-
field has been studied for many decades and has yielded key in-
sights into broad patterns of primary succession of plants, ani-
mals, and microbes in the High Arctic (e.g. Hodkinson et al. 2003,
Schiitte et al. 2009, Borin et al. 2010, Bradley et al. 2016, Kim et al.
2022, Pedersen et al. 2022, Trejos-Espeleta et al. 2024). The present
study builds on this foundation by focusing on the early stages of
BSC formation and ecosystem development by sampling individ-
ual BSC colonies before they coalesce to form a continuous soil
crust.

An important takeaway from this study is that the micro-
colonies observed in the field are complex communities domi-
nated by phototrophs that are supporting a diverse community
of saprophytic (e.g. fungi) and predatory heterotrophs (e.g. Rhogos-
toma) (Suppl. Fig. S4). In contrast, the bare (control) sediments just
2 cm outside the colonies host microbial assemblages dominated
by heterotrophs (e.g. Fig 3, Suppl. Figs. S1, S3, S4) that are signif-
icantly different than the BSC communities (Figs. 2, 4). In addi-
tion, the degree of community dispersion among the control (bare)
communities was also significantly lower (P < .001 for 185, P < .03
for 16S data) compared to the wide variety of community types
in the colonies (Fig. 2). This finding was not expected and indi-
cates that there are many different types of early successional
BSCs and a high degree of stochasticity in the initial stages of BSC
formation. This stochasticity may be driven by which microbes ar-
rive first (priority effects) at each colony microsite, by microscale
variations in abiotic factors underlying where microcolonies can
form, or by variation in unknown allogenic factors (Wojcik et al.
2021). Whatever the mechanism, these results are the first evi-
dence for high heterogeneity of BSC community types assembling
on recently deglaciated terrain in the High Arctic, or indeed in any
ecosystem; a finding that was only revealed due to the directed,
fine-scale sampling of individual colonies done for this study.

Despite the high degree of community level differences among
the twelve colonies, there were eight highly abundant bacterial
ASVs found in all twelve colonies (Fig. 5), indicating that they may
be integral or keystone species for the formation of early succes-
sional communities in this ecosystem. Not surprisingly, the most
relatively abundant of these prevalent ASVs were phototrophic
bacteria (Fig. 5), as has been reported for many glacial forefields
in extreme polar and high-elevation environments (Hodkinson et
al. 2003, Schmidt et al. 2011, Schmidt et al. 2017). The most rel-
atively abundant organism (ASV 10) was a 100% match to sev-
eral N-fixing Nostoc isolates, confirming that N-fixation is an im-
portant trait needed for the establishment of early successional
colonies in nutrient-limited glacial forefields (Schmidt et al. 2008,
Knelman et al. 2021). The prevalence of ASV 99 (Leptolyngby-
aceae) was also not surprising and is a 100% match to other High-
Arctic cyanobacteria (Harding et al. 2011), including a previously
reported sequence from the Midtre Lovénbreen forefield (Borin et
al. 2010).
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More surprising was the high prevalence and relative abun-
dance of ASVs that best matched cyanobacteria in the Gloeobac-
terales (Figs. 3, 5), an enigmatic, deeply divergent group of non-
filamentous cyanobacteria that lack thylakoids (Rahmatpour et
al. 2021). Until recently, Gloeobacterales were not known to be im-
portant in cold systems, but our finding is backed up by recent re-
ports from the Arctic and Antarctica (Pessi 2017, Grettenberger
et al. 2020), including in soil crusts from Svalbard (Pushkareva
et al. 2015). However, the presence of Gloeobacterales very early
in succession has not been previously documented. The net-
work analyses (Fig. 6) also indicated that ASV 45 (Gloeobacter-
aceae) significantly co-occurred with fungal ASV 7 (Exophiala, Her-
potrichiellaceae) indicating that the two may be symbiotically as-
sociated, perhaps as a lichen (Table 1). However, lichen associa-
tions between members of Herpotrichiellaceae and Gloeobacter-
aceae have not been previously reported, and our work suggests
that further exploration of potential lichen pairings is warranted
along post glacial chronosequences. Involvement in lichens could
also help explain why the Herpotrichiellaceae are the dominant
fungal group found in this study and studies of the earliest stages
of succession following glacial retreat at elevations above 5000
meters in the High-Andes (Hu et al. 2021), but no direct evidence
for these hypothesized lichens currently exists.

A more plausible hypothesized lichen pairing revealed in the
present study is that between algae in the genus Chloroidium and
fungi in the Strigulaceae (Suppl. Fig. S3, Table 1). Members of both
groups have been shown to form lichens in non-polar environ-
ments (Darienko et al. 2018, Vancurova et al. 2021, Jiang et al.
2022), but there are no known reports of either of them forming
lichens in polar soils. Proving that these two organisms can form
a lichen in polar soils will require even more focused sampling of
early successional biocrust than was done for the current study
and could shed new insights on how quickly soil lichens can form
following glacial retreat.

Overall, the present study demonstrates a new approach to
studying how microbial communities assemble and function dur-
ing the important early stages of primary succession following
glacial retreat. As with any new approach to studying complex
ecological processes, this approach raised more questions than
it answered. Nonetheless, this study yielded several important
insights into how microbial communities assemble, including
(1) the unexpected diversity and high community dispersion of
phototrophic colony types forming on newly de-glaciated sedi-
ments; (2) the identity of keystone cyanobacteria that are likely
needed for successful colony formation; and (3) predictions of
previously unknown lichen pairings that may be important dur-
ing the early stages of ecosystem development. These insights
would not have come to light if this study had depended on bulk
sampling approaches most often used in soil ecological stud-
ies. Future work will include following the growth and eventual
merging of individual colonies in the field and comparing the
genetic makeup of Midtre Lovénbreen colonies to similar ones
recently discovered on other glacier forefields on Svalbard and
elsewhere.
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