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Abstract
1.	 Understanding the causes of biodiversity change is essential for addressing en-

vironmental challenges. While causal attribution has advanced in other fields, 
ecologists remain cautious about causal claims or misinterpret predictive models 
as causal. With growing spatio-temporal data, computational power and cross-
disciplinary collaboration, discussions on improving attribution methods in ecol-
ogy are gaining momentum. However, practical guidance remains limited for 
non-experts. Here, we identify the challenges and decisions involved in detecting 
and attributing biodiversity change and provide an overview of suitable methods 
based on available data and specific research questions.

2.	 The first challenge we address pertains to biodiversity and driver data. Unlike 
controlled experimental data in other disciplines, ecological data often stem from 
monitoring programs or field samplings with varying degrees of rigour, which 
complicates the analysis due to sampling biases, interacting drivers, measurement 
error or spatio-temporal variations. We specifically outline how data structure 
(e.g. structured vs. opportunistic data) and data coverage along the spatial and 
temporal scale impact detection and attribution.

3.	 The second challenge involves the ability to detect directional change in the 
system of interest, which is associated with numerous hurdles. We provide an 
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1  |  INTRODUC TION

Better attribution and understanding of causal relationships (Table 1) 
in biodiversity change are needed to create realistic and fit-for-
purpose projections (Table  1) and scenarios. Both are required for 
various applications, including informing policy (e.g. IPBES,  2016; 
Nicholson et al., 2019) and increasingly nature markets and economic 
models (Ferraro et al., 2019; Takahata et al., 2024; West et al., 2023), 
effectively allocating resources and conservation priorities, promot-
ing accountability and ultimately, improving our understanding of the 
consequences of environmental change and human actions on eco-
system functioning and human well-being (MacDonald et al., 2019). 
Methods for causal driver attribution (Table 1)—the process of eval-
uating the relative contributions of multiple potential causal factors 
(drivers) to a detected biodiversity change, with an assignment of 
statistical confidence to the causal models used to estimate these 
effects (Gonzalez et al., 2023)—have been proposed in several fields 
(e.g. physics, climate sciences, economics and epidemiology) (Hegerl 
& Zwiers,  2011; Pearl,  2009; Reich et  al.,  2021; Runge, Bathiany, 
et al., 2019). However, ecologists often remain conservative in mak-
ing explicit causal statements and tend to rely on a limited set of 
causal attribution methods, such as structural equation models.

Some forms of predictive modelling are also often misinter-
preted as identifying causal drivers, even though their primary ob-
jective is not to establish causality. Predictive models aim to forecast 
outcomes based on observed patterns, often using machine learning 
or regression approaches. However, they do not necessarily identify 

the mechanisms behind observed outcomes. For example, in their 
study, Arif and MacNeil (2022a) used random forests to predict reef 
degradation outcomes across Pacific islands based on multiple co-
variates like sea surface temperature, fishing intensity and proximity 
to human settlements. While this approach identified areas of high 
risk and improved the prediction accuracy of future reef decline, it 
could not determine which stressor caused the decline. For instance, 
fishing and temperature were both strong predictors, but their rela-
tive causal contributions remained unclear. This distinction is crucial 
as some forms of predictive modelling have been misinterpreted as 
identifying causal drivers, even though their primary objective is not 
to establish causality (Arif & MacNeil, 2022a; Stewart et al., 2023). 
Such misinterpretations can lead to erroneous policy or manage-
ment decisions. Conversely, causal models are explicitly designed 
to test or infer the direction and magnitude of causal relationships. 
These models help disentangle confounding variables and support 
stronger inference about what factors truly drive change in eco-
logical systems. For example, Stewart et al.  (2023) used Structural 
Equation Models to investigate causal relationships among agricul-
tural expansion, forest fragmentation and mammal diversity decline 
in sub-Saharan Africa with the goal to quantify direct vs. indirect 
effects (e.g. does agriculture directly reduce biodiversity, or does it 
act through forest loss?). They found that agricultural expansion had 
a strong indirect effect via forest fragmentation, but a weak direct 
effect. In contrast to the predictive model, this model was explic-
itly built around causal hypotheses and used latent variables and 
path coefficients to infer directionality. Nichols and Cooch (2025), 

overview of the most relevant approaches to deal with sampling variability, gaps 
and biases in the data, non-linearity in the temporal trends and to identify the 
most appropriate spatio-temporal resolution.

4.	 For the third challenge, causal attribution, we focus on data-driven approaches. 
We review recent frameworks that draw on methodologies from other disci-
plines, offering analytical roadmaps and step-by-step guidance for causal infer-
ence. These include constructing theoretical causal models a priori, full causal 
models based on data and theory and posterior causal interpretation tailored to 
specific data and research questions.

5.	 Moving forward, it is essential to foster interdisciplinary collaboration to adapt 
and refine methodologies from other fields, ensure robust data collection and 
sharing practices, promote the integration of advanced computational tools and 
improve the link between data-driven and theory-driven approaches. This ap-
proach will enhance our ability to make robust causal inferences; thereby im-
proving our understanding of biodiversity changes and informing effective 
conservation strategies.

K E Y W O R D S
attribution, biodiversity change, causal inference, detection, environmental change, global 
impactsanthropogenic drivers
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    |  3SCHRODT et al.

TA B L E  1  Key definitions used in this manuscript.

Term Definition Category

Detection The process of demonstrating that a measure of biodiversity has changed relative to a baseline or 
reference distribution characterizing undisturbed variation (counterfactual state), or an appropriate 
model-derived null expectation of biodiversity change in the absence of a human driver(s) (from 
Gonzalez et al., 2023)

General

Attribution The process of evaluating the relative contributions of multiple potential causal factors (drivers) to a 
detected biodiversity change, with an assignment of statistical confidence to the causal models used 
to estimate these effects (from Gonzalez et al., 2023). Could also be defined as/referred to as causal 
inference

Causal relationship X → Y can be considered a causal relationship if there is reason to think that variations induced in X can 
propagate to subsequent variations in Y (from Grace, 2024)

Causal effect For a given causal relationship, a magnitude measure quantifying how variation in the treatment impacts 
change in the outcome. Under key assumptions in causal frameworks (SCM, potential outcomes), this 
measure can be considered unbiased. Causal effects can be quantified with different metrics, depending 
on the study scale, objective and method applied. The most common are the overall average treatment 
effect (ATE), its restriction to treated units, the average treatment effect on the treated (ATT) and the 
conditional ATE (CATE), which restricts the ATE to a subset of units that satisfy a condition on their 
covariates. The CATE refines the causal effect estimation when there is heterogeneity between units 
that blur the ATE. See Nogueira et al. (2022) Section 5 Causal effects for mathematical definitions

Useful approximation A simplified method or assumption that allows researchers to estimate causal effects when exact causal 
relationships are difficult or impossible to determine due to data limitations, unmeasured confounding 
or complex causal structures. These approximations aim to provide reliable insights while balancing 
feasibility and accuracy (see Grace, 2024)

Projection An estimate or forecast of future ecological trends or status based on analysis of current and past data 
on either the ecological response itself (e.g. forest cover) or associated drivers acting as proxies, and on 
boundary conditions that characterize future conditions (e.g. temperature change)

Predictive modelling The use of statistical methods and algorithms to forecast future outcomes by identifying patterns in 
historical data. Importantly, these models do not generally reveal or confirm causal relationships

Prediction A probabilistic assessment of future trends or status based on current knowledge. Unlike projection, 
prediction is mainly influenced by our current knowledge, that is, initial conditions, rather than future 
boundary conditions

Causal graph Also Directional Acyclic Graph (DAG) or path diagram. A conceptual representation of the causal 
assumptions of a system in which all relevant variables are included (both observed and unobserved) and 
arrows indicate the direction of causality (from cause to effect). This allows variables to be identified as 
confounders, colliders or mediators and helps to select the optimal methods to be used

Causal 
model

Confounder A third variable Z that influenced both the response and the driver variable. Its effect may be direct or 
indirect (X ← Z → Y). Methods should always control for confounding variables to avoid attributing the 
wrong drivers

Mediator A third variable Z, through which a driver variable affects the response and thus determines indirect 
effects (X → Z → Y). When estimating total effects, methods should not condition on mediator variables
Synonymous terms used in other disciplines are ‘modifier’, ‘moderator’ or ‘modulator’

Collider A third variable Z that is affected by both the driver and response variables (X → Z ← Y). They should not 
be conditioned on when the total effects are estimated

Driver Also exposure variable, treatment variable or causal factor (see def. attribution). Process or feature that 
leads to a change in a response process or feature

Response Also outcome variable. Variable upon which the driver has a causal effect (e.g. a biodiversity metric)

Adjustment set Collection of variables that need to be conditioned on (controlled for) to estimate the causal effect 
of a driver (X) on a response (Y) accurately. These variables help block confounding pathways that 
could distort the relationship between the driver and the response, ensuring a valid causal estimate. 
Adjustment sets are not necessarily unique, and multiple sets may be identified depending on the 
context and the causal structure of the problem

Estimand A precise description of the treatment effect that a study aims to quantify, reflecting the specific 
scientific question of interest

(Continues)
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4  |    SCHRODT et al.

however, argue that the divide between prediction and causality 
may be overstated, suggesting that under certain assumptions and 
with appropriate tools (e.g. causal forests, do-calculus, instrumen-
tal variables), predictive models can indeed uncover quasi-causal 
insights, especially when longitudinal data or natural experiments 
are available. However, this requires careful design and cannot be 
assumed in general predictive workflows.

Implementation of a conservative causal attribution approach 
in ecology presents four significant challenges due to the inherent 
complexity of ecological systems, data limitations and the interplay 
of multiple interacting, often unmeasured factors. (1) Detecting di-
rectional change: change detection in either a response variable or its 
putative driver (see definitions in Table 1) is non-trivial, particularly 
given issues of data scarcity and non-random sampling. Both obser-
vational and experimental ecological data frequently suffer from 

incomplete spatio-temporal coverage, bias in data collection and 
methodological inconsistencies (Dee et al., 2023). These challenges 
are further compounded by the scale dependence of ecological pro-
cesses, where changes observed at one spatial or temporal scale 
may not generalize to others (Estes et al., 2018). (2) Complexity of 
mechanistic understanding: the lack of direct measurement of many 
key drivers results in often limited mechanistic understanding and 
reliance on inferred or proxy variables. The high-dimensional nature 
of ecological systems means that drivers interact in non-linear and 
often unexpected ways, with biological responses exhibiting lags, 
feedback loops and context-dependent effects (Essl et  al., 2015; 
Myers-Smith et  al., 2020). The spatio-temporal variability of both 
biotic and abiotic drivers complicates efforts to isolate the contri-
bution of specific factors, and even controlled experimental setups 
cannot fully account for all or potentially even the most important 

Term Definition Category

Treatment Also intervention. A specific condition or intervention applied to a subset of the study subjects or 
experimental units, such as plots of land, populations or ecosystems, to observe and measure its 
effects on ecological variables. A treatment might be active (e.g. application of nutrients, change of soil 
temperature in an experimental plot) or passive (e.g. decadal land use change)

Unobserved variable Also latent variable, variable that plays a role in the data-generating process but is not represented in the 
data distribution for various reasons: overlooked, technically difficult to measure, unethical, etc

Overlap assumption A requirement of many sensitivity analyses that, for each value of the covariates (i.e. characteristics or 
predictors), there must be a positive probability of receiving each treatment or being in each comparison 
group. In other words, every individual in the study population has a non-zero chance of being assigned 
to any of the treatment groups under consideration

Sensitivity analysis Tests how strong the unmeasured confounding would have to be to explain away the association, that is, 
how strong the unmeasured confounder would have to be associated with the treatment and outcome 
for the association between treatment and outcome not to be causal (VanderWeele & Ding, 2017)

Stationarity A time series is considered stationary if its mean, variance and autocorrelation structure remain constant 
over time. This implies the absence of a trend and periodic fluctuations

Time 
series

Contemporaneous 
effects

The effect(s) in question occur immediately, without any time lag. The causal relationship between two 
variables is thus ‘contemporaneous’

Cross-sectional data Observation of subjects at one point or period of time, or for which the analysis has no regard to 
differences in time among the observations (Nogueira et al., 2022). In ecology, these data are typically 
spatial data
In causal analysis, cross-sectional data are used to examine how differences in one variable (e.g. an 
exposure or treatment) are associated with differences in another variable (e.g. an outcome) across 
subjects at the same time. However, since the data are collected at one point in time, establishing a clear 
cause-and-effect relationship can be challenging

Data 
type

Structured data Data collected using a standardized and systematic sampling design to ensure consistency, comparability 
and statistical rigour. These datasets are designed to minimize bias and maximize reproducibility, 
allowing for more robust ecological inference but are highly resource-intensive and thus not available in 
as large quantities as opportunistic data

Opportunistic data Data collected without a standardized or systematic sampling design, often as a byproduct of other 
activities. Unlike structured monitoring programmes, opportunistic data typically lack predefined spatial, 
temporal or methodological consistency. Opportunistic data are extremely valuable and often available 
at larger quantities than structured data, but require careful statistical treatment to account for biases 
and limitations

Longitudinal/panel data Observations about several subjects at multiple points or periods of time, indexed in time order and 
subject. Time series are a particular case considering only one subject (Nogueira et al., 2022). Most 
typically called temporal or spatio-temporal data in ecology

Time series data Observations about a single subject at multiple points or periods of time, indexed in time order 
(Nogueira et al., 2022)

TA B L E  1  (Continued)

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.70131 by U
K

 C
entre For E

cology &
 H

ydrology, W
iley O

nline L
ibrary on [12/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  5SCHRODT et al.

sources of bias and error, limiting their ability to establish mechanis-
tic understanding (but see Kimmel et al. (2021) for a framework to 
identify and address them). (3) Methodological and computational 
barriers: the mathematical and coding expertise required for for-
mal causal attribution approaches is often perceived as a barrier to 
widespread implementation and can risk increased use of black box 
approaches. On the contrary, this complexity and messiness of eco-
logical data also results in data often failing strict statistical require-
ments of causal statistics (see Grace, 2024 for a thorough discussion) 
(4) Defining baselines in a changing world: determining appropriate 
baselines for detecting change is a critical but unresolved issue. 
Many ecological monitoring programmes were initiated only after 
environmental degradation became apparent, meaning that true 
pre-impact conditions are rarely available for comparison (Soga & 
Gaston, 2018). Furthermore, most long-term ecological monitoring 
efforts commenced after anthropogenic pressures had already al-
tered ecosystems, making it difficult to disentangle human impacts 
from natural variability (Mihoub et al., 2017).

In contrast, given the increasing availability of ‘big data’ in ecol-
ogy, including biodiversity and driver data (Bush et al., 2017; Farley 
et  al.,  2018; Schrodt et  al.,  2024; Wüest et  al.,  2020), enhanced 
computational power and open sharing of code among disciplines, 
there has been a resurgence of discussions on improving attribution 
methods in ecology. Several frameworks have been proposed to ad-
dress some of the above-mentioned issues, also encouraging appli-
cation of more comprehensive and sophisticated causal attribution 
methods in ecology (Dee et al., 2023; Ferraro et al., 2019; Gonzalez 
et al., 2023; Grace, 2024; Laubach et al., 2021). Laubach et al. (2021) 
and Ferraro et al. (2019) draw on methods from other disciplines, es-
pecially epidemiology and economics, providing an analytical road-
map for causal inference based on causal diagrams and structural 
knowledge of the system. Gonzalez et al.  (2023), in contrast, pro-
pose a framework based on the ‘detection and attribution’ approach 
developed in climate sciences (Bindoff et  al., 2014). This five-step 
approach starts with a theoretical causal model guiding data colla-
tion, followed by estimating and detecting change in the target bi-
otic variable, and, finally, attributing this change to a driver (Gonzalez 
et al., 2023). Grace (Grace, 2024) on the contrary, proposes an in-
tegrative paradigm harnessing mechanistic understanding and fully 
utilizing evidence across different research studies. Yet, despite the 
developments of conceptual frameworks for causal inference, there 
is a lack of practical guidance to overcome the range of problems 
that ecologists face.

Here, we address key challenges of biodiversity change detec-
tion and conservative causal attribution and propose solutions to 
overcome barriers in (1) biodiversity and driver data characteristics, 
(2) detection of change within both data types and (3) linking driver and 
biodiversity data for causal inference. Specifically, we provide guidance 
on the choices to be made at each step of biodiversity change detec-
tion and attribution, offering a guide for selecting suitable methods 
based on the available data and the research question. To ease cross-
referencing and understanding for non-experts, important technical 
terms are bolded throughout the text and defined in Table  1. For 

more detailed discussions on terminology, see: on discipline-specific 
jargon (Siegel & Dee, 2025), on definitions and interpretations of the 
term ‘causal’ (Grace, 2024), on use of causal terminology in Remote 
Sensing (Van Cleemput et al., 2025).

2  |  CHALLENGE 1:  BIODIVERSIT Y AND 
DRIVER DATA

Several properties of data critically affect the ability to detect and 
attribute changes in biodiversity (Figure 1).

The first general property is the level of structure in data collec-
tion and reporting of observations. Structured data (Table 1) typically 
come from standardized sampling protocols (referred to as ‘sampling 
structure’ in Figure 1), often with repeat sampling across years at the 
same location (‘temporal structure’ in Figure 1, also referred to as 
‘longitudinal’ or ‘panel’ data) and sometimes with a spatial sampling 
design (‘spatial structure’ in Figure 1, Table 1) (Kelling et al., 2019). 
In contrast, unstructured data consist of opportunistic observations 
(Table 1) compiled from uncoordinated data collection of indepen-
dent surveyors.

The second property is data coverage: biodiversity and driver 
data can range from small to large spatial extents, short to long time-
frames and can target anything from a single species or environmen-
tal driver to comprehensive documentation of all species or multiple 
socio-economic, environmental and biological drivers in a given loca-
tion (Figure 1). Further challenges emerge since multiple dimensions 
of biodiversity may change at different scales. For instance, a single 
metric of biodiversity can increase when considering certain spatial 
scales, times and taxa, but decline in others (Dornelas et al., 2023).

Here, we highlight three main structure axes and three main cov-
erage axes (Figure  1); though the importance of each will depend 
on the type of change being detected and the driver and response in 
question. Below, we discuss the main challenges associated with data 
streams that vary with respect to these axes and highlight the key 
trade-offs that need to be considered for detection and attribution.

2.1  |  Challenge 1.1—Biodiversity data

2.1.1  |  Data structure

While structured data, arguably the most desirable type of data for 
detection and attribution, remain rare, unstructured data are increas-
ingly abundant due to online platforms like iNaturalist and data ag-
gregators such as GBIF (Global Biodiversity information Facility), 
which involve reporting and aggregation of observations by experts 
and casual observers. Semi-structured data, such as eBird (Kelling 
et  al.,  2019), combine elements of structured and unstructured 
data, allowing variable data collection protocols but with improved 
documentation and interoperability. Finally, synthesis databases 
like BioTime (Dornelas et  al.,  2018), Living Planet Database (Loh 
et al., 2005) or PREDICTS (Hudson et al., 2014), aggregate numerous 
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6  |    SCHRODT et al.

independent studies, resembling semi-structured data: each study 
is internally standardized, but observations across studies vary in 
methodology and spatial–temporal resolution, with some minimum 
inclusion requirements and no a priori overarching protocol control-
ling which sites, species and times are sampled.

Structured or semi-structured data have many attractive fea-
tures for monitoring and attributing trends since sampling variabil-
ity is minimized or can be modelled with the available metadata 
(Bayraktarov et al., 2019). Repeated sampling at the same location 
(e.g. permanent or quasi-permanent plots), common in structured 
data, is ideal for detecting changes over time (Kapfer et al., 2017). 
However, structured data face trade-offs in spatial, temporal or tax-
onomic coverage (see next section) (Isaac & Pocock, 2015), which 
means that they are usually restricted in space and time and to select 
taxa (Estes et  al., 2018), limiting their ability to capture ecological 
processes acting at larger scales (McGill, 2019). Unstructured data, 
while abundant and broad in coverage, are prone to bias and require 

complex analytical approaches to isolate true biological signals from 
sampling variation and bias (Dobson et al., 2020; Isaac et al., 2014; 
Rapacciuolo et al., 2021).

2.1.2  |  Data coverage

Coverage is critical for both detection and attribution but for dif-
ferent reasons. A broad coverage across a wide range of relevant 
species, ecosystems and regions or time, enhances the ability to 
detect change across broad systems and to characterize its mean 
and variance. For attribution, wide spatial and temporal coverage is 
essential to describe the response curve of a species to a driver, re-
quiring sampling across a range of driver values (Thuiller et al., 2004). 
Moreover, responses to ecological thresholds can only be detected 
with sufficient sampling at extreme values that surpass the thresh-
old (Spake et al., 2022). Typically, there are trade-offs between the 

F I G U R E  1  Existing biodiversity databases vary along seven major axes of structure and coverage. Biodiversity change detection and 
attribution data should ideally score highly on all these axes. However, all databases (and sources of data, including from remote sensing) 
score low to medium on at least one of the axes. We illustrate such trade-offs on the example of four databases that were selected to follow 
a gradient in data structure (i.e. from a typical highly structured Breeding Bird Survey that is found in many European countries and the US 
(e.g. the British BBS, green) to the unstructured GBIF (purple) database). The height of the bars indicates the qualitative score along each 
axis for each database (indicated by colours) relative to the other databases based on published data and relative estimates. For example, 
the time series (Table 1) in BioTIME (pink) may span over 100 years and be structured in time (high time coverage and structure) but is less 
structured in space (low spatial structure) and can be spatially limited to a single lake or forest patch (medium spatial coverage). In contrast, 
national Breeding Bird Survey (green) gather bird monitoring data with a high spatial structure over multiple years, but are limited in terms of 
spatial coverage, and citizen science platforms like eBird (blue) provide vast amounts of data (high data quantity) but for one taxon only (low 
taxonomic coverage) and with little temporal structure. Note that additional aspects that are of relevance, such as the data collection starting 
year and prior definition of study sites, are not shown in the figure. Semi-quantitative data informing this figure is presented in Table S2.
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    |  7SCHRODT et al.

three coverage axes (Figure 1a), such as sampling many species in 
a limited area over a short period of time versus sampling a single 
species repeatedly over a large area over a long period of time. The 
coverage axes (Figure 1a) also trade off with the level of structure. 
For instance, unstructured data from GBIF have greater spatio-
temporal taxonomic coverage than structured data, which often 
cover narrower areas along the three axes. However, developments 
like the Biodiversity Information Standards (TDWG) ratifying the 
Humboldt Extension to the Darwin Core (metadata standards for 
monitoring and survey data, including sampling effort/metadata) 
and GBIF's adoption of these standards have the potential to reduce 
these trade-offs, shifting unstructured data towards being semi-
structured where possible (Sica et al., 2022).

2.2  |  Challenge 1.2—Driver data

Driver data on any natural or anthropogenic feature or process that 
could influence biodiversity present unique challenges. While we do 
not aim to cover all the challenges, we here highlight some of the 
key considerations when dealing with driver data for the detection 
and attribution of biodiversity change. Similar to biodiversity data, 
driver data are often limited in spatio-temporal structure, resolution 
and coverage (Joppa et al., 2016), likely leading to spatial and tem-
poral mismatches between biodiversity and driver data or between 
research and policy on drivers (Mazor et al., 2018).

2.2.1  |  Data structure

Driver data often suffer from a lack of systematic measurement, 
leading to biases and measurement errors similar to those in bio-
diversity data. For example, modelled climate data (e.g. CHELSA 
(Karger et al., 2020)) are based on in situ data from only a limited 
number of weather stations, often located in built-up areas, result-
ing in locally unreliable data in some parts of the world, particularly 
those also affected by a scarcity of biodiversity data (Daly,  2006; 
Dinku,  2019). Similarly, databases of in  situ abiotic characteristics 
such as soil or geology are often opportunistic, resulting in strong 
spatial and temporal biases (Schrodt et al., 2024). Temporal biases 
can also arise from changes in protocols, instruments or observers 
over time (Borges et al., 2024; Somerton et al., 2002). Data FAIRness 
has not accelerated for driver data as fast as it has for biodiversity 
data, further limiting usability (Schrodt et al., 2024).

Additionally, we often lack variables capturing the actual drivers 
and use proxy variables that may be unsuitable for testing causal-
ity, or their value as a proxy may be scale-dependent (e.g. distance 
to major cities often used as a proxy of human disturbance and 
exploitation). Consequently, assessing the impacts of some drivers 
(e.g. climate change) is more straightforward than others (e.g. over-
exploitation). Remote sensing can provide opportunities to collect 
data on some drivers over continuous space and short time periods 
(Lausch et  al.,  2019; Pettorelli et  al.,  2014), but poses their own 

challenges, including confounding variables (e.g. different sensor 
types and atmospheric corrections, differing bioclimatic conditions 
across cloudless views), structured or systematic and thus potentially 
highly problematic measurement errors and sometimes high uncer-
tainty. In addition, the number and range of confounding factors are 
multiplied at the large spatial scales reached by remote sensing prod-
ucts and random measurement error typically leads to regression 
dilution bias, whereby the effect of a driver on biodiversity would 
be underestimated. Therefore, their use should be accompanied by 
consideration of compensatory causal inference techniques to con-
trol for these biases and sources of error. For a thorough overview of 
the premise and challenges of using remotely sensed data for causal 
attribution in ecology see Van Cleemput et al. (2025).

Land cover layers are based on machine learning predictions 
(Table 1) from remote sensing data, validated against a limited set 
of available ground truthing points, resulting in high uncertainty 
and substantial variability between different thematic classes. Yet, 
classification errors from satellite data are rarely accounted for; 
although recommendations and approaches have been developed 
to account for measures of uncertainty/precision where available 
(Simmonds et al., 2022).

2.2.2  |  Data coverage

Differences in the evidence base for driver impacts partly reflect 
differences in data availability and coverage. A number of ground-
based driver databases (e.g. SoilTemp (Lembrechts et  al.,  2020), 
LUCAS (d'Andrimont et  al.,  2020)) provide granular and histori-
cal data but often with relatively low and highly biased coverage. 
Modelled databases (e.g. CHELSA for climate (Karger et al., 2020) or 
Soil Grids for soil physicochemical properties (Poggio et al., 2021)) 
are another rich source of driver information and now tend to pro-
vide uncertainty estimates to help account for the highly unstruc-
tured and low coverage input data these models are based on. Thus, 
although some workarounds exist, accessing highly structured in situ 
or directly remotely sensed (rather than inferred) driver data with 
good spatio-temporal coverage remains challenging. While the situ-
ation continues to improve rapidly with new high-resolution, open-
access satellite missions being launched and planned, some remotely 
sensed driver data remain inaccessible or expensive to use (Turner 
et al., 2015) or have too low resolution and grain size for ecologi-
cal attribution. With satellite mission data only recently becoming 
publicly available and much in  situ abiotic or socio-economic data 
not yet digitized, accessing historical data to match long biodiversity 
time series is challenging. Land use maps, for example, often present 
issues in temporal and thematic resolution (Daskalova et al., 2020) 
and lack the nuanced features needed to describe habitat quality or 
features important to different species (e.g. Lumbierres et al., 2022). 
In addition, there may be socio-technical barriers to obtaining in-
formation on specific drivers. For instance, the resolution of human 
population density data (e.g. CIESIN, 2018) typically matches politi-
cal boundaries, which correspond to relatively small areas in Europe 
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8  |    SCHRODT et al.

but large regions in Africa. Finally, important spatial and temporal 
mismatches remain between biodiversity and driver data, which 
prevent effective impact attribution. For instance, a widely used 
30 m-resolution global deforestation database (Hansen et al., 2013) 
provides yearly data on forest cover, yet many species monitoring 
programmes (e.g. bird or mammal surveys) occur less frequently or 
at coarser resolutions (e.g. national park level). This causes spatial 
and temporal mismatches, as deforestation trends may show im-
mediate habitat loss, but biodiversity declines often lag (e.g. spe-
cies persisting in fragmented habitats before population's crash). 
Similarly, global fisheries data (e.g. Global Fishing Watch, FAO catch 
data) aggregate fishing effort at coarse spatial scales (~10–100 km) 
and annual intervals. However, species declines (e.g. sharks, tuna) 
are driven by localized, seasonally shifting overfishing hotspots 
(Kroodsma et al., 2018), making it difficult to link broad-scale fishing 
data to short-term species responses.

However, technological advances combined with state-of-the-
art processing and interpolation methods (e.g. use of cloud-based 
processing solutions such as those offered on the OpenEO platform) 
are creating new opportunities to overcome driver data scarcity 
(Pettorelli et al., 2014), with improved mapping of land use intensity 
(Kuemmerle et al., 2013) pollution (Pennock, 2015; Tóth et al., 2016), 
weather data across Sub-Saharan Africa (Kaspar et al., 2022) and re-
mote sensing data on soils (Lausch et al., 2019), landforms (Lausch 
et  al.,  2020) and hydrology (Bauer-Marschallinger et  al.,  2019). 
Ecologists are also exploring alternative data sources to complement 
remotely sensed data, including ground-based imagery (Morueta-
Holme et  al.,  2024), citizen and community science data (Davison 
et al., 2024; Morueta-Holme et al., 2024) and broader geodiversity 
data (Schrodt et al., 2024).

3  |  CHALLENGE 2:  DETEC TION OF 
BIODIVERSIT Y CHANGE

In the detection-attribution framework, detection refers to the iden-
tification of directional change in the system of interest (Table 1). 
In biodiversity research, this step involves estimating annual or 
long-term trends in biodiversity metrics and assessing the degree 
of support relative to a historical baseline, a counterfactual state 
or a no-trend scenario. The focus is generally more on estimating 
the magnitude and rate of change rather than a binary classifica-
tion of change or no change. Trends may be estimated at the site 
level, but are more commonly generalized across multiple sites to 
derive an average rate of change that is representative of a wider 
area of interest. The method used to compile data significantly influ-
ences trend detection in biodiversity studies. Top-down approaches, 
which analyse global datasets using a standardized methodology, 
may be less sensitive to detecting biodiversity declines compared 
to bottom-up approaches, which synthesize local or regional studies 
through meta-analysis (Boënnec et al., 2024). This discrepancy arises 
because top-down analyses often aggregate coarse-scale data, po-
tentially masking localized declines, whereas bottom-up approaches 

leverage high-resolution, context-specific data that capture finer-
scale biodiversity changes. Furthermore, the choice between struc-
tured and unstructured data introduces distinct but overlapping 
challenges in change detection, influencing both the sensitivity and 
accuracy of inferred trends. Below, we explore some of these issues 
and present established and emerging strategies for the detection of 
biodiversity change while addressing these issues.

3.1  |  Observational processes and sampling 
variability

Trend detection methods for structured datasets are relatively well-
established (Dornelas et al., 2013; Martins et al., 2023), often using 
generalized linear models to describe long-term mean trends, gener-
alized additive models for fluctuations over time or less commonly, 
threshold regression to identify abrupt changes (Chan et al., 2015). 
However, there is still variation in how well observational processes 
(i.e. sampling variability) are modelled (Chadwick et  al.,  2024). 
Ignoring observational processes is possible if the sampling meth-
odology does not vary over time (i.e. high sampling structure, 
Figure  1); although the noise caused by sampling effects can still 
reduce the statistical power to detect a trend. State-space models 
(SSMs) can effectively minimize the noise caused by sampling vari-
ation (Kindsvater et al., 2018). For instance, random walk models in 
SSMs can account for complex data structures and can be fitted in 
both frequentist (e.g. Kalman filters, Laplace approximation meth-
ods) and Bayesian frameworks (e.g. Metropolis-Hastings samplers; 
see Auger-Méthé et al., 2021 for a guide to SSMs).

Unstructured data typically require more complex hierarchical 
models to account for sampling variation over space and time. If 
sampling variation is not accounted for, biodiversity trend estimates 
could be driven by changes in sampling rather than true changes in 
species populations or distributions. Hierarchical models such as 
occupancy-detection models explicitly model factors affecting de-
tection probabilities (see MacKenzie et al., 2017 for a guide to occu-
pancy models) and have been used to characterize trends in a wide 
range of taxa that lack large-scale structured datasets (e.g. most in-
vertebrates; Outhwaite et al., 2020). Other methods adjust for sam-
pling variation in effort over space and time based on the frequency 
of benchmark species, such as the frequency local scaling method 
(FRESCALO; Auffret & Svenning,  2022; Eichenberg et  al.,  2020; 
Hill, 2012). Using citizen science data, Isaac et al. (2014) found that 
occupancy-detection models and FRESCALO are both efficient 
methods for detecting temporal trends from noisy ecological data. 
Other approaches, such as thinned point process models (PPMs), 
similarly attempt to model both factors affecting species occurrence 
and the detection of those occurrences (Adjei et  al.,  2023; Bachl 
et al., 2019), although they have primarily been used for spatial mod-
els (see Wiegand and Moloney  (2020) for a guide to PPMs) rather 
than trend detection (but see Seaton et al., 2024). Unstructured data 
can suffer from different types of measurement error. The above-
mentioned methods primarily aim to deal with false absences (i.e. 
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    |  9SCHRODT et al.

when a species is present at a site but fails to be detected), but meth-
ods are emerging to deal with false positives (Kéry & Royle, 2020).

3.2  |  Biases and data gaps

As illustrated above, biases and gaps exist in all types of biodi-
versity and driver data. Addressing these spatial, temporal and 
taxonomic data gaps is critical to draw broad inferences about 
biodiversity change (e.g. Henriques et  al.,  2020), and some assess-
ment and reporting frameworks for assessing bias are emerging 
(e.g. Boyd et al., 2022; ROBITT). Whether data gaps lead to biased 
trend estimates depends on whether they covary with the underly-
ing distribution of true trends (Bowler et al., 2024). Solutions to po-
tential spatio-temporal biases due to data gaps include subsampling, 
weighting or imputation techniques (Bowler et al., 2024; Nakagawa 
& Freckleton, 2011). However, the strength and validity of such ap-
proaches are highly dependent on understanding the causes of data 
gaps and the quality and representativeness of the original data 
(Bowler et al., 2024; Schrodt et al., 2015; Ten Caten & Dallas, 2023). 
Many ‘generic’ imputation techniques assume the data are ‘missing 
at random’, an assumption that is rarely met in environmental change 
studies. For example, plant trait data available in databases are highly 
biased towards larger specific leaf area and larger seed mass, so bias 
correction methods need to be able to address this specific type of 
non-random bias (Johnson et al., 2021; Sandel et al., 2015; Schrodt 
et al., 2015). Similarly, approaches have been developed to specifically 
address non-random taxonomic bias (Henriques et al., 2020; McRae 
et al., 2017). Mismatches between the availability of driver data and 
biodiversity data add to the challenge of data gaps and highlight the 
importance of considering the coverage of heterogeneous time se-
ries in all facets of biodiversity and environmental change (Courter 
et al., 2013; Duchenne et al., 2022) (see section below on process-
based modelling for attribution of historical trends in biodiversity).

3.3  |  Appropriate resolution in time and space

Detecting a signal depends on the extent sampled along the axis 
of interest relative to the noise and the data resolution (Metcalf 
et al., 2021; Santini et al., 2017). Larger extents along the temporal 
or spatial axis facilitate trend detection despite the noise. Since the 
primary focus is often on identifying signals along environmental or 
anthropogenic gradients, the specific extent of the environmental 
gradient (e.g. variation in human impact) is more important than the 
spatial extent.

Temporally capturing peak periods of environmental change is 
challenging. For example, determining peak periods of land cover 
change requires attention to nuanced changes in land use intensity 
(Daskalova et al., 2020; Mihoub et al., 2017). Remote sensing prod-
ucts with higher spatio-temporal resolution can further increase 
statistical power and enhance signal detection within a given ex-
tent; however, increased resolution can also lead to increased noise, 

masking the true signal. Conversely, short temporal extents may 
not capture trends that reverse over longer periods of time, high-
lighting the need for appropriate temporal sampling resolutions and 
long-term studies that are aligned with ecological processes (Harte 
et al., 2015). For example, for birds/mammals, a few sampling events 
during the breeding season are sufficient to assess changes among 
years, but taxa with strong seasonal variation in activity require sam-
pling across the activity period (e.g. flight period for butterflies) in 
order to account for within-year patterns before attempting to de-
tect between-year patterns.

3.4  |  Non-linearity

Mostly, detection of biodiversity change focuses on linear trends, 
which, for population or species abundance data, amounts to esti-
mating mean annual population growth rates. Yet, growth rates nat-
urally fluctuate over time (Duchenne et al., 2022; Rigal et al., 2020). 
For instance, several studies have documented the decline and sub-
sequent increase in freshwater insect populations in Europe over the 
past 40 years (Haase et al., 2023; Outhwaite et al., 2020) Non-linear 
patterns can be more difficult to detect (Spake et al., 2022), but can 
have significant conservation implications. For example, a gener-
ally positive linear trend may not always indicate a growing popula-
tion of no conservation concern if it is associated with a non-linear 
concave trend (‘decelerating increase’), indicating a recent decline 
in abundance. In addition to non-linearity, non-monotony of trends 
also implies that the temporal extent of the data, particularly the 
baseline year, strongly impacts linear trend estimation (Daskalova 
et al., 2021; Duchenne et al., 2022). Similarly, a narrow temporal win-
dow increases the risk of capturing transient dynamics (e.g. Harte 
et al., 2015). Recently, frameworks have been developed to charac-
terize and classify non-linear trends (Rigal et al., 2020) and abrupt 
shifts (Pélissié et  al.,  2024) in structured time series using polyno-
mial effects and break detection methods, offering more consist-
ent solutions to characterize the variability in trends. In the former, 
second-order polynomial functions are fitted to the trends using 
least squares regression and then summarized using metrics such as 
direction, acceleration, velocity and change points. In addition to the 
stable, linear and quadratic options defined in Rigal et al. (2020) and 
Pélissié et  al.  (2024) add an alternative by detecting step changes 
and selecting the best fit among the four models using the Akaike 
information criteria adapted for small time series.

4  |  CHALLENGE 3:  AT TRIBUTION

Change attribution typically refers to the process of identifying and 
assigning causality to the factors, events or processes (‘drivers’) that 
lead to an observed biodiversity change or outcome (‘response’). In 
other words, a causal relationship is a ‘situation where two variables 
are connected through some mechanism or means such that vari-
ations in one can propagate to subsequent variations in the other’ 
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10  |    SCHRODT et al.

(Grace, 2024). Using the classic definition by Pearl (2009), ‘a causal 
relationship exists when variation in an independent variable leads 
to, or causes, variation in a dependent variable, and this relationship 
is not spurious or confounded by other variables’.

In most cases, the interest extends to quantifying the magni-
tude and direction of these causal relationships. Causal biodiversity 
change attribution combines insights from change detection with 
data on biological, environmental or anthropogenic pressure vari-
ables. Recent studies have introduced ecologists to causal infer-
ence methods commonly used in other disciplines (Dee et al., 2023; 
Ferraro et al., 2019; Laubach et al., 2021). Here, we aim to contex-
tualize causal inference methods within biodiversity change, discuss 
concepts that influence decisions and outline possible workflows 
using different data types on drivers and biodiversity responses.

4.1  |  Analytical workflows for causal attribution of 
biodiversity change

Change attribution can be depicted as a multi-step process of data 
preparation/exploration, building the causal model (i.e. identification 
of the potential drivers, covariates and the biodiversity metrics), fol-
lowed by quantifying the causal effect of drivers on the biodiversity 
metrics, and finally model evaluation and interpretation (Figure 2a). 
The choice of an attribution method depends on the direct drivers, 
potential covariates and biodiversity data characteristics, the ques-
tion being asked and the prior knowledge of the system. Methods 
vary along a continuum from more exploratory to knowledge-based 
methods that may include several of the four steps (see Figure 2b 
for some examples from published studies). Below and in Box 1 we 

F I G U R E  2  (a) Workflow from data to estimated causal relationships, providing key families of methods for each step. Depending on the 
data and knowledge available, the workflow may start with either data and their preparation (blue boxes) or causal model building (using 
either an expert DAG (dark red box) or Causal Discovery (light red box)), and several cycles of these steps may be required before continuing 
to the next one. Causal effect estimation can be performed using one or a combination of several methods (indicated by different shades of 
green boxes). The final step, evaluation and interpretation (purple boxes) is crucial for interpretation and should ideally be considered prior 
to causal effect estimation. Please note that the groups of methods shown here are only a few indicative examples, many other methods 
are available. (b) Key examples of applications of these steps in published ecological studies (Dee et al., 2023; MacDonald et al., 2019; Rigal 
et al., 2023). Colours correspond to the steps outlined in (a), with different groups of methods indicated by different shading (e.g. dark green 
box = instrumental variables). Further examples can be found in Figure S3.
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    |  11SCHRODT et al.

BOX 1 Key considerations and steps for causal attribution in ecology

Defining the causal relationship

•	 Identify the focal relationship of interest (e.g. X → Y).
•	 Clearly define and state your causal question.

Formulating hypotheses and predictions

•	 What types of evidence are available?
•	 How much evidence do we have and how consistent is the evidence?
•	 How strong is the agreement across different lines of evidence?
•	 How well does it apply to the context under consideration?
•	 Are there competing hypotheses, and how do their predictions differ?

Mechanistic understanding and data contributions

•	 Does the data contribute to understanding causal mechanisms?
•	 Identify possible mediators and intermediate processes.
•	 Consider the depth of mechanistic understanding, including biological or social organization levels. For example, if you were mod-

elling a community response, think of the mechanism in terms of population responses, too.

Constructing directed acyclic graphs (DAGs)

•	 Build expert DAGs and, where appropriate, compare/combine with data-driven causal discovery.
•	 Clearly communicate which research/source of information you base your causal knowledge and assumptions on.
•	 Address key challenges:

○	 Bidirectional arrows and feedback loops.
○	 Temporal and spatial scale dependencies.
○	 Stability of observed patterns over time and space.
○	 Known and unknown, measured and unmeasured confounders, colliders and mediators

Adjustment sets and method selection

•	 Determine the appropriate adjustment set (set of variables that should be controlled for based on the DAG for causal inference).
•	 Choose the right analytical method based on:

○	 Nature of treatment variable (binary vs. continuous).
○	 Nature of the data (spatial or temporal)
○	 Confidence in identifying confounders and colliders.
○	 Availability of data on confounders
○	 The number of confounders relative to the amount of data
○	 Hypothesized functional form of the causal relationship.
○	 Availability of instrumental variables.
○	 Feasibility of retrieving unbiased estimates.

Interpretation and reporting

•	 Clearly state assumptions of any methods used for detection and causal attribution and assess their robustness.
•	 Describe any potential measurement errors or biases and how they were addressed.
•	 Provide details of sensitivity analyses or robustness checks performed to assess the validity of the results.
•	 Discuss confounders, colliders and mediators and how they were controlled, including potential sources of bias (e.g. selection bias, 

reverse causality).
•	 Consider and discuss alternative explanations or competing causal pathways.
•	 Do not interpret and report the effects of control variables as causal effects (Table 2 fallacy).
•	 Discuss the generalizability of the findings to other contexts, populations or settings; conversely, limitations related to the sample, 

design or scope of the study that may affect the external validity.
•	 Clearly describe details if useful approximation approaches were applied (Table 1).
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12  |    SCHRODT et al.

outline details of the considerations and choices that need to be 
made at each of these steps.

4.1.1  |  Step 1: Data preparation and exploration

In biodiversity change attribution, the task of data preparation and 
exploration often interacts iteratively with the task of building the 
causal model until all relevant causal relationships are identified 
(Figure 2). For example, causal discovery methods (see Section 5.2.2) 
require data that conform to specific formats and assumptions, 
which necessitates preprocessing before identifying relationships 
(e.g. dealing with data gaps, see Section 3). The identification of miss-
ing relevant variables or covariates may require additional rounds of 
data collection and preparation, including the identification of proxy 
variables if measured data for the missing variables are not available. 
If all relevant variables are known at the start of a project, data col-
lection and preparation can take place in subsequent steps.

4.1.1.1 | Variable roles within biodiversity change attribution
Simple models, such as a linear regression between a change in spe-
cies' population abundance and a change in temperature, often fail to 
capture the complex causality in biodiversity change due to multiple 
drivers acting simultaneously and influencing each other (e.g. tem-
perature and drought (Bowler et al., 2020; De Palma et al., 2018)). 
Complex relationships among key variables are common in the at-
tribution of biodiversity change, which may explain why attribution 
is rather more challenging in ecology than in climate sciences. In 
climate attribution studies, radiative forcings are modelled as exog-
enous variables (external to the system), which greatly simplifies the 
inference of causal effects (Hannart et al., 2016). In biodiversity sci-
ence, such exogeneity cannot be assumed because of the multiple 
cross-interactions between the variables of interest. It is thus key 
to a robust analysis to carefully identify the role of all variables in a 
study system before selecting the data and the appropriate model.

Within the framework of structural causal models, variables are 
classified into three main types: confounders, colliders and mediators 
(Table  1; Figure  3 (Laubach et  al.,  2021)). Ecologists have mainly 
focused on confounders, often overlooking the role of colliders and 
mediators due to a lack of awareness of their potential importance. 
Depending on the variable's role, different problems arise when the 
variable is excluded from the model (e.g. confounding, omitted vari-
able bias) or included in the model (overcontrol, collider bias, M-bias, 
Table 2 fallacy) (Rinella et al., 2020). In ecology, a common modelling 
approach is to include all potentially relevant variables in a multiple 
regression model (a ‘causal salad’ regression) in order to control for 
potential confounding variables. However, this practice can lead to 
more biased estimates of variable effects than those resulting from 
potentially excluding key variables in an a priori selection (Cinelli 
et al., 2020). Building a DAG (Directed Acyclic Graph) can clarify the 
roles of different variables and help identify which variables need to 
be included in a model for causal inference (e.g. Guzman et al., 2024; 
Figure 3).

Confounders. Confounders occur when a third variable (Z) affects 
both the driver (X) and the biodiversity response metric (Y) (X ← Z → Y; 
Figure  3a). For example, a loss of species richness attributed to 
fragmentation alone could also be driven by habitat loss. Habitat loss 
confounds the overall effect of fragmentation on species richness 
(‘direct effects’ in Figure  3a). Similarly, the long-term recovery of 
plant and lichen species due to reductions in a specific air pollutant is 
difficult to attribute with certainty because of simultaneous declines 
in multiple pollutant intensities (particularly nitrogen and sulphur 
deposition), driven by concurrent pollution control policies (‘indirect 
effects’ in Figure 3a) (Dise et al., 2011). Spatial and temporal analyses 
can differ in their susceptibility to confounding. Spatial gradients 
in drivers can be useful for attribution because they are typically 
stronger than temporal gradients over sampling periods (Blüthgen 
et al., 2022; Oedekoven et al., 2017), but they are also more likely to 
be confounded by other covariates (Viana et al., 2022). Studies using 
time series can often better handle confounding factors because 
of weaker coupling of drivers and the fact that cause must precede 
effect.

Mediators. Mediators are variables (Z) that lie on the causal path 
between the driver (X) and the biodiversity metric (Y), creating 
indirect paths from exposure to outcome that break the flow of 
the information (X → Z → Y). They should not be conditioned when 
estimating a total effect; that is, data should not be stratified to 
consider specific/individual values of the mediator variable. Including 
mediators in biodiversity change attribution within a ‘causal salad’ 
regression can lead to overcontrol, blocking indirect pathways. For 
instance, macroclimate change affecting species may be mediated 
by microclimate buffering from forest cover (De Frenne et al., 2021), 
while urban night lighting may mediate the effect of city regulation 
on insect abundances (Figure 3b). In contrast, if the objective is to 
estimate the direct effect of city regulation, rather than the total 
effect of both night lighting and city regulation, indirect pathways 
should be blocked by conditioning on the mediator.

Colliders. Colliders (Z), or common effects, are shared effect variables 
of both the driver X and the biodiversity metric Y (X → Z ← Y). When 
conditioned on, these variables induce bias by opening up non-
causal relationships, and consequently should not be controlled for, 
nor should their descendants. Generally, this occurs when a post-
treatment variable (Table 1) is included in the model. For example, 
plant abundance may be a collider variable when studying the impact 
of ecosystem disturbance (e.g. a fire) on herbivores, since plant 
abundance can also be affected by herbivore abundance (Figure 3c).

Unobserved variables. The application of causal discovery algorithms 
necessitates the formulation of robust assumptions about the data-
generation process, which in turn affects the data preparation. These 
assumptions typically include time series causal stationarity (constant 
mean, variance and autocorrelation structure over time, Table 1) and 
causal sufficiency (the absence of unobserved confounders, Table 1). 
While some methods can deal with unobserved confounders under 
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additional assumptions, identifying the target effect (i.e. the specific 
causal relationship or quantity we aim to identify, measure or infer 
from our data) requires having access to variables measuring the 
processes that generate/cause the data. While these processes 
are rarely fully known or accurately captured with ecological data, 
we can assume, infer, and estimate them. Several methods have 
been adopted from other disciplines to do this using ecological 
data, including design adjustments (nested sampling and statistical 
designs) and causal diagrams (Byrnes & Dee, 2024).

Lag effects. Finally, lag processes or ‘ecological memories’ are 
ubiquitous in ecological systems but can be difficult to detect or 
incorporate. For example, forests may not show measurable responses 
to droughts until years after the drought event (driver) has occurred 
(Kuhn-Régnier et al., 2021; Pretzsch, 2022). Moreover, time lags can 
lead to spurious feedback loops when constructing causal graphs 
(see Table 1 and Figure S2, step 2 of the workflow). Similarly, lags can 
be of a spatial nature, often considered in terms of spatial buffers or 
landscape-scale effects. For instance, in freshwater systems, drivers 
acting upstream may affect biological response measurements 
downstream, that is, spatially removed from the driver. If these lag 
effects are not incorporated into a causal model, even very strong 
connections might be missed or at least misestimated. Methods such 
as signal regression offer efficient ways to estimate how the effects 

of a variable change with spatial scale or temporal lag and can be 
fit with commonly used generalized additive models (Wood, 2020).

4.1.2  |  Step 2: Building a causal model

Directed Acyclic Graphs (DAGs) provide conceptual representations 
of causal assumptions of a system (Arif & MacNeil, 2022a; Ferraro 
et al., 2019; Laubach et al., 2021). Highlighting direct and indirect 
pathways helps identify variables as colliders, mediators or observed/
unobserved confounders (Figure  3), without first making assump-
tions about the variable distributions (normal, non-normal) or form 
of the relationships between the links (i.e. linear, non-linear, abrupt). 
It is recommended to also include unobserved variables as incomplete 
DAGs may lead to inaccurate causal estimates/conclusions. In addi-
tion, the scale (temporal, spatial, organismal) at which phenomena 
are studied needs to be clearly defined, as mechanisms in biodiver-
sity are strongly scale-dependent. For example, climate influences 
land use at global to regional scales, but locally, microclimate is 
strongly modulated by specific land uses and configurations, poten-
tially reversing the main direction of causality (Figure S1). Opposing 
directions of causality can create unwanted feedback cycles in 
DAGs which are acyclic by construction. Careful consideration of 
the space and time-scale for which the DAG applies can help clarify 

F I G U R E  3  Examples illustrating the primary roles of covariates (yellow) interacting with a driver (green, the target of the causal effect 
estimation) and/or biodiversity response (blue). (a) direct (left) and indirect (right) confounders, (b) mediator and (c) collider covariates. In (a), 
confounding covariates must be included in the model to correctly estimate the causal effect of the driver. In (b), the mediating covariate 
could be included in the model to understand a possible pathway through which city regulation acts, but this would split the estimated total 
effect of city regulation. In (c), the covariate is a collider and should not be included in the model to estimate the effect of the driver.
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14  |    SCHRODT et al.

the most relevant direction of causality (see Figure S2). DAGs can 
be built based on prior knowledge of the system (‘expert DAG’) or 
data-driven causal discovery algorithms. While expert DAGs require 
strong prior understanding of the study system, data-driven causal 
discovery can be applied when the underlying causal structure is not 
well established. The aim here is to identify potential causal rela-
tionships primarily from data; although some degree of theory and 
expert knowledge are required for robust causal discovery. This is 
especially important in complex or novel systems where the rela-
tionships among variables are not yet clearly understood. Expert 
DAGs and data-driven discovery are commonly combined.

4.1.2.1 | Expert DAG
In biodiversity sciences, there is often at least some basic domain 
knowledge about how variables relate to each other. The first 
step is therefore to put hypotheses down on paper in the form of 
a DAG, representing the variables present in the dataset and any 
other variables that are thought to be involved in the system, even 
if they are not initially connected to the graph. Second, a review of 
the literature should help to identify important missing covariates. 
Ideally, data matching the newly identified covariates can be col-
lected and aligned with the existing samples to enrich the dataset 
(see Section 5.1). If not, such covariates remain unobserved and will 
affect effect estimation. When working within the structural causal 
model (SCM) framework, the causal Markov assumptions of the DAG 
need to be checked: are the (conditional) independencies drawn in 
the DAG verified in the data distribution? In other words, for any 
given relationship between a driver X and a response Y through 
a mediator M (X → M → Y), the full mediation model implies that Y 
and X are conditionally independent given M. Testing this assump-
tion is difficult, especially in complex models. Statistical tests of 
the conditional independence (e.g. by simply regressing Y and X on 
M and assessing whether the residuals show non-zero correlation) 
are accepted as indicative (Textor et al., 2016). If the causal Markov 
assumptions are met, the DAG data are consistent, and an effect 
estimation method can be applied. Otherwise, the DAG should be 
refined to reflect the interdependencies present in the data. See Arif 
and MacNeil  (2022a) for a comprehensive review in an ecological 
context.

Overall, expert DAGs are intuitive, but are sensitive to prior 
knowledge, with the risk of, for example, missing relationships or re-
cent discoveries, or being biased when translating findings from the 
literature to other systems.

4.1.2.2 | Data-driven causal discovery
When researchers lack sufficient confidence in their representa-
tion of the data-generating process, or when little system knowl-
edge is available, causal discovery or causal search can help identify 
pathways and directions of causality (Song et  al.,  2022; Spirtes & 
Zhang,  2016). Applying a causal discovery algorithm can be chal-
lenging. These models often rely on strong assumptions about the 
data-generating process underlying the dataset in question (causal 
sufficiency, faithfulness, etc.). The many configurable degrees of 

some models can reduce confidence when the parameter search is 
not guided by system knowledge or results in unstable outcomes.

The choice of method depends on the type (spatial/cross-
sectional or temporal/longitudinal (Table  1)) and sample size of the 
data, assumptions about the data-generating process (stationarity, 
contemporaneous effects (Table 1)) and the need to handle latent (un-
observed but inferable) variables or confounders (Table 1). Conditional 
independence-based (or constraint-based) methods which start with 
an undirected graph linking all variables and then remove or redirect 
links based on conditional independencies in the data include the 
Peter-Clark (PC) algorithm (Spirtes et al., 1993), its flexible adapta-
tions for time series data (Runge, Nowack, et al., 2019) and the Fast 
Causal Inference algorithm (FCI (Spirtes et al., 1993)), which relaxes 
the causal sufficiency assumption.

Score-based methods (e.g. Greedy Equivalence Search (GES) 
(Chickering, 2003)), Fast Greedy Search (FGS) (J. D. Ramsey, 2015), 
or the Greedy FCI algorithm (Ogarrio et al., 2016) are computation-
ally more intensive because they add the causal links one at a time 
to increase a fit score. Another class of models is functional causal 
models such as the semi-parametric non-linear additive noise mod-
els (Hoyer et al., 2008) that identify pairwise dependencies, or the 
linear LiNGAM method (Shimizu et  al.,  2006), which exploits the 
non-Gaussianity of the data. New methods recast causal discovery 
as an optimization problem, benefiting from recent deep learning 
advances in neural combinatorial optimization (Pamfil et al., 2020; 
Zheng et al., 2018; Zhu et al., 2019). For an exhaustive list of avail-
able causal discovery methods and software implementations, we 
refer the interested reader to table  3 of the review by Nogueira 
et al. (2022) and to Glymour et al. (2019) for a short illustrated review.

Complementary approaches, notably when assuming determin-
istic data processes and non-linear relationships, are state-space 
reconstruction approaches. The most widely used of the latter in 
ecology is convergent cross-mapping (CCM; Sugihara et al., 2012), 
which is based on empirical dynamic modelling and can help identify 
the direction of effects (discovery). CCM assumes that in a dynamic 
system the exposure variable contains information about its causal 
predictor and thus allows cross-mapping within a reconstructed 
state-space. A common workflow combines CCM with Smap for 
causal effect estimation, that is, gaining insight on both direction 
(positive or negative) and strength of the causal association (see 
Section 5.3). Many developments are available to tackle challenges 
present in ecological data such as short time series (multispatial CCM 
(Clark et al., 2015); Cross Map Smoothness (Ma et al., 2014); latent 
CCM (De Brouwer et al., 2021), synchrony (Convergent Cross Sorting 
(Breston et  al.,  2021)), bidirectional coupling (Continuity Scaling 
(Ying et al., 2022)) or cross-sectional/spatial data (Gao et al., 2023)).

4.1.3  |  Step 3: Causal effect estimation (causal 
inference)

Once a causal relationship, in the form of a causal graph or causal 
discovery, has been established, the objective is to estimate the 
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    |  15SCHRODT et al.

TA B L E  2  Key assumptions and considerations for the groups of causal methods presented in this article.

Method Assumptions for causal interpretation Key considerations

Structural equation 
modelling (SEM)

Correct model specification (all relevant paths 
and variables included)

Assumption that the structure reflects causal relationships. 
Coefficients represent conditional relationships, not just 
univariate effects. Model misspecification or omitted 
variables can bias estimates. Requires domain expertise for 
model building

No omitted confounders

Normally distributed errors

Predictors don't correlate with error terms of 
the response

Linear relationships (typically)
The model must be identifiable (enough data and 
constraints to estimate all parameters uniquely)

Matching/weighting Conditional Independence Assumption (CIA): all 
confounders observed

Balances covariates but does not control for unobserved 
confounders. Diagnostic checks (e.g. balance metrics, 
sensitivity analyses) are essentialCommon support/overlap

No hidden bias or unmeasured confounding

Instrumental variables (IV) Instrument relevance (strongly correlated with 
treatment)

Powerful for unobserved confounding, but finding valid 
instruments is difficult. Weak instruments bias estimates; 
validity must be critically evaluatedInstrument exogeneity (no direct effect on 

outcome, only via treatment)

Exclusion restriction

BACI/difference-in-
differences (DiD)

Parallel trends (before-after change of groups 
would be the same in the absence of the 
treatment)

Pre-trend testing and robustness checks are necessary. 
External validity can be limited

Proper randomization

No differential shocks (other than treatment)

Regression discontinuity 
design (RDD)

Random effects are not correlated with any 
covariates

RDD gives causal effects near the threshold. Requires careful 
bandwidth selection and validation that units just above and 
below cut-off are similarPrecise knowledge of the cut-off

No manipulation around the cut-off

Continuity in potential outcomes at cut-off

Bayesian networks/DAGs Correct graph structure Can handle complex systems and sparse data. Can model 
effects of interventions. Depends on expert input or data-
driven discovery with strong assumptions

Causal sufficiency/conditional independence 
assumption (no unmeasured confounders)

Faithfulness and Markov assumption

Covariate adjustment 
(selection)

Known DAG and consistent with data Effects of control variables must not be interpreted as causal 
effects (avoiding Table 2 fallacy)No unobserved confounders

Backdoors are closed

Synthetic controls Good pre-intervention fit Having sufficient pre-intervention periods to fit the synthetic 
control is key to the success of the method. Sensitivity 
analyses necessary

No interference across units and consistent 
treatment definition

No anticipation

Fixed effects panel 
regression

No interference across units and consistent 
treatment definition

Ensuring that there is enough within-unit variation and that 
time-varying confounders have been included is key

Within-units covariate variability

Site-specific but constant and/or time-varying 
but common unobserved confounding allowed

Metalearners No unobserved confounders Cross-fitting of the nuisance (intermediate) parameters and 
choice of the metalearner suited to datasetNo interference across units and consistent 

treatment definition

Good estimation of nuisance parameters

(Continues)
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16  |    SCHRODT et al.

associated causal effects, that is, to quantify the respective mag-
nitudes of causal effects acting on a given response variable. As 
described in the glossary, causal effects can be quantified using dif-
ferent metrics, depending on the scale, objective and methods of the 
study. In the following, we will adopt the generic term causal effect, 
as we believe that it is beyond the scope of this perspective to detail 
the different estimates associated with each method. It should be 
noted, moreover, that estimates depend on the assumptions made 
when constructing the graph. Ideally, graphs and estimates should 
be repeated over a range of likely assumptions to obtain robust re-
sults. Apart from repeatedly running the models, one can increase 
the robustness of the result and facilitate interpretation by applying 
methods before (e.g. statistical matching, instrumental variables, see 
below) or after (e.g. sensitivity analyses, see next step and Table 1) 
the causal model. Some of the more commonly used methods are 
outlined below, with assumptions for causal interpretation and key 
considerations given in Table 2. For a near-complete list of available 
methods and software for causal effect estimation, see table 12 in 
Nogueira et al. (2022).

4.1.3.1 | Covariate adjustment
Covariate adjustment (or selection) is the most widely used method 
for estimating causal effects. It consists of selecting the set of vari-
ables in a DAG to serve as model inputs in the next step. The struc-
tural causal model (SCM) framework suggests rules for doing this, 
such as the backdoor criteria (Pearl,  1995; Saavedra et  al.,  2022). 
This approach essentially means controlling for confounders (clos-
ing back doors) but not controlling for colliders (not opening the 
back doors) or for mediators (to avoid interrupting the information 
flow). Controlling for variables affecting the outcome but unlinked 
to the tested driver is not necessary to reach unbiased effect esti-
mates. However, it can improve precision. Witte and Didelez (2019) 
review further selection procedures, which differ in their require-
ment for prior knowledge and/or the aim of the analysis. Once a 
set of controlling variables has been identified, the causal effect can 
then be estimated using traditional modelling approaches (i.e. re-
gression models) or, for more complex scenarios, machine learning 

approaches (random forest algorithms, neural networks, etc.). In 
the case of unobserved confounding variables, there are further ap-
proaches using variation within site or years (Byrnes & Dee, 2024). 
The minimal adjustment set depends on the specific focal causal re-
lationship of interest, which means that separate models might have 
to be constructed if there are multiple causal relationships of interest 
(Guzman et al., 2024). Causal effects should therefore be estimated 
one by one, each time using an appropriate adjustment set (Siegel & 
Dee, 2025). An important corollary is that the effects of the control 
variables cannot be directly interpreted as causal effects, to avoid the 
Table 2 fallacy (see Westreich & Greenland 2013 for further details).

4.1.3.2 | Structural equation models
SEM is a methodology originally adapted from traditional path analy-
sis that provides an explicit connection between data and theoretical 
ideas, allowing for complex ecological systems and causal networks 
to be modelled. This includes modelling direct and indirect pathways 
to the response, as well as constructing latent and composite terms. 
SEMs are evaluated using a theory-driven iterative framework that 
evaluates models through tests of parsimony. Prior to estimation, 
a conceptual model is constructed from selected variables using 
ecological theory, expert opinion and existing literature (i.e. the pro-
posed model). Proposed models are then assessed for relative model 
fit (e.g. comparing the model-implied and observed covariance ma-
trices), and pathways are re-evaluated if model fit is not satisfac-
tory. Essentially, this process ensures all confounding pathways on 
endogenous variables are included in the model prior to estimation 
(see Fan et al., 2016; Grace et al., 2010 for reviews).

There are several types of SEMs (e.g. covariance-based, piece-
wise and Bayesian), each with strengths and limitations. For example, 
piecewise SEM can accommodate non-linear pathways (e.g. mixed 
effects) but cannot accommodate latent terms (Lefcheck,  2016). 
Covariance-based SEM generally requires large datasets and may 
have limited scope for multi-level endogenous categorical variables 
due to model over-identification issues. These factors should be 
assessed and selected based on the data structure, target system 
and research question at hand. As with other regression-oriented 

Method Assumptions for causal interpretation Key considerations

Empirical dynamic 
modelling (EDM)

Deterministic and stationary enough system Suitable for time series without separability of variables. 
Can't separate causal effects from confounders and 
mediators

Relevant dynamics observed: unobserved 
confounders of low influence

Adapted sampling frequency

Invariant causal predictors No unobserved confounders varying by 
environments

Can handle non-linearity and unobserved variables shared 
between environments, needs variation across environments 
to identify non-causal associationsInvariance assumption

Multiple environments

Granger causality No unobserved confounders affecting the time 
series

Time series should be pre-processed to be stationary and the 
sampling adapted to detect lagged dependencies

Stationary time series

Prediction-based conception of causality

TA B L E  2  (Continued)
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    |  17SCHRODT et al.

techniques, estimates of causal effects within SEM may be biased 
if predictors correlate with the error terms of the response variable, 
which could be addressed with tools such as instrumental variables 
(see below) where appropriate (Grace, 2021).

4.1.3.3 | Statistical matching
Matching methods allow the effects of specific interventions to be 
isolated by accounting for potential confounding issues due to selec-
tion bias (i.e. the fact that interventions are typically non-randomly 
placed), prior to model application (Stuart,  2010). These methods 
essentially adjust for differences in covariates between treatment 
levels to create a design that more closely resembles a randomized 
experimental design. Matching can also be used to improve the rig-
our of other quasi-experimental approaches, for example, to select 
appropriate control units for difference-in-difference or BACI analy-
ses. In ecology, such methods are already commonplace for assess-
ing the effectiveness of protected areas (Schleicher et  al.,  2020). 
Often, such matching of treatment and control sites is done in-
tuitively during study design (Redhead et al., 2022), but statistical 
matching methods also allow this to be done after data collection 
and are thus useful when relying on existing datasets/databases 
(Emmons et al., 2022). This method involves deriving a propensity 
score (PS), defined as the probability of treatment assignment given 
the observed covariates (Ramsey et al., 2019), which can be used to 
group similar control and treatment observations—even with high-
dimensional covariates—and allow unbiased effect estimation under 
the causal sufficiency assumption. While originally developed for 
single binary treatments, there are extensions to handle continuous 
(generalized PS or GPS (Zhao et  al.,  2020)) or multiple treatments 
(McCaffrey et al., 2013). However, propensity scores do not always 
perform better than multiple regression as a way to control for con-
founders, at least with large datasets (Wilkinson et al., 2022).

4.1.3.4 | Instrumental variables
In some cases, the treatment itself might be difficult to directly 
relate to an outcome, either because of possible reverse causa-
tion (i.e. if the outcome also affects the treatment) or omitted 
confounding variables (e.g. affecting both the treatment and the 
outcome). In these cases, an instrumental variable (IV) that explains 
treatment assignment but is not associated with other variables 
might be a better option to test for a causal effect of the treatment 
(Grace, 2021; MacDonald et al., 2019). An IV must satisfy two condi-
tions (Kendall, 2015); it must: (i) be a cause of the treatment variable 
of interest (relevance) and (ii) have no causal effect on the outcome 
variable other than through the target pathway (exclusion condition). 
The second condition often severely limits the candidate instru-
ments. IVs are then used in a two-step process consisting of, first, 
predicting unconfounded treatment levels and, second, estimating 
the treatment effect on the outcome based on the predicted treat-
ment. However, the causal effect is only estimated from the subset of 
treatment that is actually affected by the IV (Dee et al., 2023). Once 
identified, IVs can be integrated in different models, such as regres-
sion (Kendall, 2015) or SEM (Grace, 2021). While IVs are appealing, 

selecting variables that satisfy the above two conditions is challeng-
ing, which has resulted in IVs not being used as much as other causal 
inference approaches.

4.1.3.5 | Other quasi-experimental methods
When trying to estimate causal effects but facing confounding ef-
fects between treatment and outcome biases, quasi-experimental or 
natural experiments offer practical solutions to mimic a randomized 
experiment (Butsic et  al.,  2017; Larsen et  al.,  2019). Before-After-
Control-Impact (BACI) designs are appropriate when longitudinal (time 
series) data are available both before and after the treatment assign-
ment; for example, the implementation of a specific intervention in 
conservation science. The difference-in-differences method, a term 
more common in econometrics, focuses on the before-after change 
of the difference between control and treatment groups within a 
BACI design. The key assumption is that the before-after change 
of both groups would be the same in the absence of the treatment 
(the parallel trends assumption). For instance, such an approach has 
been used to study the effects of protected areas on species trends 
(Adams et  al.,  2015; Wauchope et  al.,  2022). The BACI design can 
be replicated retrospectively using statistical matching methods. 
Regression discontinuity (RD) design is a related approach but with 
different assumptions. RD is used when there is a clear breakpoint, 
or discontinuity, in treatment allocation, either in space or time, that 
separates observations into control and treatment groups (Wuepper 
& Finger, 2022). In ecology, this design has been used to test the ef-
fects of a wildfire by comparing burned and unburned areas (Butsic 
et  al.,  2017). The key assumption is that local randomization holds 
across ‘treatment’ groups around the small interval of treatment al-
location, which means that it most resembles a natural experiment; 
the treatment effect can then be estimated by comparing the response 
immediately below and above the breakpoint. If the effect of inter-
est is measured across sites with repeated measures over time, fixed 
effects panel regression can be used (Jones & Lewis, 2015; Larsen & 
Noack, 2017; Ratcliffe et al., 2024), which uses site or time fixed ef-
fects to control for unobserved confounding effects that are assumed 
to be site-specific but time-invariant, or time-specific and common to 
all sites. In ecology, often random effects are included for site or year 
but these can lead to violations of the assumption that random effects 
are not correlated with any covariates, preventing unbiased estimates 
of causal factors (Antonakis et al., 2021). Fixed effects design variants 
adapted to different assumptions on the nature of observed and un-
observed confounders are another option (Byrnes & Dee, 2024).

4.1.3.6 | Machine learning based methods
In addition to identifying causal relationships as seen in Section 5.2, 
machine learning algorithms can contribute to quantifying unbiased 
causal effects. This is not to be confused with the field of causal ma-
chine learning (Kaddour et al., 2022), where causal inference helps 
solve machine learning problems to achieve better predictive power; 
this is beyond the scope of this paper.

One family of techniques for estimating conditional causal effects 
(Table 1) is metalearners (Künzel et al., 2019), which decompose the 
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task of estimating causal effects into basic algorithms such as random 
forests or neural networks. In ecology, these are especially useful 
for estimating spatially-varying effects of causal factors, or even just 
describing patterns of biodiversity trends at fine spatial resolution 
(Fink et al., 2023). There are different metalearners, each adapted to 
specific data properties and assumptions (Caron et al., 2022). Double 
or debiased machine learning (Chernozhukov et al., 2018) allows for 
effect estimation in a two-step process based on the Frisch-Waugh-
Lovell theorem: the causal effect is estimated separately from the 
nuisance parameters, that is, the influences of the other variables 
on the outcome (Fink et al., 2023). Under the assumption of strong 
ignorability (i.e. causal sufficiency and overlap or positivity, meaning 
the treatment assignment probability is strictly between zero and 
one), causal forests (Hahn et al., 2020; Wager & Athey, 2018) allow 
obtaining unbiased causal estimates. Finally, the benefits of super-
vised learning can be combined with the additional information pro-
vided by instrumental variables (Hartford et al., 2017).

4.1.3.7 | Other methods
The empirical dynamic modelling (EDM) framework is suited for time 
series data when separability of variables is not given (i.e. the influence 
of individual variables on an outcome can not be clearly distinguished 
and isolated) and interaction strengths or signs may change over time. 
Convergent cross-mapping (CCM), which we discuss in Section 5.2 as 
a tool to identify the existence and direction (i.e. positive or nega-
tive) of a causal link between a pair of variables (possible driver and 
response), can be combined with Sequential Locally Weighted Global 
Linear Maps (S-maps) (Deyle et al., 2016; Sugihara, 1994) to estimate 
the strength of the identified causal relationship. Compared to other 
similar prediction techniques for time series (i.e. DLM), ecosystem 
states are weighted based on their actual similarity, that is, their dis-
tance in the reconstructed state-space, rather than their neighbours 
in time. However, to our knowledge, methods from the EDM frame-
work do not have a proven ability to disentangle causal effects from 
confounders and mediators, as done in the SCM or potential outcome 
frameworks under precise hypotheses. They rely on different as-
sumptions, including full observability (i.e. all relevant system vari-
ables are measured or recoverable), low-dimensional deterministic 
dynamics and sufficient data coverage of the system's state space.

Invariant causal prediction methods (Peters et al., 2016) exploit 
the assumption of invariance, that is, the cohesion of the direct 
causal effects on a response variable in subpopulations or changing 
environments, to identify and estimate causal structures. It relies on 
common concepts and methods, and helps address challenges such 
as non-linearity (Heinze-Deml et  al.,  2018), unobserved variables 
(Peters et al., 2016) or sequential data (Pfister et al., 2019).

Where continuous geospatial data are available, for example, 
through remote sensing, using information theory in combination 
with causal methods can be useful (Vernham et al., 2023). For in-
stance, temporal pattern analyses were used together with Markov 
models within a sliding window approach to attribute the impacts 
of ecological engineering and climate change on carbon uptake (Li 
et al., 2023).

Bayesian networks offer another promising avenue for ecologi-
cal applications. Bayesian networks, also known as belief networks 
or Bayes nets, are DAGs in which nodes represent random variables 
and edges represent probabilistic dependencies between these vari-
ables (Darwiche, 2008). Bayesian networks can simultaneously in-
tegrate expert knowledge with statistically significant information 
learned from data, handle complex systems with many variables 
and handle missing data, providing a scalable approach to model-
ling high-dimensional data (Borsuk et  al.,  2004). Another advan-
tage is that they can model the effects of interventions (e.g. policy 
changes) on outcomes using ‘do-calculus’, which allows predicting 
the impacts of hypothetical changes, answering what if questions 
and thus supporting counterfactual reasoning. However, Bayes nets 
can be computationally demanding—as the number of variables and 
nodes increases, the complexity of computations for exact inference 
(such as marginalization and updating beliefs) can grow exponen-
tially. A possible solution is either careful pre-selection of variables 
or application of distributed platforms such as DistriBayes (Ding 
et al., 2023). A potentially greater barrier that Bayes nets share with 
many other attribution methods is the inability to integrate feedback 
loops and the reliance on conditional independence assumptions 
that may not hold in all real-world scenarios.

Finally, some methods are not strictly causal in the statistical 
sense but rely on predictability to infer or orientate causal links. The 
Granger causality framework (Granger, 1969) does not directly pro-
vide an attribution in the mechanistic sense but instead tests a pre-
dictive relationship in time series data, that is, whether one variable 
has predictive power over another, not whether X directly causes Y 
in a causal or mechanistic sense. Its utility thus lies in its ability to 
highlight potential causal relationships that warrant further investiga-
tion, often in combination with other methods that are more suited 
for attribution. Its main limitation apart from this is the requirement 
of separability, that is, that the driver variable is independent from 
the response variable. Variants using random forests can deal with 
non-linear (Chen et  al.,  2004; Papagiannopoulou et  al.,  2017) or 
short multivariate time series (Wismüller et al., 2021), while exten-
sions relying on the time-frequency approach aim to identify peri-
odic coupling (Detto et al., 2012) or anomalous events (Shadaydeh 
et al., 2019).

4.1.4  |  Step 4: Evaluation and interpretation

The detection and attribution of directional effects requires assump-
tions. The plausibility and strength of such assumptions should be 
assessed, where possible, using sensitivity techniques. This step is 
key to providing confidence in the significance of the estimated 
effects.

4.1.4.1 | Sensitivity analyses
Sensitivity analysis is about assessing the robustness of the key as-
sumptions behind the effect estimation methods. It evaluates how 
strong unconsidered confounders would have to be to explain away 
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the association, that is, how strong the confounding effect between 
the treatment and outcome would have to be for the association 
between treatment and outcome to be non-causal (VanderWeele & 
Ding,  2017). While the overlap assumption (Table  1) can be tested 
from the observed data, causal sufficiency can only be assessed in-
directly. Testing how the results would be affected if the assumption 
of unconfoundedness is violated can provide confidence or neces-
sary caution in the following interpretations. Various methods have 
been developed since the 1960s (Cornfield et  al.,  1959), including 
bounces for the treatment effect (Rosenbaum, 2010) implemented in 
the rbounds R package (Keele, 2022), but the more recent E-values 
and robustness values, from VanderWeele & Ding (2017) and Cinelli 
et al. (2020) respectively, represent a major step forward by dropping 
strong assumptions about the nature of the unmeasured confound-
ers, providing a clear reporting format to facilitate communication 
and facilitating interpretation considering pre-existing domain 
knowledge (see also Table S1). Ecological applications of sensitivity 
tests include, for example, the Oster method (Dee et al., 2023) and 
the Cinelli method (Andraczek et al., 2024).

Refutation methods test the robustness of the estimate by 
modifying the data and observing how the effect is affected. For 
example, adding an independent random variable as a common 
cause or replacing the data set with a randomly selected subset/
bootstrapped samples should not significantly change the estimated 
effect. However, replacing the true treatment variable or the true 
outcome variable with an independent random variable (or placebo 
treatment and dummy outcome) should drive the estimated effect to 
zero. The R package DoWhy (Blöbaum et al., 2024) allows such tests 
to be performed with convenient functions and documentation.

Finally, partial identification consists of considering different as-
sumptions and constructing confidence sets instead of precise point 
estimates based on possibly unverified assumptions (Tamer, 2010). 
This sensitivity analysis can be seen as a step in uncertainty quan-
tification, where the implausible assumptions are relaxed and the 
causal model estimate is allowed to vary within its logical limits.

4.1.4.2 | ML interpretability methods
When data-driven machine learning approaches are used to predict 
biodiversity patterns, traditional interpretability (explainable AI) 
methods can help to explain how model outputs depend on inputs 
(Moraffah et al., 2020). Such methods can disentangle the relative 
importance or the local contributions of drivers and their interac-
tions. Global model-agnostic methods, e.g. Partial Dependence 
Plots (Friedman,  2001) and Permutation Feature Importance 
(Breiman, 2001; Fisher et al., 2018), can be used to explain the av-
erage behaviour of drivers in the machine learning model. Local in-
terpretability tools, including Local Surrogate models (LIME; Ribeiro 
et al., 2016) and Shapley values (Lundberg & Lee, 2017) can decom-
pose the importance of drivers for individual predictions. Although 
derived from predictive tasks, these measures of driver importance 
are often interpreted as practical model proxies for driver effects 
on a given outcome variable. These techniques were indeed not 
designed for causal inference methods where the objective is to 

estimate a precise effect in an already identified data-generating 
process. However, when applied after careful variable selection 
informed by a causal diagram, confidence in the usefulness of 
these metrics can be increased. More recently, causal interpret-
able models have moved towards a new goal in counterfactual ex-
planations which involve asking ‘what if’ questions (‘what if I had 
taken a different action, would the outcome have been different?’) 
(Guidotti, 2024; Moraffah et al., 2020). As such, counterfactual ex-
planations are particularly valuable as they can provide actionable 
insights, for example, in a conservation management context. This 
emerging set of models and interpretation techniques aims to bridge 
the gap between the importance and partial effect of variables in 
prediction tasks and effect estimation techniques.

5  |  DISCUSSION

Rather than providing a fixed template for model building and pa-
rameter estimation, we have identified a general workflow using a 
selection of key methods and their requirements. The final choice for 
a detection and attribution approach must be made by the researcher, 
as it will depend on the characteristics and amount of data available, 
the objective of the study, the current understanding of the study 
system, the ecological question being addressed and the modelling 
expertise available in the team. This selection can and indeed should 
be a dynamic process, moving back and forth between steps in the 
workflow and testing different methods until proceeding to the 
final analysis. Although it may be tempting to use some of the more 
advanced methods (e.g. causal discovery), they should not be used 
as a black box; results should not be interpreted blindly. Ultimately, 
causal inference and attribution are about improving understanding 
of the system, which includes awareness of model assumptions.

5.1  |  Causal model/DAG, facilitation beyond the 
analysis

Irrespective of the chosen methods and recognizing that this is not 
always strictly necessary, we encourage the construction and com-
munication of a causal model, that is, a DAG. Prior to analysis, causal 
models help to identify confounders, colliders and/or mediators and 
thus aid in selecting an appropriate method for robust analyses. 
A causal model can also aid decisions on data collection, as (con-
founding) variables may be identified that are worth collecting and/
or integrating into monitoring programmes. The sharing of causal 
models could also support (cross-disciplinary) collaborations when 
links towards other disciplines become visible (Dolby, 2021). Once 
published, a formalized DAG makes it easy to follow the authors' as-
sumptions and rationale for including or excluding certain variables. 
It also facilitates the comparison between studies and verification 
that scientific (expert, literature) knowledge has been correctly inte-
grated. However, it is important to note that the development of an 
expert DAG requires extensive knowledge of biological phenomena, 
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while in reality, our understanding is often superficial. This may lead 
to the omission of important links or mediators and thus to errone-
ous conclusions about causality. Moreover, DAGs may appear statis-
tically sound but be fundamentally incorrect, thereby reinforcing our 
erroneous beliefs. Measurement errors, for example, might result 
in misinterpretation and biologically incorrect DAGs. They should 
therefore be used with care and a full understanding of the limita-
tions and caveats inherent in DAGs.

5.2  |  Reporting uncertainty

Due to the complexity of ecological systems, a detection and/or at-
tribution analysis will always involve some degree of uncertainty. 
This is either due to noise and bias, especially in observational data 
(Boyd et al., 2022; Chadwick et al., 2024; Moudrý et al., 2024), due 
to assumptions associated with model development (e.g. building a 
flawed DAG that meets modelling assumptions but may be biologi-
cally incorrect), or those associated with model selection (Copas & 
Eguchi, 2020). The same holds for the spatial and temporal scales 
addressed in the study, as both trends and drivers depend on these 
dimensions (Johnson et al., 2024; Figure  S2). Awareness of uncer-
tainty and scale are key to robust interpretation of the results and 
should, therefore, be clearly stated (Boyd et  al.,  2022; Gonzalez 
et al., 2023; Pescott et al., 2022).

5.3  |  Bias-variance trade-off

When studying causal inference, one might assume that achieving 
an unbiased estimator with minimal variance is the ideal objective. 
This perspective contrasts with machine learning, where model 
selection is often driven by minimizing mean squared error (MSE) 
above all else.

However, in practice, causal inference does not strictly require 
unbiased estimators. In many cases, estimators with some bias but 
a lower MSE may be preferable. For instance, in matching methods, 
the choice of the number of matches directly involves a bias–vari-
ance trade-off (Stuart, 2010). The concept of a useful approximation 
standard where estimates that are predominantly causal and at least 
exceed the likely degree of bias are acceptable is promoted by some 
(see, e.g. Grace,  2024) but controversial. Importantly, they should 
not distract from the optimal goal of moving towards unbiased es-
timates (Siegel & Dee, 2025). Thus, causal inference requires a nu-
anced approach, balancing bias, variance and practical applicability.

5.4  |  To attribute or not to attribute

While causal inference methods offer promising avenues for ecolog-
ical and global change research, they are not always applicable, nor 
are they often the best possible choice among many possible infer-
ence approaches. In addition to the challenges discussed above, the 

complexity of certain phenomena is a major limitation. In real-world 
cases, variables may influence each other (undirected) or mecha-
nisms may involve feedback loops (although there are approaches 
to deal with the latter e.g. Bongers et al., 2016; Wang et al., 2018). 
These two relatively common cases violate the classical assump-
tions of DAGs, limiting the application of these methods. The re-
liance on proxy variables (e.g. use of human population density or 
travel distance to large cities acting as proxies for direct human dis-
turbance/exploitation) and inappropriate resolutions (i.e. driver data 
not matching ecological response scales) further weaken analyses 
of causal relationships. Most importantly, DAGs can become overly 
complicated, making it impractical to test complex causal relation-
ships. Here, again, inspiration ought to be sought from other, equally 
complicated systems in other disciplines, such as public health and 
economics that managed to establish a culture of practicing more 
robust attribution than ecology has so far.

Classical predictive approaches, such as model selection based 
on information criteria, have long been prevalent in ecology and 
frequently used to infer causality. However, increasing awareness 
highlights the limitations of such interpretations, as they can be mis-
leading (Hone & Krebs, 2023). Beyond potential biases arising from 
omitted variables and spurious correlations, a fundamental distinc-
tion exists between statistical and causal inference: while statisti-
cal inference prioritises predictive accuracy, causal inference seeks 
to elucidate the underlying mechanisms driving observed changes. 
As a result, models incorporating all available variables may appear 
superior in terms of predictive performance yet remain misaligned 
with the structural relationships underpinning ecological processes 
(Arif & MacNeil,  2022a). A more rigorous validation framework is 
therefore essential, enabling model selection not merely based on 
predictive power but through explicit comparisons between causal 
inference methods and traditional predictive models applied with-
out causal considerations (see workflow examples in Figure  S3). 
Such comparative analyses underscore the distinct objectives and 
divergent conclusions that emerge when causal attribution method-
ologies are explicitly incorporated into ecological modelling.

Causal inference, by contrast, is grounded in explicitly stated 
assumptions derived from prior knowledge or exploratory data 
analysis. These assumptions frame hypotheses that must be care-
fully formulated to avoid reinforcing pre-existing cognitive or meth-
odological biases. Poorly constructed hypotheses—whether overly 
broad, incorrectly specified or based on flawed premises—can ob-
scure true causal mechanisms and skew inference. While causal in-
ference methodologies rigorously define and test hypotheses about 
causality, they ultimately rely on classical statistical techniques for 
effect estimation. Consequently, their validity is contingent on both 
the robustness of the underlying assumptions and the appropri-
ateness of the chosen methodological framework. Different causal 
inference approaches—such as Granger causality, convergent cross-
mapping (CCM) and other prediction-based techniques—embed dis-
tinct conceptualizations of causality, which may not always align 
with the specific demands of a given research question (McCracken 
& Weigel, 2014). Therefore, results must be critically interpreted 
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within the context of the methodological definition of causality 
employed.

Simpler but well-designed correlative models may thus be a 
better choice, for instance, as a first step to understand a system 
when little is already known (Currie, 2019; Nilsen et al., 2020). Such 
models create a first layer of scientific evidence of causal links in a 
system, including possible interactions of variables, which can then 
strengthen causal discovery or inference approaches as the data and 
knowledge grow. Correlative models may also be easier to interpret 
while providing similar results. For instance, propensity score match-
ing may produce the same results as multiple regression in many, 
but not all, circumstances. Local experiments can further support 
intuitions where feasible. For more complex processes occurring 
on larger, less manageable scales, mechanistic models can comple-
ment correlative understanding by testing ecological processes in 
silico. Testing multiple causal inference models can offer additional 
support.

In conclusion, a comprehensive causal understanding of ecolog-
ical systems requires both rigorous data analysis methodologies and 
a robust mechanistic framework (Grace, 2024). These components 
collectively enhance causal attribution, where simpler analytical 
approaches serve as foundational tools for refining complex causal 
models, revealing previously overlooked interactions and improving 
inference precision (Goldberg, 2019; Shipley, 2016). By integrating 
mechanistic insights with advanced statistical techniques, research-
ers can more effectively disentangle direct and indirect ecological 
drivers, thereby advancing predictive and explanatory capacities in 
ecological research.

6  |  PERSPEC TIVE/OUTLOOK

6.1  |  A call for cross-disciplinary collaboration and 
method transfer

Some attribution methods, such as SEMs, are already well estab-
lished in ecology, while others have great potential but are not yet 
routinely used in ecological studies (e.g. CCM). The focus of causal 
discovery research on high-dimensional and mixed data types is par-
ticularly promising for biodiversity data studies.

As many of these methods originate from other research fields 
characterized by different types and quality of data, future studies 
should test and compare these methods using simulated data repre-
senting hypothetical mechanisms under different ecological scenar-
ios of change and/or in situ data from well-studied and understood 
systems. This will allow us to assess their ability to capture causal 
relationships, their robustness to missing variables and noise in the 
data, and their data requirements in terms of resolution, coverage 
and sample size. Crucially, we want to encourage curiosity about 
methods developed in other disciplines, and collaboration between 
experts in ecological data and systems and experts in attribution and 
detection methods.

6.2  |  Better (rather than more) data for 
detection and attribution

We have firmly entered the era of big data in ecology, as evidenced 
by the rise of semi-automated methods such as bioacoustics, camera 
trapping, eDNA and remote sensing, which will undoubtedly lead 
to even greater availability of ecological data in the future. But, as 
highlighted above, driver data at sufficient spatio-temporal resolu-
tion are lacking and are often a bottleneck for attribution studies, 
and biodiversity data gaps continue to limit the detection of change. 
We therefore need better, not necessarily more, data for detection 
and attribution. An easy win would be better collection, sharing and 
inclusion of metadata (e.g. eBird has fostered more detailed meta-
data collection than many other citizen science programs outside of 
structured schemes), including change over time and the collection of 
‘co-located data’ on drivers and biodiversity (including individual at-
tributes such as traits) at the same sampling locations. Constructing 
a DAG can help to identify limitations of the dataset/analysis and 
may also indicate where sampling efforts/monitoring could be in-
creased to collect the right variables and improve the model (Arif & 
MacNeil, 2022a).

6.3  |  Linking causal and predictive frameworks

Predictive frameworks such as scenario models and digital twins are 
often process-based but currently lack the integration of statistical 
causal frameworks. This is unfortunate for several reasons. First, 
embedding causal models into predictive frameworks can help en-
hance our understanding of underlying causal mechanisms and thus 
reduce uncertainty around predictions of future states. Second, in-
corporating causal models in predictive frameworks helps to under-
stand how different variables influence outcomes, providing a more 
robust basis for applying possible interventions in specific contexts 
(e.g. predicting the impacts of policy intervention on future biodiver-
sity gains). By knowing not only what might happen, but also why, 
optimal strategies can be tailored to address root causes rather than 
symptoms. Finally, predictive models that incorporate causal frame-
works can better anticipate unintended consequences and identify 
leverage points for interventions before consequences are realized, 
resulting in more robust and resilient management approaches. 
Better integration of attribution approaches with predictive ones will 
lead to more accurate predictions, better decision-making and a more 
comprehensive understanding of ecological dynamics and human 
impacts. A range of causal predictive approaches are emerging, in-
cluding causal forests and metalearner algorithms (see Section 5.3.6 
(Künzel et al., 2019)), that offer promise to tackle these challenges.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Example illustrating the scale dependence of the direction 
of causality considering covariates (grey) interacting with a driver 
(green, the target of the causal effect estimation) and/or biodiversity 
response (blue).
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Figure S2. When building causal models, cycles can prevent the 
identification of a DAG.
Figure S3. Illustration of the realisation of the attribution workflow 
steps identified in Figure  1 by example studies in the field of 
biodiversity/ecology.
Table S1. Non-exhaustive overview of programming resources and 
technical and non-technical entry points to the attribution methods 
discussed in Section 3.
Table S2. Semi-quantitative data informing diagrams in Figure 1.
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