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Abstract
Physical models have long been employed for groundwater level (GWL) prediction. Recently, artificial intelligence (AI), 
particularly neural networks (NNs), has gained widespread use in forecasting GWL. Forecasting of GWL is essential to 
enable the analysis, quantifying, and management of groundwater. This systematic review investigates the application 
of NNs for GWL prediction, focusing on the architectures of the various NN models employed. The study utilizes the 
Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology to screen and synthesize 
relevant scientific articles. Various NN architectures, such as artificial neural networks (ANNs), feedforward neural networks 
(FFNNs), backpropagation neural networks (BPNNs), long short-term memory (LSTM), and hybrid models, were analyzed. 
The results from the systematic review indicate a growing preference for hybrid models, which effectively capture hidden 
relationships between GWL and environmental factors. The root mean square error (RMSE) emerges as the predominant 
performance metric, highlighting its significance in evaluating NNs. Results from the review also highlight the signifi-
cance of comprehensive, long-term datasets covering a decade for robust trend analyses and accurate predictions. The 
findings contribute to a deeper understanding of new trends in groundwater research such as the application of neural 
networks for prediction problems in groundwater research. In conclusion, a hybrid metaheuristic algorithm produced 
more efficient results emphasizing their efficacy. In addition, lagged values were essential input for GWL prediction. The 
paper addressed both technical nuances and broader environmental implications.

Article Highlights

•	 Neural networks help predict groundwater levels, with hybrid models improving accuracy.
•	 Long-term data (10 + years) is essential for reliable groundwater level forecasting.
•	 Data quality, preprocessing techniques, and optimal hyperparameter selection improves prediction accuracy.
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1  Introduction

Assessing and analyzing groundwater level (GWL) variations in aquifers is essential for the effective management and 
quantification of groundwater resources [1]. It allows for informed decision-making in managing groundwater resources, 
helping to prevent over-exploitation or depletion. Groundwater is depleted due to various human activities. These 
activities encompass a wide range of practices, including industrial processes, urbanization, and agricultural practices. 
Insufficient research on the consequences of various human activities such as heightened irrigation on groundwater has 
necessitated a renewed interest in understanding the dynamic nature of groundwater [2].

Groundwater, a critical global water source, is becoming more vulnerable to overexploitation. In recent times, there has 
been a rise in the excessive withdrawal of groundwater, resulting in the overuse of this vital resource [3]. The escalating 
demand for water in developing countries, driven by rapid population growth and intensified irrigated agriculture, has 
led to a surge in groundwater extraction [4]. [5] demonstrated the impact of climate variations in Iran, revealing a decline 
in groundwater levels (GWL). This has led to a significant deterioration in groundwater systems [6]. Therefore, precise 
quantification and effective management become imperative to ensure sustainable water usage and conservation of 
this vital resource for present and future generations. Accurate modeling and prediction of groundwater behavior offer 
valuable insights into the dynamics of underground aquifers [7]. This knowledge is essential for optimizing extraction 
strategies, preventing overexploitation, and ensuring a sustainable water supply for various purposes [8].

In groundwater level (GWL) prediction, two primary methods are explored: the use of physical models and data-driven 
models [9]. Both approaches face limitations that affect their applicability and accuracy. Physical models encounter 
challenges such as insufficient data, susceptibility to uncertainties including random and systematic errors, and the 
need for fine-tuning through trial and error [10–12]. The presence of inadequate data introduces uncertainties in model 
parameterization, hindering the accurate representation of hydrogeological characteristics and generalization [13]. Con-
versely, having ample high-quality data enables detailed and accurate model development. Comprehensive datasets 
on groundwater levels, water quality, and geological properties enhance the calibration process, resulting in a more 
reliable representation of the aquifer [11].

In contrast, data-driven models like machine learning excel in handling complex relationships and sparse data, pro-
viding accurate predictions without a deep understanding of the physical processes [14]. While they may lack interpret-
ability [15] compared to physical models, these approaches offer valuable insights in situations where traditional physical 
models face challenges due to data limitations [16]. Machine learning models are easy to use, and most researchers are 
employing them in groundwater modeling [1]. Recently, there has been an upsurge in the use of data-driven models 
with different algorithms in predicting groundwater levels [9, 17].

Machine learning has also been widely used in other hydrological applications, such as flood forecasting, where 
models like Least Squares Support Vector Machines (LSSVM) have been applied to predict rapid water level variations 
[18]. These models are particularly useful in capturing nonlinear hydrological changes, making them valuable for dis-
aster risk management and real-time monitoring. The growing success of ML in these areas has strengthened its role in 
groundwater studies as well.

[19] reported the use of several data-driven techniques for forecasting groundwater levels. It was found that the 
Adaptive Neuro-Fuzzy Inference System (ANFIS) using the bell membership function successfully predicted GWL levels 
for 1-month and 2-month periods, achieving a Coefficient of Determination (R2) of 0.95 and 0.93, respectively. Similarly, 
[20] utilized Artificial Neural Networks (ANNs) to predict groundwater levels using total monthly evaporation, average 
temperature, aquifer recharge, and discharge as inputs. Results showed that ANN models demonstrated acceptable 
performance in GWL forecasting.

Additionally, data decomposition techniques such as Empirical Mode Decomposition (EEMD) and Double Ensemble 
Empirical Mode Decomposition (DEEMD) have been introduced to enhance ML-based hydrological modeling [21]. These 
methods help filter noise and extract meaningful patterns from groundwater datasets, improving prediction accuracy, 
especially when dealing with large, complex datasets.

Neural networks have been successful in accurately predicting GWL. [22] demonstrated that a Feed Forward Neural 
Network model trained with Levenberg–Marquardt (LM) algorithm accurately predicted groundwater fluctuation at Tikri 
Kalan well, India. Moreover, [23] compared the performance of Multilayer Regression and ANN in predicting groundwater 
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level. It was observed that the ANN models showed a better agreement between the observed and predicted groundwa-
ter levels. Neural networks are cost-effective since they need fewer data and less human interference to produce better 
results. [24] Reported on how neural networks can capture the spatiotemporal behavior of complex dynamic systems 
with less computational time. ANN one of the most used neural networks for predicting groundwater level, is capable 
of efficiently representing non-linear systems [25]. Neural networks may handle complex problems because they can 
learn and generalize from sufficient data [26], making them capable of revealing hidden patterns from limited data.

Neural networks, like any other machine learning algorithm, have their constraints, including drawbacks like overtrain-
ing, limited generalizability, the potential risk of incorporating unrelated data, and the possibility of incorrect modeling 
through inappropriate methods [1]. Given the growing enthusiasm for applying Artificial Intelligence (AI) models to 
groundwater-related studies, numerous review papers have emerged, extensively exploring their potential and applica-
tions within this domain, for example, for hydrological modeling [27], GWL modeling [28], and groundwater flow [29]. 
However, to the best knowledge of the authors, there is not yet a systematic review paper evaluating the application of 
neural network methods in GWL modeling and forecasting.

This study, therefore, seeks to systematically review publications that have utilized neural networks for the predic-
tion of groundwater levels. The primary focus is on the evolution of neural networks and the model configuration 
which can lead to an optimal level of model performance and consideration of variables exhibiting robust correlation 
with groundwater level, thereby guiding us in the judicious selection of those variables to be incorporated into future 
modeling framework.

2 � Systematic review methodology

A meticulous systematic review was conducted to ensure a comprehensive exploration of groundwater level prediction 
studies using neural networks. The literature search was executed on July 1, 2023, using a refined search string tailored 
to capture the most relevant studies (as shown in Table 1). Given the inherent limitations of individual databases, a multi-
database approach was employed to minimize the risk of overlooking important research. To strengthen the credibility 
of the review, a robust framework was adopted, guided by the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) [30] PRISMA was instrumental in identifying the key stages of the systematic review process, 
ensuring transparency and rigor.

The search targeted English-language journal articles across major electronic databases, including Scopus, Science 
Direct, and Google Scholar. A total of 452 articles were initially retrieved, with their distribution across databases detailed 
in Table 2.

Screening process
Following the initial retrieval, a rigorous screening process was implemented to refine the selection of studies. 

This process involved the removal of duplicate articles, review papers, technical reports, books, and conference 

Table 1   Search query string

Search query

TITLE-ABS-KEY (("neural network" AND "groundwater level")) AND (LIMIT-TO (EXACTKEYWORD, "Neural Networks") OR LIMIT-TO (EXACT-
KEYWORD, "Forecasting") OR LIMIT-TO (EXACTKEYWORD, "Groundwater Level") OR LIMIT-TO (EXACTKEYWORD, "Machine Learning") 
OR LIMIT-TO (EXACTKEYWORD, "Groundwater Resources")) AND ( LIMIT-TO (SRCTYPE, "j")) AND (LIMIT-TO (LANGUAGE, "English")) AND 
(LIMIT-TO ( DOCTYPE, "ar"))

Table 2   Databases and the 
number of items identified 
from the databases

Database Number 
of articles

SCOPUS 300
Science Direct 108
Google scholar 44
Total 452



Vol:.(1234567890)

Review	  
Discover Applied Sciences           (2025) 7:942  | https://doi.org/10.1007/s42452-025-06817-5

proceedings to ensure that the review focused on primary research studies. Eliminating non-relevant sources helped 
provide a more concentrated and meaningful synthesis of groundwater level prediction models.

To ensure consistency and accuracy in the screening process, all retrieved articles from the different databases 
were exported into an Excel sheet. The datasets were then merged, and duplicate entries were systematically removed 
directly in Excel. This structured approach facilitated efficient data management before applying the inclusion and 
exclusion criteria. After this preliminary screening, 272 publications remained for further evaluation.

Each of the remaining articles was then assessed independently by three expert reviewers to determine their rel-
evance to the research objectives. Studies were meticulously reviewed against predefined inclusion and exclusion 
criteria. The reviewers resolved any disagreements through discussion and consensus, ensuring that only the most 
relevant studies were retained. At the end of the screening process, 187 studies were included in the final analysis. 
A flow diagram illustrating the entire screening process is presented in Fig. 1, detailing the identification, screening, 
eligibility assessment, and final selection stages.

Inclusion and exclusion criteria
To ensure that only the most relevant and high-quality studies were included in the systematic review, strict inclu-

sion and exclusion criteria were applied.
Inclusion criteria:

•	 Peer-reviewed journal articles focusing on groundwater level prediction using neural networks.
•	 Articles that present original research findings.
•	 Studies that provided empirical results with clear evaluation metrics.
•	 Research conducted within the past two decades to ensure relevance to modern modeling approaches.
•	 Articles published in English to maintain consistency in interpretation and analysis.

Exclusion criteria:

•	 Review articles, book chapters, conference proceedings, and technical reports.
•	 Articles that do not focus on the application of neural networks for groundwater level prediction.
•	 Studies without sufficient methodological details or validation of their predictive models.
•	 Articles with limited access to full-text content.
•	 Publications that are not written in English.

Fig. 1   Systematic flowchart 
for the data screening
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3 � Results

In this section, we outlined significant findings derived from the examination of the 187 papers under review. These 
findings encompass diverse elements, such as the progression of neural networks in groundwater level prediction, the 
most employed input variables, and validation metrics in reviewed studies. Our review further encompasses an in-depth 
analysis of performance metrics predominantly employed for evaluating the effectiveness of the neural network model. 
Our scrutiny also extends to various facets of neural networks, including the scope and quality of datasets employed 
for model development.

3.1 � Publication distribution

In the years covered by the review, we observed an expansion in the volume of scholarly articles dedicated to the uti-
lization of neural network techniques for forecasting changes in groundwater levels (GWL). Figure 2 shows the yearly 
distribution of publications on neural network techniques for forecasting changes in groundwater levels (GWL). It was 
observed that the publications span between the year 2000 to 2023, with the highest percentage of published papers 
occurring in the year 2022 (14.87%) with 2001, 2005, and 2007 having the least published papers of 0.51%. Furthermore, 
no papers for review were published in the years 2002, 2003, and 2004 per the extracted articles. Overall, an increase is 
observed in the number of papers in recent years.

3.2 � Geographic distribution

The geographic distribution of papers is illustrated in Fig. 3 spans 26 countries. Iran (26.92%), India (17.69%), China 
(15.38%), and the United States (7.69%) were the top four countries that contributed the highest number of publications 
constituting about 76.68%. The remaining 22 countries contributed varying percentages of publications totaling 32.32%. 
Korea, accounted for 5.38%, Bangladesh and Japan each contributed 3.08%, while Germany and Taiwan had 2.31% each. 
Italy, Malaysia, South Africa, and Turkey each represented 1.54%. Australia, Azerbaijan, Burkina Faso, Canada, Denmark, 
France, Greece, Indonesia, Kuwait, Luxembourg, Nigeria, Pakistan, and Tunisia each contributed 0.77%.

3.3 � Artificial neural network (ANN) algorithms for GWL prediction

Artificial neural networks are a class of machine learning (ML) that mimics how the neurons of the brain process 
information [31]. Artificial Neural networks possess great strength as models that can reveal hidden representations 

Fig. 2   Yearly trends of publication of neural network algorithms used in groundwater prediction
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from vast and intricate datasets, a task that might take human expertise a longer time to accomplish [32]. Artificial 
neural networks can be used to find the relationship between nonlinear input features [33]. The application of Arti-
ficial neural networks for GWL prediction has undergone a transformative evolution. Beyond traditional feedforward 
networks, the field of machine learning encompasses various other types of neural networks, each tailored to specific 
tasks [34] and several of them have been used for GWL prediction.

The study revealed a host of widely used ANNs such as back-propagation neural network (BPNN), feed-forward 
neural network (FFNN), long short-term memory (LSTM), and hybrid model were used for GWL prediction as shown 
in Table 3.

3.4 � Artificial neural network (ANN) models

In the early twentieth century, the conceptualization of artificial neural networks (ANN), inspired by the human brain 
[86], marked a significant milestone. Comprising interconnected nodes organized into layers, ANNs learn complex 
patterns through weighted connections and activation functions, enabling applications in varying tasks [87].

Figure 4a shows the general architecture of an artificial neural network (ANN). ANN models typically comprise 
three or more interconnected layers: the input layer, hidden layer(s), and the output layer. The input layer receives 
features into the model, and the subsequent extraction of hidden patterns is a crucial phase facilitated by the hidden 
layer [60]. The output layer represents the processed output data, where this could be a binary value or continuous 
value depending on the activation function. Neurons within layers perform a weighted sum of inputs, passing the 
result through an activation function to introduce non-linearity [88].

During model training, weights (w) and biases (b) are adapted based on the input (x), and an activation function 
is applied to the model to produce an output (y). This helps minimize the difference between predicted and actual 
outputs, improving the model’s accuracy. Figure 4b provides an illustration of how the weights and biases adapt 
during the training of a model. The optimization process, driven by algorithms like Gradient Descent [89], updates 
these parameters.

Fig. 3   Geographic distribution 
on neural network for GWL

Table 3   Summary of some 
selected studies on types of 
ANNs

ANNs References

FFNN [20, 22, 23, 35–56]
BPNN [11, 20, 28, 57–63]
LSTM [49, 50, 64–68]
Hybrid [5, 69–85]
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3.4.1 � Feed‑forward neural network (FFNN)

A Feedforward Neural Network (FFNN) or multilayer perceptron neurons (MLPs), as outlined by [87] and [55], represents 
a neural network architecture wherein information flows unidirectionally from the input layer to hidden layer(s) and 
subsequently to the output layer. The absence of feedback into the network after reaching the output node character-
izes this model, and its depth is determined by the number of layers, as depicted in Fig. 4a.

FFNN using the Levenberg Marquardt (LM) algorithm was used to model GWL for a short term in Andhra Pradesh, 
India. The model was calibrated using lag values and current values. Using various correlation analyses, the input was 
selected. Using the trial and error method the number of neurons was chosen. The author noticed that FFNN accurately 
simulated GWL for a short term [48].

[23] compared the predictive performance of Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) 
techniques in forecasting transient water levels across 17 sites in Japanese groundwater basins. The study incorporated 
various input variables, including seasonal factors and lagged environmental parameters. Results indicate that ANN 
models outperform MLR models in predicting spatio-temporal groundwater levels, as evidenced by statistical metrics.

Numerous investigations have explored the capability of Artificial Neural Networks (ANNs) in forecasting Groundwater 
Levels (GWL) across various locations. For instance, studies conducted by [56] and [39] demonstrate the effectiveness 
of these networks in predicting GWL. The latter investigated spatial nonlinearity in groundwater depletion, proposing 
the utilization of ANNs to discern water table patterns, showcasing diverse severities over time and space. ANNs decode 
complexities, facilitating accurate forecasting and precise water resource management.

The ANN model designed by [36], using a single-layer architecture and LM algorithm for training, incorporates a linear 
function in the hidden layer to forecast groundwater levels. Input parameters for the model include groundwater extrac-
tion, surface water supply, temperature, rainfall, and initial groundwater level. The efficacy of the ANN model in predicting 
groundwater levels demonstrates its potential as a valuable decision-making support system in research endeavors.

The evolution of groundwater level prediction methodologies through artificial neural networks (ANN) has seen 
a continuum of research, each study building upon the insights and methodologies of its predecessors. Initiating 
this progression, [40] laid the foundation by employing the Levenberg–Marquardt algorithm and emphasizing key 
predictive variables like monthly total precipitation, stream flow, temperature, evaporation, and groundwater level 
(GWL). This approach set a precedent for subsequent studies, inspiring investigations like [43] focusing on monthly 

Fig. 4   a General architecture 
of an artificial neural network. 
b Activation function of an 
artificial neural network
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GWL prediction with an extended set of input variables, achieving notable model performance with a coefficient of 
determination (R2) score ranging from 0.92 to 0.97.

[45] underscored the effectiveness of the LM algorithm in predicting GWL at specific well locations. Their emphasis 
on variables such as precipitation, temperature, evaporation, discharge, and recharge marked a transition toward a 
more location-specific approach. [55] further advanced the field by examining a Feedforward Neural Network (FFNN) 
with LM, achieving a commendable R2 of 0.93 and emphasizing variables like rainfall, temperature, evaporation, and 
relative humidity. [22] reported the use of the LM algorithm, achieving notable R2 values for both training and testing.

[50] selection of the FFNN model and consideration of lagged parameters demonstrated a refinement in model 
selection and input variable optimization. [37] expanded the scope by modeling groundwater level variations using 
ANN with streamflow and accumulated rainfall, showcasing the integration of additional hydrological factors. Also, 
[90] brought attention to the importance of higher-resolution daily data for better prediction accuracies, introducing 
a finer temporal granularity into the modeling process. [42] exploration of climate change impacts and the incor-
poration of wavelet transform denoising showcased a shift towards addressing broader environmental contexts.

The quest for optimal input combinations, highlighted by [35], emphasized the importance of predicting monthly 
GWL for up to 4 months while employing constrained input variable selection. However, this study also identified 
challenges associated with increasing lag time. In addressing these challenges, [44] strategically focused on optimiz-
ing ANN architectures. Specifically, they opted for a streamlined approach by utilizing a single hidden layer with 24 
neurons, complemented by a tangent sigmoid activation function. This deliberate configuration signals a nuanced 
exploration of neural network settings tailored to the intricacies of groundwater level forecasting. The choice of a 
single hidden layer with a specific number of neurons and activation function reflects a careful consideration of 
model simplicity and effectiveness.

[46] evaluated the short-term predictive performance of Multilayer Perceptron (MLP), achieving optimal outcomes 
through a composite input set. The most effective combination included the groundwater level from the previous month, 
current temperature, evapotranspiration, present precipitation, and precipitation from the preceding month. Similarly, 
[52] utilized FFNN to predict monthly GWL in Iran, from the period 2021–2040 based on the sixth Intergovernmental 
Panel on Climate Change (IPCC) report emission scenarios. Input variables included monthly temperature, precipitation, 
and the water table of the previous month from 2000 to 2019. Data were divided into training, validation, and testing 
sets, with an optimal hidden layer having 8 neurons determined through trial and error. The results suggest an increasing 
trend in groundwater depth, indicating improvement, while all piezometers project a gradual decrease in groundwater 
depth over the next two decades due to climate change.

The study [41] analyzed changes in groundwater levels in villages in Jaipur district, India. Utilizing eight years 
(2012–2019) of groundwater data. ANN model was used in the accurate prediction of groundwater level. The model 
achieved a high R2 value by modeling spatiotemporal variation of GWL using various ANN models with different com-
binations of hidden neurons and layers. Results highlighted the superior accuracy of the ANN model in describing 
groundwater levels. The projections for 2023–2024 indicated no significant rise in water level (> 4.0 m), but a drop of 
more than 6.0 m.

The research by [38] investigated the comparative performance of ANNs and support vector machines (SVMs) in pre-
dicting transient groundwater levels within a complex system, accounting for variable pumping and weather conditions. 
Multiple prediction horizons, ranging from daily to bimonthly intervals, were considered. Despite generally similar mod-
eling performance between ANNs and SVMs in terms of prediction accuracy and generalization, the study reveals nota-
ble differences. Particularly, ANNs exhibit challenges, especially for longer prediction horizons with limited data events 
for model development. Additionally, the study emphasizes the consistency between the training and testing phases 
in SVM models compared to ANNs. The relative error of mean square error in the ANN model significantly increases, 
approximately seven times higher during the testing phase compared to the training phase, indicating potential limita-
tions in the generalization ability of ANNs, especially in conditions with fewer data points available for model training.

[54] implemented a three-layered Artificial Neural Network (ANN) optimized through the Levenberg–Marquardt (LM) 
algorithm for predicting GWL. By integrating diverse meteorological variables and lag-time inputs, this ANN model 
exhibited impressive accuracy, particularly excelling in forecasting GWL one month ahead. Complementing this, [36] 
conducted an in-depth examination of GWL simulation utilizing a Multilayer Perceptron (MLP) model. With a structured 
5-60-1 configuration, featuring a hidden layer with 60 neurons generated randomly until reaching the mean square error 
threshold, their model consistently achieved an R2 exceeding 0.80 for all well locations. The accuracy assessment span-
ning from 2008 to 2018 underscored the model’s high proficiency in predicting GWL, affirming its success in forecasting 
groundwater levels within each well location.
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[47] investigated the impact of six input variables on GWL using an ANN. A trial-and-error approach was employed 
for layer selection, and the LM algorithm was utilized. Results indicated that in urban areas, GWL is primarily influenced 
by river stage changes, while rural areas are affected by ground permeability. The study introduced the moving average 
as a beneficial component, underscoring the importance of identifying site-specific factors for accurate GWL prediction 
using ANN. The length of training data impact was found to be less significant. Incorporating the river stage and mov-
ing average into the ANN input significantly improved prediction performance in urban and rural areas, respectively.

[51] employed an MLP model to predict the impacts of climate change on the groundwater level (GWL) in the Mashhad 
aquifer, Iran. Climatic variables were derived from the ACCESS-CM2 model, operating under the Shared Socio-economic 
Pathways (SSPs) 5–8.5 scenario. The model was trained using historical data spanning the period from 1992 to 2021 to 
discern patterns between climate changes and GWL. During the model configuration, the determination of the suitable 
number of hidden layers was achieved through a trial-and-error approach. Subsequently, the MLP model was utilized 
to forecast GWL fluctuations under climate change conditions for the future period of 2022–2064. The observations 
indicate a projected decrease in GWL attributable to long-term alterations in weather patterns. This comprehensive 
analysis establishes a coherent framework for understanding the anticipated impacts of climate change on groundwater 
dynamics in the Mashhad aquifer.

3.4.2 � Back propagation neural network (BPNN)

Backpropagation is an algorithm employed in the training of artificial neural networks. It entails adjusting the connection 
weights based on the difference between predicted and actual outputs, fostering the network’s learning and performance 
improvement over iterations. Within the context of modeling and forecasting, Backpropagation Neural Networks (BPNN), 
as described by [91], prove to be a powerful tool, iteratively propagating errors from the output layer to the hidden layer 
and, ultimately, to the input layer. Figure 4a shows how errors between predicted and actual values are sent back into 
the model for weights to be adjusted.

Researchers like [60] delve into the robustness of BPNN for monthly GWL predictions, employing a three-layered archi-
tecture with a backpropagation algorithm and emphasizing the importance of input variables such as air temperature, 
rainfall, and GWL. Moreover [45] adopted a comprehensive input selection approach by considering various variables 
such as total monthly evaporation, mean temperature, aquifer recharge, discharge, and the water table from the previous 
month. They utilized an ANN with a backpropagation algorithm for predicting GWL, achieving a Pearson’s Correlation 
Coefficient (R) value of 0.76. The findings indicated a notable and swift decline in GWL.

A time series model was developed by [63] to predict GWL fluctuations, with a specific focus on evaluating the per-
formance of an ANN. The ANN trained using a backpropagation algorithm, demonstrated satisfactory performance 
within the range of input variables covered by the dataset from a coastal aquifer in Jeju Island, South Korea. However, 
outside this range, the ANN exhibited abnormal prediction results, marked by oscillations. This underscores the signifi-
cance of incorporating a diverse set of input and output variables in the model building. [57] explored the application 
BPNN with three distinct input parameters. Cross-correlation analysis was conducted to identify the most effective input 
parameters. Three scenarios, each involving a different input combination, were examined, and the performance of the 
proposed models in predicting groundwater levels was assessed. The input combination incorporating a 1-day rainfall 
delay demonstrated optimal performance during both the training and testing stages.

[58] investigated preprocessing techniques and how their influence on prediction accuracy provides valuable insights 
into data preparation methodologies. This research focused on the diminishing groundwater levels, employing a machine 
learning-based approach. Through the utilization of singular spectrum analysis (SSA), mutual information theory (MI), 
genetic algorithm (GA), and an ANN based on the backpropagation algorithm, the approach effectively predicted 
monthly fluctuations in GWL. The integration of data pre-processing techniques significantly improves prediction accu-
racy (R > 85%), particularly benefiting 66% of the monitored wells.

[59] employed a feed-forward backpropagation neural network (FFBPNN) for predicting groundwater level (GL) in the 
next hour, incorporating previous precipitation data to capture short-term temporal dynamics. The study focused on GL 
and groundwater level fluctuation (GLF) as output variables, with GLF showing greater accuracy in prediction. The model 
was tested in the landslide-prone area downstream of Wu-She Reservoir, Taiwan, using data from the Sinlaku and Jangmi 
typhoons. Results indicated that GLF prediction yielded a smaller root-mean-square error compared to GL prediction, 
suggesting its superiority in capturing real-time fluctuations. [62] research aimed to estimate groundwater levels using 
innovative modeling methods. The study implemented two distinct soft computing techniques, a multilayer perceptron 
neural network (MLPNN) and an M5 model tree (M5-MT), to analyze monthly groundwater levels in a shallow unconfined 
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coastal aquifer near Ganjimatta, India. Utilizing data from observation wells spanning 1996 to 2006, [62] incorporated 
input parameters such as monthly rainfall, mean temperature, and historical groundwater level observations. Through 
a series of trial and error stages, the efficiency of each model was assessed. Ultimately, the M5-MT model emerged as 
more adept at accurately estimating groundwater fluctuations.

[84] also recognized the complexity of the relationship between GWL and influencing factors. They successfully utilized 
a BPNN to discern the nonlinear nature of this relationship, achieving low root mean square error (RMSE) values of 0.25 
for training and 0.41 for testing. This study further demonstrated the ability of BPNNs to capture the intricate temporal 
patterns associated with GWL prediction. [61] explored the versatility of different backpropagation variants by employ-
ing the Levenberg–Marquardt algorithm within a BPNN framework for GWL prediction. By utilizing this algorithm, the 
study showcased the potential of different optimization techniques in enhancing the accuracy of GWL forecasts. This 
highlights the importance of selecting appropriate training algorithms when developing BPNN models for GWL predic-
tion. Also [11] contributed to the body of research by utilizing a backpropagation neural network for GWL prediction in 
Hebei Province, China. Their study reflected the widespread use of this approach across diverse geographical contexts, 
reinforcing the efficacy of BPNN models in capturing the temporal dynamics of GWL fluctuations.

3.4.3 � Long short‑term memory (LSTM) models

Long Short-Term Memory (LSTM), a type of ANN, was designed to overcome the problem of vanishing gradients seen in 
traditional sequential models [92]. [93] introduced a method to address long-term dependencies in sequential data. The 
key elements of LSTM are the memory cell (Ct) and three gates: input gate (it), forget gate (ft), and output gate (ot) ([93].

Input gate(it) determines which information from the current input is relevant to store in the cell state. The formula 
for computing the input gate (it) is given as follows:

where: � is the sigmoid function, Wix and Wih are weight matrices, xt is the input at time t, ht−1 is the previous hidden state, 
and ​ bi is the bias.

Next is the forget gate (ft) which decides which information from the cell state should be forgotten.

where: � is the sigmoid function, Wfx and Wfh are weight matrices, xt is the input at time t, ht−1 is the previous hidden 
state, and ​ bf  is the bias.

Output gate determines the next hidden state based on the current input and memory cell.

where: � is the sigmoid function, Wox and Woh are weight matrices, xt is the input at time t, ht−1 is the previous hidden 
state, and ​ bo is the bias. The formula for computing the new hidden state generated by the output gate (ot) is expressed 
as follows:

Input gate (it), forget gate (ft), and output gate (ot) all have output values ranging between 0 and 1 [94]. Figure 5 rep-
resents the architecture of a Long Short-Term Memory (LSTM) model.

[69] applied an LSTM model to predict GWL. The application of a standalone Long Short-Term Memory (LSTM) model 
exhibited limitations when confronted with limited data for each series. The inherent challenge arises from LSTM strug-
gling to effectively capture comprehensive patterns from individual datasets when data availability is constrained.

[64] explored the use of LSTM, an NNs model, for daily GWL prediction. The LSTM model is trained with selected 
predictors identified through partial mutual information (PMI) analysis, considering teleconnection patterns. The study 
includes a case study with two wells in different climate zones, where the LSTM model performs better in humid areas 
than in arid areas. This observation underscores the significance of considering climatic variations when implementing 
predictive models for groundwater levels, Also, [49] reported the LSTM for daily GWL The hypermeters for this model 
were optimized using two surrogate model-based algorithms that are the radial basis functions (RBFs) and the Gauss-
ian process (GP) and a random sampling method. The model was trained on daily GWL, streamflow, precipitation, and 

(1)it = �
(
Wix ⋅ xt +Wih ⋅ ht−1 + bi

)

(2)ft = �
(
Wfx ⋅ xt +Wfh ⋅ ht−1 + bf

)

(3)ot = �
(
Wox ⋅ xt +Woh ⋅ ht−1 + bo

)

(4)ht = ot ⋅ tanh tanh
(
Ct

)
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ambient temperature. It was observed that with the right hypermeter optimization method models can learn to make 
accurate forecasts.

[68] Reported the use of LSTM for groundwater level forecasting Two instances were considered here the sequence-
to-value(seq2val) and sequence-to-sequence(seq2seq) forecasting scenarios. It was observed that LSTM performed 
poorly for both scenarios, but including past GWL as inputs strongly improves its forecast accuracy. However, LSTM 
might perform well with a larger dataset. Similarly, [95] utilized LSTM to predict GWL changes, aiming to identify the 
factors influencing these changes across five distinct zones. The model demonstrated improved performance during 
validation, particularly in regions marked by groundwater withdrawal. Training and validation were conducted using 
a dataset covering the period from 2003 to 2018, with the model achieving an NSE greater than 0.76 in each zone. The 
accuracy of the model hinges on both the quality and quantity of the training data.

[9] demonstrated the superiority of using LSTM for GWL prediction in Victoria, Australia. Using a dataset from the 
period April 2002–June 2017. The dataset was divided into 60% for training, 20% for validation, and 20% for prediction. 
The model performed well due to its ability to efficiently capture groundwater characteristics of the region and relate 
with historical information by learning long-term dependencies. Also, [65] employed LSTM to forecast GWL in the lower 
Tarim Basin. The model was developed using input data such as s relative humidity, flow volume and distance to the 
riverbank to forecast GWL. It was observed that GWL is greatly affected by the distance to the reservoir.

[66] utilized LSTM for short-term and long-term groundwater level (GWL) forecasting. The model demonstrated good 
accuracy, particularly in predicting long-term GWL. Specifically, it predicted GWL one lag, up to four lags, and up to 26 
lags ahead with respective accuracies (R2) of at least 99.89%, 99.00%, and 90.00%, over a testing period spanning longer 
than 17 years of the most recent records. These results substantiate LSTM’s superiority and reinforce its efficacy across 
extended forecasting horizons.

3.4.4 � Hybrid models

A hybrid model is a novel technique that combines elements or techniques from two or more different models or meth-
odologies. It takes the outcome predictions produced by one machine learning model and feeds them into another 
[96]. The goal is to capitalize on the strengths of each constituent model, addressing their individual weaknesses, and 
achieving improved overall performance.

Recent research by [1] observed limitations in neural network models which have to do with nonlinear and non-sta-
tionary processes. This has led to the development of hybrid modeling approaches, incorporating data-preprocessing and 
combining various Artificial Intelligence (AI) techniques to enhance overall capabilities. Further advancements involve 
integrating swarm algorithms such as wavelet transform (WT), rat swarm algorithm (RSA), particle swarm optimization 
(PSO), salp swarm algorithm (SSA), and genetic algorithm (GA) to optimize NN models, enhancing their predictive capa-
bilities [5]. [82] introduced a three-layered Wavelet-Artificial Neural Network (WA-ANN). Leveraging the Levenberg–Mar-
quardt optimization algorithm, the model was designed for predicting monthly GWL using inputs such as groundwater 
level (GWL), total precipitation (P), total evaporation, and average temperature. The study, conducted over the period 
June 2003 to December 2010, demonstrated that incorporating previous timesteps and current timesteps resulted in 
the best model performance, achieving an impressive R2 of more than 0.96 at each well location.

Fig. 5   Schematic diagram of 
the LSTM model
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Applying a hybrid model to predict Groundwater Levels (GWL), [69] demonstrated the effectiveness of this 
approach in abstracting prevalent patterns from diverse groundwater monitoring time series in the Namoi region. This 
hybrid model combines the application of unsupervised (Self-Organizing Map, SOM) and supervised (LSTM) models. 
Unlike LSTM, which may encounter difficulties when dealing with limited data for each series, the Self-Organizing 
Map (SOM) integrates information across the entire dataset. In a related exploration, [81] applied a genetic algorithm 
backpropagation neural network (GA-BPNN) to forecast GWL. This study emphasized the model’s adaptability to sce-
narios with abundant sampling data. Notably, a correlation analysis revealed that precipitation from two earlier days 
and precipitation from three earlier days exhibited a robust correlation with groundwater. This finding underscored 
the importance of considering temporal precipitation patterns in GWL predictions.

[97] compared the performance of a hybrid Artificial Bee Colony Algorithm and a Back-propagation Neural Net-
work (ABC-BPNN) with a standalone back-propagation neural network (BPNN) for Groundwater Level (GWL) predic-
tion, utilizing nine years of data for both training and testing. The hybrid model, which harnessed the potential of 
the Artificial Bee Colony optimization algorithm, exhibited improved results compared to the standalone BPNN. By 
incorporating inputs such as recharge, exploitation, rainfall, and evaporation, the hybrid model, structured with 
4-7-3-1 in its two hidden layers, demonstrated resilience against overfitting and achieved robust performance, as 
evidenced by low mean squared error (MSE) and high R2.

In a novel integration, [98] combined Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) 
networks. This hybrid approach adeptly captured temporal relationships between groundwater levels and meteoro-
logical data, enabling effective long-term GWL predictions. The study spanned a decade of data, and preprocessing 
steps were implemented to address outliers and missing values through data imputation. The resulting model show-
cased impressive predictive accuracy, reflected in a root mean squared error (RMSE) below 0.2 for predicted months. 
[76] introduced two distinct hybrid models, GA-ANN and ICA-ANN. Genetic optimization and colonial competition 
algorithms were employed to derive optimal weights for predicting GWL using previous groundwater and rainfall 
as input variables. The study, based on 70% training data and 30% testing data, exhibited an R2 value exceeding 0.9 
for both training and testing, coupled with an RMSE below 0.6. This highlighted the efficacy of these hybrid models 
in achieving accurate GWL predictions.

[70] researched various hydrological setups, optimizing the performance of ANN models by refining hyperparam-
eters. Notably, the study advocated for the synergy of ANN with the Improved Artificial Grey Wolf Algorithm (IA-GWA) 
to enhance prediction accuracy. Comparative analysis revealed that the hybrid ANN-IA-GWA model outperformed 
standalone ANN, particularly in achieving a lower Normalized Root Mean Squared Error (NRMSE). Similarly, Incorporat-
ing preprocessing techniques, [77] utilized the discrete wavelet transform (DWT) and multi-discrete wavelet transform 
(M-DWT) in conjunction with ANN to decompose time series into sub-time series. While both preprocessing techniques 
exhibited similar correlation values, M-DWT showcased a lower RMSE, underscoring its superiority in extracting useful 
information for GWL prediction.

[74] employed k-means clustering to group aquifers, enhancing the prediction performance of ANN. This clustering 
strategy involved consolidating similar aquifers into clusters, treating them as a single observation well. The integration 
of the evolution algorithm, specifically Particle Swarm Optimization (PSO), optimized and improved the model’s predic-
tion accuracy. Also, [78] directed their attention to the Aspas aquifer in Iran, coupling ANN with the Wavelet Transform 
algorithm. This integration aimed to refine prediction accuracy, with an emphasis on selecting the optimal wavelet. The 
study revealed a significant increase in the Coefficient of Determination (R2) from 0.927 to 0.938 after incorporating the 
wavelet, affirming its positive impact on model accuracy.

In a unique fusion of ANN and Genetic Algorithm, [72] showcased the efficiency, precision, and robustness of the 
hybrid model. Notably, the study highlighted that utilizing a smaller dataset for model training enhanced accuracy and 
reduced training time. The accuracy achieved by the model trained on less data was notably high, with an R2 of 99.8% 
and low RMSE. Also, addressing short-term groundwater fluctuation, [84] investigated the application of the BPNN 
algorithm coupled with a genetic algorithm. Calibration of the model, based on 70% training data and 30% testing data, 
demonstrated the model’s ability to overcome convergence challenges and generalize effectively, as evidenced by an 
RMSE of 0.21 and 0.33 for training and predicting, respectively.

[85] demonstrated the superiority of a hybrid model LSTM and Empirical Mode Decomposition (EDM) in predicting 
GWL. The architecture utilized approximately 90% of the data for training and 10% for testing, showcasing optimal perfor-
mance with an LSTM hidden unit of 200. To address gradient explosion, the study set a threshold of 1 and implemented a 
learning rate reduction strategy. The integration of LSTM with EDM effectively mitigated uncertainties, randomness, and 
volatility in groundwater, resulting in low relative and absolute errors and establishing the hybrid model’s superiority.
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[73] explored the integration of the Adaptive Neuro-Fuzzy Inference System (ANFIS) with various metaheuristic algo-
rithms. Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization for Continuous Domains 
(ACOR), and Differential Evolution (DE) were employed to enhance the predictive capabilities of ANFIS. The study high-
lighted the superior performance of the ANFIS-ACOR model among the hybrid variants. In a comprehensive approach, 
[80] decomposed GWL time series components using the Wavelet Transform (WT). Utilizing an ANN model, the study 
directly incorporated decomposed approximation and detail series obtained from past GWL values as input variables. 
The number of components derived from decomposition determined the number of input neurons for the ANN. With 
an 80% training and 20% testing split, the model achieved a Pearson’s correlation coefficient (R) value exceeding 0.9, 
accurately simulating groundwater levels. The study underscored the influence of the choice of mother wavelet on the 
model’s outcome.

[5] extended the hybridization paradigm by coupling an ANN model with optimization algorithms such as the salp 
swarm algorithm (SSA), genetic algorithm (GA), rat swarm algorithm (RSA), and particle swarm optimization (PSO). The 
study incorporated input parameters based on rainfall and temperature for GWL prediction. This diverse hybridization 
approach showcased the versatility of integrating ANN with different optimization algorithms. Also, [71] compared the 
performance of a hybrid ANN model and an ANN model for predicting GWL at two different well locations. The hybrid 
model consists of a wavelet transform algorithm that decomposes the time series data into various decomposition times. 
The hybrid ANN performed better than the ANN, with the average RMSE of the hybrid model at both wells being 0.146.

[79] reported on GWLs in the Ardabil Plain Aquifer, Iran. Addressing the challenges posed by rapid urban expansion 
and intensified agricultural and industrial activities, the study applied a wavelet approach to denoise selected input 
variables, effectively eliminating noise. Approximately 75% of the dataset was allocated for model training, with the 
remaining portion dedicated to model testing. Emphasizing the critical dependence on both the quantity and quality 
of utilized data, the study underscored the essential role of data denoising in improving modeling accuracy, particularly 
in hydrological time series like GWLs.

3.4.5 � Input variable

To predict GWLs the input variables for the machine learning algorithms need to be carefully chosen. Figure 6 presents 
input variables used in predicting GWL variation based on the reviewed articles. The most frequently used input vari-
able is groundwater level (GWL) with a percentage of 25.34%. The second most used input variable is temperature hav-
ing 18.27. Furthermore, precipitation is, the third most employed predictive variable with 17.58%. Precipitation input 
variables include rainfall at 12.79%, evaporation at 6.85%, and evapotranspiration at 4.79%. Additional factors such as 
humidity (3.653%), water Table (2.51%), runoff (1.14%), wind (1.14%), and recharge (1.37%) contribute varying percent-
ages of input variables used for predicting GWL. Others comprise 4.57% of the total input variable employed for GWL 
prediction. Figure 4 shows the percentage distribution of each input variable discussed.

Fig. 6   Pie chart of usage of 
the input variable
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3.5 � Performance metrics

Performance metrics are critical in assessing the accuracy and effectiveness of predictive models in various fields. Different 
metrics have been used for assessing the performance of the models utilized in the extracted studies. We observed the wide 
usage of five performance metrics in our extracted studies. Figure 7 presents the distribution in terms of percentages of the 
most applied performance metrics in GWL prediction. We observe that the most widely used metric is Root Mean Square Error 
(RMSE) accounting for (31%) of the studies, followed by the coefficient of determination (R2), (18%), Nash–Sutcliffe efficiency 
(NSE) (13%), mean absolute error MAE (11%) and Pearson’s correlation coefficient (R) (9%) to measure the performance of 
neural network ̀ (NN) models. The category "Other" included less frequently used metrics such as normalized RMSE, residual 
error, or skill score. Table 4 shows the different performance metrics and their references from our extracted studies. Each of 
the performance metrics is detailed in the subsequent subsections.

Pearson’s correlation coefficient, R
Pearson’s correlation coefficient (R) measures the linear relationship between two continuous variables that is X and Y. It’s 

particularly useful for determining how closely related the two variables are in a linear sense. The value of R indicates how our 
predicted value correlates well with the observed value, where 1 indicates a perfect positive linear correlation, -1 indicates 
a perfect negative linear correlation, and 0 means there is no linear correlation. The formula for computing the Pearson cor-
relation coefficient is given as follows:
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Fig. 7   Performance metrics 
employed

Table 4   Performance metrics employed and their references

Perfor-
mance 
metric

References

RMSE [5, 6, 9, 11, 17, 19, 20, 22–25, 37, 41, 42, 46, 52, 54–58, 63, 68, 74, 78, 79, 82, 90, 97–167]
R2 [5, 6, 9, 11, 17, 19, 20, 22–25, 37, 41, 42, 46, 52, 54–58, 63, 68, 74, 78, 79, 82, 90, 97–163, 165, 167, 168]
NSE [5, 17, 20, 23, 35, 41, 46, 54, 56, 62, 70, 71, 73, 74, 76, 77, 80, 82, 85, 95, 99, 104, 108, 110, 113, 116, 117, 125, 126, 131, 134, 

136–138, 144, 146, 148, 151, 154, 155, 155, 157, 158, 162, 169–190]
MSE [5, 17, 23, 24, 36, 40, 41, 44, 46, 52, 54, 57, 66, 82, 97, 97, 98, 100, 101, 108, 109, 111, 113, 115, 119, 125, 127, 133, 134, 142, 144, 

148, 152, 154, 157, 160, 164, 170, 173, 181, 184, 186, 191–197]
R [3, 17, 40, 46–48, 52, 54, 58, 62, 76, 77, 82, 88, 103, 110, 116, 123, 124, 135, 136, 138, 142, 144, 150, 152, 153, 155, 155, 157–160, 

163, 166, 175, 180, 183, 184, 186, 188, 190, 196, 198–201, 201, 202]
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n is the number of observations.
Yi ​ and Xi ​ are individual data points for variables X  and Y .
X  and Y  are the averages of variables X  and Y  respectively.
Pearson’s correlation coefficient enhances its effectiveness in capturing consistent relationships, providing a more 

accurate depiction of persistent directional trends in diverse datasets [203]. However, it focuses on linear correla-
tion and may not effectively capture non-linear relationships, showcasing its limitation in addressing outliers [204].

Mean absolute error, MAE
The Mean Absolute Error (MAE), is a metric quantifying the average absolute difference between actual and pre-

dicted values. The formula for computing the mean absolute error is given as follows:

nis the number of observations.
yirepresents the observed values
ŷi represents the predicted values

MAE is beneficial for Laplacian errors [205]. MAE is a straightforward measure of average error, making it prefer-
able for evaluating and comparing model performance [206]. However, the influence of outlier data on MAE-based 
forecast evaluation is notable [207] suggesting that its conservative nature may lead to an underestimation of the 
model’s effectiveness [207].

The autoregressive integrated moving average (ARIMA)-LSTM-salp swarm algorithm (ARIMA-LSTM-SSA) hybrid 
model, as employed by [154] to forecast GWL, utilized Mean Absolute Error (MAE) as the performance metric. The 
MAE values for both the training and testing phases were reported as 0.182 and 0.192, respectively, indicating a 
satisfactory performance in predicting GWL. In a related study by [208], various models were applied for GWL pre-
diction. Among these models, the one demonstrating acceptable performance achieved MAE values of 0.212 and 
0.182 for both training and testing.

Coefficient of determination, R2

It evaluates the proportion of the total variability in the observed values that is explained by the model’s predictions 
[209]. The formula for computing the coefficient of determination is given as follows:

nis the number of observations.
yirepresents the observed values for the dependent variable.
ŷi represents the predicted values by the regression model.
y is the mean of the observed values.

R2 proves useful when evaluating the performance of a regression model across two datasets characterized by varying 
value scales [210]. The coefficient of determination is applicable when assuming a linear relationship, but it may not be 
suitable for models exhibiting non-linearity. A high coefficient of determination does not guarantee that the selected 
regression model accurately represents the true relationship [211].

[66] model’s performance was evaluated using the R2 metric. It was found that the model successfully predicted the 
GWL up to four days in advance with an R2 exceeding 0.99. For one-week predictions, the R2 was as high as 0.98. Two-
week ahead predictions achieved an R2 above 0.95, while predictions up to 26 days in advance achieved an R2 of at least 
0.9, the model`s performance was considered acceptable and able to accurately forecast GWL. Similarly, [6] adopted 
the R2 metric as a performance measure for their models. They established a benchmark of accepting models with an 
R2 greater than 0.95 for all well locations. This benchmark ensured that the models exhibited a high degree of accuracy 
across different sites.

Nash–Sutcliffe efficiency (NSE)
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Nash–Sutcliffe Efficiency (NSE) is a statistical measure commonly used in hydrology. It is used to evaluate the perfor-
mance of models that simulate natural processes, such as groundwater levels [172]. [77, 185]. The formula for computing 
the Nash–Sutcliffe efficiency, is given as follows

where:

n is the number of observations.
Oi ​ represents the observed values.
O is the mean of the observed values.
Mi ​ is the modeled or predicted values.

In simpler terms, the formula compares the squared differences between observed and modeled values to the squared 
differences between observed values and their mean. The result is then subtracted from 1 to get the NSE value. If the 
NSE is 1, it means the model perfectly predicts the observed values. If it’s less than 1, it implies the model’s performance 
relative to a simple average of the observed values. Models with NSE values greater than 0.7, can be classified as good to 
excellent [3]. NSE allows for model comparison and evaluates goodness-of-fit between observed and predicted values; 
Nevertheless, it is sensitive to outliers and neglects uncertainty associated with model predictions [212].

Employing NSE as a performance measure, [74] achieved an average value of 0.96 for both training and testing phases, 
indicating an effective prediction of groundwater levels. Similarly, [154] reported NSE values of 0.96 for training and 0.95 
for testing, demonstrating acceptable model performance in forecasting groundwater levels.

Root mean square error (RMSE)
RMSE is a widely used metric for quantifying the average magnitude of prediction errors. We sum the difference 

between the in-situ and the observed values and then divide by the total number of observations made to obtain the 
RMSE. The formula for computing RMSE is given:

y is the mean of the observed values.
yirepresents the observed values for the dependent variable.
n is the total number of observations

RMSE proves advantageous when errors exhibit a normal distribution, ensuring precision in evaluating models under 
Gaussian error patterns [206]. However, RMSE is considered inappropriate because it considers other aspects of error in 
a set, not just the average error [206]. RMSE penalizes larger errors more heavily, making it sensitive to significant devia-
tions between predicted and observed values.

[114] introduced the Double-Gated Recurrent Unit (GRU2 +) model, which utilized a GRU2 + architecture with an Addi-
tion layer, incorporating seven layers and undergoing hyperparameter tuning. This specific configuration demonstrated a 
satisfactory RMSE of 0.094 m for the accurate prediction of groundwater level fluctuations. Furthermore, [149] employed 
the Self-Adaptive Extreme Learning Machine (SAELM) for modeling GWLs, yielding an acceptable RMSE of 0.1496.

In summary, RMSE and MSE quantify the prediction error, while R and R2 provide insight into the relationship between 
the model’s predictions and the observed data.

3.6 � Comparative evaluation of model performance

The reviewed studies showed that both standalone and hybrid machine learning models have been applied to ground-
water level forecasting, yet there is no explanation for why certain models perform better under specific conditions. A 
comparison of model performance based on performance metrics provides insights into their predictive capabilities.
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Hybrid models generally outperform single models in groundwater forecasting. Studies show that Wavelet-ANN [78, 
82], GA-BPNN [85, 97], and IA-GWO-ANN [70] consistently achieve lower errors compared to standard ANN or regres-
sion-based models. Optimization techniques like Genetic Algorithms, Particle Swarm Optimization, and Extended 
Genetic Algorithms [72] further improve performance by reducing RMSE and increasing accuracy. This is because these 
metaheuristic algorithms help select the optimal hyperparameters for the models. Deep learning models such as CNN-
LSTM-ML and LSTM [83] outperform traditional statistical models like ARIMA and Multiple Regression. Table 5 shows the 
comparison of a few selected studies.

3.7 � Dataset quality and scope

The accuracy of groundwater forecasting models is highly dependent on dataset quality, encompassing aspects such as 
data collection, preprocessing, and temporal coverage. The reviewed studies reveal variations in approaches to missing 
data handling, feature selection, and dataset span, all of which influence model reliability. However, most of the reviewed 
papers did not explicitly address data quality, limiting the transparency of their findings.

Data quality and preprocessing
Most of the reviewed studies did not provide detailed discussions on data quality and preprocessing techniques such 

as feature selection, dimensionality reduction, normalization, and handling of missing data. Only a few studies men-
tioned using methods like Principal Component Analysis (PCA) to reduce redundancy [72] or optimization techniques 
like wavelet transformation [77] and genetic algorithms (GA) [97] to improve model performance.

Similarly, missing data handling was rarely addressed, with only a few studies mentioning imputation methods like 
mean and linear interpolation [24] or software-based outlier detection [78]. Normalization, which plays a key role in 
improving model convergence, was also not widely discussed. The lack of emphasis on these preprocessing steps in 
studies like [70] and [77] raises concerns about transparency and reproducibility.

Dataset temporal span
NNs model for groundwater level prediction studies requires a dataset covering different time spans, the classification 

of dataset temporal spans reveals diverse frequencies across different intervals. Figure 8 shows the various year span 
of datasets used for calibrating models for GWL predictions. Datasets spanning 6–10 years (74) and 11–20 years (50), 
emerge as the most frequently used for model training and testing.

From the review, it was observed that the majority of datasets exhibiting these broad ranges spanning over 10 years 
suggest a deliberate emphasis on capturing and analyzing long-term trends and patterns. [5, 65, 73, 192] and [193] 
employed datasets exceeding a decade in duration.

In contrast, [117] utilized a shorter dataset with a duration of 4 years, [57] with a 9-month duration, and [136] with a 
3-year and 4-month duration. These studies using shorter datasets focused on extracting more immediate insights and 
patterns within a limited timeframe, providing a diverse perspective on temporal coverage.

3.8 � Short‑term and long‑term groundwater forecasting approaches

Groundwater forecasting studies vary in their prediction horizons, broadly categorized into short-term and long-term 
forecasts. Some studies focus on short-term forecasting, which looks at changes happening over a few days, weeks, or 
months, while others focus on long-term forecasting, which predicts groundwater levels years or even decades into the 
future. The choice between short-term and long-term forecasting depends on the purpose of the study and the data 
available.

Short-term forecasting is the most common approach, used in 58.66% of the reviewed studies. These forecasts help 
with daily, weekly, and monthly water management decisions, such as tracking seasonal changes in groundwater levels 
and planning for irrigation. Scientists use machine learning models like Artificial Neural Networks (ANNs), Long Short-
Term Memory (LSTM) networks, and Support Vector Machines (SVMs) to make these predictions. For example, [64] used an 
LSTM model to predict daily groundwater levels, while another study used ANN models to forecast weekly groundwater 
levels up to four weeks ahead. Monthly forecasting is also common, with studies such as [156] and [78] using AI-based 
models to predict how groundwater levels change each month. Some studies, like [159] even extended predictions to 
quarterly (three-month) periods.

Long-term forecasting, which spans multiple years to decades, offers insights into groundwater sustainability 
under different environmental scenarios [50]. These predictions help researchers understand how groundwater will 
be affected by climate change, land use, and human water consumption. Since long-term forecasts must consider 
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many uncertain factors, scientists often use hybrid AI models, deep learning (such as CNNs and LSTMs), and physical 
models like MODFLOW [20]. For example, [199] predicted groundwater levels for the year 2030 using an ANN model. 
Similarly, [97] used a hybrid AI model to predict groundwater levels for different future scenarios. Some studies go 
even further, such as [182], which forecasted groundwater trends up to the year 2100 to understand how climate 
change could impact water resources (Fig. 9).

3.9 � Software programs used

A larger percentage of papers reviewed did not mention the software program used for predicting groundwater 
levels (GWLs), while a few mentioned the software programs utilized. Figure 10 illustrates the frequency of software 
program mentions. As shown in Fig. 10, MATLAB (18.18%) is the most commonly used software program, likely due 
to its pre-built tools that facilitate easy coding. Python (6.42%) and R (5.35%) are also used, although to a lesser 
extent. For instance, other software programs, such as C (1.07%) [155, 183], have been employed in a few instances 
to develop NN for GWL prediction.

Fig. 8   Year Spans of datasets 
employed in studies

Fig. 9   Distribution of ground-
water forecasting approaches



Vol:.(1234567890)

Review	  
Discover Applied Sciences           (2025) 7:942  | https://doi.org/10.1007/s42452-025-06817-5

4 � Discussion

The main findings from 187 reviewed papers are discussed. This includes the selection of input variables, current 
trends in neural networks, performance metrics, and other relevant aspects.

The analysis of publication trends revealed a surge in research utilizing neural networks for addressing the critical 
challenge of groundwater depletion over the past two decades. With notable peaks in 2022 and 2021, constitut-
ing 14.87% and 13.85% of published papers, respectively. This recent surge suggests a growing recognition of the 
potential and advantages offered by neural networks in addressing this critical challenge [1]. This trend aligns with 
broader advancements in artificial intelligence and computational power, further solidifying the potential of neural 
networks as a robust and effective tool for groundwater level forecasting. However, concerns about interpretability 
and overfitting remain, as neural networks often function as black-box models, making it difficult to understand how 
predictions are generated [213, 214].

In addition, a significant variation in the distribution of primary studies among various countries was identified, 
with Iran leading with 26.92% of the published papers on groundwater prediction, followed by India at 17.69%, China 
at 15.38%, and the USA at 7.69%. This distribution can be attributed to factors such as population growth and escalat-
ing water demand, as highlighted by [215]. Moreover, [215] research on the Water Poverty Index (WPI) underscored 
a critical water scarcity situation, as indicated by a WPI of 41.1, emphasizing the need to address access, capacity, 
and utilization issues for water poverty improvement. Building on this, [216] explored the correlation between high 
groundwater consumption countries and the prevalence of neural network applications in modeling groundwa-
ter levels. Their findings not only illustrated a higher application of neural networks in countries with substantial 
groundwater consumption but also revealed that the countries with the most published papers are grappling with 
the depletion of their groundwater resources.

The examined literature emphasizes the expanding use of hybrid models for accurate GWL prediction. Numerous 
studies have effectively coupled Neural Networks (NNs) with a variety of approaches, including Wavelet Transform 
(WT), swarm optimization algorithms, clustering, and other AI models, regularly outperforming standalone NNs [1]. 
This trend highlights the potential of hybrid models combining the strengths of various methods while address-
ing their respective limitations, these hybrid models can achieve higher forecast accuracy compared to individual 
approaches. Notably, studies have highlighted WT’s effectiveness in preprocessing time series data, extracting useful 
information, and improving NN performance [77]. Optimization strategies such as Genetic Algorithm (GA) and Parti-
cle Swarm Optimization (PSO) have shown effectiveness at optimizing NN hyperparameters [97], improving model 
accuracy. Furthermore, hybrid models that use Long Short-Term Memory (LSTM) networks have exhibited outstanding 
capability in capturing temporal relationships and predicting long-term GWL fluctuations [85, 98].

In this systematic review, the use of different types of input variables for groundwater level prediction including 
climate variables, and hydrogeological and geographical parameters were examined. Climate variables like tem-
perature, total precipitation, rainfall, evaporation, evapotranspiration, and relative humidity were mostly employed 
[28, 216, 217], acknowledging their crucial role in the recharge and discharge processes of groundwater. The opti-
mal selection of input variables depends on the specific study area and how their inclusion influences the model’s 

Fig. 10   Software programs 
used for neural network 
development
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ability to capture details and complexities in groundwater dynamics. Notably, incorporating lagged input variables, 
representing past values of input variables, has proven to be a valuable strategy for enhancing model performance.

During the evaluation of neural network models, multiple performance metrics are commonly employed to assess the 
performance of a neural network model. Some widely used metrics include the root mean square error (RMSE) coefficient 
of determination (R2), Nash–Sutcliffe efficiency (NSE), mean absolute error (MAE), and Pearson’s correlation coefficient 
(R) [1, 28]. Although these metrics are sometimes used individually in the reviewed literature, the simultaneous use of 
multiple metrics ensures a comprehensive evaluation of the neural network model’s performance. One key reason for 
employing a variety of metrics is to obtain a detailed understanding of the model’s strengths and weaknesses.

It is also apparent that a substantial portion of the datasets used in GWL prediction cover a timeframe of over 10 years. 
This observation suggests the potential years of dataset needed for conducting comprehensive, long-term trend analyses 
and predictions. By addressing these aspects of dataset quality and temporal coverage models can produce accurate 
and precise predictions. Moreover, an extended temporal coverage enables the recognition of seasonal variations, allow-
ing predictive models to incorporate these cyclical changes and enhance their precision. Even in instances of missing 
values, high data availability greatly facilitates the estimation of data gaps [218], contributing to the overall reliability 
of the analyses.

The systematic review focused on analyzing literature from three distinct databases. While this method facilitated a 
thorough review of materials within these databases, it is essential to acknowledge its limitations. Articles from Web of 
Science, Scopus, and Google Scholar were included in this study. However, by concentrating primarily on these data-
bases, there is a possibility that valuable contributions published in other databases or publications may have been 
unintentionally overlooked.

The integration of neural networks represents a transformative approach to groundwater level (GWL) modeling, 
unveiling complex patterns within the relationship between groundwater dynamics and various environmental vari-
ables. This research significantly advances our understanding by clarifying the detailed relationship between GWL and 
associated factors.

However, the effectiveness of such models is dependent on the length and quality of the dataset. The success of using 
neural networks (NN) for GWL modeling relies on the quality and quantity of accessible data [13], as well as the availability 
of ample computer resources. To support this, advanced data-gathering technologies and databases capable of storing 
diverse meteorological and hydrological data relevant to specific geographic regions are indispensable. Moreover, fos-
tering a culture of data sharing among researchers is critical. Establishing databases where researchers can collaborate 
and share their groundwater data not only improves accessibility but also enhances collaborative initiatives, thereby 
enriching the overall understanding of groundwater dynamics.

5 � Limitations

5.1 � Limitation of review

The review synthesized information from three distinct databases. While this approach ensures a focused and structured 
search, the reliance on a limited number of databases may inadvertently exclude relevant studies, potentially affecting 
the comprehensiveness of the findings. Additionally, conducting a model-by-model comparison across studies pre-
sents inherent challenges, as the absence of a standardized reference dataset limits the direct comparability of model 
performance.

Other potential limitations include variations in evaluation metrics, differences in experimental conditions across 
studies, and inconsistencies in data quality, all of which may impact the overall synthesis and interpretation of results. 
Additionally, many studies did not justify their choice of models, making it difficult to assess the reasons behind model 
selection and its effect on performance comparisons.

5.1.1 � Limitation of NNs for groundwater level prediction

Despite significant advancements in the application of neural networks in the application of GWL prediction and water 
resource management, there are still some weaknesses.

From the reviewed articles it was observed that many authors used the trial and error approach to tune the 
hyperparameter of the various NNs model for groundwater level prediction [10–12]. This method involves manually 



Vol:.(1234567890)

Review	  
Discover Applied Sciences           (2025) 7:942  | https://doi.org/10.1007/s42452-025-06817-5

adjusting parameters such as the number of hidden layers, neurons per layer, learning rate, and activation func-
tions, followed by iterative model evaluation. While this approach allows researchers to fine-tune models based on 
empirical observations, it is highly time-consuming, especially for NNs. Additionally, there may be a result in selecting 
suboptimal configurations, which may lead to a reduction in model performance.

Overfitting is a concern in groundwater level prediction, particularly when NNs are trained on small datasets. 
Studies such as [219, 220] highlight that deep learning models tend to memorize training data rather than general-
izing patterns especially where data variability is high due to fluctuating climatic and hydrogeological conditions. 
Techniques such as dropout regularization [221] and cross-validation [143] have been proposed to mitigate overfit-
ting, yet their implementation across studies remains inconsistent.

For example, [222] conducted a survey on the applicability of NNs in data-scarce regions. Their findings indicate 
that NNs exhibited significantly lower generalization ability in areas with sparse data. This suggests that while deep 
learning models can outperform traditional machine learning approaches in data-rich environments, their perfor-
mance is influenced by the amount of data they are trained on.

While the reviewed studies discussed various limitations of applying neural networks in groundwater prediction, 
none addressed the interpretability of these models. Neural networks are often considered black-box models [223]. 
The lack of discussion on interpretability in the reviewed literature suggests a research gap that needs further explo-
ration. Existing studies primarily focus on accuracy and performance metrics but rarely evaluate whether models 
provide explainable results for practical implementation.

6 � Conclusion

This paper is a systematic review that provides summaries on neural networks (NNs) for GWL forecasting. With grow-
ing global interest in sustainable groundwater management, countries with large populations such as Iran, China, 
India, and the United States are leading the way in developing neural network applications for GWL prediction. The 
analysis of these papers reveals that hybrid models proved effective in uncovering hidden relationships between 
groundwater levels and other environmental factors. The most employed performance metric was the root mean 
square error (RMSE). In terms of input variables, GWL, temperature, and precipitation emerged as the most frequently 
utilized, with lagged values from these inputs demonstrating an improvement in model performance. A key finding 
underscores the significance of comprehensive, long-term datasets covering over a decade for robust trend analyses 
and accurate predictions. Emphasizing the need for quality data and sufficient temporal coverage to ensure that pre-
dictive models can support sustainable groundwater management practices effectively [90]. Furthermore, researchers 
can gain valuable insights into the evolving trends in the utilization of Neural Networks (NNs) for modeling GWL, 
driving the development of methodologies aimed at improving the efficacy of NN applications in predicting GWLs, 
ultimately contributing to the sustainable management of groundwater resources worldwide. Considering vari-
ables and long-span datasets can help better understand and manage water resources, ensuring sustainability and 
resilience against climate change by providing insights into the long-term impacts of environmental changes, such 
as droughts and groundwater depletion.

Based on the studies reviewed, the following recommendations are suggested for future research:

•	 More focus should be placed on data quality and preprocessing methods to make datasets more reliable. Using 
better ways to handle missing data and choosing the most important features will improve prediction accuracy.

•	 According to [163], in long-term forecasting, errors from earlier predictions build up over time, which can reduce 
accuracy. A good way to solve this is by using a weighted error function to improve the model`s accuracy.

•	 Research by [10–12] found that most studies use trial and error to choose the optimal model hyperparameters. 
Instead, a more advanced method like grid search, Bayesian optimization, or evolutionary algorithms should be 
used to get better results.

•	 Previous research in broader environmental modeling fields has highlighted concerns about the trustworthiness of 
NNs model [213, 214]. These concerns are particularly important for groundwater studies, where decision-making 
relies on understanding how models arrive at predictions rather than just their output values. Thus, addressing 
interpretability in groundwater prediction models remains an open challenge that needs further research.
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