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US-CoastEX: Observation-based 
probabilistic reanalysis of storm 
surge and sea level extremes for  
the United States
Joao Morim1,2 ✉, D. J. Rasmussen3, Thomas Wahl   1,2, Francisco M. Calafat   4,5, 
Robert E. Kopp6, Michael Oppenheimer7 & Soenke Dangendorf   8

Reliable estimates of storm surge and sea level extremes with proper uncertainty quantification are key 
for cost-effective risk/adaptation planning. However, observational estimates are often unavailable or 
uncertain along most coastlines owing to data scarcity. Here, we provide a fully observational-driven 
probabilistic dataset (US-CoastEX) of storm surge and sea level extremes for the U.S. coast (1950–
2020). Non-stationary extreme storm surge distributions are generated for gauged and ungauged sites 
by applying Bayesian methods to the U.S. tide gauge network, complemented with additional storm 
data unavailable in commonly used tide gauge data. The distributions are combined with tidal peak 
data to estimate return periods and levels of extreme sea levels and their uncertainty. Ou results show 
that traditional site-by-site estimates based on existing model data, as well as regionally-aggregated 
analysis of standard tide gauge data, have underestimated 100-year extreme sea levels by 50% (on 
average) along much of the U.S. coast, especially in regions exposed to extreme storms. The data 
supports coastal managers to make decisions, especially in vulnerable areas where in-situ sea-level 
monitoring is limited.

Background & Summary
Extreme sea level (ESL) events caused by storm surge extremes pose a threat to many coastal populations and 
natural ecosystems1 especially when combined with high astronomical tides1,2. The most extreme storm surge 
events develop during major storms, such as hurricanes and/or powerful extratropical storms, when extreme 
winds and low atmospheric pressure push ocean water ashore1,2. Establishing robust estimates of storm surge 
and extreme sea level events with proper uncertainty quantification through statistical analysis of observational 
data is critical for coastal design and risk and adaptation assessments3. However, high-quality historical sea-level 
observations are only available at sites with tide gauges, leaving long coastal stretches without observational 
coverage3–5. Furthermore, most tide gauges contain only a few years, or decades, of data, thereby providing only 
a limited sample of extremes. They also usually comprise gaps and/or erroneous or incomplete readings during 
major storms such as hurricane events4–6. These limitations limit reliable estimates of the likelihoods of extreme 
events (and their changes over time) using site-by-site statistical analysis of observational data4–6.

Global and regional storm surge hindcasts, and extended data-reconstructions from machine-learning 
methods, based on atmospheric reanalysis forcing fields provide spatially-continuous extreme data from which 
extreme value statistics can be obtained. However, such products tend to underestimate coastal storm surge 
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extremes, partly due to their coarse resolution atmospheric reanalysis forcing that cannot properly resolve 
extreme values6–9 and generally exhibit spurious climate variability and trends due to interplays between model 
biases and changes in historical observational data in reanalysis products9–12. In addition, as with most tide 
gauge data, existing storm surge hindcasts generally cover a few decades, typically after 1980 when satellite 
records began to become available to constrain atmospheric reanalyses12. Spatial statistical approaches such as 
regional frequency analysis (RFA)13–15 offer an alternative to partially overcome several sampling limitations 
of traditional site-by-site analysis of storm extremes by fitting a particular extreme value distribution to sets of 
aggregated storm data pooled together (from tide gauges sites or model outputs) across coastal regions that are 
assumed to be coherent. However, while easy to apply, RFA approaches rely on subjective criteria to establish 
coastal sites with coherent extreme storm characteristics13–15 and suffer from unsubstantiated statistical assump-
tions (e.g., neglecting spatial inter-site dependences and relying on unrealistic regional limits that generate dis-
continuous extreme storm surge fields)13–15, which often result in unreliable estimates and/or misrepresented 
uncertainties.

Recently, more advanced spatial models for storm extremes have been used to overcome such limitations by 
resolving spatial dependencies in extremes, and in turn, enabling sharing of data information across tide gauge 
sites, and enabling predictions of surge extremes for ungauged sites4,5,16,17. However, existing spatial models (and 
associated data sets) for the U.S. have relied on a limited number of long-term tide gauge data16,17, thereby suf-
fering from similar problems as site-by-site analyses, and are limited to contiguous U.S. regions which creates a 
limited basis situation for future coastal planning5. These models have also assumed that surge extremes are sta-
tionary16,17 whilst surge extremes have been shown to have regional coherent and significant trends along wide-
spread U.S. coastal regions18. These current limitations preclude robust flood risk assessment and cost-effective 
adaptation planning with potentially severe implications due to premature failure of flood defenses designed 
with erroneous predictions19. Consequently, there is an urgent need for more reliable and robust estimates of 
the occurrence probabilities of storm surge and sea level extremes with a rigorous treatment of uncertainty. This 
should also account for major storm extremes that happened in the past, but are not captured and resolved in 
commonly used coastal water level databases.

Here, we present a new observation-based probabilistic dataset (“US-CoastEX”) of storm surge and sea 
level extremes along the entire U.S coastline by applying an established non-stationary spatiotemporal Bayesian 
Hierarchical Framework (BAYEX)4 to the U.S. tide gauge network18 between 1950–2020. The complete dataset 
comprises two different versions: a standard version in which BAYEX is informed solely with high-quality tide 
gauge record data18 and an extended version where additional records from other sources (including sub-hourly 
tide gauge records, inferred extremes, last recorded water levels or high-water marks) are processed and also 
used to support BAYEX in addition to the standard hourly tide gauge records. BAYEX resolves tide gauge 
dependences in space and time and models extreme storm surge fields as a nonstationary continuous process 
consistent with underlying climatological storm patterns. The consideration for such dependences in BAYEX 
compensates for data spareness (i.e., allows accommodation of data gaps), reduces uncertainty for coastal 
gauged sites and enables estimates of storm surge distribution data for ungauged sites4,18.

In addition to providing storm surge data, our dataset also contains ESL return period estimates estimated 
by combining BAYEX-inferred skew surge distribution data with astronomical tidal distributions. These esti-
mates are compared to published ESL estimates used to inform coastal hazard and/or risk flood assessments, 
highlighting that return levels and return periods of ESL events have been underpredicted on widespread U.S. 
coastal regions relative to other products.

The data provided can support coastal managers to make more confident decisions, especially along many 
U.S. coastlines that are vulnerable and where long-term in-situ sea level monitoring is limited or non-existent. 
Our fully-empirical dataset provides supports for a range of coastal engineering and science needs (e.g., engi-
neering design/management and coastal flood hazard and risk analysis). It provides, for instance, a new bench-
mark for validation of storm extremes and flood hazard estimates generated through numerical modeling (based 
on reanalysis climate data, synthetic storms or climate model projections) and extended data-reconstructions. 
It could also be directly combined with other relevant meteorological, hydrological and/or oceanographic 
extremes (e.g., rainfall and wind-waves) to estimate total water levels and other compound extremes. Thus, 
it fills an important gap, particularly for U.S. coastal regions such as Hawaii, Alaska, Puerto Rico/U.S Virgin 
Islands where historical in-situ sea level monitoring is limited or even non-existent (and which have been usu-
ally excluded from coastal climate assessments18). A summary of the data in US-CoastEX is fully described in 
Supplementary Information.

Methods
Bayesian Hierarchical Modeling with BAYEX.  The BAYEX framework4 performs spatiotemporal 
Bayesian hierarchical modeling of coastal storm surge extremes and is represented as a product of conditional 
distributions or sub-models, or layers. These comprise: (1) an “observation model” that links the prescribed 
extreme data to the spatio-temporal processes; (2) a “process model” that accounts for underlying dynamics of 
the processes involved; and (3) a “parameter model” that considers the underlying uncertainties in the parameters 
and integrates any prior knowledge about the prescribed data and underlying processes. The hierarchical model 
structure enables the assessment of the joint distribution of the processes and parameters conditioned on the data 
(also known as the posterior distribution), while rigorously propagating the uncertainties underlying the data, 
processes, and parameters4. These types of Bayesian Hierarchical Models (BMH) have been applied across various 
science disciplines (e.g., hydrology20 and ecology21) to enable robust statistical estimates, especially in contexts 
characterized by data scarcity and high uncertainty.

In modeling spatial inter-site dependences of storm surge extremes, BAYEX resolves residual dependence 
(sites with co-occurrence of storm extremes) and climatological dependence (sites with similar and/or consistent 
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storminess but not necessarily co-occurrence of storm extremes). Residual dependence is resolved using a 
max-stable process4,16,22 (i.e., an infinite-dimensional generalization of a Generalized Extreme Value (GEV) dis-
tribution) and storm climatological dependence is here captured using latent Gaussian processes with random 
effects and physical bathymetric covariates (continental shelf width estimated using Natural Earth 200-meter 
depth contour line)4. In other words, residual dependence implies dependence among annual maxima whereas 
climatological dependence reflects spatial association amongst the GEV parameters4. The marginal distribution 
at any particular site follows a univariate GEV distribution based on max-stable process theory, with parameters 
μ (location), σ (scale), and ξ (shape). The location parameter, μ, is modelled as a spatial time-evolving process 
(using an integrated random walk) to account for climatological storm frequency changes. The GEV scale and 
shape parameters follow a spatial-varying, stationary process. An extensive description of BAYEX including its 
formulation, implementation and testing, has already been provided elsewhere4,14, and thus we only provide a 
brief description of its observation and process model layers. The likelihood can be written as4,22:
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where Y s( )t i  is the annual maximum surge (m) for year t at site si, and s( )tθ  is a spatial process resolving residual 
dependence and α ∈ (0,1) is a parameter that controls the relative contribution of small-scale errors. The GEV 
shape parameter, ξ, is allowed to vary in space, according to a Gaussian process18:

~ξ ξ γ ρ′ ξ ξs GP c s s( ) ( , ( , ; , )), (4)

where ξ γ ρ′ ξ ξGP c s s( , ( , ; , )) is a Gaussian process with mean ξ and covariance function c(,∙). The hyperparam-
eters γξ  and ρξ

 denote, respectively, standard deviation and length scale values defining the covariance 
function4.

The GEV location parameter s( )tµ  is assumed to vary smoothly through time (to resolve long-term changes 
such as nonlinear trends as opposed to shorter-term variations, which are likely unresolvable) using a 
spatio-temporal integrated random walk according to4:

s s s( ) ( ) ( ) , (5)t t trend t1 , 1µ µ µ= +− −

s s s( ) ( ) ( ) , (6)trend t trend t t, , 1µ µ ω= +−

where s( )tω  is a zero-mean Gaussian process s GP c s s( ) (0, ( , ; , ))tω γ ρ′ µ µ~ .
The extended description of all BAYEX process layers and parameters, including all Gaussian processes and 

initial states of µ, see refs. 4,5. The full description of the BAYEX spatial domain and the statistical inference pro-
cess and model diagnostics analysis has been provided in ref. 18. In total, 6,000 distribution samples 
(post-warm-up draws for analysis) are provided by BAYEX (after a warm-up phase) for gauged and ungauged 
sites along the U.S. coastline (Fig. S1)18.

Observational data for BAYEX.  US-CoastEX includes extreme skew surge distributions (Fig. S3 shows 
posterior-median and 90% credible intervals) in addition to ESL estimates derived through BAYEX based on 
annual maximum skew surge data obtained from different data sources (Tables S1-S2) as shown below and illus-
trated in Fig. 1.

Standard version (BAYESL-TG).  In the standard application of BAYEX (henceforth BAYESL-TG), 
the model is informed solely by historical time series of annual maxima skew surge (used synonymously with 
storm surge) derived from high quality hourly sea-level records (1950–2020) from 208 open-coast tide gauge 
sites included in the GESLA-2 (Global Extreme Sea Level Analysis) database (retrieved from: https://www.bodc.
ac.uk/resources/inventories/edmed/report/6562/)23 (Figs. S1, S2). Skew surge (defined as the absolute difference 
between observed high-water level and the closest predicted high tide regardless of their timing over a tidal cycle) 
has been shown to be a reliable metric of storm surge under different tidal regimes24. Note that tide gauge data 
included in GESLA-2 are very similar to records in GESLA-3, as most updates and new data are for estuarine, 
river and lake regions, which are not used here, as further discussed below. We require 70% of all hourly records 
over a given year to determine an annual maximum. We remove any underlying mean sea level changes and its 
underlying variability by removing a centered 30-day moving average from the observed water level data. The 
data is also visually scrutinized and the corrected when required for any datum shifts and tsunamis. The tidal 
signal was extracted using a year-by-year harmonic analysis. This analysis is entirely focused on open-coastal 
regions where storm surge extremes are mainly driven by wind and pressure effects. Therefore, only tide gauges 
within a maximum of 5 km from a coastline are used and locations further within deltas, narrow inlets, bays 
and tidal rivers, have been removed to minimize major effects of hyper-local geography, river discharge and/or 
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nonlinear interactions which generally lead to very different storm surge extremes than events experienced along 
open-coastal regions. The full description of the data processing is available elsewhere18. The exact location of the 
tide gauge sites, and their record length, are shown in Fig. S1. The samples of GEV model parameters (summa-
rized as posterior-medians and 90% CI within Fig. S3) and annual maxima from BAYESL-TG/EXT are archived 
without further processing (Table S3). A full discussion of BAYESL-TG extreme skew surge data is also provided 
in ref. 18.

Extended version (BAYS-TG/EXT).  Hourly tide gauge records provide high-quality ESL information but 
since they generally have hourly resolution, they could miss absolute peaks of storm events when there are larger 
changes in water levels at sub-hourly levels, as occurs more often during major events. In addition, it is well docu-
mented that during major storms (e.g., Camille and Katrina) there is typically missing data due to tide gauge dam-
age or malfunction25,26. Hence, we provide an extended-data version (BAYESL-TG/Extended) where BAYEX has 
been informed not only by historical time series of annual maxima skew surge from hourly sea-level records, but 
also with extreme surges from NOAA top-ten water level data archives (https://api.tidesandcurrents.noaa.gov/
dpapi/prod/)27, including 6-min tide gauge records (after 1996), inferred extremes (derived through gap-filling 
procedures due to missing data), last recorded extreme water levels (last successfully recorded level before tide 
gauge malfunction during a storm) and high water marks and storm-tide peaks from SURGEDAT’s database 
(https://surge.climate.lsu.edu/data.html#GlobalMap) (Tables S1-S2)26. In Fig. 1 (and Table S1 and Fig. S4) we 
present a brief comparison of BAYESL-TG and BAYESL-TG/EXT. The top-ten water-level information data from 
NOAA contains tide gauge codes, station names, peak dates & times, height, datum (MSL) and source27. The 
SURGEDAT data26 provides location, year and datum (for specific events) and recorded (or observed) water level 
data. Storm surge events before 1950 and after 2020 have been removed for consistency. Storm events retrieved 
from SURGEDAT26 are only considered when reported as ‘storm tides’ (without breaking wind-wave influence) 
and with datum (described as height relative to normal tides, i.e., MSL) and their documented locations are 
within 20 miles from a tide gauge. The peak date and time are retrieved from NOAA’s extreme water level mete-
orological reports and confirmed using historical hurricane track data28. Any extreme events prior to 2020 have 
been updated (or corrected) to present-day MSL (2020) by adding MSL rise between the year of the recorded 
events and 2020) using relative MSL trends estimated by NOAA. There are a few tide gauge locations where no 
relative MSL trends are available and thus the values from the nearest tide gauge locations are used. The skew 
surge associated with each extreme water level event is determined by removing the closest tidal peak values 
extracted from NOAA’s tide prediction records, using their respective peak date and time, with all events brought 
to the same reference datum (MSL). For events where peak times are not provided (or available), tidal peak aver-
ages from that particular day have been used. In total, 1084 skew surge events have been estimated. We then com-
pare these values with annual maxima skew surges previously estimated for those years using hourly tide gauge 
data, i.e., used to inform BAYESL-TG as previously described. The highest values within each year are therefore 
used as annual maxima. In total, 775 annual maxima skew surge values estimated from hourly tide gauge data are 
replaced by new, updated annual maxima skew surges, 652 obtained from processed NOAA top-ten water-level 
data, 2 from NOAA NWS data archives, and 7 from the SURGEDAT (Table S2). BAYESL-TG/EXT (extended 
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Fig. 1  Methodological framework diagram. The orange-shaded section displays the general workflow used 
to generate BAYESL-TG/EXT while the blue-shaded section shows the general workflow used to estimate the 
extreme sea level data from BAYESL-TG/EXT. The application of BAYES-TG uses only annual maxima skew surge 
data from observed hourly tide gauge sea-level records (as shown by the dashed violet line and the asterisk ‘*’).
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version) and BAYESL-TG (standard version) use the same values for Alaska, Puerto Rico and the U.S. Virgin 
Islands, since no relevant annual maxima events have been identified across other complementary data sources 
(i.e., compared against annual maxima obtained from standard hourly tide gauge records). The GEV parameters 
associated with BAYESL-TG and BAYESL-TG/EXT are archived without further processing (see Table S3).

Estimation of ESL return levels using BAYEX outputs.  ESL occurrences depend upon tidal processes 
and storm surges29. Here we use two approaches that are typically used to calculate ESL return levels from skew 
surge and tidal data29. The first approach (henceforth “Method 1”) convolves the probability distributions of 
deterministic tidal peak data and stochastic storm surge data. This convolution approach allows us to use com-
plete tidal information, which is not possible through direct analysis of still water levels (Fig. S5)29. The proba-
bility of a given ESL event is thereafter derived from the joint cumulative distribution function. The convolution 
integral is given by29:

F z G z x f x dx( ) ( ) ( ) (7)r∫= −

where Gr is the (GEV) distribution of extreme skew surges and f  is the density function of the tidal peaks over a 
full 18.61-year nodal tidal cycle. This approach assumes skew surge and tide independence with an equal prob-
ability of a given skew surge occurring at any high tide28. We convolve 6,000 skew surge distribution samples 
from BAYEX with tidal peak data, generating a total of 6,000 ESL return period curves from which 
posterior-median values and associated 90% credible intervals are calculated. The second approach (henceforth 
Method 2) adds a fixed tide level (such as Mean High Water (MHW), Mean Higher High Water (MHHW), or 
Highest Astronomical Tide (HAT)) (Fig. S6) to estimates of extreme surge levels9,23. Although we use Method 1 
as reference in this analysis, we also provide alternative ESL estimates derived using fixed tide levels MHW, 
MHHW, and HAT (Fig. S6), aligning with previous research15,29; but other tidal levels could be used. The 
observed tidal peaks at gauged locations are obtained from GESLA water level time series via harmonic analysis 
(using the same time series from which annual maxima skew surge levels are obtained to inform BAYEX). 
Fig. S5 shows a comparison of 100-year ESL events derived using the different alternative methods at tide gauge 
sites using GESLA-based tidal peak data. The comparison shows that Method 1 (convolution) and Method 2 
(when adding MHHW to estimates of storm surge return levels) result in consistent 100-year ESL return levels 
almost everywhere (differences of less than 0.20 cm); except along macro-tidal coastal regions where tidal influ-
ences dominate over maximum surge levels (e.g., Gulf of Alaska and/or Bay of Fundy). The 100-year ESL return 
levels obtained using HAT (Method 2) illustrate a very conservative (assume that extreme surge events always 
happen during HAT29) and exceed estimates from Method 1, everywhere, particularly on coastlines with consid-
erable tidal ranges as mentioned before.

At ungauged sites, high tide values are derived by applying harmonic analysis to the barotropic tidal 
TPXO9-atlas model (version 5) dataset, a product that exhibits a very small deviation (<10 cm) in terms of 
harmonic constituents relative to tide gauge data (https://www.tpxo.net/home)30,31. The distribution of high 
tides from TPXO9v4 spans a full 18.6-year nodal tidal cycle. The comparison of MHHW and HAT tide levels 
from TXPO9v5 and GESLA for tide gauge stations (Fig. S6) shows that TPXO9v5 and GESLA-based MHHW 
and HAT agree well at most coastal sites with absolute differences of less than 0.1 m and 0.3 m, respectively. Note 
that tidal peak records from other tidal model products could be used to determine ESL estimates at ungauged 
sites based on BAYEX skew surge data. Figure 2 presents 100-year ESL return levels (relative to mean sea level) 
calculated from BAYESL-TG/EXT through Method 1 and Fig. 3 presents their associated 90% credible intervals 
(CI). In Fig. 4, absolute and relative differences between 100-year ESL estimates derived using BAYESL-TG 
and BAYESL-TG/EXT data are provided. The differences shown in Fig. 4 result from incorporating important 
extreme storm surge events not included in standard commonly-used hourly tide gauge records, as previously 
described (Table S1 and Fig. S4). Tide gauge sites are often 10 s to 100 s km apart from each and prone to missing 
and/or underestimating peaks due to storms making landfall between gauged sites. In addition, as previously 
discussed, hourly tide gauge data can miss absolute peaks of storm events at sub-hourly scales and/or gener-
ally comprise gaps and erroneous and/or incomplete readings during major storms including hurricanes (e.g., 
Katrina and Camille)4–6 owing to tide gauge damage25. Consequently, extreme outlier events could not be always 
captured in curated, global tide gauge datasets (e.g., NOAA, GESLA and UHAWAII archives). These results 
evidence that including additional observational sources of data is vital to enhancing estimates of storm surge 
and sea level extremes and that assessments relying entirely on hourly tide gauge observational data32,33 could 
result in unpredicted higher return periods particularly in coastal regions exposed to TC events. This includes 
physical models that (generally) bias-adjust storm surge outputs and are validated based on tide gauge data34,35. 
It is key to mention that even with pooling extreme data across areas through BAYEX and inclusion of additional 
extreme storm data (e.g., NOAA and SURGEDAT) beyond tide gauge records, estimates for TC areas remain 
highly uncertain (Fig. 3).

Data Records
The entire dataset (US-CoastEX) is archived at Zenodo36 and provided in NetCDF format. The dataset contains 
4 files with a total size of approximately 15 GB:

	 1)	 The files BAYESL-TG_GEV_PRED & BAYESL-TG-EXT_GEV_PRED comprise samples of non-stationary 
extreme skew surge distributions (GEV time-varying location, scale and shape), from BAYESL-TG and 
BAYESL-TG/EXT, respectively, for ungauged coastal U.S. sites (see Table S3 for further details);

	 2)	 The files BAYESL-TG_RL_ESL_PRED & BAYESL-TG-EXT_RL_ESL_PRED encompasses return level 
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estimates of extreme sea levels for return periods of up to 1000 years, derived under different approaches 
(see Methods) based on BAYESL-TG and BAYESL-TG/EXT skew surge data and TPXO9v5 tidal peaks, 
respectively, for ungauged coastal U.S. sites (see Table S4 for further details);

The code that implements BAYEX is archived at Zenodo37.

Data considerations.  It must be mentioned, as previously discussed, that BAYESL-TG and BAYESL-TG/
EXT have been developed for open-coast regions using only tide gauge data within less than 5 km from a coast. 
The application of BAYEX to the U.S. coastline15 (and associated data sets) (BAYESL-TG and BAYESL-TG/EXT) 
are hence not representative (or been tested or validated) of storm surge and sea level extremes in deltas, narrow 
inlets, bays and/or tidal rivers where hyperlocal geography, extensive river discharge, tidal influences and/or other 
nonlinear interactions could play a role. It should be noted though that a few specific tide gauges (with long-term 
data) used to inform BAYEX located within less than 5 km of a coast could still be affected by hyperlocal geog-
raphy (e.g., New York and Delaware). It is also important to mention that that storm surge and tides are just two 
contributors to total water levels that result in flooding. The data provided here are for storm surge extremes 
(and sea level extremes) but coastal design/risk assessments often require total coastal water levels. These may be 
derived by combining BAYEX data with other relevant meteorological and/or oceanographic water level contrib-
utors (e.g., rainfall and wave setup) (and their associated uncertainty) with total water level products.

Complementary data sources.  BAYESL-TG/EXT is informed not only by historical time series of annual 
maxima skew surge from hourly sea level records but also with complementary annual maxima data processed 
from NOAA top-ten water level and SURGEDAT archives (Tables S1-S2). That includes 6-min tide gauge records 
(after 1996), inferred extremes (determined using gap-filling procedures due to missing data), last successfully 
recorded extreme water levels prior to tide gauge malfunction during a storm and high water marks27 and histor-
ical storm-tide peaks from SURGEDAT peak surge database (Table S1-S2)26. The inclusion of multiple major TC 
storms (e.g., that produced maximum surge levels > 4 m; Hazel, Katrina or Camille) and other relevant events that 
do not exist in tide gauge records along with other relevant storms that have not been fully represented (and hence 
underestimated) by standard hourly tide gauge data result in much higher estimates compared to our standard 
BAYESL-TG version data (see Fig. 4; Fig. S4). Although we derive annual maxima skew surges only for storms 
with reported locations and datums (as previously mentioned), there is a degree of uncertainty introduced for 
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Fig. 2  100-year return levels (m) along the coastline of the U.S., Puerto Rico and the U.S. Virgin Islands. 
The estimates are calculated by convolving BAYESL-TG/EXT extreme skew surge data and TPXO tidal peak 
distributions. All estimates are all relative to present-day mean sea level (MSL).
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Fig. 3  90% Credible interval (CI) width (m) associated with 100-year ESL return levels along the coastline of 
the U.S., Puerto Rico and the U.S. Virgin Islands. The estimates are calculated by convolving BAYESL-TG/EXT 
extreme skew surge data and TPXO9v5 tidal peak distributions. The latitude and longitude scales are as in Fig. 2.
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specific inferred extremes and high-water marks where processing techniques have been applied (e.g., gap-filling 
procedures from NOAA) or when the exact peak time of major hurricanes are not reported (e.g., SURGEDAT) 
and therefore daily tidal peak needs to be averaged to derive skew surge estimates. It could also be possible that 
the few high-water marks labeled in SURGEDAT as storm-tides (without wave breaking influence) might still 
contain a wave-related component. It should be noted, however, that these uncertainties are rather small relative 
to the uncertainties associated with storm surge levels resulting from major storms. This is the case of many 
coastal areas exposed to major TC events (e.g., U.S. Gulf coastline) where storm surge extremes exceed 4 m (e.g., 
Carla, Camile, Katrina and Rita; Fig. S4) and differences between tidal peaks are extremely small (Fig. S6).

Model spatial knot grid.  The Bayesian hierarchical model rigorously propagates the underlying uncertain-
ties associated with the prescribed extreme data, processes and parameters. However, some considerations on 
the uncertainties associated with how we model residual dependence need to be discussed. The spatial residual 
process is expressed as a linear combination of scaled Gaussian kernels defined on a grid of spatial knots4, con-
verging to a max-stable process asymptotically as the number of knots grows infinitely large. Here a consistent 
0.5-degree knot grid covering the U.S. coast has been used to resolve the spatial residual process18, corresponding 
to the length scale and spatial extend of traditional historical TC storms (~500 km). The residual process is built 
using all the knots at each tide gauge location. The length scale of the spatial residual dependence represents the 
spatial distance over which the residuals (differences between observed vs predicted values) remain correlated4, 
representing how far spatial influences persist before becoming negligible. Increasing BAYEX grid knot to 0.2 
degrees or less could yield even more precise estimates for particular areas. However, such an increase comes with 
trade-offs as it is only computationally tractable by building the residual process using the nearest ten knots to 
each tide gauge station. Regional sensitivity analysis conducted for Florida indicates that increasing BAYEX grid 
knot from 0.5 to 0.2 degrees (while using ten knots at each tide gauge location) results in a reduction of the loca-
tion (μ) and scale (σ) parameters by< 5% and the shape parameter (ξ) by ~15% when average across all tide gauge 
sites. While this increase in resolution could help resolve smaller length scales, the reduction in the number of 
spatial knots used decreases the ability of BAYEX to capture important regional dependence along many coastal 
regions. For example, in the U.S. South and East Coasts and Gulf Coast, major TC storms often track coastlines 
for hundreds of miles, affecting multiple tide gauges relatively far apart. Neglecting such regional dependences 
results in underestimated GEV parameters within such regions, particularly ξ18.
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Fig. 5  Difference (m) between 100-year ESL return level estimates derived by convolving BAYESL-TG/EXT 
extreme skew surge distributions and GESLA tidal peak data against estimates reported by NOAA using RFA 
across different tide gauge sites. Only common tide gauge sites are shown. The latitude and longitude scales are 
as in Fig. 2.
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Technical Validation
The adequacy and performance of BAYEX (and its underlying max-stable process) have been comprehensively 
assessed using tide gauge records, modeled storm surge simulations and synthetic storm data4,5. The max-stable 
assumption in BAYEX for representing storm surge extremes has also been confirmed through leave-one-out 
cross-validation based on tide gauge observations4,5. A full comparison of BAYEX skew surge (GEV) distribu-
tion parameters (and associated return period estimates) against estimates from conventional at-site GEV model 
based on Bayesian inference have been conducted for 208 tide gauges along the U.S. coastal areas18. Below, we 
compare our convoluted ESL return levels using BAYEX and TPXO9v5 data against published or reported esti-
mates from different data set available.

Comparison of ESL estimates against NOAA observational estimates.  Here we compare ESL 
return levels estimated based on BAYESL-TG/EXT data with published estimates using different data sets and 
statistical approaches. First, we compare 100-year ESL return level predictions from convolving BAYESL-TG/
EXT extreme skew surge distributions and GESLA-based tidal peaks with values estimated by NOAA via regional 
frequency analysis (RFA)14 (https://sealevel.globalchange.gov/resources/2022-sea-level-rise-technical-report/) of 
tide gauge records (Figs. 4, 5). The comparison shows that 100-year ESL estimates presented here exceed estimates 
from NOAA for most tide gauge sites along the U.S. East and Gulf coasts by up to 1.5 m, depending on locations. 
The differences found at tide gauge sites along the U.S. West coast, Hawaii and Alaska are relatively small (i.e., typ-
ically less than 0.25 m) as extreme sea levels are generally dominated by high tides. A comparison of other return 
periods (25, 50, 75; and 100 years) is also presented highlighting that differences between estimates are already 
considerable beyond 25-year return periods for the U.S. East and Gulf coastline regions (Fig. 6). We note that 
there are multiple factors that can contribute to those differences, e.g., number and/or location of tide gauge sites, 
from which data was extracted, and their record lengths (as well as other data sources used to complement such 
records), differences in the data processing steps, spatial model used and estimation methodology for calculation 
of ESL return periods (as shown in Table S1). It is impossible for us to isolate the differences due to the use of 
different statistical models, unless the exact same data sources, time period and data processing methods are used.

0 1 2 3 4 5
25-year ESL based on NOAA RFA (relative to MSL)

0

1

2

3

4

5

25
-y

ea
r 

E
SL

 b
as

ed
 o

n 
B

A
Y

E
SL

-T
G

/E
X

T

0 1 2 3 4 5
50-year ESL based on NOAA RFA (relative to MSL)

0

1

2

3

4

5

50
-y

ea
r 

E
SL

 b
as

ed
 o

n 
B

A
Y

E
SL

-T
G

/E
X

T

0 1 2 3 4 5
75-year ESL based on NOAA RFA (relative to MSL)

0

1

2

3

4

5

75
-y

ea
r 

E
SL

 b
as

ed
 o

n 
B

A
Y

E
SL

-T
G

/E
X

T

0 1 2 3 4 5
100-year ESL based on NOAA RFA (relative to MSL)

0

1

2

3

4

5

10
0-

ye
ar

 E
SL

 b
as

ed
 o

n 
B

A
Y

E
SL

-T
G

/E
X

T

Alaska
East Coast
Southeast Coast
Gulf Coast
Caribbean
Hawaii
West Coast
 1:1 Regression

Fig. 6  Comparison of 25, 50, 75 and 100-year ESL return level estimates (m) against those reported by NOAA 
for each region. Estimates are all relative to present-day mean sea level (MSL).
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Comparison of ESL estimates against numerical model-based estimates.  We also compare 
BAYESL-TG/EXT return periods obtained through Method 1 with estimates calculated from a widely-used 
storm-tide model hindcast dataset (CODEC)34 covering 38-years between 1979–2017 (Table S1). This enables 
a comparison along the entire coastlines and not just for tide gauge sites. The extreme surge distribution esti-
mated from CODEC data is derived by fitting a traditional GEV to annual maxima skew surge (m) time series 
for each model point separately (through maximum likelihood estimation), from which ESL return periods are 
then calculated through convolution based on tidal peaks from TPXO9, for direct comparison. Figure 7 com-
pares 100-year ESL estimates through Method 1 and CODEC for all U.S. coastal regions. These results show that 
100-year ESL return levels estimated from BAYESL-TG/EXT exceed site-by-site CODEC estimates for approx-
imately 87% of the U.S. coastline by 65% on average. Similar results are found when fitting a Generalized Pareto 
Distribution (GPD) to CODEC data (not shown for simplicity). The exception is from Georgia to South Carolina, 
where single-site CODEC 100-year ESL estimates exceed BAYESL-TG-EXT based on Method 1 by up to 0.5 m 
(Fig. 7). In Fig. S7, we present return periods (years) using BAYESL-TG-EXT data for ESL that are estimated to 
have a 100-year return period based on at-site100-year ESL return levels based on CODEC data, indicating that 
(on average) extreme events of that magnitude are nearly three times more likely to actually occur (i.e., a 35-year 
return period event) as estimated from BAYESL-TG/EXT data. In many major coastal cities, such ESL events 
are up to 20 times more likely according to our results (e.g., New York, Tampa, Miami, San Francisco, Boston, 
Seattle and Honolulu; see Fig. S8). These considerable differences originate from the use of different data sources 
(observational archives versus simulated data; as shown in Fig. S9) and statistical methods (spatio-temporal BHM 
modeling versus traditional at-site analysis of surge extremes) as previously shown in ref. 18 (Table S1). In addition, 
we show a comparison against published 100-year ESL estimates retrieved from COAST-RP (https://data.4tu.
nl/articles/_/13392314)35 - which have been obtained empirically from numerical surge simulations forced with 
synthetic storm tracks from a TC-database (STORM)38 and extra-tropical storms from ECMWF’s ERA5 reanalysis 
forcing35 (Fig. S10). We detect nearly identical differences (ca. Figure 7 and Fig. S9) with 100-year return level esti-
mates from BAYESL-TG/EXT exceeding COAST-RP estimates for 76% of the U.S. coastlines by 50% on average.
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Fig. 7  Comparison of 100-year ESL return levels (m) derived by convolving BAYESL-TG/EXT and TPXO9 
tidal peak data with estimates from at-site GEV analysis based on CODEC data along the coastline of the 
U.S., Puerto Rico and the U.S. Virgin Islands. To facilitate visualization, only every grid point is shown. The 
comparison against COAST-RP (which includes synthetic storms) is provided in Fig. S10. The latitude and 
longitude scales are as in Fig. 2.
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Comparison of ESL estimates with FEMA total water levels.  To further contextualize our estimates, 
we provide comparison of 100-year ESL return levels based on BAYESL-TG/EXT against 100-year total water 
level return level estimates (referred to as stillwater elevation by the Federal Emergency Management Agency 
(FEMA) and includes astronomical tide, storm surge, and wave setup contributions) developed by FEMA39 to 
support floodplain management and flood insurance purchase requirements within the U.S. (Fig. S11). Despite 
not including wave setup, which can be a key contributor to coastal extreme stillwater elevations, we find that 
100-year ESL return levels based on BAYESL-TG/EXT usually exceed or are on par with FEMA estimates for 
tide gauge locations along the U.S. Gulf and East Coasts. Our comparison is less useful for the U.S. West Coast, 
where wave setup is a major contribution to sea level extremes (relative to storm surge events). There, not sur-
prisingly, FEMA 100-year total water levels (and referred by FEMA as stillwater elevation) exceed BAYESL-TG/
EX ESL estimates. FEMA estimates hold considerable authority in the U.S. However, to our knowledge, very few 
comparisons have been made against other methodological approaches, including in terms of uncertainty prop-
agation and/or quantification. We hypothesize that this may be due to the absence of a single, centralized dataset 
– data are dispersed across hundreds of FEMA Flood Insurance Studies - and the existing lack of a standardized 
approaches and/or metrics for storm surge and wave.

Code availability
The code that implements BAYEX is available in Zenodo37: https://zenodo.org/records/10967174.
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