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mental improvement with the potential to benefit many taxa, yet evidence of na-
tional scale benefits is mixed. Multiple sources of evidence are available to assess

AES effects, with different strengths and weaknesses, but most existing studies

use a single dataset to evaluate AES impacts.
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of butterflies in England. We analysed data from a study specifically designed to

assess AES effects (the LandSpAES study) alongside two different citizen science

UK Butterfly Monitoring Scheme (UKBMS) surveys. UKBMS surveys were not

designed to evaluate AES effects, but they provide better spatial coverage across

Handling Editor: Jérémy Froidevaux the agricultural landscapes of England. We compared AES relationships between
the three datasets, using a generalised AES gradient method to allow integra-
tion of different AES options, including the creation of habitat features such as
wildflower strips and the restoration of semi-natural habitats. We assessed AES
effects at both local (1km) and landscape (3km) scales.

3. We found that AES in the surrounding landscape was positively associated with
butterfly community responses in all three datasets and some evidence that
local-scale AES was positively associated with butterfly richness. The smaller
size of the LandSpAES study led to wider confidence bounds around effect sizes,
but the careful design provided assurance that potentially confounding effects
were accounted for. The wider spatial coverage of the citizen science datasets
increased confidence that results can be extrapolated to the national scale.

4. Synthesis and applications. Our results provide support for positive effects of AES
on butterflies in England from multiple sources of evidence, providing confidence
that these schemes are providing tangible benefits for butterflies. Our recommen-

dations for managers and policy makers are (1) multiple data sources should be

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

© 2025 Crown copyright and The Author(s). Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. This article is
published with the permission of the Controller of HMSO and the King's Printer for Scotland.

2226 wileyonlinelibrary.com/journal/jpe J Appl Ecol. 2025;62:2226-2236.


www.wileyonlinelibrary.com/journal/jpe
mailto:
https://orcid.org/0000-0001-5382-5135
https://orcid.org/0000-0002-2022-7451
https://orcid.org/0000-0002-2233-3848
https://orcid.org/0000-0003-1133-3102
https://orcid.org/0000-0001-6467-3712
mailto:susjar@ceh.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1365-2664.70126&domain=pdf&date_stamp=2025-08-20

JARVIS ET AL.

KEYWORDS

survey design

1 | INTRODUCTION

Agri-environment schemes (AES), whereby farmers are paid
to implement management for environmental benefits, are im-
portant mechanisms for environmental policy delivery in the
United Kingdom (UK) and Europe (Batary et al., 2015; Stewart
et al., 2022). As such, it is essential to understand the effective-
ness of these schemes. For options targeted towards biodiversity
conservation, this includes assessment of the benefits of specific
management on target taxa. However, there is also a need to un-
derstand the combined impacts of AES intervention across option
types and landscapes to provide a national picture of AES effec-
tiveness (Staley et al., 2021). For mobile species, such as butter-
flies, it is likely that the amount and configuration of AES across
the landscape are also important; therefore, we need to consider
multiple spatial scales of AES impact.

Some butterfly species have been shown to have more posi-
tive population growth on specific sites under AES management
compared to nearby non-AES areas (Redhead et al., 2022) or to
regional population trends (Kolkman et al., 2022), but this has
not been supported across a broader range of sites or species
(Oliver, 2014). A recent review suggested most studies assessing
community- or population-level responses of Lepidoptera to AES
found positive effects (Bladon et al., 2023), but very few stud-
ies reviewed aimed to look for effects at national or other larger
spatial extents, beyond the individual farm, study site or region.
Despite relatively widespread uptake of AES in the UK, the na-
tional picture for farmland biodiversity remains one of decline,
suggesting AES may not be delivering sufficient benefits at a
national scale (Stewart et al., 2022). With the UK implementing
new AES after withdrawal from the EU common agricultural pol-
icy (Department for Environment Food and Rural Affairs 2024), a
solid evidence base to assess the performance of these schemes
and enhance their design is needed.

There are several key challenges to overcome when attempting
to assess AES impacts at national scales. These include the fact that
AES impacts are often found to be context-specific (e.g. Scheper
et al., 2015), such that replication across contexts is required to
identify general patterns. The ideal data to test AES effects is often
lacking (Josefsson et al., 2020; Kleijn & Sutherland, 2003), particu-
larly at large spatial scales. Ideally, data would be professionally col-
lected before and after AES implementation, at a large number of
study sites, across a nationally representative range of AES uptake,
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considered for AES monitoring and evaluation, exploiting the strengths of differ-
ent data types; (2) AES intervention over larger spatial areas than individual fields

and farms should be considered when aiming to provide benefits for butterflies.

abundance, agri-environment, butterfly, citizen science, data synthesis, landscape scale,

across multiple landscapes and contexts, and over long time scales
to assess population trends.

In England, the data available to assess AES impacts on butterflies
come from either targeted studies specifically designed to detect
AES effects and conducted at local or regional scales (e.g. Redhead
et al., 2022; Staley et al., 2022) or by utilising existing national scale
monitoring effort which is not designed specifically for AES impact
detection (e.g. Oliver, 2014). Targeted studies are designed specif-
ically to look at AES effects and provide high-quality data where
confounding variables are carefully controlled for. The cost of ob-
taining such data means sample sizes are low, and this comes at the
expense of representativeness when the aim is to make inference at
national scales. Citizen science data can provide large sample sizes,
long time series and wide spatial coverage, but the lack of design
to specifically test the impact of AES means it can be challenging
to separate AES impacts from the effects of confounding variables
(Oliver, 2014). Although the wide spatial coverage of citizen science
data can increase representativeness, volunteer-led schemes are
often biased towards more ecologically interesting areas and away
from more typical farmland (Brereton et al., 2011; Ruck et al., 2024;
Tulloch et al., 2013).

Choices about data used to evaluate AES effects are generally
presented as mutually exclusive (i.e. to invest in a targeted survey or
to exploit citizen science data) and most individual AES evaluation
studies use a single data source (e.g. Boetzl et al., 2021; Kolkman
et al,, 2022; Loffler et al., 2023; Meier et al., 2024; Oliver, 2014;
Panassiti et al., 2023; Redhead et al., 2022). Given the difficulties in
identifying an ideal dataset to evaluate AES effects, we consider that
bringing together multiple datasets to answer the same question al-
lows us to benefit from the different strengths of separate datasets.
If consistent positive effects across multiple datasets are found,
then this provides good evidence that AES are providing benefits
to butterflies and that these effects can be seen at national scales.
To enable multiple datasets to be analysed to consider AES effects
on butterflies in England, we designed a common analytical frame-
work which could be applied to data from both a targeted study (the
LandSpAES study) and two citizen science surveys in England.

The LandSpAES study was designed to provide high-quality, tar-
geted evidence of the impact of landscape-scale AES intervention on
mobile species, including butterflies (Staley et al., 2022). LandSpAES
is a pseudo-experimental study (i.e. AES were not randomly allo-
cated; Christie et al., 2019) which uses a carefully constructed design
to allow the effects of local (within a 1km x 1 km areas) and landscape
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(the surrounding 3km by 3km area) scale AES to be separated. The
design reduces the potential for confounding landscape variation
to obscure AES effects by replication across six regions with con-
trasting landscape characteristics (Staley et al., 2022). However, the
high cost of the survey means a limited number of survey locations
are monitored that are not representative of conditions across all of
England.

Data on butterflies from across England are also available
from the long-running UK Butterfly Monitoring Scheme (UKBMS),
one of the UK's largest structured citizen science schemes. This
scheme supports volunteers to survey transect routes for butter-
flies on a repeated basis and data from this scheme inform trends
in butterfly populations across the UK. The UKBMS includes
a number of different component surveys including the Wider
Countryside Butterfly Survey (WCBS), which was designed to in-
crease understanding of trends in butterflies outside of the high-
quality habitats volunteers tend to prefer (Brereton et al., 2011).
These citizen science surveys provide a potentially useful re-
source to understand AES effects as they provide a large volume
of data and cover a broad range of English agricultural landscapes.
However, the lack of an AES-focused design means the potential
for confounding effects is much higher.

We assessed AES impacts on butterflies in England from the
LandSpAES, UKBMS and WCBS datasets. Our key questions were

as follows:

1. Are similar relationships between butterfly community responses
(abundance, diversity and richness) and AES implementation
observed in all three datasets when analysed under a common
framework?

2. Do relationships vary with the spatial scale of AES considered (a
1km ‘local’ area vs. a 3km ‘landscape’ area)?

3. Is there evidence of an overall positive impact of AES on
butterflies?

2 | MATERIALS AND METHODS
2.1 | Datasets
2.1.1 | LandSpAES data

The LandSpAES project ran from 2017 to 2022 and assessed whether
key mobile taxa were affected by the quantity of AES management,
measured at local and landscape scales, specifically considering im-
pacts beyond option, farm or AES agreement boundaries, and across
multiple taxa. To enable this, a novel AES gradient approach was de-
veloped (Staley et al., 2021, 2022) using information on the spatial
extent, expected benefit per species group and payments for each
option to derive a continuous AES score. The AES gradient score
methodology (described in detail below) allows landscapes with dif-
ferent characteristics and expected biodiversity impacts to be com-
pared in terms of AES intervention on a common scale. For example,

it allows an upland landscape with a small number of spatially exten-
sive options such as reduced stocking and a lowland landscape with
small areas of resource-rich options such as flower-rich margins to
be placed on the same scale.

Fifty-four 1km squares were selected to maximise the contrast
between AES gradient scores in the local (1x 1km) area and in the
wider landscape (surrounding 3x 3km) to enable separation of AES
effects at different spatial scales. The selection process (described
in detail in Staley et al., 2021) used a weighted random methodol-
ogy to select squares from all factorial combinations of low, medium
and high AES gradient scores at local and landscape scales (i.e. nine
squares, see Figure S1) within each of six regions with homogenous
background landscape characteristics (National Character Areas,
hereafter NCAs), giving 54 cells in total. These NCAs included both
upland and lowland landscapes (Figure 1) and were chosen to repre-
sent a diversity of farmed landscapes across England. The design en-
ables the interaction between local- and landscape-scale AES to be
assessed, to investigate whether butterflies respond more positively
to local AES in landscapes with less AES implementation.

Six mobile taxon groups were monitored within survey squares
(butterflies, bees, moths, hoverflies, birds and bats) annually be-
tween 2017 and 2021 (excluding 2020 when field survey was not
possible due to the COVID-19 pandemic; Staley et al., 2022). Here
we focus on butterflies, which were recorded to species along fixed
transect routes within a 5x5x5m hypothetical box, known as a
‘Pollard walk’. Key characteristics of the butterfly surveys conducted
within LandSpAES are shown in Table 1.

LandSpAES
UKBMS
- WCBS

100 kmier v v 11

FIGURE 1 Map of survey locations in England used in this study
belonging to three datasets: the UK Butterfly Monitoring Scheme
(UKBMS); Wider Countryside Butterfly Monitoring Scheme
(WCBS); LandSpAES study. Shaded grey areas show the National
Character Areas in which LandSpAES sites are situated (Yorkshire
Dales, The Fens, Dunsmore and Feldon, South Suffolk and North
Essex Clayland, High Weald, Dartmoor). Citizen science transects
outside of farmed landscapes were not included in the analysis and
are not shown on the map.
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TABLE 1 Key characteristics of data

. . Feature LandSpAES
sources included in the analyses. .
Number 54
of unique
survey sites
Design Designed to detect
rationale relationships between
mobile taxa and AES
gradients at local and
landscape scales in six
regions
Survey Pollard walk
method
Transect 2km
length
Transect Representative of a 1km
placement square

Repeat visits

3-4 (median=4)

UKBMS
1207

Designed to assess
abundance change over
time in UK butterfly
populations

Pollard walk

Variable (50m to 12km)

Surveyor choice

1-66 (median=16)
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WCBS
730

Designed to

assess abundance
change over time

in UK butterfly
populations with

a focus on wider
countryside species

Pollard walk
2km
Representative of a

1km square

1-10 (median=2)

between
May and
August

Years of data  3-4

per square
(2017-2019
plus 2021)

2.1.2 | UKBMS and WCBS survey data

The UKBMS is a citizen science scheme monitoring populations of
butterflies across the UK since 1976, using several types of survey.
The original and most widely adopted survey type is a standard
transect walk (hereafter termed ‘UKBMS’) where a fixed-line route
is established by the recorder and walked weekly from the start of
April to the end of September annually (Pollard & Yates, 1993).
These transects vary greatly in length and are more typically lo-
cated, historically at least, in areas of good quality semi-natural
habitats. In 2007, the WCBS was developed to produce unbiased
abundance indices and trends for wider countryside species,
through more representational coverage of habitats (such as farm-
land) that dominate much of the UK but were historically under-
represented in UKBMS sites (Brereton et al., 2011). WCBS sites
are randomly selected 1km squares within which butterflies are
recorded on two parallel 1km transects. WCBS transects are vis-
ited at least twice per year, primarily in July and August. WCBS
and LandSpAES transects are both designed to sample a 1km
square, whereas UKBMS transects can extend across multiple
1km squares. We assigned a 1km grid reference to UKBMS tran-
sects for analysis using the transect mid-point grid reference. Key
dataset properties are summarised in Table 1.

The distributions of UKBMS and WCBS sites in 2017-2019 and
2021 are shown in Figure 1, showing a much greater coverage of
England compared to LandSpAES sites. We excluded any UKBMS
and WCBS sites that were not predominantly farmland using crite-
ria previously applied during LandSpAES square selection (>30%
of combined urban, suburban and freshwater coverage or >50%

1-4 1-4

combined broadleaved and coniferous woodland coverage; Staley
et al., 2016; Rowland et al., 2017).

2.2 | Calculation of response variables

Total butterfly abundance, species richness and Shannon diversity
index were calculated for each transect in each dataset in each year,
aggregating across all visits between May and August. We excluded
visits outside this window, which covers the LandSpAES survey pe-
riod. Our analysis assesses the effect of AES on the butterfly com-
munity observed across the year and thereby includes potential
AES effects on turnover throughout the year. Summaries of each
response variable for each dataset are shown in Table S1.

Most butterflies were recorded to species in all three datasets;
however, in a few cases, aggregates were used for species which were
particularly difficult to identify in the field. It was usually possible to
allocate aggregates to species level based on the proportions of the
two constituent species observed in each square, as recommended in
the UKBMS field guidance (UKBMS 2024). Where this was not possi-
ble, the aggregate taxon was used across datasets for consistent tax-

onomic resolution. A list of species recorded is provided in Table S2.
2.3 | Survey effort
Key differences between the datasets include the total transect length

and the number of repeat visits per year. Failing to account for these
differences in survey effort could obscure variation due to AES. We
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calculated the number of unique visits between May and August (re-
gardless of whether any butterflies were seen) for all datasets, and tran-

sect length for UKBMS transects, to include as covariates in analyses.

2.4 | AES gradient calculation

We calculated AES gradients using the approach described in Staley
et al. (2016) with updated AES uptake data. As described above, this
approach uses the spatial extent of options, expected benefit per
species group derived from an evidence review and payments (some-
times provided as points) for each option to derive a continuous AES
score for a 1km unit. Option extents were derived from AES uptake
data for Environmental Stewardship and Countryside Stewardship,
accessed from the Natural England Open Data Geoportal (https://
naturalengland-defra.opendata.arcgis.com/). These include all types
of AES option present from 2017 to 2021, including legacy Entry
and Higher Level Stewardship, and Countryside Stewardship options
from 2016 onwards, made spatially explicit at the level of the field
centroid where the AES option was located. The benefit score was
obtained by scoring each option for benefit to multiple mobile taxon
groups as a function of the strength and quality of available evidence
(Staley et al., 2016, 2021). Scheme points or payment rates per unit
option were derived from the relevant AES handbooks (Table S3).

All three elements were multiplied for each option type and then
summed across all options present to give a single AES gradient score
per year for each 1km square in the three butterfly datasets. The AES
gradient score has arbitrary units and ranges from O (no AES present)
to over 40,000 (multiple beneficial options widely present). The 3km
gradient scores were then derived by taking the mean score of the
surrounding eight cells for each 1km square. The AES gradient scores
were calculated identically for all three datasets providing a consistent
measure of AES that is specifically designed to be relevant for mobile
taxa including butterflies. Across England, the AES options included in
the gradients included the creation of resource-rich habitat features
such as wildflower strips, the restoration of semi-natural habitats such
as species-rich grassland, and the adoption of less intensive manage-
ment activities (e.g. reduced stocking density or reduced fertiliser
application). A full list of AES option types included in the gradient cal-
culations is provided in Table S3.

AES uptake data have some limitations in the accuracy and
precision with which AES options are recorded, but comparison
against AES gradients measured from field data obtained during the
LandSpAES project showed good correspondence (average correla-
tion of 0.78; Staley et al., 2021).

2.5 | Environmental covariates

To account for potentially confounding factors, we constructed three
variables representing broad gradients of climate, landscape and habi-
tat across England. We calculated these variables from three separate
principal components analyses (PCAs), each containing 6-8 variables

at 1km resolution selected to be likely influences on butterfly popula-
tions. Details and sources of environmental covariate data are given
in Table S4. From each PCA, we then extracted the first axis score for
each transect location as a new variable to include in our models of
butterfly responses. We chose PCA as a pragmatic method of distilling
the large number of potentially important variables into a small num-
ber that could be included in any dataset model (Graham, 2003). PCA

axes had no or weak correlations with AES scores (Table S5).

2.6 | Statistical analysis

A unified model structure was derived which could be applied to
each butterfly response and dataset to enable a fair comparison of

results. There were six key model components:

1. The response variable, which was either butterfly species
richness, diversity or abundance, is described above. Richness
responses were modelled as Poisson, abundance as nega-
tive binomial and diversity as Gaussian with an exponential
transformation.

2. The AES gradient terms for local, landscape and an interaction
between local and landscape gradients.

3. Terms for survey effort. In all models a term was included for the
number of visits between May and August, and in UKBMS mod-
els, a term was included for transect length.

4. The three PCA gradients representing key variation in climate,
landscape and habitat.

5. Aterm for survey year.

6. Arandom term for survey square identity, to account for repeated
visits to the same 1km square. Preliminary analysis investigated
whether temporal autocorrelation could be estimated, but this
was not possible due to the small number of years and missing
data from 2020.

Linear or generalised linear mixed effect models were run
using brms package v2.18.0 (Biirkner, 2017) as an interface to Stan
(Carpenter et al., 2017; rstan v2.26.13). All models were fitted using
four chains and 2000 iterations, of which 1000 were warm-up,
and examined for convergence using the R-hat statistic (Vehtari
et al., 2021), effective sample size and graphical checks. Recovery of
the data was examined using graphical posterior retrodictive checks
(Gabry et al., 2019).

To test whether coefficients from the AES terms were simi-
lar between individual dataset models (e.g. whether the 1km AES
effect estimated for LandSpAES was the same as the 1km AES
effect estimated for UKBMS), we calculated pairwise differences
between 1000 draws from the posterior distributions of the pa-
rameters. If the 95% highest posterior density interval (HPDI)
overlapped zero, then we concluded that the two coefficients
were similar. All code to run the models is available at https://
github.com/NERC-CEH/AES-multiple-evidence-paper. This study
did not require ethical approval.
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3 | RESULTS

AES had a significant positive relationship with butterfly commu-
nity variables, particularly at the landscape (3km) scale (Figure 2;
Table 2). We found evidence that the landscape gradient was
positively associated with butterfly community responses in all
three datasets, although there was variability between responses

and datasets in the strength of evidence. Relationships between
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landscape AES intervention and butterfly abundance were most
strongly supported by LandSpAES and WCBS, but positive re-
lationships with richness were more evident in the analysis of
UKBMS and WCBS. A positive relationship with diversity was only
found for WCBS.

Mixed evidence was found for effects of the local (1km) AES gra-
dient, which had a positive effect on richness in both UKBMS and
WCBS analyses, but a negative relationship with butterfly diversity

1000 q
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2501

01— T T +
0 10 20 30
Landscape (3km) AES gradient score ('000s)

151

101
=

5.

0= T T T
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Survey — LandSpAES —— UKBMS — WCBS

FIGURE 2 Predicted relationships between local (1km) and landscape (3km) AES gradients and total butterfly community abundance,
diversity and richness for each of the three butterfly datasets considered (UKBMS, UK Butterfly Monitoring Scheme; WCBS, Wider
Countryside Butterfly Survey; LandSpAES study). Shannon diversity is exponentially transformed.
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in the UKBMS analysis. There was no evidence that local AES posi-
tively impacted butterfly abundance in any dataset.

Interaction effects, where the effect of local AES is mediated by
the level of AES in the surrounding landscape, were only found in
analyses of WCBS data. These analyses suggested that the effect of
local AES on both butterfly richness and abundance was highest in
low AES landscapes (Table 2). In all cases, credible intervals around
the estimated effects were widest for models using LandSpAES
data, reflecting the smaller sample size available. LandSpAES also
had less coverage of very high landscape AES scores, due to a small
number of very highly scoring UKBMS and WCBS squares, with the
vast majority of 1km squares having landscape AES scores of less
than 20,000 (Figure S2).

Despite some differences in significance, the overall similar-
ity of responses between datasets is demonstrated by the HPDI
tests which showed no significant differences between most data-
sets (Table 3). The one case where the HPDI test showed that the
datasets did not agree was between LandSpAES and UKBMS for
landscape-scale AES effects on butterfly abundance. LandSpAES
showed a strong positive relationship between butterfly abundance
and the landscape AES gradient, whilst UKBMS data showed no sig-
nificant relationship (Figure 2; Table 2). There was a slight trend to-
wards greater differences between UKBMS and the other datasets,

Landscape AES
Local AES (1km) (3x3km)
Abundance LandSpAES 0.005 (0.070) 0.212(0.095)
UKBMS 0.020(0.013) 0.017 (0.030)
WCBS 0.045 (0.024) 0.103 (0.038)
Diversity LandSpAES 0.231(0.220) 0.223(0.317)
UKBMS -0.117 (0.042) 0.130(0.093)
WCBS -0.057 (0.063) 0.193 (0.098)
Richness LandSpAES 0.012(0.028) 0.045 (0.035)
UKBMS 0.013(0.004) 0.029 (0.011)
WCBS 0.026 (0.011) 0.055 (0.016)

although in all cases responses using UKBMS and WCBS data were
not statistically different from each other. A version of Figure 2

showing data points is provided in Figure S3.

4 | DISCUSSION

Our results demonstrate that combining multiple data sources
provided a broad consensus on relationships between AES and
butterfly community responses. The results showed high similar-
ity between the estimated relationships when compared pairwise
between the data sources and, in several cases, the observed re-
lationships were very similar across all three datasets, for example
the positive relationship between landscape AES and butterfly

richness.

4.1 | AES effects on butterflies

We found more evidence of landscape-scale (3x3km) AES effects
on butterflies than effects of local AES (within a 1km square). This
would suggest that the mobility of butterflies, and their relatively
high ability to disperse and exploit the floral resources and larval

TABLE 2 Results of models of butterfly
abundance, diversity and richness against
AES local, landscape and interaction
effects. Mean covariate estimates are
shown alongside standard errors in
brackets.

Local x landscape
AES interaction

0.030 (0.072)
0.001 (0.009)
-0.213(0.011)
-0.233(0.218)
-0.003 (0.03)
-0.022 (0.028)
-0.005 (0.032)
-0.006 (0.003)
-0.013(0.005)

Note: Bold indicates significant effects where the 95% credible interval does not include zero.

Response Dataset 1 Dataset 2 AES 1km AES 3km
Abundance LandSpAES WCBS -0.183-0.108 -0.097-0.306
LandSpAES UKBMS -0.162-0.119 0.007-0.397
WCBS UKBMS -0.078-0.030 -0.179-0.010
Diversity LandSpAES WCBS -0.140-0.751 -0.568-0.703
LandSpAES UKBMS -0.096-0.774 -0.581-0.726
WCBS UKBMS -0.211-0.092 -0.321-0.200
Richness LandSpAES WCBS -0.076-0.046 -0.082-0.068
LandSpAES UKBMS -0.058-0.056 -0.057-0.086
WCBS UKBMS -0.036-0.010 -0.063-0.013

Interaction

-0.098-0.186
-0.115-0.169
-0.005-0.050
-0.637-0.210
-0.652-0.196
-0.059-0.103
-0.052-0.075
-0.063-0.063
-0.004-0.019

Note: Bold indicates that the HPDI does not overlap zero, indicating a significant difference in

slopes.

TABLE 3 95% highest posterior density
intervals (HPDIs) for each combination of
models and covariates.
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foodplants provided by AES options, means that they are respond-
ing to AES at a landscape scale. Larkin and Stanley (2021) found
that landscape-level farming intensity, defined by the amount of
improved versus semi-natural grassland within a 2km radius, had a
stronger influence on butterfly community composition than a field-
scale proxy for AES, but did not find effects on butterfly richness,
diversity or abundance. This difference could be due to their use of
a proxy for AES at the local scale, and a measure of farming intensity
at the landscape scale that is not necessarily related to AES interven-
tions (Larkin & Stanley, 2021). Stronger responses to landscape-level
AES might also be expected given the higher mobility of the butterfly
species in our study, which were dominated by mobile, wider coun-
tryside species. In addition, the use of a consistent method to calcu-
late AES intervention at two spatial scales may have allowed better
spatial attribution of relationships between AES and butterflies,
compared to previous studies (e.g. Panassiti et al., 2023). However,
we found the positive effect of landscape AES on abundance was not
observed in the UKBMS dataset. UKBMS includes more high-quality
semi-natural sites (Roy et al., 2015) with nationally scarce, but po-
tentially locally highly abundant, habitat specialist species such as
the Chalk Hill Blue (Polyommatus coridon). Although these species
may respond to targeted AES (e.g. Brereton et al., 2008), they may
show weaker relationships with the generalised AES gradients used
here, particularly if the transect habitat is already of high quality.

Although interaction effects were not supported in most mod-
els, we did find some evidence from the WCBS survey that the
effect of local AES was highest in low AES landscapes. This might
indicate that resources provided by AES are more important for
butterfly populations when the landscape is impoverished in AES
options (Scheper et al., 2015). A similar effect of organic farming on
butterflies has been observed, whereby the benefits are greater in
conventional landscapes (Rundlof et al., 2008). Whether this is an
attraction effect (e.g. reflecting species movement to high resource
areas) or a population effect relies on future assessment of change
over time, although there is evidence that AES uptake at landscape
scales equivalent to those used here is correlated with more positive
long-term population trends (Redhead et al., 2022).

We found only one negative relationship, between UKBMS
measured diversity and the local AES gradient. Because UKBMS
is biased towards semi-natural sites where rare and specialist spe-
cies are likely to be present, this may inflate diversity in landscapes
which are managed in ways other than those supported by AES
(e.g. specialist management of nature reserves). Alternatively, the
finding could reflect AES supporting proportionally higher abun-
dances of more common, generalist species (Aviron et al., 2011;
Batary et al., 2015), leading to a small decrease in observed
diversity.

4.2 | Dataset comparison

As recognised by other authors, there are significant challenges
in designing studies to assess AES effects (Redhead et al., 2022,
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Josefsson et al., 2020). Individually, many datasets will fail to over-
come at least some of these challenges (e.g. lacking an AES-focused
design, lacking data prior to AES implementation, lacking accurate
AES intervention data). Using multiple data sets with different
strengths and weaknesses is one way of tackling these shortcom-
ings. ldentifying similar patterns across multiple datasets provides
confidence that observed patterns are both real (i.e. not influenced
by confounding factors) and representative (i.e. effects can be ex-
trapolated beyond small, focused, study areas).

By analysing multiple datasets using a common analytical ap-
proach, we were able to make direct comparisons between coeffi-
cients estimated using each dataset. By ensuring that we defined
community responses, AES gradients and model structures in com-
parable ways, we can conclude that differences between analyses
are likely to be due to the design and properties of each dataset.
For example, we found that relationships in LandSpAES data were
much more uncertain (i.e. had wider confidence bounds) than re-
lationships observed using the citizen science datasets due to the
smaller size and likely lower power of the LandSpAES data (Jennions
& Mgller, 2003). However, the targeted design of the LandSpAES
study, which was designed to accurately attribute AES effects, pro-
vides high confidence that relationships are not influenced by con-
founding variables.

Citizen science data is a useful source of information for un-
derstanding national scale impacts of drivers such as AES due to
the large volume of data available and wide spatial coverage. The
challenge for analyses of this data is in accounting for confounding
factors and potential biases, which if not fully accounted for could
lead to incorrect inference about the impacts of AES (Johnston
et al., 2023; Ruck et al., 2024). Our analytical framework included
some of these potentially confounding variables in the models via
the PCA approach, and comparison with LandSpAES data provided
confidence that most confounding variables were accounted for. We
did not account for the known bias of UKBMS towards good quality
sites in our models, partially explaining why UKBMS results were
the most divergent. In addition, UKBMS transects are not restricted
to 1km squares (Table 1), resulting in lower confidence in the spatial
attribution of the AES gradient scores and the environmental covari-
ates for UKBMS butterfly data.

4.3 | Caveats and limitations

Few AES studies are designed in an optimal way, using a before-
after comparison, because monitoring usually starts after the AES
scheme (Christie et al., 2019; Josefsson et al., 2020). Our study does
not include a before-after comparison and cannot rule out higher
AES uptake in higher quality areas influencing our results. Repeated
monitoring after a scheme has started can help to identify whether
AES impacts population trends, for example whether AES amelio-
rates declines in the wider landscape (Redhead et al., 2022; Roth
et al., 2008). Citizen science provides an ongoing source of monitor-
ing effort (e.g. Oliver, 2014), but researchers lack control over when
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and where revisits are conducted. Ideally, citizen science data would
be used alongside longer-term surveys designed to look for effects
of AES over time.

Our AES gradient approach incorporates AES across multiple
types of farmland systems and landscapes and provides insight into
whether AES as a whole are providing benefits to butterflies. The
generalised nature of this gradient approach also means it could be
adapted to AES contexts in other countries, instead of using total
option area as a metric of landscape AES (e.g. Meier et al., 2024,
Zingg et al., 2019). However, the generalised approach means it is
more difficult to link specific options to benefits to butterflies across
diverse landscape types. For example, high butterfly abundance in
lowland arable landscapes may be linked to a high density of sown
flower margins, whereas in upland landscapes such as the Yorkshire
Dales, high butterfly abundance may be more influenced by land-
scape diversity, habitat heterogeneity and low impact management
(Loffler et al., 2023).

An important caveat to our approach is that it uses data from
citizen science schemes that are broadly comparable to designed
studies. Butterflies have well-designed national-scale structured
monitoring in England, and the LandSpAES protocols were spe-
cifically designed to enable comparability (Jarvis et al., 2021). The
approach is likely to be most successful for other taxa which have
structured citizen science schemes; where only opportunistic citizen
science data is available, more complex methods of comparing and

integrating data would be required (Johnston et al., 2023).

5 | CONCLUSIONS AND
RECOMMENDATIONS

We found good support for a positive impact of landscape-level AES
intervention on butterflies across a targeted survey designed to assess
AES effects and national-scale citizen science datasets. This indicates
that the positive relationships with butterfly abundance and richness
hold across multiple conditions, and we can assume they are repre-
sentative nationally. These results suggest that AES has a potentially
significant role in supporting butterfly abundance across lowland and
upland landscapes in England. The finding that butterflies appear to
respond more strongly at the landscape scale suggests that manag-
ers and policy makers should consider supporting AES intervention
across spatial areas beyond those of individual fields and farms to
create landscapes of high AES uptake. This could be implemented by
encouraging or incentivising clusters of neighbouring farmers to take
up beneficial options (Meier et al., 2024). Current AES schemes in
England include both the Sustainable Farming Incentive, which aims
to incentivise very widespread uptake of easily applied AES options,
and Landscape Recovery, which aims to support multiple landowners
across a landscape to implement more targeted environmental im-
provement actions. Creation of landscapes of beneficial options under
both schemes could be positive for butterflies.

To quantify the impacts of AES requires efficient monitoring and
evaluation. Here we showed the benefit of using both targeted and

citizen science monitoring to understand AES impacts at national
scales and would recommend future monitoring and evaluation con-
sider both forms of evidence. We suggest building points of com-
monality into new surveys for easier comparability with existing
datasets, for example using a 1km cell basis and using standardised
protocols. Understanding the impact of AES at national scales will
benefit from exploiting multiple datasets, ensuring that we make the

most of the data available.
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