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ABSTRACT
Tree diseases are increasingly affecting woodland ecosystems across the world. However, the impact of these diseases upon 
the soil, and in particular soil carbon, is still poorly understood. Here we present the results of a field survey of ~100 woodlands 
across Great Britain measured in 1971, 2001 and 2022 and evaluate the fifty-year trend in topsoil (0–15 cm) carbon based upon 
measurements of soil organic matter (SOM) and the impact of Hymenoscyphus fraxineus (ash dieback). To better represent the 
full SOM distribution, including the extremely high SOM measurements, we adopt a Beta mixture modelling approach within a 
Bayesian framework. Across all woodlands, comprising ~1,500 plots per survey, average SOM remained constant across the fifty-
year time series. However, the 311 plots with ash dieback had lower SOM in the most recent survey compared to the 328 plots 
with ash trees present but no dieback recorded, due to a slight decline in SOM under ash dieback. This resulted in plots with ash 
dieback having a modelled mean SOM of 12.2% compared to 13.4% in plots without ash dieback, a difference of 1.23 percentage 
points (95% CI 0.25–2.21). Ash dieback was more likely to be recorded in plots that had higher soil pH pre-ash dieback invasion, 
but the decline in SOM under ash dieback was not explained by changes in soil pH or changes in the ground flora composition. 
Converting our results to soil C and extrapolating for broadleaved woodland across the entirety of Great Britain, the total amount 
of topsoil carbon lost to date due to ash dieback could be 6 MtCO2 (± 4 s.d.). Our results show the importance of understanding 
the impacts of tree disease when considering current and future woodland carbon dynamics.

1   |   Introduction

Forests are increasingly under threat globally from a variety 
of different stressors, including climate change, deforestation, 
storms, wildfires, changes in management, insect infestations 
and tree disease (Millar and Stephenson  2015). Tree disease, 
in particular, is increasing in prevalence and severity globally, 
with exponential growth in invasive forest pathogens in the past 
few decades (Gougherty 2023; Santini et al. 2013). Other types 
of disturbance to woodland ecosystems are known to decrease 
soil organic matter (SOM) and the associated soil carbon stocks, 

with effects that can persist for decades (Mayer et  al.  2020, 
2024). However, the impacts of tree disease upon soil dynam-
ics are currently poorly understood (Holden and Treseder 2013; 
Mayer et al. 2024; Zhang et al. 2015). If widespread tree diseases 
such as ash dieback (Hymenoscyphus fraxineus) have similar ef-
fects upon soil carbon as other disturbance types, there could be 
considerable implications for forest carbon stocks globally. This 
is particularly relevant as carbon stored in forest soil accounts 
for around half of all forest carbon stocks (Pan et  al.  2011). 
Therefore, we need to better understand and quantify the im-
pact of tree diseases upon the soil.
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Ash dieback has been widespread across Europe for several 
decades, leading to considerable mortality of ash (Fraxinus ex-
celsior) and further consequences for the wide variety of spe-
cies that rely on ash (Combes et al. 2024). Ash dieback could 
impact SOM and soil carbon through a variety of mechanisms, 
either through the short-term impacts of dieback such as defo-
liation and canopy opening or through the replacement of ash 
within the tree community. Ash has distinct effects upon the 
soil, with shallower rooting depth, a greater ratio of fine root 
biomass and a higher nutrient profile in both litter and root 
exudates compared to other tree species (Mitchell et al. 2014; 
Staszel-Szlachta et  al.  2024; Webb et  al.  2022). In general, 
ash therefore appears more often on higher pH and lower 
soil carbon soils than other common European broadleaved 
trees (Mitchell et al. 2021), with common garden experiments 
showing that ash trees increase soil pH and decrease carbon 
(Staszel-Szlachta et al. 2024). Therefore, the loss of ash from 
European woodlands might be expected to lead to an increase 
in soil carbon and decrease in pH as other tree species take its 
place. However, forest disturbance and the opening of gaps in 
the canopy, through biotic or management activities, usually 
lead to a loss in soil carbon (Mayer et  al.  2020, 2024; Tong 
et al. 2024). The short-term impacts of ash dieback, with in-
creased litter inputs due to defoliation, loss of root-derived in-
puts, opening of the canopy and shifts in soil hydrology, could 
lead to changes in soil microbial activity that decrease the soil 
carbon content (Dahlsjö and Malhi  2024; Gómez-Aparicio 
et al. 2022). Observed shifts in the ground flora composition 
following ash dieback could also lead to changes in nutrient 
cycling and decomposition rates (Brunet et  al.  2023; Seaton 
et  al.  2025). The impacts of ash dieback also occur against 
a backdrop of great change in woodland soils, driven by 
factors such as the dramatic decline in acid rain which has  
led to a large increase in soil pH since the 1970s (Seaton 
et al. 2023).

Understanding the impacts of ash dieback upon soil organic 
matter (SOM) requires long-term woodland soil data, as wood-
lands respond to disturbances and global threats over longer 
than decadal timeframes (Rackham  2008). Here, we use data 
from the ‘Bunce’ woodland survey, a long-term survey of estab-
lished woodlands across Great Britain, to evaluate the impact 
of ash dieback using data from before and after the spread of 
ash dieback across the UK (Smart, Walker, et  al., 2024; C. M. 
Wood et al. 2015). Within this survey, in 1971, 2001 and 2022, 
samples of the topsoil (0-15 cm) were analysed for SOM and soil 
pH. Within the most recent survey, the presence of ash dieback 
was also recorded by the surveyors, providing a unique oppor-
tunity to evaluate the impacts of ash dieback on SOM. Previous 
analysis of the survey data has shown that ground flora com-
position shifted towards a more diverse, forb-dominated com-
munity under ash dieback; however, the impacts of ash dieback 
on SOM and soil pH are as yet unknown (Seaton et al. 2025). 
Our hypotheses were: (1) overall topsoil organic matter would 
have remained relatively constant over the 50 years of survey; (2) 
the subset of our plots that had experienced ash dieback would 
have shown a decrease in SOM from 2001 to 2022; and (3) that 
at least part of this change in SOM would have been mediated 
by changes in soil acidity and the ground flora—represented by 
changes in forb cover.

2   |   Methods

2.1   |   Field Survey

The ‘Bunce’ field survey first took place in 1971, with two fol-
low-up surveys completed in 2000–2003 and 2020–2022 (hence-
forth referred to as the 2001 and 2022 surveys) respectively. In 
the 1971 survey, 103 broadleaved woodland sites were visited; 
sites were selected to be representative of the range of broad-
leaved woodland plant species composition across Great Britain. 
This was done by multivariate clustering of a previous, more 
comprehensive survey of 2453 British woodlands. This produced 
103 woodland types, from each of which a single representative 
site was chosen. The resulting sites are spread across environ-
mental zones in a similar ratio to that of the total amount of 
broadleaved woodland in Great Britain. Around two-thirds of 
the sites were subsequently identified as ancient woodland. Sites 
ranged in size from 4 to 100 ha, with a single outlier of 312 ha, 
with an overall mean size of 31.8 ha.

Within each site, 16 plots measuring 14.1 × 14.1 m were surveyed 
for vegetation and a soil core taken. In the resurveys, the same 
sites and plots were revisited and resurveyed using the same 
methods as far as possible, except that some plots are missing 
from the more recent surveys due to land access being denied 
or to them no longer being woodland. The average date of sur-
vey was also later in the year for the first survey, as due to lo-
gistical reasons, the entirety of the first survey took place from 
July onward, whereas the more recent surveys started in May. 
For further details on the survey, see C. M. Wood et al. (2015) 
and Smart, Walker, et al. (2024). In the most recent survey, the 
presence of ash dieback was recorded by the surveyors, with a 
total of 311 plots containing evidence of ash dieback (21% of all 
plots) and 328 plots containing ash trees but no evidence of ash 
dieback (22% of all plots). There were also 849 plots that had no 
ash, of which 678 were in sites where ash was present in another 
plot, indicating that ash could survive in the wider site condi-
tions. Compared to plots with ash present but no dieback, plots 
with ash dieback present had, on average, more dead trees (10% 
of all trees were dead compared to 5%, driven by 18% of ash trees 
being dead compared to 7% in non-dieback plots). Few plots 
showed evidence of recent extractive management (< 5% of plots 
either with or without dieback).

2.2   |   Soil Methods

A soil core down to 15 cm depth was taken in a central loca-
tion in every plot. In the first two surveys, these were taken 
using a trowel and approximately 1 kg of soil was taken, while 
in the most recent survey a 5-cm-diameter plastic tube was 
used to extract a soil core. The loose litter layer is first re-
moved, but the fermentation and humus layers were sampled. 
In the first survey, a small pit and augur sampling were used 
to examine the deeper soil horizons and assign each of the 
plots to a soil group according to the Avery (1973) classifica-
tion. A count of the number of plots within each soil group 
for the entire survey as well as the subset of plots with ash 
or ash dieback present is available in Table S1. Soil pH of the 
fresh soil in deionised water (1:1) was measured. Soil organic 
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matter was measured through loss on ignition (LOI) analysis 
after air-drying and sieving, followed by combustion at 550°C 
for 6 h (2 h in the 1971 and 2001 surveys). For the later carbon 
stock change calculation, SOM was converted to soil organic 
carbon (SOC) concentration by multiplying by 0.55 (Emmett 
et  al.  2010). Efforts to keep the methodologies consistent 
across all three surveys were taken, with a program of remea-
surement and cross-validation undertaken in the 2001 survey 
due to changes in technology; for further details, see C. M. 
Wood et al. (2015).

2.3   |   Statistical Analysis

Soil organic matter was modelled by fitting a Beta mix-
ture model using a Bayesian approach in Stan (Carpenter 
et  al.  2017; Stan Development Team  2024). There were two 
Beta distributions included within the model, each with its 
own intercept and shape parameter. The probability of each 
observation corresponding to the mixture components (i.e., 
the mixing proportion) is modelled with the �k parameter, 
which is a simplex (i.e., sums to one). The intercept (�) was 
constrained to be positive ordered and the shape parameter 
(�) constrained to be negative ordered. This corresponds to 
assuming the first mixture component has a lower mean and a 
narrower peak than the second mixture component. The Beta 
distributions were modelled using the mean (�k) and shape 
(�k) parameterisation, the equation is given below for k mix-
ture components, i  observations, j fixed effects and l  hierar-
chical effects:

where 𝛼1 < 𝛼2 < … < 𝛼k and 𝜙1 > 𝜙2 > … > 𝜙k. Within the hi-
erarchical effects the two � parameters vary by mixture com-
ponent but the individual group-level estimates are assumed to 
be constant across the different mixture components. The fixed 
effects differed for each model, with the change over time model 
including only the survey year, and the ash dieback model in-
cluding an interaction between survey year and ash dieback sta-
tus. The potential impacts of mediating effects were tested in a 
model that included an interaction between survey year and ash 
dieback status, as well as direct effects of pH (chosen due to the 
importance of pH in soil dynamics), forb cover (chosen due to 
the known increase in forb cover under ash dieback) and day of 
year (chosen to test the possibility that differences between sur-
vey timing between the first and subsequent surveys could be af-
fecting our results). The full Stan model code is available in the 
Supporting Information. Soil pH was modelled as a Gaussian 
response to survey year and ash dieback using the brms package 
(Bürkner 2017).

All models were run with 4 chains, each with 4000 iterations 
(half warm-up); Rhat was confirmed to be below 1.01 and 
effective sample size above 1000 for all model parameters. 

Graphical posterior retrodictive checks were performed to 
confirm a good fit to the data. Models of the impact of ash 
dieback upon SOM were trained only on plots that contained 
ash and/or ash dieback in the 2022 survey, resulting in 632 
plots included with 1896 measurements in total across the 
three surveys. Contrasts between years and/or ash dieback 
treatments were calculated by taking the difference between 
predictions when every datapoint within the original data 
was predicted under each contrast. This is equivalent to the 
method used within the emmeans package, which was used 
for the soil pH model results (Lenth 2024).

2.4   |   Soil Carbon Stock Change Calculation

Estimated change in topsoil carbon stock across British wood-
lands resulting from ash dieback was calculated based upon an 
estimation of the affected area of woodland in Great Britain, 
the volume and mass of soil impacts based on a calculation of 
bulk density drawn from the Countryside Survey data and the 
modelled change in soil C predicted by the Beta mixture model 
(described above) from 2001 to 2022 with a conversion of SOM 
to SOC, as described below.

Bulk density of the fine earth (< 2 mm) was calculated based 
upon applying a pedotransfer function to the mean SOM val-
ues returned by the Beta mixture model. Due to the known 
underestimation of bulk density in woodland soils based on 
currently available pedotransfer functions (Panagos et al. 2024), 
we used broadleaved woodland data collected as part of the 
Countryside Survey (CS) to create our models to estimate bulk 
density (Emmett et  al.  2010). Survey methods were consistent 
between the Bunce survey and CS. In total, 94 woodland plots 
from 71 1 km CS squares were used for these pedotransfer mod-
els; all models were fitted using a generalised additive mixed 
effect modelling approach using the mgcv R package (S. N. 
Wood 2004) with a random effect of the 1 km square upon the 
intercept. Data from the CS 2007 survey were used to fit a model 
of bulk density as a smooth function of SOM; this was used to es-
timate the 2001 bulk density values for our survey (Figure S1a). 
The change in bulk density from survey to survey was predicted 
based upon both the initial SOM value and the change in SOM 
from the 2007 to the 2018–22 CS surveys (Figure  S1b). These 
predicted bulk density values were used to calculate the total 
weight of the topsoil (down to 15 cm), which was used to cal-
culate loss values per ha based on the model estimated carbon 
lost per kg of soil. We used all draws from the model estimated 
SOM loss in ash dieback plots from 2001 to 2022 and converted 
the SOM to soil carbon concentration by multiplying by 0.55 
(Emmett et al. 2010). The loss of CO2 was calculated by multi-
plying carbon stock values by 3.67.

To extrapolate across Great Britain, the total area of broadleaved 
woodland was taken from the Land Cover Map 2015 (Rowland 
et al. 2017). The area of broadleaved woodland was then mul-
tiplied by the proportion of plots within the Bunce woodland 
sites that had ash dieback present (21%) to get the total area of 
woodland that we consider to be equivalent to our ‘ash dieback 
present’ category. For creation of the uncertainty simulations, 
this proportion of area was allowed to vary with a normal distri-
bution on the logit scale, which gave a distribution ranging from 

pY (y| �,�,�) =
K∑

k = 1

�kBeta
(
y| ak , bk

)
, ak = �k�k , bk =

(
1 − �k

)
�k

logit
(
�k

)
= �k +

L∑

l= 1

�k,l + � j,k ∗Xj

�k,l ∼ 
(
0, �k,l

)
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10% to 40% of the area with the interquartile range being from 
18% to 24%. 8 thousand simulations were run with a reasonable 
set of parameter estimates to give an estimate of the uncertainty 
of our estimated change in carbon stock.

3   |   Results

3.1   |   Change Over Time in Woodland SOM

Our woodlands showed a wide range in soil properties, with 
SOM ranging from 0.8% to 97.5% (interquartile range 9.5% to 
20.1%) and pH ranging from 2.9 to 10.0 (interquartile range 4.2 
to 5.9). Across all woodlands surveyed, model estimated mean 
SOM remained constant between the three surveys (Figure 1a). 
While the model showed a slight increase in average SOM from 
1971 to 2001 from 14.81% to 15.19%, then a decrease in 2022 to 
14.90%, both the 95% and 80% CI of these changes overlapped 
with zero, indicating an overall stable trend over time (Figure 1a 
and Table  2). Within the Beta mixture model, the majority of 
the SOM measurements (80%) were associated with the mineral 

soils region, with a smaller number of measurements associated 
with a long tail within the more organic soil region (Table 1 and 
Figure  S2). Average soil pH increased from 4.97 to 5.33 from 
1971 to 2001 and then declined in 2022 to pH 5.17, intermediate 
between the 1971 and the 2001 averages (Figure 1b and Table 2).

3.2   |   Ash Dieback Effects

Plots with evidence of ash dieback declined in SOM between 
2001 and 2022, whereas ash plots without ash dieback showed no 
change in SOM over the same time period (Figure 2). Note that the 
average SOM shown in Figure 2 is lower than the average SOM 
across all plots shown in Figure 1, with an average SOM of ~13% 
in plots with ash present compared to ~15% within plots without 
ash. There was no difference found between the plots with and 
without ash dieback in 1971 and 2001 (Table 3). However, in 2022, 
plots with ash but without dieback had a higher average SOM of 
13.41% compared to the 12.18% SOM with ash dieback, and the 
95% CI of this did not overlap zero (Table 3). The decrease from 
2001 to 2022 in mean SOM under ash dieback was estimated as 
−0.81 percentage points; however, despite SOM being lower under 
ash dieback in the most recent survey, the 95% CI of the change 
between surveys did overlap zero (−1.79 to 0.17). This decrease 
under ash dieback was, however, the only change between the dif-
ferent survey years where the 80% CI did not overlap zero (−1.45 
to −0.17). The Beta mixture model was similar in its fit to the data 
and parameter estimates as within the change over time model de-
scribed above. The only notable differences from the change over 
time model were changes in the phi and sigma parameters, which 
represent the ash dieback effects accounting for variability that 
was incorporated into the variance and hierarchical effects in the 
change over time model (Table 1). The effect of ash dieback upon 
SOM occurred only within the first mixture component, which 
corresponds to the more mineral soils (Figure S3), which showed 
a 1.04 percentage point lower mean SOM in plots with ash dieback 
compared to plots without ash dieback (95% CI is 0.29–1.78).

FIGURE 1    |    Mean SOM (a) and soil pH (b) and the uncertainty in 
that mean over time for all woodland plots. The central blue line shows 
the median model estimated mean, while the shaded blue ribbons show 
the 25%, 50% and 75% confidence intervals of the estimated mean.

14.5

15.0

15.5

1970 1980 1990 2000 2010 2020
Year

So
il 

O
rg

an
ic

 M
at

te
r (

%
)

a

5.0

5.2

5.4

1970 1980 1990 2000 2010 2020
Year

So
il 

pH

b

TABLE 1    |    Estimated values for the parameters common to all SOM models, comprising the models of change over time (Total Change), ash 
dieback effects (Ash Dieback) and estimated impacts of potential mediating variables (Mediation). Each parameter is given as the mean estimate 
(± standard deviation). Parameters included here are theta (� – proportion of data points within mixture component one), plus for each mixture 
component the intercept, phi (� – a shape parameter for the Beta distribution), and sigma parameters (� – standard deviation of the site and plot-level 
hierarchical effect).

Parameter Mixture component

Model

Total change Ash dieback Mediation

theta — 0.80 (± 0.01) 0.83 (± 0.02) 0.83 (± 0.02)

intercept One −1.90 (± 0.03) −1.91 (± 0.04) −1.91 (± 0.04)

phi One 86.9 (± 4.61) 123.7 (± 10.3) 121.3 (± 10.1)

sigma (site) One 0.31 (± 0.02) 0.30 (± 0.02) 0.29 (± 0.02)

sigma (plot) One 0.20 (± 0.01) 0.20 (± 0.02) 0.20 (± 0.02)

intercept Two −0.60 (± 0.07) −1.04 (± 0.10) −1.04 (± 0.10)

phi Two 3.27 (± 0.18) 5.75 (± 0.57) 5.87 (± 0.63)

sigma (site) Two 0.39 (± 0.04) 0.33 (± 0.05) 0.35 (± 0.05)

sigma (plot) Two 0.03 (± 0.03) 0.05 (± 0.04) 0.05 (± 0.04)
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3.3   |   Potential Mediating Variables

At all time points, soil pH was higher in plots that had ash 
dieback versus those that did not (Figure  3) (difference in 
1971 0.29 (95% CI 0.13–0.44); difference in 2001 0.24 (95% CI 
0.08–0.40)), although the magnitude of this difference was 

reduced in the most recent survey (0.16 (95% CI 0.00–0.32)) 
(Figure 3).

The effect of ash dieback upon SOM persisted even after ac-
counting for changes in soil pH, day of year of survey and forb 
cover (Table 3). Of the identified potential mediating variables, 
only soil pH was found to show some potential relation to soil or-
ganic matter (Figure 4) although the 95% CI crossed zero and the 
direction of the effect differed by mixture component. Within 
the model with covariates, the percentage of observations that 
were allocated to the first mixture component was similar to the 
ash dieback model without covariates, at 83%, as were the other 
model parameters (Table 1).

3.4   |   Carbon Stock Change

The loss of topsoil carbon stock within our plots with ash die-
back was estimated to be −5.29 MgC ha−1 between 2001 and 
2022 (80% range −9.46 to −0.98). If we assume that the patterns 
seen across our surveyed woodlands can be extrapolated across 
the broadleaved woodlands in Great Britain, the total topsoil 
carbon lost across Great Britain between 2001 and 2022 due 
to ash dieback can be estimated as −1.59 MtC (80% range −3  

TABLE 2    |    Differences in mean SOM and pH between the different 
survey periods, given as the model-estimated mean change (later year 
minus earlier year, i.e., positive values represent an increase), and the 
80% and 95% confidence intervals of that change.

Variable Time period Mean 80% CI 95% CI

SOM 1971 to 2001 0.37 −0.17 to 0.91 −0.42 to 1.18

SOM 2001 to 2022 −0.29 −0.85 to 0.27 −1.15 to 0.57

SOM 1971 to 2022 0.08 −0.43 to 0.59 −0.72 to 0.89

pH 1971 to 2001 0.36 0.39 to 0.33 0.41 to 0.31

pH 2001 to 2022 −0.16 −0.12 to −0.19 −0.11 to −0.21

pH 1971 to 2022 0.20 0.23 to 0.17 0.25 to 0.15

FIGURE 2    |    Change in SOM over time in ash plots with (blue) and without (yellow) ash dieback. The central line shows the median model esti-
mated mean, while the shaded ribbons show the 25%, 50% and 75% confidence intervals of the estimated mean.
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TABLE 3    |    Estimated difference in SOM between plots without ash dieback and plots with ash dieback given in percentage points for models with 
and without mediating variables.

Model without covariates Model with covariates

Quantiles Quantiles

Year Estimate 2.5% 10% 90% 97.5% Estimate 2.5% 10% 90% 97.5%

1971 0.520 −0.390 −0.070 1.090 1.410 0.530 −0.330 −0.030 1.100 1.440

2001 0.430 −0.610 −0.250 1.110 1.460 0.440 −0.590 −0.240 1.120 1.470

2022 1.230 0.250 0.610 1.860 2.210 1.240 0.290 0.620 1.870 2.220

 13652486, 2025, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.70430 by U

K
 C

entre For E
cology &

 H
ydrology, W

iley O
nline L

ibrary on [22/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 10 Global Change Biology, 2025

to −0.29). This is equivalent to −5.82 MtCO2 (80% range −11.01 
to −1.08).

4   |   Discussion

While there is considerable uncertainty within our estimate of 
potential carbon lost due to ash dieback, the estimated value of 
−5.8 MtCO2 is in total equivalent to more than half the annual 
carbon currently sequestered by broadleaved forests across Great 
Britain (JNCC  2024). As the average year of first recorded ash 
dieback infection across all 10 km squares of Great Britain is 
2016 (Forestry Commission 2025), and our average year of sur-
vey is 2021, this could represent an average rate of loss of around 
−0.32 MtC yr.−1 (−1.16 MtCO2 yr.−1). These results show how 
biotic disturbance can greatly impact soil carbon in woodlands, 
which is a Europe-and Asia-wide issue in the case of ash (Carroll 
and Boa 2024), and indicates how important it is to account for 

the increasing rates of pathogen spread when considering future 
woodland carbon dynamics. Our estimates are on a similar scale 
to that seen in the soil organic layer in response to other types of 
disturbance events such as tree harvesting or windstorms (Mayer 
et al. 2024). These results also do not account for any impacts on 
above-ground carbon stored with the ash trees, the fate of which 
will depend on management undertaken, but could incur addi-
tional losses (Reay 2013). The extent of the disturbance caused 
by ash dieback may differ in future, as temperatures approach or 
even surpass the optimal growth temperature of 20°C and forests 
experience more drought stress, which could decrease mortality 
from dieback (Combes et al.  2024). The scale of these impacts 
may also increase as ash dieback spreads further across the coun-
try. Other types of disturbances, such as storm damage or insect 
pest invasion, could act synergistically with ash dieback and lead 
to greater disturbance to the woodland canopy and the rest of the 
woodland-soil ecosystem (Seidl et al. 2017; Sun et al. 2024; Tong 
et al. 2024).

FIGURE 3    |    Change in soil pH over time in ash plots with (blue) and without (yellow) ash dieback. The central line shows the median model esti-
mated mean, while the shaded ribbons show the 25%, 50% and 75% confidence intervals of the estimated mean.
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FIGURE 4    |    Estimated model coefficients for the two mixture components, the inner 95% interval is shaded light blue and the median shown as 
a dark blue line.
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Within woodlands not affected by ash dieback, we have found 
patterns of constant topsoil organic carbon and increasing pH 
that are consistent with previous studies across Great Britain 
(Rivas Casado et al. 2022; Seaton et al. 2023). While other stud-
ies have shown an increase in woodland soil carbon, this has 
largely been in forest plantations or recently afforested areas 
(Chapman et  al.  2013). The woodlands studied here are well 
established, and in two-thirds of cases are categorised as an-
cient woodland, and so it is not surprising that the topsoil or-
ganic matter has remained largely in equilibrium over the past 
50 years. In addition, the majority of our woodlands are not un-
dergoing any form of extractive management, with increasing 
amounts of deadwood and much lower tree removal rates than 
were experienced prior to the late 20th century (Smart, Walker, 
et  al. 2024). Harvesting of trees and management-based dis-
turbance is known to reduce soil C stocks (Mayer et al. 2020). 
However, our results do clearly show that disturbances such as 
ash dieback can threaten this equilibrium and lead to losses of 
soil organic matter.

The decline in soil organic matter under ash dieback represents 
the opposite trend that would be expected from the loss of ash 
trees and replacement with other species. Soils under ash gen-
erally show higher decomposition rates compared to other tree 
species, related to greater enzyme exudation by ash roots and 
highly labile ash litter (Staszel-Szlachta et  al.  2024). This re-
sults in a lower soil carbon under ash relative to other species 
(Mitchell et al. 2021), so it does not fit the hypothesis that the 
replacement of ash with other species could be causing this 
change. Also, in most woods, there has not been enough time 
for this replacement to happen. Instead, declines in SOM may 
be due to a wide variety of factors including defoliation and the 
opening of canopy gaps leading to increased solar irradiation, 
increased soil temperature and changes in soil moisture (De 
Frenne et  al.  2021). While the precise effects of canopy gaps 
upon decomposition rates vary depending on the local con-
ditions (e.g., Forrester et  al.  2023; Lenk et  al.  2024), a meta-
analysis suggests the average effect of canopy gaps results 
in greater decomposition of existing carbon in the soil (Tong 
et al. 2024). Changes in decomposition related to the opening 
of canopy gaps could decrease soil carbon through causing 
changes in the carbon content of the upper soil horizons or by 
decreasing the depth of the organic horizon. We found that the 
ash dieback effect occurred mostly within the more mineral 
topsoils, which potentially indicates that ash dieback is not just 
impacting the Of and Oh soil layers through changes in litter 
(de-)composition but also deeper soil layers. The changes in 
topsoil we have found could be masking changes in soil car-
bon deeper within the soil, as different tree species are known 
to have different soil carbon and rooting profiles (Steffens 
et al. 2022; Webb et al. 2022). Whilst deeper soil layers are in 
general less responsive to disturbance events and contain a 
lower concentration of carbon, our sampling is shallow, and 
sampling of deeper soil layers would provide a more complete 
picture (Balesdent et al. 2018).

We found no difference in SOM pre-dieback, but there were 
differences in soil pH, with dieback more likely to be recorded 
in plots that had slightly higher pH initially. This is consistent 
with previous results showing that crown defoliation is greater 
in ash trees within higher pH sites (Turczański et al. 2020). As 

ash is more prevalent on higher pH sites, this pH effect could 
be due to higher densities of ash trees leading to higher mor-
tality rates (Combes et al. 2024). Ash mortality is also known 
to be higher in areas of higher soil moisture; however, in non-
riparian woodlands, pH is usually lower under high moisture 
conditions, so this is unlikely to explain the pH effect (Klesse 
et al. 2021; Slessarev et al. 2016). Acidity increased under ash 
dieback, although pH remained higher than plots without ash 
dieback present. The increase in acidity under ash dieback may 
be due to changes in the composition and depth of the litter 
layer due to defoliation, or changes in root enzyme exudation, 
and could relate to changes in the soil microbial community, 
which are known to respond to dieback events in other tree 
species (Ávila et al. 2021; Gómez-Aparicio et al. 2022; Zhang 
et al. 2015).

The longer-term effects of ash dieback may be poorly predicted 
by the impacts we have detected, as the loss of ash trees from 
woodlands will lead to a shift in the tree community compo-
sition with knock-on effects upon the soil communities that 
are not yet apparent. Ash trees have distinct nutrient profiles 
and rooting characteristics compared to other European trees, 
with more easily decomposed litter, greater root exudation 
and greater fine root biomass (Mitchell et  al.  2021; Staszel-
Szlachta et  al.  2024; Webb et  al.  2022). This means that the 
soils under ash trees often have greater nutrient input and 
hydraulic conductivity, leading to distinct microbial commu-
nities and higher microbial respiration. Therefore, the loss of 
ash from woodlands could actually lead to an increase in soil 
carbon in the longer term, if replaced by other tree species of 
equal productivity within those environmental conditions. 
However, this assumes that the woodlands reach a steady 
state again. In practice, woodlands are experiencing increas-
ing rates of disturbance events from a variety of sources in-
cluding pathogens, insects and extreme weather events; thus, 
global woodland soil carbon stocks are increasingly at risk of 
depletion (Rackham 2008; Seidl et al. 2017).

5   |   Concluding Statement

The long-term consequences of ash dieback on woodland SOM 
remain uncertain, but we have clearly demonstrated that dis-
ease, such as ash dieback, can have significant short-term to 
medium-term negative impacts. These findings have implica-
tions for future climates and support our understanding of the 
risk tree diseases pose to policies and scenarios utilisation of for-
ests for climate mitigation.
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Supporting Information

Additional supporting information can be found online in the 
Supporting Information section. Figure S1. Data and model fits used 
to estimate bulk density as a function of LOI (a), and change in bulk 
density based on an interaction between change in LOI and the log of 
the original LOI (logLOI07) (b). The central line represents the mean 
estimate and the shaded ribbons the 95% CI. Model estimated change in 
bulk density (b) is shown for three example original LOI values, corre-
sponding to ~5% (green), ~12% (orange), and ~29% (purple). Figure S2. 
Density of actual data (black line) compared to model fit over all com-
ponents (a, blue lines) and by mixture component (b). In (b) the model 
predicted densities are coloured by mixture components, with the high 
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orange peak being the first mixture component and the lower blue lines 
the second mixture component. Figure S3. Change over time in ash 
plots with (blue) and without (yellow) ash dieback for the first mixture 
component (left, 80% of data, representing the majority of mineral soil 
measurements) and the second mixture component (right, 20% of data, 
representing the tail of high SOM values). The central line shows the 
median model estimated mean, while the shaded ribbons show the 25%, 
50% and 75% confidence intervals of the estimated mean. Table  S1. 
Number of plots within each soil group according to the classification 
of Avery (1973). 
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