
Journal Pre-proof

Validation of the InVEST nutrient retention model across Europe with attribution of
model errors

Danny A.P. Hooftman, Guy Ziv, Paul M. Evans, James M. Bullock

PII: S1364-8152(25)00341-X

DOI: https://doi.org/10.1016/j.envsoft.2025.106657

Reference: ENSO 106657

To appear in: Environmental Modelling and Software

Received Date: 23 April 2025

Revised Date: 13 August 2025

Accepted Date: 19 August 2025

Please cite this article as: Hooftman, D.A.P., Ziv, G., Evans, P.M., Bullock, J.M., Validation of the
InVEST nutrient retention model across Europe with attribution of model errors, Environmental Modelling
and Software, https://doi.org/10.1016/j.envsoft.2025.106657.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Ltd.

https://doi.org/10.1016/j.envsoft.2025.106657
https://doi.org/10.1016/j.envsoft.2025.106657


1 
 

Validation of the InVEST nutrient retention model across Europe with 

attribution of model errors 

 

Danny A.P. Hooftman1,2, Guy Ziv3, Paul M. Evans2 and James M. Bullock2,† 

1Lactuca: Environmental Data Analyses and Modelling, Diemen, The Netherlands; 2UK Centre for 

Ecology & Hydrology, Wallingford, UK; 3University of Leeds, UK. †jmbul@ceh.ac.uk 

  

Jo
urn

al 
Pre-

pro
of



2 
 

Abstract 

Intensive fertilisation of farmland leads to substantial nutrient escape into the environment, 

polluting land, water, and the atmosphere. We used the InVEST NDR model to investigate nitrogen 

(N) and phosphorus (P) run-off and retention across the European continent at 25 x 25 m 

resolution, and validated outputs against empirical measurements at 2,251 river locations. Mean 

nutrient retention across Europe was estimated as 93% for N and 92% for P, through accumulation 

by standing vegetation and the soil. Modelled nutrient export to streams matched well to empirical 

measurements.  Model-based uncertainties were related to seasonality, the balance between 

surface and sub-surface flows, and extremes in slope and rainfall. Uncertainties related to empirical 

data suggested enhancements to monitoring programmes that would improve nutrient export and 

erosion modelling, which included higher resolution fertiliser and manure data, differentiation of 

grassland types, including stocking density categories, and in-river nutrient measurements at low 

flow. 

 

Highlights (5): 

• Water pollution from agricultural fertilisers is a large problem in Europe 

• Modelling helps policy-makers target key locations to mitigate nutrient pollution 

• We create a fine resolution InVEST model for nitrogen and phosphorus across Europe 

• The model validates very well against empirical water pollution data  

• Model uncertainty relates to seasonality, and subsurface and surface run-off 

 

Keywords (7): Agriculture; Ecosystem Services; Eutrophication; Fertiliser; Grassland; Land 

Cover; Nutrient Retention  
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1. Introduction 

Nutrients such as nitrogen (N) and phosphorus (P) are essential for crop growth, but run-off of excess 

N and P from fertiliser use causes land, water and air pollution (de Vries 2021; Bullock et al. 2024). 

Although nutrient use efficiency of crops has improved since the 1990s (van Grinsven et al. 2014), it 

is far from sufficient to avoid substantial excesses of nutrients in the wider landscape. Nutrient run-

off accelerates climate change (UNEP 2019), affects human health (Henschel & Chan 2013) and 

impoverishes ecosystem functioning and biodiversity (Good & Beatty 2011, Midolo et al. 2019), as 

well as lowering future productivity through soil acidification (Tian & Niu 2015).  

 

Much environmental policy in Europe is made at the continental scale, yet implementation needs to 

take account of high variation in amounts of nutrient addition both within and across countries 

(Ludemann et al. 2022), with highly localised patterns of nutrient run-off (EEA 2020; de Vries et al. 

2022) influenced by local environmental conditions. Furthermore, the locations suffering the most 

adverse effects of nutrient run-off from agriculture are not necessarily the same as where the largest 

excesses are recorded. This is the case, for example, when nutrient run-off from land goes into 

waterbodies, either directly across the surface or indirectly via groundwater flows and atmospheric 

transport. Typical impacts of water-transported nutrients are algal blooms in coastal waters linked to 

upstream sources (Gilbert et al. 2018) and eutrophication of protected natural sites through 

atmospheric depositions (Schoukens 2017). A critical need for policymakers is to identify key source 

areas to be targeted by policy and planning (de Groot et al. 2012), rather than focusing on locations 

where problems result. Spatially-explicit modelling can provide credible information and maps of the 

spatial distribution of natural resources and environmental challenges, particularly since empirical 

observations usually provide only partial spatial coverage or at spatial or temporal resolutions that 

are less relevant to decision making (Maes et al. 2012; Hooftman et al. 2022). While measurements 

of nutrient excesses are hard to quantify spatially, modelling can help identify likely sources and key 

environmental drivers of excess loads including variation in nutrient retention ecosystem services. 

Furthermore, mapped modelling efforts can be used for scenario analyses (Martínez-López et al. 

2019; Guaita-García et al. 2020); for instance, by assessing future impacts of agri-environment 

schemes on nutrient run-off in agricultural landscapes. 

 

There are many local field scale models for nutrient use and excess (Vereecken et al. 2016), but these 

are not applicable at large scales, such as Europe. Ecosystem service modelling provides promising 

large-scale approaches (Pascual et al. 2017; Willcock et al. 2023), where the focus shifts to the role of 

the natural environment in mitigating negative effects. In the case of excess nutrient run-off, the 

Jo
urn

al 
Pre-

pro
of



4 
 

most direct contribution of the environment is the retention capacity of the vegetation and soil 

combined. There are several models able to simulate nutrient run-off at policy relevant scales 

(Redhead et al. 2018). The InVEST Nutrient Delivery Ratio (NDR) model is one of the most frequently 

used, validated and discussed in terms of its qualities and drawbacks (Redhead et al. 2018; Mandle & 

Batista 2024).  

 

An important aspect of modelling over large-scales is that models are variable in the quality of their 

predictions depending on the underlying equations and parameterisations (Willcock et al. 2019): 

models are interpretations of reality based on a limited set of derivable parameters. For 

policymakers, not knowing the model accuracy for any region of interest has a number of risks 

including ineffective decision-making and a reluctance to use modelled information at all (Willcock et 

al. 2016; Dubois et al. 2020). Ideally, every modelling effort should be accompanied by an estimate of 

certainty, for example by validation against empirical data (Pereira et al. 2025). Information on 

uncertainty helps policy- and decision-makers to develop realistic expectations in relation to their 

own attitudes to risk (Schuwirth et al. 2019). In such, the focus is not necessarily on an exact 

matching to the absolute truth, as empirical data used for validation can itself vary substantially in 

quality, but a reasonable and consistent estimate of uncertainty (Willcock et al. 2020).  

 

A constructive use of the validation process is to attribute the main causes and patterns of 

differences between modelled and empirical data. This can lead to better understanding of where in 

a modelled area one should place less or more trust in model outcomes (Prestele et al. 2015). 

Furthermore, correlative linking of discrepancies between a model and empirical data to 

environmental variables can highlight key weaknesses in the model and/or potential quality issues in 

the validation data (Willcock et al. 2019). Both would be valuable for guiding improvements to the 

model or to empirical monitoring, respectively. 

 

In this paper, we parameterise the InVEST NDR model (Scharp et al. 2018) to estimate run-off of N 

and P from agricultural fields and the influence of land use and management on eventual loading of 

waterbodies across Europe. Since within stream measurements are influenced by nutrient additions 

from multiple sources, agricultural and non-agricultural, we adapted the NDR model for atmospheric 

depositions, as well as nutrients from human wastewater. Our modelling aims to support European 

policy and to inform on drivers of geographical variation in accuracy. We especially focus on effective 

and informative approaches to generating the input parameters across this large region. We validate 

our models against multiple measurements of N and P in European rivers at 2,251 locations (EEA 
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2022). The location-specific differences between model and empirical data –the errors– are 

regressed against environmental drivers and model inputs that could be the source of uncertainty. 

We test whether substantial parts of the patterns of errors could be explained by drivers divided in 

six categories: (1) Validation inputs; (2) Model inputs; (3) Climate drivers; (4) Water chemistry; (5) 

River characteristics; and (6) Landscape characteristics. In total we tested for 28 drivers in this paper. 

This analysis highlights linkages between location-specific accuracy and local drivers, allowing greater 

confidence in using the modelled estimates.   
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2. Methods 

Nutrient flow to streams – i.e., flowing waterbodies, including rivers and streams - was modelled 

using the NDR module of InVEST (Scharp et al. 2018). We modelled both Nitrogen (N) and 

Phosphorus (P) export. A concise description of the model and the inputs employed is provided in SI-

1. Figure 1 provides an overview of the whole modelling and validation process. Our analysis focused 

mainly on nutrient export from agricultural areas, including differences among types of crops, but 

also included excess N from atmospheric deposition and human waste. The modelled year was 2018, 

as we utilised the crop map of d’Andrimont et al. (2021) describing the 2018 situation. Therefore, for 

all sources, we used data for 2018 as far as feasible. The modelling was conducted at the resolution 

of the utilised Digital Elevation Model DEM (EEA 2016): 25 x 25 meters, with a GRS-1980-IUGG-1980 

Lambert Azimuthal Equal Area projection (EPSG 9820). The DEM was used as the baseline resolution 

since it is the key factor that drives run-off movement patterns through the landscape (SI-1 & SI-4) 

while being least likely to change over time. By contrast, the 10-m parcel borders from d’ Andrimont 

et al. (2021) are likely more variable among years. All inputs were EPSG 9820 projected and were 

resampled to the exact gridcell size and extent as the combined Land Cover map employed (see 

below). Grid values across resolutions were recalculated using the ArcPro Cubic-resampling 

procedure.  

 

All non-InVEST calculations were performed using ArcPro v3.2.2. (©ESRI), using python v3.9.16 for 

loops and command combinations; ‘extractions’ below refer to Zonal-tool usage. Matlab 9.14.0 

(©The MathWorks) was employed to combine tables and for validation statistics. Jupyter Notebook 

and Matlab codes can be accessed via github.com/dhooftman72, which also provides all maps 

shown as figures in the main text and supplementary information in 600 dpi resolution. Nutrient 

export maps can be downloaded as Geotiffs from <Dryad dataset upon acceptance>. 

 

2.1. Modelled Area 

The area modelled was the whole European Union (EU), along with the associated countries of the 

United Kingdom, Switzerland, Norway and Iceland, as well as the six countries formerly comprising 

Yugoslavia. Country outlines followed International Boundaries Level 0 (FAO 2015). To ensure 

complete modelling of cross-border catchments, we also included relevant parts of Russia (including 

Kaliningrad), Belarus and Ukraine.  

 

2.2. The vegetation classes map 
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Our land cover base was the EU Crop Map 2018 (d’ Andrimont et al. 2021), which distinguishes 

among 18 crop types and one grassland type, and was majority-aggregated from 10 m to 25 m 

resolution gridcells. The EU Crop Map covers only agricultural areas. To fill the gaps for non-

agricultural vegetation, woodlands and urban areas, we employed the ESA WorldCover 2020 map 

(ESA 2020). European non-EU countries not covered by the EU crop map were filled with the same 

WorldCover map, with a single cropland category.  

 

The EU Crop Map 2018 does not differentiate between ‘improved grassland’ and ‘non-improved’, i.e., 

grasslands to which synthetic fertilisers are not applied. To differentiate these grasslands, we used 

EEA (2020), which describes a nutrient flow model with an emphasis on improved grasslands. 

Gridcells were set to non-improved when they were ‘no-data’ in EEA (2020, i.e., no agricultural 

relevance) combined with a grassland definition in WorldCover (ESA 2020). We refer to this 

combination of EU Crop Map and WorldCover maps as the Land Cover Map. This map is depicted in 

SI-2. 

 

Input loads are available at the country level (FAO 2015) and were reflected in our modelling by 

subdividing the Land Cover Map per country. Moreover, since the proportion of subsurface flow 

depends on slope, five slope classes were generated from the European Digital Elevation Model 

(DEM; EEA 2016; SI-3). In alignment with the InVEST Seasonal Water Yield (SWY) model (see below; 

SI-4), four hydrological soil groups were included (Ross et al. 2018). The combination of these 

groupings generated a Vegetation Class map and table of 12,112 units; the table is given in SI-5 with 

associated parameter values.  

 

2.3. Nutrient Run-off proxy via Seasonal Water Yield 

The NDR requires a Nutrient Run-off proxy representing the capacity to transport nutrients 

downslope to the streams. In its most simple form this could be set as annual precipitation (e.g., 

Redhead et al. 2018). We applied a more nuanced option, employing the InVEST Seasonal Water 

Yield model (SWY; SI-4). This allowed us to calculate the proportion of surface (‘quickflow’) compared 

to subsurface flow (‘baseflow’), which the NDR model requires. Sharp et al. (2020) describe the full 

set of SWY equations, and Bagstad et al. (2018; 2020) describe its use in detail. Input variables for 

the SWY model are listed in SI-4. The sum of quickflow and baseflow combined was set as the total 

amount of water reaching the stream as the Run-off input for the NDR model. The median 

proportion of all flow that was baseflow (SI-5) was extracted as the mean over all gridcells for each of 

the 12,112 vegetation class units.  
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2.3.1. Agricultural nitrogen and phosphorus loads per vegetation class 

The nutrient amount that reaches the stream depends on quantities of synthetic fertiliser and 

manure applied and excreted on agricultural fields. Atmospheric deposition and human waste were 

added to this, as described in 2.3.2. We considered the excess nutrients –nutrients not absorbed by 

the crops– as potential run-off, termed ‘nutrient load’. All input data used to calculate loads were per 

country per crop type. 

 

Country-averaged synthetic fertiliser applications per crop type for N and P were derived for 2018 

from Ludemann et al. (2022). Limited bespoke adaptations included tonnage weighted averaging 

among different maize types (food, feed, biomass) and vegetables which we set as equivalent to 

‘other non-permanent industrial crops’. Manure application followed the EuropeAgriDB v1.0 

database for N (Einarsson et al. 2021). The categories ‘Applied to cropland’ and ‘Excreted grazing on 

cropland’ were equated to cropland and added to each cropland type equally. The category ‘Excreted 

grazing on permanent grassland’ was similarly added to non-improved grasslands, whereas the 

categories ‘Applied to permanent grassland’ and ‘Excreted while grazing’ were added to improved 

grasslands. P from manure was estimated with an N:P ratio of 5.3 :1 (Oenema et al. 2021).  

 

Excess nutrients, the ‘nutrient loads’ for N and P separately, were calculated as: 

𝐿𝑜𝑎𝑑 = (1 − 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑈𝑠𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) × (𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑙𝑖𝑠𝑒𝑟 + 𝑀𝑎𝑛𝑢𝑟𝑒)  

Here, fertiliser and manure are the applied gross amounts of nutrients to the fields in tons ha-1. The 

Nutrient Use Efficiencies, as proportions, were derived from EEA (2020) for N and P separately. We 

extracted values as medians for the Land Cover Map classes combined with four hydrologic Soil 

Groups (Ross et al. 2018). Further subdivision of these resulting 140 categories into all 12,112 

vegetation classes was not possible because of the relatively coarse 1km resolution of the EEA (2020) 

dataset. We therefore extrapolated values as equal within the further subdivision (SI-5).  

 

Agricultural loads are shown as maps in Figure SI-2-1. Data above included the EU member states 

and the UK. For other associated non-EU countries, no among-crop type distinction is available, and 

the load information described above is unavailable. To allow their inclusion in the modelling and the 

sources of nutrients they provide, loads were based on values from similar countries (listed in SI-3).  

 

2.3.2. Atmospheric deposition and human waste 

We included atmospheric deposition of N as important source of excess N (EMEP 2022; depicted in 

SI-2). Atmospheric deposition was run as a separate NDR model, the output of which was added to 
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the fertiliser model described above. As load inputs, we used combined dry and wet deposition of 

NOx and NHx from EMEP (2022). Since deposition patterns are at sub-country level, we divided the 

EMEP (2022) dataset into 20 classes (SI-3). These classes were combined with slope classes (SI-3) and 

a simplified version of the Land Cover Map in six classes (SI-3). For each of the 595 resulting 

vegetation classes the median deposition was extracted. The Nutrient Use Efficiencies were extracted 

as for the fertiliser model. This table can be found in SI-5. For all other parameters, this deposition 

model followed the fertiliser model. Atmospheric loads are depicted as map in Figure SI-2-3. 

 

A further source of nutrients is that of human waste via sewage. We used a mean annual per capita 

export of P and N in untreated sewage of 0.52 kg P and 4.5 kg N (Naden et al. 2016; Redhead et al. 

2018), with a waste plant efficiency of 60% and 90% for N and P respectively (Li et al. 2017). 

Unconstrained population counts per hectare from WorldPop for 2018 (Lloyd et al. 2019) were 

multiplied with these constants. In the validation analysis, the per catchment extractions of human 

waste were added to the extracted outputs of the fertiliser and atmospheric deposition models. As 

wastewater excretion would be from point sources – unavailable at this scale – wastewater is only 

included in the validation analysis at the catchment scale and not per gridcell, assuming at least one 

outlet per catchment. 

 

2.4. Retention capacities 

The NDR model is sensitive to the ‘retention capacity’ of the vegetation. However, very few usable 

data exist to estimate this value. Studies such as Redhead et al. (2018), Zawadzka et al. (2019) and 

Lavorel et al. (2022) were restricted in their sources and so in variation among vegetation types. 

Here, we explored a spatial approach, making the amount of retention related to the Normalised 

Difference Vegetation Index (NDVI), which is a measure of the density of the vegetation and thus its 

ability to trap and use nutrients. We used 2018 16-day NDVI values from the Modis Terra satellite 

data averaged per year. We developed a bespoke power calculation for the 41 vegetation classes of 

the Land Cover map (SI-1) following:  

𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 % =  𝛼 × (𝑁𝐷𝑉𝐼 − 𝛽)2 

Subsequently, α and β were fitted such that the values for woodland, bare areas and cropland would 

match Redhead et al. (2018) and Zawadzka et al. (2019). We elaborate more on this method in SI-6.  

 

Based on the load and the NDR outputs, we calculated the proportion retention per gridcell x, which 

includes nutrients accumulated and not reaching the stream, as [
(𝐿𝑜𝑎𝑑𝑥−𝐸𝑥𝑝𝑜𝑟𝑡 𝑡𝑜 𝑆𝑡𝑟𝑒𝑎𝑚𝑠𝑥)

𝐿𝑜𝑎𝑑𝑥
]. For N, 
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both loads and export to streams are a summation of modelled outputs from manure & fertiliser and 

atmospheric depositions (see below). 

 

2.5. Validation 

Modelled outputs were validated against measurements in rivers from the European Environment 

Information and Observation Network (Eionet; Wise v6, EEA 2022). Measurement locations were 

selected from the ‘aggregated’ data, being those locations which had more than 10 database entries 

of N and more than 15 for P since 1995. N was a combination of NOx and NHx, with their atomic 

weights used in recalculations to represent N alone. These concentrations were in mg per litre. To 

translate this to the modelled tonnages required an annual river discharge estimate to calculate an 

annual quantity of nutrients passing through the given points in rivers as [median concentration x 

annual discharge in litres]. As too few discharge measurement points within a short radius of the 

selected Eionet points were identified, we generated an InVEST Annual Water Yield model (AWY; 

Sharp et al. 2020), which is concisely explained in SI-7. The AWY is mathematically dissimilar to the 

SWY used for the NDR model as it is not based on a stream network and multiple inputs are different 

(SI-7). Having an annual discharge estimate implicitly assumes that the nutrient measurements are 

representative of the annual quantity of nutrients. We are aware that this assumption is a source of 

unavoidable uncertainty. 

 

Following Willcock et al. (2023), we generated bespoke catchments with each measurement location 

as a catchment outlet, using the 25m EU-DEM v1.1. (EEA 2016). We allowed for a maximum 

deviation distance of 100m from the EU-Hydro River Network Database (Copernicus 2020). Annual 

discharge was extracted as the sum of all within catchment water yields per cell. The total number of 

selected validation points was 2,251. 

 

We compared the total modelled amount of N export [fertiliser + manure + atmospheric + human 

waste] and P export [fertiliser + manure + human waste] within catchments to the measured amount 

of nutrient estimated to pass through the catchment outlet. Model accuracy was assessed using the 

Inverse of Deviance (D↓; Willcock et al. 2019); the inverse of the mean absolute individual deviance 

of each data point from the 1-1 line of equal relative value. Inputs were normalised with a double-

sided 2.5% winsorising protocol, to reduce the effect of outliers, following Hooftman et al. (2022) 

and Willcock et al. (2019; 2023). A D↓ above 0.7 is considered to show good fit to validation data 

(Willcock et al. 2019). Moreover, we conducted rank-order regression using Spearman’s Rho to test if 

modelled data followed the same order as the validation data (corr-tool with Spearman link). To 
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avoid spurious significance by using large numbers, validation analyses were jack-knifed for 225 

datapoints each (10% of datapoints), taking the median among 10,000 runs.  

 

2.6. Per datapoint errors 

Per datapoint errors were used to attribute drivers of error and were calculated as the signed 

deviance = [modelled value - validation] of each modelled datapoint for which there was validation 

data, where both modelled and validation data were normalised (see above). We called this the 

error, with the error sign separating over- and underestimation. To estimate the influence of 

environmental drivers, errors were subjected to linear regressions using a number of potential 

explanatory factors (Table 1). These factors are listed in SI-8 with their data sources and explanations 

where applicable. These drivers relate to six categories of explanatory factors: (1) Validation inputs; 

(2) Model inputs; (3) Climate drivers; (4) Water chemistry; (5) River characteristics; and (6) Landscape 

characteristics.  

 

Values for all drivers were calculated as median over full validation catchments. Exceptions to this 

were the Eionet measurements (N and P measurements and chemistry) which were calculated as the 

median of measurements at the river validation location. Prior to regression analyses, these drivers 

were normalised with a double-sided 2.5% winsorising protocol (Hooftman et al. 2022), while the 

errors were normalised with a single-sided 2.5% winsorising protocol to maintain the signed 

expression. In addition, each combination of driver and error was a priori subjected to a linear 

heteroscedasticity correction, based on Addy et al. (2022), which is explained in SI-9. Linear 

regressions for each individual driver were carried out using the fitnlm-tool employing a weighted 

standard linear function [Y ~ b1 + b2X], with the proportion overlap among catchments as datapoint 

weights (SI-10). To avoid spurious significance by using large numbers, the regressions were jack-

knifed for 225 datapoints each, taking the median among 10,000 runs. We employed a Hochberg’s 

step-up correction (Huang & Hsu 2007) on the resulting average p values to account for multiple 

tests.   
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To determine whether each driver primarily causes over- or underestimation, we calculated the 

regression cross-over point. This is the driver value at which the regression line intersects the "is-

equal" line. As drivers were normalised this cross-over value corresponds to the proportion of the 

range that is over- or underestimated. Based on b1 and b2 this predicted cross-over point (Y0) from 

over- to underestimation or vice versa was calculated as 𝑌0 =
−𝑏1

𝑏2
. Furthermore, a correlation matrix 

was generated among all drivers using the corr-tool, jack-knifed as above, presented in SI-11.  
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3. Results 

3.1. Nutrient losses 

Figure 2 presents a Europe-wide 25 x 25 m estimates of nutrient losses to streams (i.e., flowing 

waterbodies). Nitrogen (N) losses to streams result from added fertiliser, manure, and atmospheric 

deposition of NOx and NHx (Figure 2a). Phosphorus (P) losses are from fertiliser and manure (Figure 

2b), the former generally added as P2O5. The nutrient export maps can be obtained via <Dryad 

dataset upon acceptance>. 

 

Absolute nutrient losses to streams are large from grasslands with high input loads (Figure SI-2-1), 

such as in The Netherlands, Ireland, Western Denmark and parts of France and Germany (Figure 2). 

Combined N loads are further elevated by high atmospheric nutrient deposition, especially in The 

Netherlands, Belgium, North-Western and Southern Germany, and Danish Jutland (Figure SI-2-2). For 

the same reason cities have high exports: urban landscapes have low retention potential and receive 

substantial atmospheric nutrient deposition in especially North-Western Europe. Figure 2 excludes 

wastewater nutrients (which is taken into account in the validation analysis), which would accentuate 

the role of cities even more. Atmospheric N deposition contributes 22% of the total load across 

Europe; 58% of N originates from agricultural N and 20% from filtered human waste. However, there 

is large spatial variation, and for the majority (63%) of the modelled area, atmospheric N deposition 

is the dominant source (Figure SI-2-3).  

 

Visually, large nutrient export values are seen in grassland-dominated areas in which substantial 

variation in the terrain are combined with high rainfall, such as in the Northern UK, North-Western 

Spain and in Switzerland (Figure 2). This is substantiated by high positive correlations between 

nutrient export per hectare with the per catchment proportion of non-improved grassland, density 

of cattle, and water run-off (correlation coefficients of 0.41, 0.30 and 0.56 respectively for N, SI-11). 

Grassland effects are more pronounced for N (Figure 2a) than for P (Figure 2b). By contrast, in most 

of Southern and most areas of Eastern and further Western Europe differences between crop types 

seem more pronounced, being less terrain and rainfall dominated. Over substantial parts of Southern 

Europe, the low to intermediate fertiliser levels on permanent crops such as olive trees and fruit 

trees seem to lead to relatively low nutrient export; comparing Figure 2 with the Land cover Map 

shown in Figure SI-2-4. Low nutrient losses are found in regions without wide-spread intensive 

agriculture and low atmospheric deposition (Figure SI-2-2) such as in heavily forested parts of 

Scandinavia, the Baltic states and Southern European regions; as well in other areas with high forest 

or alpine vegetation. This is further substantiated by the per catchment proportion of forest being 
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negatively correlated with nutrient export per hectare (correlation coefficients of -0.39 and -0.27 

respectively for N and P, SI-11). 

 

3.2. Retention 

The proportion of nutrients retained is similar for N and P (Figure 3). On average, retention across 

the whole modelled area is 93% for N (STD 17%) and 92% for P (17%), i.e., 7% and 8% of excess 

nutrients reach the streams respectively. For N this is retention both by the vegetation and by the 

soil filtering the nutrients from the subsurface flow. The retention capacity seems lower where there 

is a combination of high terrain variability with high rainfall, causing the higher export to streams 

described above. In those cases, the proportion of surface run-off is high compared to baseflow run-

off – which can allow filtering out of nutrients by the soil – in areas with lower variability of the 

terrain. Furthermore, the modelled retention capacity in areas with low nutrient inputs, as in 

Scandinavia excluding Denmark, is relatively low. This is, however, a low retention rate of low 

amounts of nutrients. These retention capacity maps can be obtained via <Dryad dataset upon 

acceptance>. 

 

3.3. Validation 

The NDR models were validated against 2,251 nutrient concentration measurements in streams, 

selected from the Eionet dataset (Figure 4). In general, the modelled medians for N and P among 

catchments are close to those of the validation set, 3.62 vs. 2.03 kg ha-1 catchment for N and 0.07 vs. 

0.11 kg ha-1 for P. However, the 5%-95% range of model predictions of N is larger than that of the 

validation dataset while model predictions are missing very low values (range 0.38-26.0 vs. validation 

0.03-12.5), with 76% of the data points being overestimates. The missing low values show up as large 

overestimates in Figure 5. By contrast, P is in general underestimated by the model (66% of points 

are underestimated) including a series of substantial underestimations (Figure 5; range 0.01-0.64 vs. 

validation 0.01-0.97) caused by a set of high validation outliers, distributed across Europe without 

apparent pattern (Figure 4). 

 

Figure 5 depicts the validation as kg nutrient per hectare catchment. The validation of N is very good 

(Figure 5a), with a high Inverse of Deviance (D↓ =0.82): indicating an overall close proximity to the 

1:1 line. The overestimation seems consistent with a median absolute difference of 78%, decreasing 

to equal values at high amounts of predicted N. The D↓ is lower in Swedish, Finnish and Norwegian 

catchments with low measured concentrations, which are overestimated by the model (see SI-12). 

The rank correlation (Rho) is highly significant (0.64; P< 0.001), showing that the order of N export 
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among catchments is predicted well. However, the model performs more poorly in certain countries 

(Table SI-12-1). As well as the overestimation of the very low Scandinavian validation values, values 

for Ireland and Denmark are overestimated by 8 and 10 times respectively (Table SI-12-1).  

 

The validation for modelled P is very good. Except for a set of high validation dataset outliers (Figure 

4), the proximity to the 1-1 line is high (D↓ =0.87; Figure 5b). Because of these outliers, there is an 

average underestimation by 35%. The rank correlation (Rho) is also highly significant (0.59; P< 0.001), 

showing that the order of P export values among catchments is predicted well.  

 

3.4. Drivers associated with per datapoint errors 

Per datapoint errors tend to shift from over- to underestimation with increasing values of the 

validation data, both for N and P (Figure 5). This is confirmed by the regressions with validation 

values (Table 1; Hoghberg corrected p values), with a transition from over- to underestimation 

predicted at relatively low values.  

 

Both N and P errors are related to drivers from all six categories (Table 1), although for river and 

landscape characteristics, the exact driver varied. For the shared drivers among three further 

categories, all show positive effects – i.e., underestimation becoming overestimation at larger values 

– and this is seen for the amount of nutrient exporting flow, the proportion of sub-surface flow (both 

of these are model inputs), the number of ice days (climate driver) and the proportion of non-

improved grasslands (landscape characteristic). For all, transitions to overestimations were predicted 

at relatively low range values, except for the proportion of sub-surface flow. This suggests the error 

increases with increasing driver value over most of the driver range.  

 

In addition to the general patterns described above, N errors are related to the atmospheric 

deposition values with higher depositions linking to underestimations (model inputs). Furthermore, 

the model underestimates more in warmer, higher pH and low organic matter (carbon) river 

conditions, and overestimates as these driver values move to the opposite values (chemistry; Table 

1). Moreover, underestimations are associated with greater cattle densities, interacting with the 

overestimations described above that are related to increasing amounts of non-improved grasslands 

(landscape characteristics).  

Overestimations for P are further linked to high fertiliser and manure loads (model inputs; Table 1). 

Moreover, overestimations are linked to high flows (model input), high erosivity (climate) as well as 

steep stream gradients and rugged terrain (river characteristics), with cross-overs from under- to 
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overestimation often at the lower end of the data ranges. With respect to landscape drivers, P errors 

depend on an interplay between improved (underestimation at high values) and non-improved 

grasslands (overestimation at high values). 

 

4. Discussion 

4.1. The modelled maps 

We have presented a Europe-wide parameterization of the InVEST Nutrient Delivery Ratio model 

(Sharp et al. 2020), quantifying water-based run-off and retention of nitrogen (N) and phosphorus 

(P), which matches well with measured validation data. We have expanded on the methodology and 

spatial extent compared to earlier studies such as Redhead et al. (2018), Zawadzka et al. (2019), and 

Lavorel et al. (2022). Across Europe, models such as this can be used to indicate regions of most 

concern, either because absolute export is high, or retention capacity is low. The total summed 

export to streams over the modelled area is around 2.3 Tg N per year and 0.07 Tg P, although this 

excludes wastewater, which mostly comes from urban areas. These total values are in line with the 

Eionet-trained catchment based European JRC GREEN model (Grizzetti et al. 2021), which was 

applied over a ca. 60% larger area (≈ 2.9 Tg N and 0.12 Tg P from agriculture and atmospheric 

deposition; Grizzetti et al. 2021). 

 

The model outputs matched well with within-river measurements of N and P (Eionet, EEA 2022). In 

terms of both the absolute units and normalised, relative units, the model values are not dissimilar 

to the validation data, with a mean 18% and 13% normalised deviance for N and P respectively. For 

validation at such a scale over such a heterogenous area, this can be seen as an encouraging result, 

since variation can be large due to catchment-specific processes (Edwards & Withers 2008, Redhead 

et al. 2018). Lower deviances might be expected when validating over a more uniform and smaller 

area, which would allow for better parameter training and sensitivity analyses (Willcock et al. 2019). 

Here, we identified model and environmental drivers that seem to influence modelling errors at the 

catchment scale, noting that the validation data will also be subject to error. A major finding is that 

nutrient pollution in the high production agricultural regions is predominantly caused by fertiliser 

use. However, for 63% of the modelled area, including most forested and alpine areas, the main 

source of N pollution is indirect: through atmospheric deposition derived from excesses elsewhere 

(SI-2). Results like ours will also be useful for decision-makers when interpreting modelled data over 

larger scales beyond single catchments (European Commission 2018; Grizzetti et al. 2021). Validation, 

as performed here, would provide an additional level of confidence in utilising model results for 

decision-making, as exemplified by the parameterised InVEST NDR model used in our study.  
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4.2. Drivers of model errors 

We found evidence that most categories of drivers can be linked to the amount and direction of 

model error; i.e., the relative deviance of modelled values from the validation data. While we are 

aware that more individual drivers could be identified, our main focus was on the six main 

categories, as these drivers could be proxies for a larger set of similar drivers. For the first category 

(validation values), the NDR model errors are for both nutrients related to the amount of nutrient 

measured from catchments. The number of points over- and underestimated differs between N and 

P: 74% of catchments overestimated for N (representing 71% of the range) whereas 66% 

underestimated for P (11% of validation range). We discuss this mismatch for P in 4.4. below. After 

normalisation, model outputs for both nutrients show a similar transition from relative over- to 

underestimation over the gradient from low to high values in the validation dataset. The apparent 

causes of model error at catchment level are different though between both nutrients. For N, the 

model overestimates low validation values considerably. By contrast for P, high values seem to be 

underestimated substantially. At a smaller scale, similar patterns of underestimation of both 

nutrients were obtained by Redhead et al. (2018) for the InVEST NDR model applied across the UK. 

 

All five further driver categories included at least one driver with a significant effect on with model 

errors for N and P: model inputs; climate; water chemistry; river characteristics; landscape 

characteristics. Four individual drivers across three categories were linked to errors for both 

nutrients: the amount of nutrient exporting flow, the proportion of sub-surface flow (model inputs), 

the number of ice days (climate), and the proportion of non-improved grassland (landscape 

characteristic). The model input and climate category drivers likely highlight the limitations of the 

modelling in that it employs an approach that averages over the year; this issue was also identified 

by Redhead et al. (2018) and Grizzetti et al. (2021). In reality, nutrient run-off is not continuous and 

surface run-off in general only occurs in (especially heavy) rain periods. Ice days illustrate a similar 

issue in that flow is restricted during these periods. Therefore, actual run-off is periodic, affected by 

soil saturation levels that will vary the balance between sub-and above surface flow (‘quickflow’). 

Furthermore, the retention capacity by vegetation differs among seasons (von Schiller et al. 2008). 

Since such processes cause substantial variation in export, these will lead to model error. 

 

4.3. Nutrient retention in soils 

We calculated a 93% retention of N by vegetation and soil, accumulating over a mean of 920 meters 

before reaching the stream. Such continuing and stable soil retention as assumed by the model 
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would require indefinite local accumulation around rooting zones and retaining vegetation (Wang et 

al. 2018). Such accumulation does occur to some degree, causing adverse acidification effects and 

biodiversity losses due to eutrophication (de Vries 2021). However, N tends to stay in the soil for only 

a short time (Huntingford et al. 2022). Excess soil N is converted to harmful reactive gaseous 

elements, such as NOx and NHx. This can happen before excess N reaches the stream and also is a 

process that takes place within streams. Across the catchments studied, atmospheric deposition of 

NOx and NHx –converted from such excesses elsewhere– forms a substantial 22% of total modelled N 

passing through catchment outlets. Terrestrial soil denitrification will also convert a sizeable 

proportion (30–60%) of N to atmospheric N2 (Wang et al. 2018). Since factors affecting the N-cycle 

balance between harmful NOx & NHx and harmless N2 are poorly understood (Wang et al. 2018; 

Huntingford et al. 2022), the N-cycle is yet to be incorporated in models such as the NDR. N-cycle 

processes could explain why chemistry indicators (pH and suspended carbon) and daily temperature 

regressed significantly with N model errors. However, pH is also strongly correlated with annual 

temperature and ice days (SI-11), which suggests a combined spatial and chemical effect. Similarly, 

no nutrient leakage to the lower groundwater levels is yet included in the NDR, which could lead to 

nutrient pollution over much longer time-frames not included in the current retention estimation. 

Furthermore, the proportion retention is depending on the definition of ‘stream’, here modelled as a 

flow accumulation of at least 1000 gridcells (SI-1; 62.5 ha); a threshold set after matching to the EU-

Hydro River Network Database (Copernicus 2020). A tighter definition with less accumulating area 

will lead to lowered distances to streams, potentially resulting in less estimated retention capacity. 

 

The chemical cycle for P is less complex between water run-off and in the soil accumulation (Panagos 

et al. 2022), with P run-off being more affected by peak flows (Edwards & Withers 2008, Redhead et 

al. 2018). P modelling errors also related to flow speeds, as indicated by the relationships with river 

slope and terrain ruggedness – which are highly intercorrelated (SI-11) – as well as the annual 

summed erosivity of rainfall. The positive direction of the effects (overestimations at higher values) 

could indicate that peak flows might be less well captured in the validation data (Defew et al. 2013) 

rather than simply being poorly captured by the model. This is because for the latter the converse of 

transport, sedimentation, would lead to overestimations at low flow, which we did not identify. At 

smaller scales, in a subset sufficient discharge information, these processes could be investigated 

further by using time specific discharges employing a Beale Ratio as done e.g. in Redhead et al. 

(2018) and Robertson & Saad (2019). 

 

4.4. Loads and Land Cover Map 
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The dependence and subsequent drawbacks of InVEST and similar approaches that assign discrete 

values to land cover classes is a long-recognised issue (Eigenbrod et al. 2010). To reduce this 

problem, we generated over 12,000 vegetation land units over the full European area, overlaying the 

EU Crop Map (d’ Andrimont et al. 2021) with country borders, slope and hydrological properties. 

However, several drawbacks remain.  

 

The first main issue is the fertiliser data being available only at a country resolution. Consequently, 

synthetic fertiliser and manure has to be modelled as added equally across regions within a country, 

meaning that very low and high within-country values are not replicated in the input data. The 

inability of the model to mirror low validation values for N might be explained by this issue; as well as 

the modelled high export values for the lower slopes of rugged areas. Retention is lower in the latter 

areas since most run-off is from quickflow, leading to high modelled export. This issue could be 

solved by splitting databases as those used (Einarsson et al. 2021; Ludemann et al. 2022) into 

regional levels. However, at the scale of Europe, this would require a large number of assumptions. 

Furthermore, in using these databases there seems a mismatch between low validation values and 

high modelled export in Ireland and Denmark, by a factor of about 10 (SI-12). The synthetic fertiliser 

and manure load values are similar to surrounding North-Western European countries (SI-3), as could 

be expected. Therefore, this suggests there may be representability problems with the validation 

data, perhaps due to the specific location or timing of sampling. 

 

The second main issue with model parameterisation is that the EU Crop Map (d’ Andrimont et al. 

2021) differentiates 18 crops, but contains only one grassland category, not splitting improved and 

non-improved grassland. We allocated non-improved grassland using ESA (2020) and EEA (2020). 

However, the variability in stocking rates and fertilisation levels of grasslands could not be included. 

This drawback is seen in the regression analysis of model errors: the greater the area of non-

improved grassland the more the relative model overestimation for N and P, suggesting the load 

values employed were too high. The converse relationships are consequently found for the amount 

of cattle (N) and proportion of improved grassland (P), suggesting under-parametrisation for 

intensively stocked areas. For the UK, Marston et al. (2023) would be a great resource to reflect 

grassland type diversity. However, similar approaches are not available for most of the European 

area. Therefore, if there is to be an updated version of the EU crop Map (d’ Andrimont et al. 2021), 

we suggest this should have a more nuanced split into multiple grassland categories; e.g., into 

categories reflecting different levels of agricultural improvement, and livestock densities. This would 
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not only give a better overview of grassland agronomic usage, but it would also allow more accurate 

EU-wide modelling of ecosystem services such as erosion and nutrient control. 

 

This issue relates to a more general one concerning resolution and landscape classes in the 

modelling. A more detailed land cover class definition and finer resolution mapping could enhance 

modelling precision in more heterogeneous landscapes (Grêt-Regamey et al. 2014; Lamy et al. 2016), 

such as in some highly transformed, fragmented regions (Qiu et al. 2021). By contrast, using a higher 

resolution in simpler landscapes would be unhelpful but without obvious negatives. In general, more 

non-crop areas in landscapes result in less erosion and so lower modelled nutrient run-off (Duarte et 

al. 2018). Hence for nutrient retention, the representation of fine-scale land covers, such as through 

agri-environmental programs, might increase the modelled capture of nutrient run-off. It is likely, 

therefore, that adding finer relevant detail in land use definitions would result in more retention and 

a lower modelled run-off in more heterogeneous regions, which would likely increase accuracy of the 

NDR model. This suggestion comes with the caveat that this finer resolution data need to be spatially 

correct, well-scaled and accurately parameterised, otherwise error is likely to increase (Pereira et al. 

2025). That is, including more land cover types and using a finer resolution comes with increased 

data demands. 

 

A third issue is that NDR requires data on the retention capacity of different vegetation types. We 

have observed that such values are generally just copied from study to study, with the original 

sources often being obscure. We tried to provide a more spatial approach based on NDVI (SI-6), 

which follows similar approaches for vegetation cover impacts on sediment retention (van der Knijff 

et al. 2000). However, by having to fit to the range of values used by other studies such as Redhead 

et al. (2018) and Zawadzka et al. (2019), the methodological advance might be limited and the 

resulting variation among crop types and other vegetation types is relatively low, i.e., many values 

are similar. Presumably, among region differences will mask any clear differences among vegetation 

types when averaging into cross-European class values. We call for more development in vegetation 

retention calculation possibilities. 

 

 

5. Implications 

At a European level, gridcell-based maps with complete coverage, as presented in this work, are 

valuable for identifying regions where more detailed assessment is needed to inform mitigation 

options (Robertson & Saad 2019; Grizzetti et al. 2021). Using such maps, fertiliser management to 
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increase nutrient use efficiency and in-field strategies (Xia et al. 2020; Martínez-Dalmau et al. 2021) 

could be better targeted at relatively fine scale to address problem hotspots. Furthermore, policy-

makers can identify which regions are more spatially homogenous in export patterns, where broad 

actions could be applied, and which areas are more heterogenous with  more localised actions 

needed. However, the implication and novelty of our study goes beyond these maps. Model 

predictions have inherent uncertainties that cause errors, as they are approximations of reality 

described by a limited set of obtainable parameters. Rather than avoid using models because of a 

perceived lack of credibility – a major reason for the implementation gap between research and its 

incorporation into policy and decision making (Willcock et al. 2016; Dubois et al. 2020) – 

understanding causes of uncertainties would allow communication of confidence over a modelled 

area and the limits to available approaches. Validation is key for such an assessment (Bryant et al. 

2018; Willcock et al. 2023). We indicate several directions that would improve nutrient export and 

erosion modelling, which includes sub-country databases on fertiliser and manure usage, enhanced 

mapped differentiation of grassland types including stocking density categories, low flow nutrient 

measurements, as well as openly available fine scale representation of AES options for future 

correlations, e.g., collated per country on a NUTS level 3. 
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Table 1. Regression coefficients for the effects of different drivers on errors for model 

differences from validation data. Original driver units are provided, but note data were 

normalised before analysis. See SI-8 for driver descriptions. For significant effects, the 

number in parentheses is the value at which there is a cross-over between over- and 

underestimation (for example: for Median Total mg/l, Nitrogen: predicted cross-over from 

over- to underestimation is at 29% of the data-range). A Hochberg correction is employed to 

correct for multiple tests following Willcock et al. (2023).  

*** P<0.001; ** P <0.01; * P< 0.05; ns: non-significant, p-levels after correction.  

 Nitrogen Error Phosphorus Error 
Validation set at validation location 

  Median Total mg/l (= validation) -0.84*** (0.29) -1.10*** (0.11) 

  Coefficient of Variation of measurements -0.26ns 0.01 ns 

  Discharge AWY model (m3 ha-1) 0.18ns 0.39*** (0.26) 

Model Inputs 

  Flow from SWY model ha-1 (m3 ha-1) 0.33* (0.01) 0.40*** (0.16) 

  Load from soil fertilisation & manure (t ha-1) -0.03ns 0.37** (0.11) 

  Atmospheric deposition N load (t ha-1) -0.39* (0.43) - 

   Waste water load = Human pop size (t ha-1) -0.16ns -0.26ns 

  Proportion sub-surface flow 0.36*** (0.44) 0.18** (0.55) 

Climate  

  Rain erosivity index (MJ mm ha-1 h-1 yr-1) -0.20ns 0.36*** (0.29) 

  Median Daily temperature (ᵒC) -0.59*** (0.59) -0.03ns 

  Median # Ice days year-1 0.58*** (0.14) 0.59*** (0.18) 

Chemistry at validation location 

  pH of the water -0.32* (0.80) -0.02ns 

  Concentration Suspended Carbon (mg/l) 0.45*** (0.21) 0.19ns 

  Concentration dissolved O2 (mg/l) 0.05ns -0.37** (0.38) 

River characteristics 

  Stream curviness (sinuosity: actual 

     length/direct line length) 0.16ns 0.09ns 

  Stream gradient (ᵒ, proxy for stream speed)  -0.05ns 0.41*** (0.18) 

  Median distance to Stream (m catchment-1) 0.01ns 0.05ns 

  Catchment size (hectares) -0.01ns 0.10ns 

  Terrain Ruggedness (STD of ᵒ slopes) -0.23ns 0.31*** (0.33) 

Landscape characteristics (% of the landscape per catchment) 

  Woodland -0.11ns 0.25ns 

  Cropland -0.04ns -0.13ns 

  Improved grassland -0.14ns -0.22* (0.21) 

  Not-improved grassland 0.27* (0) 0.56*** (0.18) 

  Urban/artificial surfaces -0.06ns 0.11ns 

  High fertilised crops (SI-8 for list) -0.06ns -0.13ns 

  Low fertilised crops (SI-8 for list) -0.10ns 0.01ns 

  Density of Cattle (stock) -0.34* (0.33) -0.17ns 

  Density of Sheep (stock) -0.29ns 0.02ns 
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Figure Legends 

Figure 1. Overview of the modelling, validation and correlation analyses. 

Figure 2. European wide estimates of nutrient losses to the stream from fertiliser and 

manure additions combined with (for Nitrogen only) atmospheric deposition 

generated with the InVEST Nutrient Delivery Ratio model for (a) Nitrogen and (b) 

Phosphorus.  

Figure 3. European wide estimate of the retention capacity of the vegetation as proportion 

of retained loads from fertiliser & manure additions and atmospheric deposition 

(Nitrogen only) for (a) Nitrogen and (b) Phosphorus. 

Figure 4. Delineated catchments from selected Eionet locations (EEA 2020) used for 

validation, with (a) median averaged Nitrogen measurements; (b) median averaged 

Phosphorus measurements. n = 2,251. Catchments can overlap, which is taken into 

account in our analyses (SI-10) 

Figure 5. Validation of the modelled annual kg per hectare catchment passing through 

validation locations compared to the validation data as annual kg per hectare. For (a) 

Nitrogen and (b) Phosphorus. n = 2,251; validation statistics are added.
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Figure 4. 
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Figure 5. 

Jo
urn

al 
Pre-

pro
of



Highlights: 

• Water pollution from agricultural fertilisers is a large problem in Europe 

• Modelling can help policy-makers target key locations to mitigate nutrient pollution 

• We create a fine resolution InVEST model for nitrogen and phosphorus across Europe 

• The model validates very well against empirical water pollution data  

• Model uncertainty relates to seasonality, and subsurface and surface run-off 
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