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a University of Coimbra, Marine and Environmental Sciences Centre (MARE)/Aquatic Research Network (ARNET), Department of Life Sciences, 3000-456 Coimbra, 
Portugal
b British Antarctic Survey (BAS), Natural Environment Research Council (NERC), High Cross, Madingley Road, CB3 0ET Cambridge, United Kingdom
c Laboratory for Innovation and Sustainability of Marine Biological Resources (ECOMARE), Centre for Environmental and Marine Studies (CESAM), Department of 
Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
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A B S T R A C T

The giant warty squid Moroteuthopsis longimana is an important prey of top predators in the Southern Ocean. It is 
therefore a major link in the pathway of contaminants like mercury (Hg) to higher levels in food webs. In this 
study, we evaluated changes in Hg concentrations in beaks of adult M. longimana collected from the boluses 
(pellets) of wandering albatross Diomedea exulans chicks at Bird Island (South Georgia) over five decades (1976, 
1984, 1995, 2006 and 2016). A steep decrease in Hg concentrations was observed in M. longimana from 1984 to 
1995 (0.086 ± 0.021 μg.g− 1 to 0.017 ± 0.013 μg.g− 1), with concentrations remaining low thereafter, likely 
reflecting the effects of international regulations and the global reductions in Hg emissions and usage initiated in 
the 1970s. Hg concentrations were not related to the squid size, δ15N nor δ13C values (proxies for trophic position 
and habitat, respectively), providing no evidence of bioaccumulation nor biomagnification in this squid species. 
Our results suggest that Hg concentrations in the beaks may be related to Hg bioavailability in the ecosystem, 
which makes M. longimana a potential biomonitor of Hg concentrations in pelagic environments of the Southern 
Ocean. However, further investigations are needed to confirm this finding.

Mercury (Hg) is a trace metal that occurs naturally in the environ
ment, although its concentrations are increasing due to anthropogenic 
activities (Streets et al., 2017, 2019). As Hg is toxic and can bio
accumulate in organisms and biomagnify through food webs, it poses a 
threat to wildlife (Scheuhammer et al., 2007; Kidd et al., 2011; Lavoie 
et al., 2013; Murillo-Cisneros et al., 2018; Ordiano-Flores et al., 2021). 
Thus, long-lived top predators usually exhibit the highest Hg concen
trations (Lehnherr, 2014). In response to such concerns, the Minamata 
Convention on Mercury (2013) was signed, aiming to reduce Hg levels 
and protect the environment (Minamata Convention on Mercury, 2023). 

However, Hg concentrations in biota are still increasing in some regions, 
reinforcing the need for long-term monitoring (Selin et al., 2018; Médieu 
et al., 2023).

Although the Southern Ocean is often regarded as pristine and iso
lated from anthropogenic impacts, Hg levels are high in some regions 
(Aronson et al., 2011; Cossa et al., 2011). These concentrations are likely 
influenced by long-range atmospheric and oceanic transport, and glacial 
melt driven by climate change (Bargagli, 2008; Pérez-Rodríguez et al., 
2019; Chown et al., 2022). Hg concentrations have been assessed in 
many Antarctic biota, from zooplankton to top predators (Seco et al., 
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2019; Queirós et al., 2020b; Charapata et al., 2023; Padilha et al., 2023; 
Mills et al., 2024; Espejo et al., 2024). Several studies have also assessed 
Hg concentrations in cephalopods, but no study has fully evaluated the 
use of squid as potential biomonitors of Hg concentrations in the 
Southern Ocean (Anderson et al., 2009; Matias et al., 2019; Xavier et al., 
2016).

Cephalopods play a pivotal role as mid and upper-trophic-level 
predators in Southern Ocean ecosystems (Collins and Rodhouse, 2006; 
Rodhouse, 2013). They are prey to numerous top predators, playing an 
important role in the biomagnification process, especially as they tend to 
bioaccumulate Hg throughout their life (Xavier et al., 2018; Queirós 
et al., 2020a). These species are widely distributed in the Southern 
Ocean, from Antarctic to subtropical waters, and have a short life span 
(~1 to 2 years) (Collins and Rodhouse, 2006; Cherel, 2020). As such, 
levels of contaminants in their tissues reflect exposure over a relatively 
short and well-constrained time period. These biological and ecological 
characteristics suggest that cephalopods may be useful biomonitors of 
Hg levels in the Southern Ocean.

Cephalopods, in particular oceanic squid, are difficult to catch due to 
net avoidance behaviour and high swimming speeds (Santos et al., 2001; 
Rodhouse, 2013). To overcome this, studies often focus on their 
chitinous beaks, which are indigestible and can be recovered from 
stomachs of predators (Clarke, 1986; Trasviña-Carrillo et al., 2018; 
Xavier et al., 2022). Beaks grow continuously throughout the life of the 
individuals and accumulate trace elements, including Hg (Xavier et al., 
2016; Matias et al., 2019; Queirós et al., 2020a). They can be preserved 
using different methodologies, e.g. frozen, ethanol 70%, without 
affecting the concentration of these elements, enabling their use in long- 
term studies (Golikov et al., 2024; Dimkovikj et al., 2025). Recent 
studies have shown that beaks preserve stable isotope values even after 
decades in storage (Dimkovikj et al., 2025). Combined with the strong 
binding affinity of Hg to protein thiol groups (Bustamante et al., 2006), 
it supports the assumption that Hg concentrations remain stable in 
archived beak samples. Within the Southern Ocean cephalopod com
munity, Moroteuthopsis longimana is an important prey for many top 
predators, including the wandering albatross Diomedea exulans (Xavier 
et al., 2003; Collins and Rodhouse, 2006). This squid species presents an 
ontogenetic, likely size-related shift in its diet, feeding on crustaceans as 
juvenile and changing to fish and squid as adult, reflecting an increase of 
one trophic level (Nemoto et al., 1985; Queirós et al., 2018). Previous 
studies showed that Hg concentrations in M. longimana are 10 to 100- 
fold higher in the muscle than in beaks (Anderson et al., 2009; Xavier 
et al., 2016; Queirós et al., 2020a; Lopes-Santos et al., 2025). These 
studies also evaluated Hg bioaccumulation in this squid species, how
ever, with contrasting results. While Queirós et al. (2020a) showed that 
adults have 2-fold higher Hg concentrations than juveniles, this pattern 
was only observed when comparing Hg concentrations for different life 
periods of the same individual. No bioaccumulation was found when 
comparing entire beaks from different individuals (Lopes-Santos et al., 
2025).

This study aims to evaluate long-term temporal trends of Hg con
centrations in M. longimana and investigate the potential of this species 
as a biomonitor for Hg concentrations in the Southern Ocean. To achieve 
this, Hg concentrations were measured in lower beaks of M. longimana 
collected from the boluses of wandering albatrosses D. exulans chicks. 
Beaks were collected at Bird Island (South Georgia) in 1976, 1984, 1995, 
2006, and 2016 (see sampling details in Abreu et al., 2020). All boluses 
were frozen at − 20 ◦C immediately after collection and kept frozen until 
analysis.

Beaks were cleaned, and lower beaks identified using a cephalopod 
beak guide (Xavier and Cherel, 2009). Ten lower beaks of M. longimana 
were randomly selected per study year, and the lower rostral length 
(LRL) measured using a digital calliper (± 0.01 mm). Ten beaks were 
selected per year to guarantee consistency and to allow reliable annual 
comparisons. Furthermore, ten beaks was considered representative of 
the M. longimana population due to the low variation observed among 

individuals sampled per year and between years, and it is consistent with 
other ecological studies using stable isotopes in cephalopods and seabird 
diets (Cherel and Hobson, 2005; Guerreiro et al., 2015). All beaks were 
of similar size and adult stage (Clarke, 1986). Mantle length (ML, in mm) 
and mass (M, in g) were estimated using allometric equations on Brown 
and Klages (1987). Beaks were further dried in an oven at 60 ◦C for 24 h 
and ground into a fine powder using a mixer mill for 10 min with a 30 
s− 1 frequency. Stable isotope values of δ15N and δ13C in these beaks were 
previously determined by Abreu et al. (2020) using a continuous-flow 
isotope ratio mass spectrometer at the Laboratório MAREFOZ (MARE 
– Figueira da Foz). Analytical precision was monitored using certified 
reference material (acetanilide – Thermo), with internal measurement 
errors <0.1 ‰ for δ13C and < 0.3 ‰ for δ15N (Abreu et al., 2020).

Mercury concentrations were determined in a LECO AMA-245 
Advanced Mercury Analyzer through thermal decomposition atomic 
absorption spectrometry with gold amalgamation, with a detection 
threshold of 0.00001 μg.g− 1 (LECO Corporation, United States). This 
methodology does not require a pre-treatment or digestion of the sam
ples (Costley et al., 2000). For each beak, approximately 25 mg of 
sample was used to determine Hg concentration. Samples were analysed 
in duplicate or triplicate, with the coefficient of variation always lower 
than 10%. Recovery efficiency (104 ± 8%) was determined using ERM- 
CE278K mussel Mytulis edulis tissue (Joint Research Centre) as certified 
reference material. All concentrations are presented as mean ± standard 
deviation in μg.g− 1 dry weight.

Statistical analyses were performed in GraphPad Prism v9.0.0 
considering an α = 5%. Normal distribution of Hg concentrations was 
tested using a Shapiro-Wilk test. A Kruskal-Wallis test followed by a 
Dunn's multiple comparison test was used to assess differences in Hg 
concentrations between years. In R software v4.2.2 (R Core Team, 
2020), we evaluated how Hg concentrations changed over time and with 
squid size using a generalized linear model (GLM; family: Gamma, link 
function: identity) using year (1976 as reference) and LRL as explanatory 
variables. We also implemented a GLM (family: Gamma, link function: 
identity), with year (1976 as reference), LRL, δ13C values (proxy for 
habitat, (Cherel and Hobson, 2005) and δ15N values (proxy for trophic 
position, (Peterson and Fry, 1987)), and the interactions LRL: δ13C values 
and LRL: δ15N values as explanatory variables, to test for Hg bio
accumulation or biomagnification. Collinearity between explanatory 
variables was tested ahead of both GLMs using the Variation Inflation 
Factor (VIF), calculated using the vif function from the car package (Fox 
and Weisberg, 2018). No collinearity was found between variables (all 
VIF < 5).

The LRL of the studied individuals ranged from 11.2 mm (1995 and 
2006) to 16.3 mm (1984), corresponding to ML of 395.6 to 585.9 mm, 
and mass M of 1446 to 4720 g, respectively (Table 1). Mean LRL (and 
respective ML and M) was highest in 1984 (13.5 ± 1.4 mm), and lowest 
in 1995 (12.6 ± 0.8 mm) (Table 1).

Overall, mean Hg concentrations varied between 0.010 ± 0.007 μg. 
g− 1 in 2016 and 0.086 ± 0.021 μg.g− 1 in 1984, with the highest con
centrations observed in the earliest sampled years (Table 1). Hg con
centrations decreased in the following order 1984 > 1976 >> 1995 >
2006 > 2016, with Hg concentrations in 1984 approximately 8-fold 
higher than those in 2016 (Table 1; Fig. 1). Significant differences 
were found in Hg concentrations between years (H = 35.14, p <
0.0001), with Dunn's multiple comparison test showing significant dif
ferences between 1976 and 1984 with 1995, 2006 and 2016 (Table 1). 
Results from the GLMs also indicated that Hg concentrations in beaks 
collected in 1995, 2006 and 2016 were significantly lower than in 1976 
and 1984, suggesting a steep decrease in Hg concentrations after the 
mid-1980s (Table 2). The decrease in Hg concentrations is not associated 
with shifts in either habitat or trophic level, as the second GLM showed 
that LRL, δ13C and δ15N values do not explain the variation in Hg con
centrations in the lower beaks of M. longimana (Table 3). Moreover, no 
significant changes in δ13C and δ15N values over the years indicate 
consistency in trophic level and habitat use (Abreu et al., 2020). This 
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suggests that the observed Hg decline reflects environmental rather than 
biological factors.

The reduction in Hg concentrations may reflect international efforts 
to reduce Hg pollution, as global Hg usage and atmospheric release have 
declined by ~60% and ~30%, respectively, since the 1970s, driven by 
international conventions such as the International Convention on the 
Prevention of Marine Pollution by Dumping of Wastes and Other Matter 
(1972) (Selin and Selin, 2006; Horowitz et al., 2014). The ~88% 
decrease observed in M. longimana between 1984 and 2016 is consistent 
with this global trend, though the greater magnitude may reflect the 
cumulative effects of international regulatory measures and declining 
atmospheric deposition over time, particularly in remote environments 
like the Southern Ocean (Bargagli, 2016). Similar declines have been 
observed in other squids, such as Loligo vulgaris (~40%) and L. forbesi 
(~60%) (Monteiro et al., 1992; Bustamante et al., 2006; Vieira et al., 
2020; Minet et al., 2021). The recent worldwide increase in Hg emis
sions (~1.8% between 2010 and 2015; Streets et al., 2019) was not 
reflected in the Hg concentrations of M. longimana lower beaks, sug
gesting that increasing emissions are not immediately reflected in the 
Southern Ocean biota (Bargagli, 2016). Previous studies recorded a 
decreasing trend in Hg concentrations in two other Antarctic squid 

species, Galiteuthis glacialis and Slosarczykovia circumantartica, over a 
shorter timescale (2006 to 2016; Seco et al., 2020a, 2020b). This recent 
decrease was not observed in our results, which showed similar Hg 
concentrations in beaks of M. longimana sampled in 2006 and 2016. This 
may relate to the type of tissue analysed, i.e. beaks in our study and 
muscle in Seco et al. (2020a, 2020b). The ratio of Hg in beak:muscle 
varies between cephalopod species and, as the two tissues may exhibit 
different accumulation patterns, a subtle change in Hg may be less 
detectable in beaks, in which concentrations are generally much lower 
(Matias et al., 2020; Lopes-Santos et al., 2025).

Unlike squid, some Southern Ocean top predators have shown 
increasing Hg trends over recent decades: Antarctic toothfish 

Table 1 
Mean (± standard deviation) mercury concentrations (Hg; μg.g− 1 dry weight), 
lower rostral length (LRL), mantle length (ML), mass (M), δ13C and δ15N values 
in the giant warty squid M. longimana sampled over five decades. Mean Hg 
concentrations in years with the same letters (a and b) are not statistically 
different. δ13C and δ15N values from Abreu et al. (2020).

Year n Hg (μg. 
g− 1)

LRL 
(mm)

ML 
(mm)

M (g) δ13C 
(‰)

δ15N 
(‰)

1976 10 0.059 
± 0.036 
a

13.1 
± 0.9

464.7 
± 31.9

2372.0 
± 476.9

− 22.7 
± 0.9

6.1 ±
0.4

1984 10 0.086 
± 0.021 
a

13.5 
± 1.4

480.7 
± 53.3

2686.9 
± 1000.6

− 21.9 
± 2.0

6.5 ±
1.0

1995 10 0.017 
± 0.013 
b

12.6 
± 0.8

446.7 
± 29.6

2105.8 
± 406.5

− 21.8 
± 1.1

6.3 ±
0.4

2006 10 0.013 
± 0.004 
b

13.3 
± 1.1

473.2 
± 42.1

2527.9 
± 643.5

− 22.4 
± 1.6

6.5 ±
0.6

2016 10 0.010 
± 0.007 
b

13.2 
± 0.6

468.4 
± 22.4

2413.7 
± 343.5

− 22.4 
± 1.2

5.9 ±
0.6

Fig. 1. Boxplot of mercury (Hg) concentrations in the lower beaks of the giant warty squid M. longimana sampled over 5 decades.

Table 2 
Effects of year and lower rostral length (LRL) of the generalized linear model 
(GLM) of Hg concentrations in lower beaks of giant warty squid M. longimana 
sampled over five decades. SE: Standard Error. Bold indicates statistically sig
nificant years.

Variable Estimate SE t-value p-value

(intercept) 41.12 22.01 1.86 0.068
Year 1984 25.64 17.87 1.43 0.158

1995 − 41.36 10.62 − 3.89 <0.001
2006 − 46.36 10.41 − 4.46 <0.001
2016 − 49.03 10.32 − 4.75 <0.001
LRL 1.39 1.50 0.93 0.360

Table 3 
Effects of the year, lower rostral length (LRL), δ13C and δ15N values, and their 
interactions in a generalized linear model (GLM) of Hg concentrations in lower 
beaks of giant warty squid M. longimana sampled over five decades. SE: Standard 
Error. Bold indicates years in which values were significantly different.

Variable Estimate SE t-value p-value

(intercept) − 4.26 453.64 − 0.009 0.99
Year 1984 25.58 17.31 1.48 0.15

1995 − 41.98 10.17 − 4.13 <0.001
2006 − 46.15 10.21 − 4.52 <0.001
2016 − 48.03 9.92 − 4.84 <0.001
LRL 1.46 34.78 0.04 0.97
δ15N − 8.73 34.36 − 025 0.80
δ13C − 4.59 14.65 − 0.31 0.76
LRL* δ13C 0.29 1.12 0.26 0.80
LRL* δ15N 0.99 2.64 0.37 0.71
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(Dissostichus mawsoni) (~300%), grey-headed albatrosses (Thalassarche 
chrysostoma) (~200%), and elephant seals (Mirounga leonina) (~400%) 
(De Moreno et al., 1997; Queirós et al., 2020b; Mills et al., 2020; 
Barragán-Barrera et al., 2023). These contrasting results likely reflect 
differences in lifespan and trophic position, as squid are short-lived and 
accumulate Hg over ~2 years, making them more sensitive to short-term 
environmental changes than long-lived top predators which accumulate 
Hg over longer periods (Boyle and Rodhouse, 2007; Murillo-Cisneros 
et al., 2018; Queirós et al., 2020b; Ordiano-Flores et al., 2021). Addi
tionally, climate change may increase the food chain length in the 
Southern Ocean, which would increase Hg biomagnification, resulting 
in higher Hg burdens in top predators (Seco et al., 2021; Queirós et al., 
2025). For these reasons, short-lived species at mid-trophic levels, such 
as squid, can potentially be more efficient environmental biomonitors.

In our study, no evidence of Hg bioaccumulation or biomagnification 
was detected in M. longimana. This may be due to the small size range of 
studied beaks, as well as the similar trophic level of the squid in the 
studied years (Abreu et al., 2020). Hg concentrations in whole beaks of 
adult squid will reflect bioavailability in the environment throughout 
their lifespan (Queirós et al., 2023). Considering its short lifespan and 
hence its sensitivity to short-term changes in Hg exposure, along with its 
widespread distribution, abundance, and the ease of sampling of its 
beaks, M. longimana is well-suited as a biomonitor of Hg concentrations 
in the Southern Ocean. In addition, analysing the entire beak provides 
information on Hg intake over two to three years, enabling straight
forward comparisons among individuals and locations. From this 
perspective, M. longimana appears to be an effective biomonitor for Hg 
concentrations in the Southern Ocean. However, this should be 
confirmed by further investigations.
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