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Abstract
Environmental DNA (eDNA) surveys offer a revolutionary approach to species mon-
itoring by detecting DNA traces left by organisms in environmental samples, such
as water and soil. These surveys provide a cost-effective, non-invasive, and highly
sensitive alternative to traditional methods that rely on direct observation of species,
especially for protected or invasive species. Quantitative PCR (qPCR) is a technique
used to amplify and quantify a targeted DNA molecule, making it a popular tool for
monitoring focal species. Modelling of qPCR data has so far focused on inferring
species presence/absence at surveyed sites. However, qPCR output is also informative
regarding DNA concentration of the species in the sample, and hence, with the appro-
priate modelling approach, in the environment. In this paper, we introduce amodelling
framework that infers DNA concentration at surveyed sites across time and space, and
as a function of covariates, from qPCR output. Our approach accounts for contamina-
tion and inhibition in lab analyses, addressing biases particularly notable at low DNA
concentrations, and for the inherent stochasticity in the corresponding data. Addi-
tionally, we incorporate heteroscedasticity in qPCR output, recognizing the increased
variance of qPCR data at lower DNA concentrations. We validate our model through
a simulation study, comparing its performance against models that ignore contamina-
tion/inhibition and variance heterogeneity. Further, we apply the model to three case
studies involving aquatic and semi-aquatic species surveys in the UK. Our findings
demonstrate improved accuracy and robustness in estimating DNA concentrations,
offering a refined tool for ecological monitoring and conservation efforts.

Keywords Environmental DNA · Quantitative PCR · Bayesian Modelling

1 Introduction

Environmental DNA (eDNA) is DNA that individuals of a species leave behind in the
environment. Therefore, eDNA surveys allow monitoring of species in the wild by
targeting detection of their DNA in corresponding physical samples, such as water or
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soil [45]. eDNA is increasingly becoming a standard application in bio-monitoring,
both alongside and independently of traditional survey methodologies [35]. This is
particularly the case for protected [4] or invasive [44] species, as eDNA surveys can
be more cost effective [13, 37] and provide high probabilities of species detection [26,
31] in an inexpensive, and non-invasive survey approach. Therefore, eDNA surveys
are quickly becoming a widely employed sampling method for wildlife populations
[35], and models for the corresponding data are increasingly being developed [7, 12,
17, 39].

eDNA surveys comprise of three stages: DNA availability in the environment, DNA
collection in environmental samples, and DNA analysis of the samples in the labo-
ratory [17]. The amount of DNA available for collection from the environment is
expected to vary spatially and/or temporally, and as a function of landscape and site
covariates, with additional stochasticity at the individual site level [19]. During DNA
collection, across the surveyed site(s), and at one or more time points, a number of
samples are collected from the environment. DNA concentrations in collected sam-
ples are noisy observations of the DNA concentration in the environment and can be
functions of environmental covariates (such as temperature, rainfall, or pH [19]) or
technical covariates (such as collection method [5]). DNA analysis typically relies on
PCR (Polymerase Chain Reaction), during which the physical samples are divided
into technical replicates, and the DNA in each replicate is amplified using appropri-
ate primers. In the quantitative PCR (qPCR) protocol, DNA copies in a sample are
successively amplified through several fluorescence-based PCR cycles. The qPCR
process results in an exponential amplification curve that measures the fluorescence
signal against the PCR cycle number. The threshold cycle (CT) value is then the frac-
tional cycle number at which point the fluorescence of a sample crosses a threshold,
which is set by the corresponding software as the point where the fluorescence signal
exceeds the background noise but is still within the exponential growth phase. Should
a sample’s fluorescence signal surpass the threshold, then the PCR run is said to be
successful (positive), and the sample has amplified. In general, samples with higher
amounts of DNA concentration are expected to amplify faster (i.e. in an earlier PCR
cycle), and hence have lower CT values [41].

qPCR is a widely used method for monitoring targeted species as it can be tailored
to the species of interest by designing species-specific primers [35]. When modelling
qPCRdata, focus is oftenon inferring and reportingDNApresence/absence at surveyed
sites [2, 17] by only using the information on whether each PCR replicate was positive
or not. However, the link between CT and the initial DNA concentration in the sample
can be ascertained using standards (samples of known concentration run alongside
samples collected from the environment). Modelling log-concentration in the standard
as the covariate and the CT value as the response gives a straight regression line with
negative slope [30]. Comparing the CT values between standards, which have a known
DNA concentration, and CT values from collected physical samples allows inferring
DNAconcentrations for the latter. Indeed,more recently, there has been a greater effort
to infer DNA concentration rather than just presence/absence from qPCR data [39].
Internally the CT values are transformed to give estimates of DNA concentration in
samples based on the regression line generated by the standards. These values are often
then used to fitmodels investigating effects of covariates onDNA concentrations in the
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environment in a two stage design rather than a single model propagating uncertainty
through all analysis [6, 29].One stagemodels linkingCTvalues toDNAconcentrations
in the environment include Espe et al. [12] and Shelton et al. [39], though these do not
account for all error and noise in the data-generating process discussed below.

Despite best and continuously improving field and lab practices, DNA-based sur-
veys will always lead to noisy and error-prone data. In addition to the variation in
DNA concentrations at availability and collection stages, CT values themselves are
noisy indicators of the amount of DNA in the sample, as results from PCR runs on
the same sample and under the same protocols vary. The regression line between CT
values and DNA concentration is expected to vary slightly across PCR assays [41].
Additionally, the dispersion of CT values for a given DNA concentration increases as
the concentration of DNA in the sample decreases [14, 27] (in other words, CT values
are heteroscedastic). Both the variation in the regression line across plates and the
CT heteroscedasticity can be seen in Figure 3 for the standards from one of the case
studies presented in this paper, but the pattern is expected in all cases. Furthermore,
qPCR analyses are only run for a maximum number of cycles, CT.max. Samples with
low concentrations of DNA often therefore fail to amplify despite presence of DNA
as their fluorescence signal failed to pass the threshold before CT.max elapsed. In
this way, qPCR analyses can experience false negative errors at low concentrations of
DNA in samples due to this right censoring of CT values. In addition to the natural
variation in CT values described above, PCR analyses may suffer from contamination
or inhibition. Contamination may occur in lab settings due to the presence of target
species DNA outside of collected samples that enter into replicates on PCR plates.
Inhibition occurs when PCR inhibitors interact with the PCR amplification process to
reduce the efficiency of the reaction, and in extreme circumstances can prevent ampli-
fication even if the target sequence of DNA is present [21]. Failure to account for
contamination may lead to biased inferences, such as false positive errors (incorrectly
inferring that presence of DNA in the sample comes from the environment) or high
DNA concentrations in the environment. Similarly, failure to account for inhibition
could lead to biased inferences about low DNA concentrations [18] or a false negative
error (incorrectly inferring absence of DNA in the sample).

Currently, different ad-hocmeasures are taken to deal with suspected contamination
or inhibition in samples, PCRs, or plates, but these differ between labs or research
protocols, are arbitrary, and result in data loss. Currently, a CT value shift of over 2
cycles [42], 3 cycles [20], or 5 cycles [40], in the IPC (internal positive controls) of
the environmental sample can be considered evidence of inhibition. When potential
inhibition is identified, the affected sample is often diluted and re-analysed with a
correction factor to account for the dilution, however the dilution may also result in
a failure of samples to amplify [18]. To account for contamination, often, if there
is a detection of DNA in negative controls (field blanks, extraction, or no template
controls), then any positive detections associated with the sampling occasion or plate
are discarded [18, 22, 37]. This may present a loss of information and wasted effort.
Alternatively, rather than discard samples, the maximum average concentration of
DNA associated with negative field controls can be used as a baseline amount of DNA
to subtract from samples collected in the environment [28]. It has been suggested that
increasing the number of samples taken or technical replicates analysed may help
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make inferences more robust, as in occupancy studies [7, 18], but there is a need for
a single framework to estimate DNA concentration across surveyed sites, accounting
for contamination and inhibition, without discarding samples or resorting to ad-hoc
rules of thumb.

Previous work on modelling false negative errors due to low DNA concentrations
includes using right censoring at CT.max [12], or using a hurdle model (modelling
the probability of amplification and then distribution of CT values conditional on
amplification [39]). Within an occupancy framework, Guillera-Arroita et al. [15] and
Griffin et al. [17] account for both false positive and false negative errors by treating
the data as binary successes and failures. However, little attention has been paid to
accounting for contamination and inhibition while estimating DNA concentrations
without discarding samples. Further, whilst the relationship between CT values and
log-DNA has been established [30] and modelled [12, 39], few models account for the
heteroscedasticity in CT values across log-DNA (Matz et al. [27] do so for qRT-PCR
with a Poisson log-normal model). In particular, if accounting for contamination or
inhibition in samples, it becomes necessary to understand whether differences in CT
values are due to the increased variation at lower concentrations or due to error.

We present a model that links CT to DNA concentration (building from one stage
models as in Espe et al. [12]; Shelton et al. [39]), and include a collection stage to
model variation in collected DNA in samples across a site, allowing for covariates at
both the site and sample collection stages [39]. Additionally, we include a temporal
model on the available DNA across sites. Similar models at this stage include work
by Shelton et al.[39] who consider a spatially smooth function on log-DNA over their
coastal site. Finally, we account for contamination or inhibition of technical replicates
at the PCR analysis stage, and allow for these to be identified and incorporated into
the model in such a way as to mitigate potential biases in inferred DNA concentration
(particularly when DNA concentration is low and so these effects are more keenly
felt). We also account and correct for the heteroscedasticity in the distribution of CT
values across DNA concentrations.

The paper is structured as follows. The model is presented in Section 2. A simu-
lation study is used in Section 3 to compare, over a range of survey designs, the full
model to one model ignoring contamination/inhibition and another ignoring CT vari-
ance heterogeneity.We illustrate how themodel can be utilised via three case studies in
Section 4. The first surveys zebra mussels (Dreissena polymorpha) in aquatic systems
across the UK. This survey covers twenty sites (five sites across four different aquatic
environments - lakes, rivers, canals, and reservoirs), with each site being visited only
once between July and August 2021. The second surveys zebra mussels in the River
Hull and Eccup Reservoir, with repeat visits to each site once a month from December
2020 to November 2021. The final study surveys great crested newts (Triturus crista-
tus) in eight ponds at the University of Kent campus, with repeat fortnightly visits
from February to October 2015.
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2 Model

The data consist of DNA sampled from the environment at n sites and across T
time points. Let Mit be the number of samples taken from the environment at site i ,
i = 1, · · · , n, and time t , t = 1, · · · , T . We collect site-specific covariates Xb, and
sample-specific covariates Xw. In the lab, the m-th sample from site i and time t is
divided into Kimt PCR replicates (also called technical replicates). Each replicates k
is then analysed on some PCR plate p, p = 1, · · · , P , during a PCR run. We denote
byCimtk the cycles to threshold (CT) value for replicate k. PCR runs have a maximum
CT, which we denote CT.max, after which the run is ended. In what follows, i indexes
the site, t the time, m the sample, k the replicate, and p the plate.

Ourmodel (see Figure 1) is divided into 3 stages: DNAavailability, DNAcollection,
and DNA analysis, as is standard for models for DNA-based data of this type [39].
The first stage models the log-DNA concentration at each site and time point, li,t , as
a function of site-specific covariates and the DNA concentration at the previous time
point. The second stage models the log-DNA concentration in each sample, vimt , as a
function of the amount of DNA available and of sample-specific covariates. The last
stage models Cimtk for each replicate. The expected CT values, μimtk , are a function
of the DNA concentration in the sample, where replicates with greater concentrations
of DNA are expected to amplify faster. The variability of CT about μimtk is also
dependent on the DNA concentration in the sample, so that the distribution of CT
is heteroscedastic. The variation in CT values decreases as the concentration of CT
increases (see for example Figure 3b). A replicate may also experience contamination
or inhibition. In the case of contamination, the CT value is expected to be smaller than
μimtk due to the presence of additional DNA. For inhibition, the CT value is expected
to be larger than μimtk due to factors interfering with the amplification of DNA. Some
replicates may fail to amplify before CT.max elapses, either due to low concentration
of DNA or inhibition, and these result in values we denote by NA. The corresponding
model for each stage is described below.
DNA availabilityWe model li,t , as a latent AR(1) process plus exogenous predictors
[34]:

li,t ∼ N(ρi (li,t−1 − Xb
i,t−1βb) + Xb

i,tβb, τ
2),

where βb is the vector of coefficients for the covariates, Xb
i,t , of the corresponding

sampling occasion, τ 2 models the noise across time (assumed to be constant across
sites), and ρi is the AR(1) rate coefficient for site i . Therefore, we model li,t as the
sum of a latent AR(1) process and the effect of predictors at the time of sampling. The
latent AR(1) process is independent of the predictors; in other words ρi is the growth
term of the latent process, which is obtained by subtracting the predictors from li,t at a
sampling occasion. In order to estimate the temporal terms ρi , we borrow information
across sites using a hierarchical model so that:

ρi ∼ N(ρ0, σ
2
ρ ), for i = 1, · · · , n,
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for ρ0 and σ 2
ρ the mean and noise across sites, respectively.

For t = 1 (or when T = 1 so that we only have a single time point), we let:

li,1 ∼ N(βb,0 + Xb
i,1βb, τ

2
1 ),

where τ 21 models the variation across sites at t = 1 (rather than across time) and βb,0
is the mean log-DNA across sites at t = 1.
DNA collection Given li,t , we then model vimt as follows:

vimt ∼ N(li,t + Xw
imtβw, σ 2),

whereβw is the vector of covariate coefficients for the sample-specific covariates Xw
imt ,

and σ 2 is the noise across samples. Unlike Diana et al. [10], we do not explicitly model
false negative (inhibition) or positive (contamination) errors at the sample collection
stage, and assume that the noise term σ 2 adequately accounts for these events. We
return to this assumption in Section 5.
DNA analysis We assume that DNA in the sample is uniformly distributed, so that
each replicate k = 1, · · · , Kimt from the same sample has concentration wimt =
exp(vimt ). To account for the replicates that fail to amplify before CT.max, we use
a right censoring model for the CT values [12]. We first present a model for the
uncensored CT values, C̃imtk , and then censor these at CT.max to get the observed CT
values Cimtk .

We model C̃imtk as linear in log-DNA, with plate-specific regression coefficients,
with log-variance as linear in log-DNA, and allow for contamination and inhibition
with a mixture model. For the mixture model, we introduce a latent indicator variable,
γimtk , such that:

γimtk =

⎧
⎪⎨

⎪⎩

1 replicate contaminated with probability pc,

2 replicate inhibited with probability ph,

0 neither with probability 1 − pc − ph,

where pc is the probability a replicate is contaminated and ph is the probability a repli-
cate is inhibited. We assume that a replicate cannot be simultaneously contaminated
and inhibited, and that pc and ph are equal across all PCR runs.

Conditional on γimtk , C̃imtk is then modelled as:

C̃imtk ∼

⎧
⎪⎨

⎪⎩

N(μimtk, σ
2
y (wimt )) if γimtk = 0,

TN0,μimtk (μimtk, σ
2
c ) if γimtk = 1,

TNμimtk ,∞(μimtk, σ
2
c ) if γimtk = 2,

μimtk = α1
p + α2

p log(wimt ),

where TNa,b(μ, σ 2) is the normal distribution with mean μ and variance σ 2, trun-
cated between a and b. The plate-specific regression coefficients, α1

p and α2
p, share

information across the P plates using a hierarchical model:
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α1
p ∼ N(α1

0, σ
2
α ) for p = 1, · · · , P,

α2
p ∼ N(α2

0, σ
2
α ) for p = 1, · · · , P.

When γimtk = 0, to account for the heteroscedasticity of CT values, we follow the
method of Cook and Weisberg [9] and write:

log(σ 2
y (wimt )) = a1 + a2 log(wimt ),

where a1 and a2 are the regression coefficients for log-variance against log-DNA.
The truncated normal distribution is used to capture the expected behaviour of

contaminated (γimtk = 1) and inhibited (γimtk = 2) replicates. For example, as
discussed earlier, we expect contaminated replicates to amplify faster than the expected
value μimtk (the expected value when no contamination is present). In both cases,
we take some large σ 2

c (in practice we take σc about the order of CT.max) which
enables C̃imtk to take a wide range of values within the appropriate interval. We expect
contamination or inhibition to be rare, or for the distributions of affected samples
to vary widely across sampling occasions and PCR runs. This approach (similar to
a variance-inflation method [25]) means that we need not learn the distribution of
contaminated or inhibited replicates as in a mean-shift method. The mixture model
then allows for pc and ph to be estimated separately.

Finally, given C̃imtk and CT.max, the observed Cimtk is modelled as:

Cimtk =
{
C̃imtk if C̃imtk < CT.max,

NA otherwise.

On each plate p, alongside replicates from samples collected in the environment,
are standards (replicates of known amount of log-DNA). Analogous to the samples
collected during sampling occasions, we denote by w�

s the amount of DNA, C�
s the

CT, and p�
s the plate in which standard s is analysed. The DNA analysis model for

standards is the same as for the environmental replicates, exceptw�
s is known and does

not need to be learnt. In this way, the standards help inform the model PCR analysis
parameters (CT regression, CT heteroscedasticity, and probability of contamination
and inhibition parameters).

We summarise the full model in Figure 1, highlighting the different analysis stages
for samples collected from the environment. In Figure 2, we present the directed
acyclic graph (DAG) of the full model (including the analysis of standards), showing
the relationships between variables.

We implemented the model in NIMBLE [11] in R [32], and all results presented
in the paper are obtained using NIMBLE. Model code is available on https://github.
com/millyljones/Spatio-temporal-eDNA/tree/main. We include a constraint within
the MCMC that pc + ph < 1− (pc + ph). In other words, the probability a replicate
is contaminated or inhibited cannot be greater than the probability that it is not so. At
each iteration of theMCMC, if proposed probabilities pc and ph violate this constraint,
then both the proposed probabilities are rejected.

123

https://github.com/millyljones/Spatio-temporal-eDNA/tree/main
https://github.com/millyljones/Spatio-temporal-eDNA/tree/main


   68 Page 8 of 27 Journal of Statistical Theory and Practice            (2025) 19:68 

Fig. 1 The full model highlighting the three modelling stages: DNA availability, DNA collection, and DNA
analysis

Fig. 2 Directed acyclic graph representing the relationships between the variables in the model
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3 Simulation Study

Ignoring false positive and false negative errors can have an impact on inference of
model parameters. For example, Buxton et al. [7] found that ignoring false positive
errors in an occupancy study resulted in overestimation of occupancy probabilities.
They also found that increasing replication (both in terms of number of samples M
and technical replicates K ) reduced bias and posterior credible interval (PCI) width
for model parameters in their occupancy study. In this section, we present a simu-
lation study that investigates the effect of ignoring contamination and inhibition at
the PCR analysis stage for DNA concentration studies. We consider a range of study
designs (varying the number of samples M and replicates K ) to compare their effect
on the estimation of model parameters. We also investigate the effect of ignoring CT
heteroscedasticity, as this has not been considered by previous models.

Let Model 1 be the full model described in Figure 1. Let Model 2 be as Model 1,
except that instead of modelling variance of CT values using σ 2

y (wimt ), the variance
of CT values, σ 2

P , is held constant across the plate the replicates are analysed on.
Let Model 3 be as Model 1, except that we take pc = ph = 0, so that we ignore
contamination and inhibition.

Across the simulations, we assume that there are n = 10 sites, each visited T =
20 times. All samples from a single sampling occasion are analysed on a single,
distinct plate. For the standards, on each plate, we take K � = 3 replicates of seven
concentrations, 3 × 10z , z = 1, · · · , 7. We consider a range of sample designs. We
consider taking M = 1, 2, 5, or 10 samples at each site, and then consider using
K = 1, 2, 5, or10 replicates per sample in the analysis. At each site we observe 2
covariates, one continuous (∼N(0,1)) and one binary (∼Bern(0.5)), and set βb =
(1,−1) respectively. With each sample we also observe 2 covariates, one continuous
(∼N(0,1)) and one binary (∼Bern(0.5)), and set βw = (1,−1) respectively. For each
contaminated replicate, we model the amount of contamination, λ, using a normal
distributionwithmean3×103 and standarddeviation100.λ is then added to the amount
of DNA in the replicate, wimt . For inhibited replicates, we delay the amplification
process proportionately to the amount of DNA in the sample. We let the expected CT
value for inhibited samples indicate that the DNA concentration is 90% lower than the
true amount. We discuss the choice of distributions for contamination and inhibition
in Section 5. For the first time point at each site, we let βb,0 = 6, and then let ρi = 1
for all sites. The variances τ 2, τ 21 , σ 2 = 1, and the CT variance parameters are set to
a1 = 0.2, a2 = −0.25. The plate regression parameters α1

p and α2
p are drawn from

N(44, 0.1) and N(−1.7, 0.01) respectively. The maximum cycle number CT.max is
set to 40.

In the first set of simulations, we let (pc, ph) = (0.05, 0.1), and in the second set we
let (pc, ph) = (0.01, 0.02). These two cases compare the model’s performance under
substantial and then very small contamination and inhibition.We take the probability of
inhibition to be greater than contamination as this is what is more commonly observed
in practice. For example Griffin et al. [17] found false negative and false positive error
probabilities of 19% and 5% during the laboratory analysis stage. We also find that ph
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is generally greater than or similar to (with overlapping PCIs) pc in our case studies
presented in Section 4.

For each simulation we generate and analyse N = 100 data sets. In Section 3.1,
we compare the posterior summaries of li,t and other model parameters across the
N = 100 data sets. Details about prior distributions and MCMC parameters for each
simulation can be found in Section S1.

3.1 Simulation results

We denote by li,t, j and l̃i,t, j the true and posterior mean log-DNA concentrations
respectively for site i , at time t , in simulation j . For N simulations, we compute the
mean square error (MSE) as:

MSE = 1

NnT

N∑

j=1

n∑

i=1

T∑

t=1

(li,t, j − l̃i,t, j )
2.

We denote by θ j and θ̃ j the true value and the posterior mean of some parameter in
the model for simulation j . Then the mean bias (MB) is:

MB = 1

N

N∑

j=1

(θ̃ j − θ j )

The 95% PCIs are computed given the 2.5% and 97.5% quantiles of the posterior
distribution.

Table 1 shows results for MSE, mean width of 95% PCIs, and corresponding mean
coverage for li,t in the cases (pc, ph) = (0.05, 0.1) and (pc, ph) = (0.01, 0.02).
Tables S2 and S3 show results for MB, mean width of 95% PCIs, and mean proportion
of PCIs containing zero for the site and sampling coefficientsβb andβw for (pc, ph) =
(0.05, 0.1) and (pc, ph) = (0.01, 0.02) respectively. Tables S4 and S5 show the same
for the log-variance parameters a1, a2, and the probabilities pc and ph .

In Table 1 we can see that for Model 1 the larger improvements in MSE and PCIs
come when increasing either M or K from 1 to 2. In other words, replication in either
collection of samples or in the PCR analysis yields improvements in both the posterior
means and credible intervals of li,t . Increasing M or K beyond 2 decreases MSE and
narrows PCIs, but with diminishing returns. Increasing the number of samples M
has a more considerable effect on the MSE than increasing K, but comes with an
increased cost of effort in the field. Models 2 and 3 have lower coverage on average
than Model 1. Model 2 underestimates the variability in the CT values, and so does
not account for the full uncertainty in the data-generating process, leading to narrower
PCIs that have smaller coverage. In Table 1, where (pc, ph) = (0.05, 0.1), Model
3 does not account for errors in the PCR stage of analysis, and so fails to correctly
account for contamination and inhibition, and so has much higher MSE, wider PCIs,
and lower coverage. In fact for Model 3 the MSE increases for increasing K as there
is more chance for samples to have a replicate experience either contamination or
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Table 1 Mean square error (MSE), mean range of 95% PCIs (R), and mean coverage of li,t (C) across
Model 1 (full model), Model 2 (constant CT variance), andModel 3 (ignoring contamination and inhibition)
under different sampling designs. Probability of contamination and inhibition (pc, ph) = (0.05, 0.1) and
(pc, ph) = (0.01, 0.02)

(pc, ph) = (0.05, 0.1)
Model 1 Model 2 Model 3

M = 1 MSE R C MSE R C MSE R C

K = 1 1.212 3.726 0.930 1.219 3.636 0.922 1.493 3.976 0.928

K = 2 0.858 3.312 0.940 0.842 3.183 0.931 1.071 3.510 0.933

K = 5 0.776 3.031 0.933 0.790 2.892 0.923 1.012 3.182 0.924

K = 10 0.746 3.013 0.942 0.783 2.836 0.920 1.577 3.261 0.938

M = 2 MSE R C MSE R C MSE R C

K = 1 0.715 2.953 0.936 0.711 2.875 0.932 0.898 3.15 0.934

K = 2 0.605 2.636 0.939 0.612 2.535 0.931 0.900 2.797 0.925

K = 5 0.442 2.427 0.948 0.502 2.320 0.930 0.587 2.579 0.936

K = 10 0.498 2.402 0.943 0.589 2.263 0.919 4.855 2.898 0.931

M = 5 MSE R C MSE R C MSE R C

K = 1 0.424 2.216 0.936 0.432 2.155 0.929 0.673 2.427 0.923

K = 2 0.312 1.960 0.946 0.330 1.865 0.933 0.492 2.146 0.935

K = 5 0.249 1.790 0.950 0.304 1.709 0.932 1.938 2.179 0.940

K = 10 0.261 1.750 0.946 0.361 1.651 0.921 12.439 2.577 0.895

M = 10 MSE R C MSE R C MSE R C

K = 1 0.268 1.761 0.937 0.284 1.696 0.930 0.601 1.975 0.921

K = 2 0.205 1.506 0.945 0.243 1.430 0.930 0.444 1.781 0.946

K = 5 0.174 1.408 0.946 0.265 1.338 0.919 10.236 2.348 0.896

K = 10 0.193 1.380 0.944 0.330 1.301 0.910 18.475 2.385 0.817

(pc, ph) = (0.01, 0.02)
Model 1 Model 2 Model 3

M = 1 MSE R C MSE R C MSE R C

K = 1 0.914 3.309 0.934 0.915 3.253 0.931 0.975 3.391 0.937

K = 2 0.732 3.156 0.945 0.709 3.057 0.941 0.798 3.203 0.944

K = 5 0.682 2.962 0.935 0.722 2.840 0.922 0.773 3.001 0.932

K = 10 0.648 2.925 0.941 0.706 2.774 0.922 0.730 2.958 0.936

M = 2 MSE R C MSE R C MSE R C

K = 1 0.560 2.599 0.944 0.560 2.555 0.940 0.611 2.675 0.944

K = 2 0.495 2.497 0.945 0.514 2.414 0.937 0.568 2.562 0.942

K = 5 0.510 2.421 0.944 0.543 2.302 0.929 0.587 2.467 0.939

K = 10 0.486 2.367 0.940 0.545 2.238 0.917 0.966 2.471 0.937

M = 5 MSE R C MSE R C MSE R C
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Table 1 continued

(pc, ph) = (0.01, 0.02)
Model 1 Model 2 Model 3

K = 1 0.323 1.940 0.943 0.341 1.886 0.936 0.431 2.016 0.937

K = 2 0.315 1.869 0.944 0.329 1.788 0.932 0.441 1.927 0.939

K = 5 0.268 1.756 0.948 0.350 1.673 0.925 0.747 1.859 0.942

K = 10 0.254 1.741 0.943 0.371 1.638 0.909 2.382 2.099 0.937

M = 10 MSE R C MSE R C MSE R C

K = 1 0.208 1.534 0.948 0.228 1.480 0.938 0.341 1.614 0.936

K = 2 0.205 1.436 0.948 0.231 1.372 0.930 0.331 1.517 0.941

K = 5 0.178 1.382 0.945 0.243 1.312 0.919 1.224 1.599 0.938

K = 10 0.185 1.350 0.944 0.320 1.276 0.907 7.419 2.055 0.909

inhibition, leading to more false positive and negative errors, and greater bias in the
analysis. Under the simulation parameters we have investigated, the effect of ignoring
contamination and inhibition leads to worse outcomes than the effect of ignoring CT
heteroscedasticity. We return to this in Section 5 as other simulation parameters may
lead to different conclusions.

In Tables S2 and S3, we can see that increasing M and K reduces mean bias in βb
and βw, and reduces the width of PCIs, increasing power to detect important covariate
effects. As with log-DNA, the improvement when increasing M is greater than when
increasing K, but at the cost of greater effort in the field. Under our simulation parame-
ters, where binary coefficients (βb[2],βw[2]) are drawn from a Bernoulli distribution
with probability 0.5, then a greater amount of replication is needed to detect covariate
effects than for the continuous covariates. Model 1 generally has the smallest bias in
themean values of the covariate coefficients, andModel 3 generally has the largest bias
and widest credible intervals (though when pc and ph are small then this difference
is smaller).

In Tables S4 and S5, for both the high and low contamination/inhibition cases, and
across the survey designs, there is underestimation of the contamination probability
pc in Model 1. The model’s ability to detect contaminated replicates relies on the
concentration of added DNA being high enough to considerably increase the CT value
of that replicate. The higher the concentration of the DNA in a sample, the smaller the
effect of contamination, and so in our simulation not all contamination is detectable.
So this underestimation was to be expected. There is similarly often a small negative
bias in the probability of inhibition ph , though due to the way these replicates were
simulated, the model was able to detect these more often. As a consequence of the
small underestimation of probabilities pc and ph , the intercept on the log-variance,
a1, is slightly overestimated, as replicates that were contaminated or inhibited, but
not labelled as such, have pushed up the variance slightly. Increasing the number
of technical replicates K does help to reduce the positive bias in a1, and generally
also improves the posterior means of a2, pc, and ph whilst reducing the width of the
95% PCIs. In Table S5, where pc and ph are negligible, then Model 1 still provides
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reasonable posterior means for pc and ph , so the model still performs well if levels
of contamination and inhibition are very small. Model 2 generally has comparable
posterior means and PCIs to Model 1 for pc and ph . Model 3 has large biases in
estimates of a1 and a2, even in the case where pc and ph are low.

4 Case studies

Weconsider three case studies: zebramussels (Dreissena polymorpha) acrossmultiple
sites but a single time point in Section 4.1; zebra mussels across two sites and multiple
time points in Section 4.2; great crested newts (Triturus cristatus) at a single site and
multiple time points in Section 4.3.

4.1 Zebramussels: single time point

eDNA samples were collected from n = 20 sites within England, during July and
August of 2021, with zebra mussels (Dreissena polymorpha) as the target species. At
each site, M = 10 samples were collected and sampling locations were chosen based
on safety and accessibility to the water. For running waters, like canals and rivers,
samples were collected over a 1 km stretch and evenly spaced, when possible, while
for standing waters, such as lakes and reservoirs, sampling was conducted around the
perimeter of the site. A full list of the sampled sites can be found in Table S6.

Water was filtered through an enclosed NatureMetrics filter using a 100 mL luer-
lock syringe until the filter clogged, and DNA was preserved with Longmire’s buffer.
The samples were extracted using a modified DNeasy Blood & Tissue kit (Qiagen)
and tested for inhibition with the TaqMan Exogenous Internal Positive Control (Fisher
Scientific). These tests did not indicate evidence of inhibition in the samples. Species-
specific qPCRs were conducted using, with minor modifications, the cytochrome b
assay described in Gingera et al. [16] on a StepOnePlus Real-Time PCR machine.
Samples were considered positive if their signal intersected the threshold line defined
by the software, and the cycle at which that intersection occurred corresponded to the
CT value of the sample.

At each site and sampling location, water chemistry data such as water temperature,
pH, turbidity and conductivity were recorded using a portablemeter (HI-98130, Hanna
Instruments), and calcium levels were obtained using a calcium meter (LAQUATwin
Calcium Ion Ca-11 meter, Camlab). In addition, the depth at each sampling point was
also recorded, as well as information on substrate type, which was divided into four
categories - boulders (B), gravel (G), silt (S), and sand (SA).

Each sample was analysed in K = 6 replicates. All replicates from the same site
were analysed in the same PCR plate, therefore p = i . For the standards, on each plate,
we take K � = 3 replicates of seven concentrations, 3× 10z copies/μL, z = 1, · · · , 7.

Figure 3a demonstrates the linear relationship between log-concentration and CT
for the standards by fitting a simple regression for each of the 20 plates (linear mod-
elling using dglm() [36]). The fitted lines show that the PCR efficiency varies slightly
between PCR runs, motivating the hierarchical model on the plate-specific regression
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Fig. 3 Zebra mussels: single time point. (a) CT values from standards against log-DNA in the standard.
Each line is the linear fit of CT against log-DNA for each of the 20 plates (with each plate corresponding
to a single site) used to analyse the samples. (b) Residuals of the linear regression with CT as the response
and log-DNA concentration as the covariate

coefficients. Figure 3b shows that the spread of the residuals of the fitted CT values
increases as the log-concentration in the standards decreases, and we account for this
heteroscedasticity by modelling CT variance conditionally on log-DNA, as described
in Section 2.

The 20 sites were taken from 4 different environments: river, reservoir, lake and
canal (with 5 sites for each environment). We use the environment as a covariate
for DNA concentration at the site. The covariates included in the model for DNA
collection were volume, temperature, calcium, depth, and substrate. Details of model
implementation can be found in Section S2.1.2 and details of prior distributions are
included in Table S7.

Results for the posterior distributions of covariate coefficients βb and βw are
reported in Figure 4. Figure 4b shows that, as expected, volume of water filtered
has a positive effect on the collection rate of DNA. For the environment types shown
in Figure 4a and the other environmental factors shown in Figure 4b, the inclusion of
zero within the 95% PCIs of coefficients suggest that the data do not provide strong
evidence that these covariates have a non-zero effect. The results for the log-DNA at
each site are shown in Figure 5. There is substantial variability in inferred DNA con-
centrations between sites of the same environmental type (though the canals show the
smallest between-site variation). The difference between these DNA concentrations
is likely due to site-specific environmental characteristics that were not recorded or
used in the model. Canals were the most consistent in terms of habitat (for example in
substrate type) amongst the environment types, whichmay explain the smaller amount
of variation between canals. For lakes L1 and L2 (Eight Acre Lake and Farnham Lake
respectively), the sampling area was smaller than the other lakes (due to accessibility
restrictions), and for L2 in particular, almost all sampling was near pontoons where
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Fig. 4 Zebra mussels: single time point. Posterior means (circles) and 95% PCIs (bars) of (a) site-specific
covariate coefficients and (b) sample-specific covariate coefficients. (a) Covariates are: environment types
(river, reservoir (Res), and lake). (b) Covariates are: substrate types (boulders (B), gravel (G), and silt (S)),
depth, calcium (calc), temperature (temp), and volume (vol)
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Fig. 5 Zebra mussels: single time point. Posterior means (circles) and 95% PCIs (bars) of the log-DNA
(copies/μL) concentration across the 20 sites. The environments for each site are shown on the right label.
See Table S6 for the names of sites corresponding to the labels on the left

recreational activities occur, which is a known vector for dispersal for this species. As
a result, the area fromwhich the samples were collected likely contained high biomass
of species, resulting in higher DNA availability when compared to the other lakes. This
was further evidenced by the observation of numerous live and deceased organisms at
the sampling locations at Farnham Lake (L2). Similarly, DNA concentrations for Ri3
(River Thames) are much higher than the other rivers in the study likely because the
Thames has a higher presence of boat traffic and recreational activities.
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Table 2 Zebra mussels: single
time point. Posterior means and
95% PCIs of variance
parameters, a1, a2, probabilities
of contamination and inhibition
pc, ph , and DNA availability
and collection standard
deviations τ and σ.

Parameter Mean 95% PCI

a1 0.535 (0.308, 0.756)

a2 -0.398 (-0.419, -0.377)

pc 0.019 (0.013, 0.027)

ph 0.011 (0.006, 0.018)

τ1 2.090 (1.492, 2.940)

σ 1.399 (1.260, 1.554)

Table 2 shows the posterior means and 95% PCIs for the CT variance parameters,
a1, a2, the probabilities of contamination and inhibition, pc, and ph , and the DNA
availability and collection standard deviations, τ and σ .

The posterior means for pc (0.019 [0.013, 0.027]) and ph (0.011 [0.006, 0.018])
are very small. These probabilities are similar to the settings used in the second
set of simulations where (pc, ph) = (0.01, 0.02). The results in Table 1 show that
ignoring contamination and inhibition (evenwhen these are small), or ignoringCT het-
eroscedasticity leads to an increase in MSE and lower nominal coverage particularly
when M and K are large, as we have in this case study.

4.2 Zebramussels: multiple time points

eDNA samples were collected from n = 2 sites in Yorkshire (England), every month,
between December 2020 and November 2021, where the target species was the zebra
mussel (Dreissena polymorpha), as in Section 4.1. At each time point (i.e. month) and
each site, M = 10 samples were collected from the shoreline, with sampling locations
chosen based on safety and accessibility to the water. At Eccup Reservoir, sampling
locations were selected to maximise the perimeter of the reservoir sampled, while
at the River Hull samples were collected over a 1 kilometre stretch (i.e. collecting
one sample approximately every 100 meters) in a publicly accessible area. Sampling
locations were always the same for each time point at both sites.

At each sampling occasion, 2L water samples were collected into a sterile plastic
bottle, stored in a sterile cool box with ice packs and transported to the laboratory on
the same day of collection. All water samples were vacuum-filtered within 24h of col-
lection in a dedicated laboratory, using two 0.45 μm cellulose filters (47 mm, Cytiva
Whatman Mixed Cellulose Ester Membranes; Fisher Scientific, UK) per sample. The
volume filtered for each sample was recorded, and filters were stored at -20◦C until
DNA extraction. Samples were extracted using the water protocol described in Sellers
et al. [38], and tested for inhibition with the TaqMan Exogenous Internal Positive Con-
trol (Fisher Scientific). This test did not indicate evidence of inhibition in the samples.
Species-specific qPCR reactions were performed following the protocol described in
Section 4.1.

At each time point and at each of the ten sampling locations at both sites, water
chemistry information (temperature, pH, turbidity, conductivity and calcium) was
recorded as described in Section 4.1. Calcium data in December, and turbidity and
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Table 3 Zebra mussels: multiple
time points. Mean and 95% PCIs
for the sample covariate
coefficients (volume, pH, and
calcium)

Covariate Mean 95% PCI

volume 0.401 (-0.034, 0.844)

pH -0.032 (-0.298, 0.235)

calcium 0.160 (-0.445, 0.787)
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Fig. 6 Zebra mussels: multiple time points. Posterior means (circles) and 95% PCIs (bars) of the log-
DNA (copies/μL) concentrations available at Eccup Reservoir and River Hull between December 2020 and
November 2021

conductivity data in February, are missing due to technical problems with the probes
in those months.Water levels were also recorded eachmonth at both sites, by checking
a reverse water depth gauge board installed at Eccup Reservoir, and by retrieving data
from a monitoring station close to the sampling locations at the River Hull.

Each sample was analysed in K = 6 technical replicates. All the replicates from
the same site and same time point were analysed in the same PCR plate for a total
of P = 24 plates. For the standards, on each plate, we take K � = 3 replicates of
seven concentrations, 3 × 10z copies/μL, z = 1, · · · , 7. Figures exploring the linear
fit between log-DNA in standards and CT value, and the residuals, can be found in
Figure S1. The covariates included in the model for DNA collection were volume, pH,
and calcium. Details of model implementation can be found in S2.2.2, and details of
prior distributions are included in Table S9.

Results for the posterior distributions of covariate coefficients βw are reported in
Table 3. We can see that, as in Section 4.1, volume has a positive impact on DNA
collection rate. The inclusion of zero within the 95% PCIs of the other covariate
coefficients suggests the data do not provide enough evidence these covariates have a
non-zero effect on the amount of DNA collected given the amount of DNA available.
Figure 6 shows the log-DNA means and 95% PCIs for the two sites. Eccup Reservoir
on average has higher log-DNA than the River Hull. In flowing waters, such as rivers,
there is a larger dispersion and dilution effect of DNA compared to standing water,
such as in reservoirs, which generally leads to lower DNA concentrations. In both
sites, the log-DNA experiences a peak in the summer months before dropping over
the autumn period. The end of spring and the summer period corresponds to the
species’ reproductive season, and as such DNA availability increases.
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Table 4 Zebra mussels: multiple
time points. Posterior means and
95% PCIs of variance
parameters, a1, a2, probabilities
of contamination and inhibition
pc, ph , DNA availability AR(1)
terms ρ1, ρ2, and DNA
availability and collection
standard deviations τ , τ1, and σ.

Parameter Mean 95% PCI

a1 1.328 (1.150, 1.505)

a2 -0.406 (-0.424, -0.387)

pc 0.004 (0.002, 0.008)

ph 0.028 (0.018, 0.039)

ρ1 0.973 (0.787, 1.155)

ρ2 0.900 (0.613, 1.177)

τ 2.279 (1.665, 3.134)

τ1 1.113 (0.536, 2.386)

σ 1.242 (1.122, 1.381)

Table 4 shows the posterior means and 95% PCIs for the CT variance parameters,
a1, a2, the probabilities of contamination and inhibition, pc, ph , the DNA availability
AR(1) terms ρ1, ρ2, and the DNA availability and collection standard deviations, τ ,
τ1, and σ . As with the previous case study (Section 4.1), the posterior means for pc
(0.004 [0.002, 0.008]) and ph (0.028 [0.018, 0.039]) are very small and are similar
to the settings used in the second set of simulations where (pc, ph) = (0.01, 0.02).
Table 1 shows that ignoring contamination and inhibition (even when these are small),
or ignoring CT heteroscedasticity leads to an increase in MSE and lower nominal
coverage particularly when M and K are large, as we have in this case study.

4.3 Great crested newts

eDNA samples were collected from a single site comprising of 8 ponds in close
proximity to each other at the University of Kent campus every 14 days, between 26
February and 22 October 2015. The target species was great crested newts (Triturus
cristatus). At each sampling occasion a number of samples were taken (M varying
between 8 and 24 samples on each occasion), and then analysed in K = 8 replicates.

Data collection is described in detail in Buxton et al. [6]. Ethanol precipitation
eDNA collection method was used alongside 0.7μm glass-microfiber syringe filters
and 0.7μmcellulose acetate syringe filters. Ethanol precipitation followedmethodolo-
gies outlined in Biggs et al. [4], collecting 0.09L of sample water, while the two filter
methods up to 1L of water was filtered stopping at the point a filter became blocked.

DNA was extracted using Qiagen (R) DNeasy Blood and tissue kits following the
protocols outlined in Buxton et al. [6], with qPCR conducted on a Biorad CFX connect
Real-TimePCRmachine using the primers andhydrolysis probe published inThomsen
et al. [43] and PCR assay and cycle conditions published by Biggs et al. [4]. qPCR
standards were created from a serial dilution of a great crested newt tissue extract,
quantified using aQubit® 2.0 flurometer (Life TechnologiesTM,Carlsbad, California,
USA) with Double Stranded DNA High Sensitivity Kit following manufacturers’
instructions, qPCR negative controls were also included in each run.

A total of 28 plates were used, where each plate consisted only of samples collected
on the same sampling occasion, though samples from that occasionmay take up several
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Fig. 7 Great crested newts: Posterior means (circles) and 95% PCIs (bars) of (a) site-specific covariate
coefficients and (b) sample-specific covariate coefficients. (a) Covariates are mean weekly temperature
(Temp), mean weekly rainfall (mm) (Rain). (b) Covariates are: indicators for ponds 2 to 8 (P2 - P8) with P1
as the reference level, and DNA collection method, (Glass Microfiber (GF) and Ethanol (E)) with Cellulose
as the reference level

plates. On each plate, there were K � = 3 replicates of 3 concentrations, ranging
between 0.03 and 7.9 μg/mL. Figures exploring the linear fit between log-DNA in
standards and CT value, and the residuals of the corresponding linear regression, can
be found in Figure S2.

The covariates included for DNA availability were mean weekly temperature (◦C)
and mean weekly rainfall (mm). The three DNA collection methods were included
as covariates on collection: Ethanol (E) and Glass Microfiber (GF), using Cellulose
(C) as the reference level. The pond number of each sample was also included as a
covariate on DNA collection (with pond 1 as the reference level). Details of model
implementation can be found in S2.3.2, and details of prior distributions are included
in Table S11.

Figure 7b shows that, using pond 1 as a reference level, ponds 4 and 7 have a
negative impact on DNA collection. For the DNA availability covariates shown in
Figure 7a and for the other pond effects and DNA collection methods shown in Figure
7b, the inclusion of zero within the 95% PCIs of coefficients suggests the data do not
provide strong evidence that these covariates have a non-zero effect.

We can see the results of the amount of log-DNA available at the site in Figure 8 (we
use base 10 here for comparison with Buxton et al. [6]). DNA concentration increases
over the summer months and then quickly decreases over autumn, concurrent with
larval metamorphosis and emergence from the ponds into the terrestrial environment.

Table 5 shows the posterior means and 95% PCIs for the CT variance parameters,
a1 and a2, the probabilities of contamination and inhibition, pc and ph , the DNA
availabilityAR(1) termρ, and theDNAavailability and collection standard deviations,
τ , τ1, and σ . The posterior means for pc (0.006 [0.003, 0.011]) and ph (0.031 [0.019,
0.044]) are very small, and are similar to the simulationparameters inwhich (pc, ph) =
(0.01, 0.02). Table 1 shows that the effect of ignoring contamination, inhibition, or
heteroscedasticity leads to an increase in MSE and a reduction in nominal coverage,
particularly when M and K were large.
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Fig. 8 Great crested newts: Posterior means (circles) and 95% PCIs (bars) of the log10-DNA (μg/mL)
concentrations between February 2015 and October 2015

Table 5 Great crested newts:
Posterior means and 95% PCIs
of variance parameters, a1, a2,
probabilities of contamination
and inhibition pc, ph , DNA
availability AR(1) terms ρ, and
DNA availability and collection
standard deviations τ , τ1, and σ.

Parameter Mean 95% PCI

a1 -3.046 (-3.249, -2.833)

a2 -0.316 (-0.341, -0.290)

pc 0.006 (0.003, 0.011)

ph 0.031 (0.019, 0.044)

ρ 1.009 (0.934, 1.080)

τ 1.251 (0.817, 1.876)

τ1 0.886 (0.421, 2.048)

σ 1.332 (1.186, 1.499)

5 Discussion

qPCR methods are widely used for monitoring species distributions. This paper pro-
vides a statistical framework for the corresponding data, linking CT values to the
concentration of species’ DNA in the environment across time and space whilst
accounting for covariates. The model allows for contamination and inhibition of
replicates during the PCR stage, and accounts for heteroscedasticity in CT values
over log-DNA concentration. This is a unifying framework, propagating uncertainty
through all stages of analysis, DNA availability, collection, and PCR analysis. Whilst
analyses can be conducted on the back-transformed CT values directly [6], these often
fail to account for the full data-generating process (see Section S3 for comparison
with linear mixed effects models). We use extensive simulation studies, under differ-
ent survey designs, to show that ignoring contamination and inhibition can lead to
biased inferences about DNA concentration, and that ignoring CT heteroscedasticity
leads to over-confident inferences that do not have the nominal coverage. These sim-
ulations also highlight the need for replication at both the sample and replicate level
[7]. We apply the model to three case studies, one for a protected species and two for
an invasive species.
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Our model relies on a number of justifiable, and in some cases necessary, assump-
tions. Specifically, we assume that replicates from the same sample contain the same
concentration of DNA; any variation between replicates in reality is then absorbed
into the variation of CT values. Sharing the CT variation regression coefficients across
plates helps to borrow information, though this assumption could be relaxed to model
plate effects in a hierarchical model (as we do for the CTmean regression coefficients).
We assume that no replicate can be simultaneously contaminated and inhibited, and
this assumption is necessary for the model to be identifiable. Currently we also only
allow for contamination or inhibition in individual replicates (rather than at the sample
level), where contaminated or inhibited replicates are identified by being outliers with
respect to other CT values associated with that sample. The other potential source of
contamination in these studies is during the collection of samples at the site [3], or
during the processing of samples [8, 23]. Unless samples are taken from the same
location at the same time, or there are grounds for sensible assumptions about the
distribution of (log-)DNA across a site, it may be difficult to identify contaminated
samples under this method (as samples with vastly different amounts of log-DNAmay
be due to some un-modelled heterogeneity in the distribution of log-DNA across the
site). Because we do not model contamination or inhibition at the collection stage, we
rely on the noise term σ 2 to capture any resulting shifts in the CT values associated
with that sample. However this modelling framework relies on good practice in the
field for that to be a reasonable assumption. Large amounts of contamination or inhi-
bition would lead to significant shifts in CT values and σ 2 would be insufficient to
cover the increased uncertainty. For the case study of zebra mussels at a single time
point, during sampling at each site, negative field controls were taken and analysed to
test for contamination at the collection stage. For six sites, the negative field controls
contained replicates that amplified, indicating potential contamination of all samples
collected at those sites. Our model does not account for this, however the amount
of contamination in the negative field controls was negligible when compared to the
amount of DNA in the collected samples. For very small amounts of contamination at
this stage, the noise term for DNA collection σ 2 is thought to be enough to account
for this presence of additional DNA. A simulation study of the effect of unaccounted
sample contamination and inhibition can be found in Section S5. Tables S21 and S22
show that posterior distributions for li,t and covariate coefficients βb and βw are fairly
robust to small levels of inhibition and contamination at the collection stage, but that
bias and uncertainty increase as these levels increase. To relax these assumptions, the
inclusion of results from negative field controls in the model could help us extend the
model to account for more sources of contamination, as the probability and distribu-
tion of contamination during the sample collection stage would be better understood.
However, negative field controls are not always conducted: the zebra mussels case
studies both used negative field controls (only the single time point survey indicated
contamination), but the great crested newt study did not.

Ourmodel takes the concentrationofDNA li,t to be constant throughout the site. The
amount of DNA in the collected sample, vimt , is conditional on li,t , and stochasticity
can be explained through the noise term σ 2 or sample-specific covariates. If how-
ever li,t varies significantly throughout the site, and in particular over the sampling
locations, then this variation will appear through the noise term σ 2. If the variation
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of DNA concentration throughout the site can be explained by covariates, and these
are included in the model for DNA collection, then the βw coefficients will indicate
that the DNA in samples varies according to those covariates. Therefore in the case
where li,t varies considerably throughout the site, then inferred li,t values can be inter-
preted as the average DNA concentration across sampling locations at the site and over
the sampling covariates. For example, in the great crested newt case study (Section
4.3), we used pond as an effect on collection rate, and inferred that DNA in collected
samples varied by pond number. However, if DNA concentrations in each pond differ,
then these pond coefficients may in fact be indicating heterogeneity in DNA across the
site, rather than an effect on collection rate. Currently, this model cannot differentiate
between these two sources of variation in DNA concentration in samples.

In our simulation study, the mean concentration of contaminant λ was such that
it would not be detectable across all contaminated replicates. This is because the
amount of contamination is only relevant depending on the amount of DNA already
in the sample. For example a small concentration of contaminant DNA in a replicate
that already has a high concentration of DNA is not going to significantly affect the
CT values associated with that replicate. This was chosen to more closely mimic how
contamination may affect analysis in real-world applications - where contamination
is primarily a concern for low DNA concentration samples rather than abundant sam-
ples. Similarly, inhibition was modelled in such a way as to delay the amplification
process proportionately to the amount of DNA in the sample, so that inhibition is more
detectable in DNA abundant samples compared to DNA sparse samples. Despite the
small underestimation of probabilities of contamination and inhibition in the model,
our simulation study shows that not accounting for these processes leads to worse
outcomes.

This model only estimates the amount of DNA present in the environment at time
of sampling, rather than an estimate of species abundance at a site. Linking inferred
DNA concentration to species abundance would require knowledge about DNA shed-
ding rates, estimates of how long DNA persists in the environment, the effects of
environmental factors, species habitat use, etc. These would then need expert knowl-
edge to interpret how DNA availability links back to changes in species abundance
at a site. Species detection/non-detection or counts can be integrated into this model
in order to investigate the relationship between DNA concentration in the environ-
ment and species abundance. For example, Buxton et al. [6] show that contributions
to DNA in the ponds vary seasonally with the different life stages of great crested
newts. During the breeding season, the adult population changes very little, but DNA
concentration increases due to breeding activities. Post breeding activity, DNA con-
centration increases as larval abundance increases, but the adult population decreases
as individuals return to land. Therefore linking DNA concentration to adult population
abundance is complicated by the seasonal behaviour of the species.

We had a small number of covariates available in our case studies, and a subset
of the covariates that were not strongly correlated with each other were included in
the model in each case study, but no formal model selection was carried out. In case
studies with large numbers of covariates, covariate choice and combinations may be
best implemented within a Bayesian variable selection approach [17]. We also assume
that log-DNA concentrations are a linear function of covariates, but could consider
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extensions to more flexible models or interactions subject to data availability and
quality. The model currently treats βb,0 as an initial condition rather than a long term
mean value, meaning that log-DNA concentrations over time are primarily determined
by covariates. We also have not enforced |ρ| < 1, and do not assume stationarity, as
eDNA can rapidly accumulate or decay under certain conditions. In our case studies,
posteriormeans of ρ are close to 1, indicating strong temporal dependence. Alternative
parametrisations for the temporal model could incorporate an explicit intercept at each
time step, imposing a long termmean structure on log-DNAconcentrations. This could
be useful if prior knowledge suggests DNA levels fluctuate around some baseline
rather than being driven by covariates. Additionally, enforcing stationarity may be
appropriate in cases where long term persistence is expected.

Our case studies also each only considered a small number of sites, and so our
model did not consider any spatial correlation between the sampled sites, and instead
only focused on accounting for fixed effects. qPCRmethods are used on a much larger
scale (Buxton et al. [2] analyses qPCR results for great crested newts on a national
scale in England), where more sophisticated spatial models may be considered for the
DNA availability stage.

Our simulation study considered a wide range of survey designs (different levels
of replication in M and K), three models (where one model ignores CT heteroscedas-
ticity and one ignores contamination and inhibition), and two levels of contamination
and inhibition probabilities (one high and one low). Further simulations could be con-
sidered to compare the effects of increasing or decreasing noise at all stages of the
analysis, or by increasing the slope of the log-variance of CT values to see if this
increases the bias of results from Model 2. We could also vary the concentration of
the contaminant DNA, or change the effect of inhibition to see how these affect the
model’s ability to detect these affected replicates.

This paper provides a general framework for inferring DNA concentration and
quantifying covariate effects whilst accounting for both potential contamination or
inhibition of replicates and the heteroscedasticity in CT values obtained from qPCR
analyses. Simulation results highlight the importance of replication in both the number
of samplesM and the number of PCR replicates K . qPCR continues to be the preferred
monitoring tool for single species monitoring, being used for large scale monitoring
of elusive species such as great crested newts [33], invasive species such as zebra
mussels [1], and even for investigating ancient DNA spanning centuries [24].

Supplementary information

Supplementary material gives additional information on prior distributions and pos-
terior summaries for simulations and all case studies presented in this paper. It also
contains a comparison of Model 1 to a linear mixed effects model, a prior sensitivity
analysis, and a simulation study with sample contamination.
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