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ABSTRACT
Riparian zones in the United Kingdom have high species diversity but are prone to anthropogenic changes and alien plant in-
vasions, like Impatiens glandulifera. However, identification can be challenging due to poor accessibility or visibility via tree 
canopies. UAVs provide a means to access previously inaccessible areas and capture imagery of the area. In this study, a method 
is introduced to identify the flowers of invasive species (Impatiens glandulifera) and map their locations using a computer vision 
framework and oblique image capture methods. The process includes thresholding images, image masking, blurring, ellipsoid 
shape search, noise reduction, and contour extraction. Locations are determined using camera parameters, EXIF data, and the 
average flower size, then converted into vector format for GIS software. This method is wrapped into a single executable program 
named the semi-automatic thresholding tool (SATT). A validation set of 312 UAV images from the River Elwy, North Wales, 
showed high precision (79%–96%) and mean average precision (mAP) scores of 73%–86%. This demonstrates that the SATT con-
sistently and correctly identifies Impatiens glandulifera flowers from UAV imagery, making it effective for identifying hotspots 
and targeting management techniques along riparian corridors. The tool has been wrapped into a single-file executable program 
with a graphical user interface, enabling nonexperts to use the tool without the need of any software installation. Overall, the 
tool obtains consistent detection levels of abundance/or flower density across the study site. The tool also does not require an 
extensive amount of training data, and the intuitive design of the software enables nonexperts to utilize the tool and modify pa-
rameter values to adapt it to their needs.

1   |   Introduction

The biological invasion of non-native plants has caused con-
servation and economic concerns on a global scale (Cardinale 
et al. 2018). Within Europe, over 10,822 invasive alien species 
have been identified (Early et  al.  2016). Invasive species are 
the cause of numerous impacts, including native fauna decline, 

local flora extinction, as well as hydrological, fire regime, and 
soil chemistry alterations (Ehrenfeld 2010; Crystal-Ornelas and 
Lockwood 2020). These impacts not only threaten biodiversity 
but also disrupt ecosystem functions and services essential for 
human well-being (Ehrenfeld  2010). The resources to counter 
these invasions are restricted, and eradication schemes can 
become costly. In the United Kingdom alone, the annual cost 
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associated with invasive non-native species accounts for £1.7 
billion (Williams et al. 2010).

The incidence of invasions by non-native species has escalated, 
predominantly driven by the movement of goods and people 
through global trade and travel, which facilitates the long-
distance dispersal of seeds (Keller et  al.  2011). Furthermore, 
climate change has altered environmental conditions, enabling 
invasive species to thrive in habitats and locations where sur-
vival was previously untenable. Additionally, human distur-
bances resulting in habitat modification have created more 
conducive environments for the establishment of invasive spe-
cies (Didham et al. 2005).

Riparian zones are the interface between terrestrial and 
aquatic ecosystems (Gurnell et al. 2012; Corenblit et al. 2015). 
They provide several ecosystem functions relating to biodiver-
sity, water quality, and river flow. These zones are subject to 
management practices which modify their ecological or hy-
drological functions, such as logging, grazing, or recreational 
activities (Michez et  al.  2016; Huylenbroeck et  al.  2020). 
Consistent degradation and modification via human dis-
turbance have resulted in these landscape features having 
heightened invasions from exotic plant species. Flood events 
within these zones provide an opening for invasive species 
to establish, whereas also providing propagation opportuni-
ties for already established plants (Michez et al. 2016; Zelnik 
et al. 2020; Wang et al. 2022).

Invasive species management is most cost-effective if ap-
plied as an early intervention in comparison to post-invasion, 
long-term management (Keller et  al.  2008). Monitoring pro-
vides the possibility for early detection and rapid responses, 
enabling new infestations to be managed effectively and fea-
sibly (Anderson  2005). Monitoring techniques include pre-
dictive modeling, citizen science networks, remote sensing, 
environmental DNA, and decision-support systems (Poland 
et al. 2021).

In the United Kingdom, more than 130 invasive alien species 
have been monitored along the freshwater network (Gallardo 
and Aldridge  2020). The most common of these invasive spe-
cies include Rhododendron ponticum (rhododendron), Fallopia 
japonica (japanese knotweed), Impatiens glandulifera Royle (hi-
malayan balsam), Hydrocotyle ranunculoides (floating penny-
wort), and Heracleum mantegazzianum (giant hogweed) (Cortat 
et al. 2010; Seeney et al. 2019; Casati et al. 2022). Typically, these 
invasive species alter the surrounding riparian plant community 
by displacing native species. They employ various competitive 
strategies, such as rapid growth, monoculture formation, and 
wide climate and soil tolerance (Seeney et al. 2019).

Field observations and reporting through paid surveys or 
citizen-led data collection dominate the primary data collec-
tion for invasive plant species (Crall et al. 2011). However, the 
data quality and accuracy within these citizen-led programs 
can vary, and the programs are often expensive and influenced 
by observer and sampling bias (Kattenborn et al. 2019; Reaser 
et al. 2020). Furthermore, in the case of riparian areas, access 
is often difficult and hazardous for human surveyors, whereas 
dense canopy coverage can make identification and monitoring 

of invasive species challenging, which further limits assessment 
capabilities and therefore restricts the ability to undertake large-
scale surveys at reasonable cost.

To overcome these challenges associated with field monitoring, 
remote sensing (typically via satellite imagery) has been used 
as a tool to monitor riparian zones (Kattenborn et  al.  2019). 
This involves imagery being captured from above and analyzed 
using a host of differing techniques, such as support vector ma-
chines for image classification. Typically, studies focusing on 
extracting features associated with vegetation structure (shade, 
roughness, height) incorporate LiDAR data, whereas studies on 
species composition commonly use high-resolution multispec-
tral images (collected from satellites, planes or UAVs) (Pettorelli 
et  al.  2014; Huylenbroeck et  al.  2020). Satellite imagery with 
pixel resolution smaller than 10 m can provide a means to detect 
and monitor some invasive plants. However, this technique of 
distribution mapping via satellite imagery is limited to large spe-
cies patches or stand sizes, to a single biological community, and 
not along community boundaries (e.g., riverbanks). This tech-
nique also requires the identification of either a unique tempo-
ral or spectral feature to differentiate the invasive species from 
other species and a nonobstructed view, which may be caused by 
tree canopies (Bradley 2014; Müllerová et al. 2017).

UAV imagery is a flexible approach to collecting imagery at high 
temporal and spatial resolutions. The approach enables imagery 
to be captured at optimal times of the year when the invasive 
species are within key phenological stages that make them eas-
ier to identify, for example, flowering (Michez et al. 2016). The 
flexibility of UAV surveys also enables understory imagery to be 
collected from an oblique angle, avoiding canopy obstructions 
which may occur along riparian corridors (Dai et al. 2020).

Pixel-based image classification when applied to very high reso-
lution imagery obtained from UAVs can be impacted by “salt and 
pepper” effects or noise from small shadows, which affects the 
accuracy of the classification (Banham and Katsaggelos  1997; 
Van der Sande et  al.  2003; Azzeh et  al.  2018; Hirayama 
et al. 2019). Multiple image classification studies utilize ortho-
mosaics for classification purposes. However, the quality of 
these orthomosaics can be impacted by the spatial resolution 
and the presence of blurring. High spatial resolution can result 
in extremely detailed images that may be challenging to process, 
while blurring can degrade the overall quality of the orthomo-
saics (Lopatin et al. 2019; Saponaro et al. 2021). These issues are 
often related to the quality of the data acquisition process. It is 
also possible to mitigate these challenges by reducing the spatial 
resolution of the final orthomosaic.

An alternative approach is to use object-based image classifi-
cation methods, which define a group of pixels (object) as the 
minimum processing unit for use in image classification tech-
niques (Blaschke et al. 2014; Alvarez-Taboada et al. 2017; Zhang 
et al. 2017). Studies using UAVs and object-oriented approaches 
for detecting invasive species have already shown promise. 
These methods are effective in identifying woody invasive spe-
cies such as Pinus radiata, Ulex europaeus, Acacia dealbata, 
and Hakea sericeadection through image classification based 
on vegetation indices (Alvarez-Taboada et al. 2017; Kattenborn 
et al. 2019).
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Therefore, to identify invasive species in these areas using re-
mote sensing methods, easily identifiable features are key to ob-
taining a good assessment of abundance. These include a unique 
shape, color, or size of either the flowers, stem, or leaves of the 
species in comparison to the surrounding vegetation. From the 
most common invasive species, many of these have unique char-
acteristics often relating to flower color, size, and shape, such 
as Rhododendron ponticum and Impatiens glandulifera. The 
clustering of these flowers also provides an indication of the 
likely seed dispersal, and in the case of Impatiens glandulifera, 
can highlight hotspot areas of large stands where the plant has 
established. This is important due to stands collapsing simulta-
neously during winter conditions and entering the water system, 
which results in changes amongst environmental mechanics 
such as riverway blockages as well as increases to water turbid-
ity, nitrogen, and the risk of eutrophication (Tanner et al. 2008; 
Skálová et al. 2011; Greenwood et al. 2018). In turn, this impacts 
the abundance of aquatic communities, primarily invertebrates 
and fish, and further amplifies habitat degradation (Gallardo 
et al. 2016). Therefore, management efforts focus on trying to 
remove the Impatiens glandulifera when located. However, poor 
accessibility to the riverbank and obscuration by tree canopies 
limit the ability to map its location. In this study, single-image 
processing is used alongside an object detection method; there-
fore, limiting any potential impacts from noise associated with 
single pixel analysis or orthomosaics generation.

Another key challenge is that given it is land managers who 
are often the ones with the most need for such analyses, many 
struggle to identify the appropriate remote sensing method for 
a particular situation, and for it to be sufficiently user-friendly 
to be easily adopted. Therefore, open-access and robust tools 
are key to enabling effective uptake of remote sensing of veg-
etation for riparian managers, and these tools must be adapt-
able so they can be applied to specific sites and circumstances 
(Huylenbroeck et al. 2020).

The aim of this study is to produce an open-access and robust 
tool adaptable to other invasive species with distinct features in 
their surrounding landscapes. We introduce a method of semi-
automatic species identification via flower recognition, applied 
to the case example of Impatiens glandulifera. This species, 

with its uniquely shaped and colored flowers, forms large, tall 
stands along riparian corridors and is highly abundant in the 
United Kingdom (Varia et  al.  2016). The semi-autonomous 
method facilitates rapid assessments of objects/flowers detected 
within UAV imagery, indicating the number of seeds and po-
tential future plant spread. User-friendly, tunable processing 
steps allow easy and efficient analysis iterations, with threshold 
values for hue, saturation, and lightness adjustable via widget 
sliders, viewable within the software graphics widget. A trigo-
nometric workflow utilizes reference flower sizes and detected 
flower sizes to georeference identified flowers within oblique 
images, converting data into point shapefile format for use in 
Geographic Information Systems (GIS) software. These tech-
niques have been integrated into an easy-to-use software named 
the Semi-Automatic Thresholding Tool (SATT). To emphasize 
the SATT, it facilitates users so they do not need to manually 
review every UAV survey image, rather than replacing human 
analysis or operating as a standalone system. The SATT can also 
be adapted to other species by modifying software parameters, 
such as the thresholding values and kernel shape. This approach 
is demonstrated on Impatiens glandulifera, utilizing a dataset of 
312 images from three UAV survey flights along the River Elwy 
in Wales.

2   |   Materials and Methods

2.1   |   Image Capture Methods

The imagery, encompassing blue (450 nm ± 16 nm), 
green (560 nm ± 16 nm), red (650 nm ± 16 nm), red edge 
(730 nm ± 16 nm), and near-infrared (840 nm ± 26 nm) bands, 
was captured using a Phantom 4 pro multirotor UAV along the 
River Elwy in North Wales (Eastings: 303458.58, Northings: 
371039.85, British National Grid—EPSG:27700) on October 25, 
2023 between 2:30 and 3:30 PM, as in Figure 1. The UAV was 
operated manually both in navigation and in image triggering. 
The UAV was flown at a ~5 m distance from the riverbank using 
the collision avoidance distance readings on screen as guid-
ance. A target altitude of ~2 m above ground level (AGL) with a 
~45-degree capture angle was attempted throughout to promote 
consistency in image capture. A total of three oblique surveys 

FIGURE 1    |    Unmanned Aerial Vehicle (UAV) orthomosaic captured at nadir 30 m above ground level. Colored lines indicate UAV flight paths. 
Colored arrows indicate camera angle on the UAV.
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were conducted, all facing a single riverbank (2 facing the same 
bank but from opposite directions).

2.2   |   Survey Timing and Species Considerations

To minimize the overlap with nontarget species and improve the 
accuracy of identifying Himalayan Balsam, surveys were con-
ducted during October. During this period, Himalayan Balsam 
is predominantly in bloom, with minimal competition from 
other flowering plants.

Although there is potential for other flowering species to coex-
ist within the survey areas of Himalayan Balsam, several key 
factors indicate that their presence may be limited. Himalayan 
Balsam aggressively covers large areas, creating monotypic 
stands that outcompete other species (Seeney et al. 2019). This 
growth habit often leads to reduced biodiversity within these 
areas (Ehrenfeld  2010). The plant's tall growth creates signif-
icant shading, reducing light availability for other plants and 
preventing them from establishing beneath the Himalayan 
Balsam canopy (Varia et  al.  2016). Additionally, Himalayan 
Balsam may release chemicals into the soil (allelopathy), inhib-
iting the growth of other species (Ehrenfeld 2010). Conducting 
surveys during late August to early October provides a period in 
which Himalayan Balsam is predominantly in bloom with min-
imal competition from other flowering plants (Kostrakiewicz-
Gierałt 2015). By this time, most other species will have finished 
their blooming season, minimizing overlap and enhancing the 
accuracy of identifying Himalayan Balsam using UAV-based 
computer vision. Table  1 provides a summary of comparable 
species that share habitat with Himalayan Balsam, highlight-
ing their flowering periods, growth forms, and potential habitat 
overlap.

2.3   |   Computer Vision Thresholding Workflow

As the flowers of Impatiens glandulifera are the most obvious 
distinguishable feature for humans of their physiology, investi-
gations focused on methods to extract them from the imagery. 
Given the distinctive color, initial attempts looked at spectral 

thresholding. The SATT has been created using Python code. 
The code utilizes the NumPy (Harris et  al.  2020), Pandas 
(McKinney  2010), GeoPandas (Jordahl  2014), Shapely (Gillies 
et al. 2007), and OpenCV (Bradski 2000) Python libraries. The 
ExifTool open-source software is used to read the embedded 
metadata of images, also known as the Exchangeable Image 
File Format (EXIF) (Harvey 2016). The semi-automatic thresh-
old tool follows the workflow in Figure 2.

The tool utilizes Hue, Saturation, and Value (HSV) color space 
parameters as well as a kernel search. The choice of HSV color 
space stems from its ability to separate color information from 
brightness values, ensuring consistent object color representa-
tion despite variations in lighting or reflections. Additionally, 
HSV enhances robustness in handling shadows, occlusions, and 
dynamic backgrounds in comparison to the RGB color space. 
The HSV color space is more correlated with human-perceived 
color objects, which links to an important step in the tuning of 
the SATT software (Hamuda et al. 2017).

User-defined HSV boundaries via the widget sliders within the 
software serve as thresholds to mask the image, effectively re-
ducing the search area and minimizing artifacts. The result-
ing image, reflecting the modifications of boundaries, can be 
observed via the software's graphics viewer. This functionality 
enables users to dynamically adjust thresholds in real time until 
the desired outcomes are achieved. A 15-pixel Gaussian image 
blur suppresses high-frequency noise. Ellipsoid shapes are then 
searched for within the image using a kernel-based method as 
this represents the most similar shape of the Impatiens glandu-
lifera flowers in this case study. This method remains robust 
even when ellipsoids lack perfect definition or contain imperfec-
tions (Dassios 2012).

The kernel shape is customizable within the software. In this study, 
an ellipsoid shape kernel is used as this best represents the shape 
of Impatiens glandulifera, but other examples could include cross-
shaped kernels for flowering species such as Raphanus raphanis-
trum (wild radish) or Sinapis alba (white mustard). The kernel size 
is determined by the input flower (object) reference size, which 
is a key variable for calculating object distances. This parameter 
should be adjusted for each plant species under assessment, as 

TABLE 1    |    Flowering periods, growth forms, and habitat overlap of riparian species with Himalayan Balsam (Impatiens glandulifera).

Riparian species Flowering period Growth form Geography/habitat Overlap

Himalayan Balsam (Impatiens 
glandulifera)

July–October Patch Wet, disturbed areas 
(riverbanks, wetlands)

Common Comfrey (Symphytum 
officinale)

May–August Patch Damp, nutrient-rich soils 
(meadows, riverbanks)

Potentially

Rosebay Willowherb (Chamaenerion 
angustifolium)

June–September Patch Disturbed ground 
(railways, roadsides)

Potentially

Purple Loosestrife (Lythrum salicaria) July–September Patch Wetlands, marshes, water edges Potentially

Red Campion (Silene dioica) May–September Patch/clusters Damp, shaded environments 
(woodland edges)

Potentially

Foxglove (Digitalis purpurea) May–July Clusters Damp, shaded areas 
(woodland clearings)

Potentially
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flower size varies across species. For rapid assessments, users can 
apply approximate estimations. Subsequently, a noise reduction 
filter via opening (erosion followed by dilation) removes isolated 
pixels or small clusters that could impact overall detection rates. 
The image is then converted to grayscale to simplify contour detec-
tion by reducing it to a single channel, emphasizing object bound-
aries, and improving processing speed (Tari et al. 1997). Contour 
extraction is then used to define the edges of objects and locate 
them within the image, using openCV's findContours function 
alongside the cv.RETR_TREE contour retrieval mode and the 
cv.CHAIN_APPROX_SIMPLE contour approximation method.

The tool has been packaged into a single executable file using the 
Python PyQt5 library to develop the Graphical User Interface 
(GUI), as seen in Figure 3, and the python library PyInstaller to 
compile the software into a single executable file. This enables 
nonexpert users to utilize the software without needing to in-
stall other programs. An “Advanced” set of parameters allows 
the user to adjust the thresholding parameters, kernel shape, 
and minimum object size easily and apply this to a subsample 
of images for initial fine-tuning of the semi-automatic workflow 
in real time to see its effect, as seen in Figure 4. This also allows 
users to adapt the software to differing plant species.

FIGURE 2    |    The developed Semi-Automatic Thresholding workflow.

FIGURE 3    |    The Graphical User Interface (GUI) for the single-file executable Semi-Automatic Thresholding Tool.
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Once flowers are detected, a bounding box is drawn around the 
object and determines the object's height and width. Within the 
software, a minimum pixel search size is used to remove excess 
noise that is occasionally included within the HSV thresholding 
step of the workflow.

2.4   |   Accuracy Metrics

Accuracy metrics, such as precision, recall, the F1 score, and the 
mean average precision (mAP) have been calculated. Precision 

is the proportion of correctly identified compared to all actual 
positive objects (e.g., correctly identified flowers for all flowers 
in an image). Recall refers to the proportion of correctly identi-
fied compared to all identified objects (e.g., correctly identified 
flowers for all identified objects). F1 scores highlight the bal-
ance of precision and recall. When a high F1 score is achieved, 
it signifies that the detection method performs well across both 
metrics. The overall detection performance was measured 
using the mAP score, which is determined by calculating pre-
cision at multiple recall levels (totalling 11) and then averag-
ing these precision values over all classes of detected objects. 

FIGURE 4    |    The Advanced popout window used to fine-tune parameters of the HSV color space thresholds, kernel shape, and minimum object 
search size (flowers size) measured in pixels, reference object height in mm, and the bounding box color.

TABLE 2    |    Key metrics for model evaluation, including precision, recall, F1 score, average precision, mean average precision, distance to object, 
latitude and longitude with corresponding mathematical formulas.

Equation Formula

Precision (1) True Positives

True Positives+False Positives

Recall (2) True Positives

True Positives+False Negatives

F1 Score (3) 2∗ (Precision∗Recall)

(Precision+Recall)

Average precision (4) ∫ 1

0
p(r)dr

where p(r) is the precision as a function of recall.

Mean average precision (5) 1

N

N
∑

i= 1
APi

where N is the number of classes, and APi is the average precision for class i.

Distance to object (mm) (6) f (mm) × real height (mm) × image height (pixels)

object height (pixels) × sensor height (mm)

Latitude (7) asin(sin(latcb)*cos(hyp/r) + cos(latcb)*sin(hyp/r)*cos(b))

Longitude (8) loncb + atan2
(

sin(lb) ∗ sin
(

hyp

r

)

∗ cos(latcb), cos
(

d

R

)

− sin(latcb) ∗ sin(Latitude)
)
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Higher scores indicate better overall model detection perfor-
mance. The equations used for each measurement can be seen 
below in Equations (1–5) in Table 2.

2.5   |   Representation of Flowers in a GIS Format

Given the images used from the UAV are oblique (i.e., side fac-
ing), visualizing the number of classified Impatiens glandulifera 
flowers is not as straightforward as conventional nadir (i.e., top 
down) imagery. Though methods in the literature do exist for 
matching oblique features within a georeferenced landscape, 
they mostly require the use of a DEM and creating tie points 
using landmark features to georeference the images (Verhoeven 
et al. 2012; Stockdale et al. 2015; Verykokou and Ioannidis 2016). 
Given that the EXIF data of the UAV-derived imagery contains 
detailed information about the camera setup for each image, this 
dataset was selected for analysis. Figure 5 provides an overview 
of the developed workflow process required to determine the 
Impatiens glandulifera flower distance from an image.

Firstly, the position of the camera for each image is attained 
from the UAV GNSS (Global Navigation Satellite System) co-
ordinates from the image EXIF data, along with the orienta-
tion of each image from the camera location. The Phantom 4 
Pro has been shown to achieve 2.00 cm relative vertical accu-
racy and 1.20 cm relative horizontal accuracy when flown at 
100 ft. (33 m) (Mulakala  2019). The distance from the camera 
location to the object was then calculated using Equation (6). 
The focal length ( f) and sensor height for the DJI Phantom 
4 Advanced camera used are both specified at 8.8 mm. The 
real height (mm) of the flowers was determined through the 
measurement of 51 Impatiens glandulifera flowers along the 
River Elwy in North Wales (Eastings: 303458.58, Northings: 
371039.85, British National Grid—EPSG:27700) on October 25, 

2023. Individual flowers were measured top to bottom using a 
ruler at random along a walked transect of the riverbank. The 
mean of 43.2 mm ± 0.7 mm (mean ± SD) was used in Equation 
(6) in Table 2. Object height in pixels was determined through 
measuring the height of bounding boxes for all classified flow-
ers per individual image. This therefore resulted in an estimated 
distance-to-object calculation for each image.

Following this, the distances of the left and right side of the image 
were calculated to provide an image footprint. The specified field 
of view (FOV) for the camera (73.7°) was halved and subtracted for 
the image left side and added for the image right side from the ini-
tial bearing of the image center (UAV gimbal yaw). These bearings 
were subsequently converted into radians and used in Equations 
(7) and (8) in Table 2 to determine the latitude and longitude.

In Equation (7) latcb and loncb refer to the latitude/longitude bear-
ings for the image center, hyp refers to the hypotenuse length, and 
r the radius of the earth (6378.1 km). The variable b refers to the 
bearings for either the left or right side of the image (the equations 
must be run for each side). Latitude, as specified in Equation (8) is 
the value derived from Equation (7). A line is then created using 
the latitude and longitude of each image side and saved as a vec-
tor file (e.g., GeoJson). The attribute of flowers per meter is then 
calculated and appended to the vector file by dividing the field of 
view length by the number of flowers detected via SATT.

3   |   Results

3.1   |   Accuracy Assessment

To define the accuracy of the SATT workflow, precision, re-
call, the F1 score, and mAP accuracy measures have been un-
dertaken. Throughout the analysis, flowers that are bunched, 

FIGURE 5    |    Workflow process to determine the distance between the UAV and the Impatiens glandulifera flowers from an image.
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overlapping, and boundary-sharing within the images can often 
be mistaken for a single flower. Furthermore, as Impatiens 
glandulifera stems share a similar spectral threshold with their 
flowers, instances arise where the thresholding workflow er-
roneously classifies a stem as a flower when exposed to direct 
sunlight. This misclassification occurs because the increased 
light intensity alters the HSV values of the stems, making them 
appear similar to the flowers in color. Consequently, the object 
detection system struggles to distinguish between the two, lead-
ing to inaccuracies in the detection process. The algorithm used 
is further limited by the object detection technique as it searches 

for ellipsoids, although this can be easily modified to suit other 
species. The ellipsoid is the shape of the Impatiens glandulifera 
flower from a front-facing position. However, from the side, 
the flowers are more bell-shaped and therefore less likely to be 
detected. Flowers in the background of the image were more 
obscured and less definable, and as a result, less likely to be de-
tected, as seen in Figure 6. A total of 312 (99, 108, 105) images 
from three UAV surveys were analyzed for validation via manual 
labeling; an example output is shown in Figure 7. Additionally, 
images captured by the UAV of both sides of the riverbank were 
excluded from the detection software. This decision was made 

FIGURE 6    |    Examples of flower bunching (left image), misclassified purple Impatiens glandulifera Stems (central image), and bell-shaped flowers 
(right image), sourced from Pixabay, free for use imagery by Kornelia-Laubach.

FIGURE 7    |    A sample image of Impatiens glandulifera flowers that has been annotated using the semi-automatic thresholding tool. Bounding 
boxes (blue) and object boundaries (green) have been generated as a result.
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because the objects in these images were so indistinguishable 
and unrecognizable to the human eye that any attempt at detec-
tion would have been futile. The lack of discernible features and 
clear differentiation between objects resulted in an image set 
that could not be reliably processed or analyzed. A random sub-
sample of 10 images from each image set was used to fine-tune 
the Hue, Saturation, and Value (HSV) color space threshold pa-
rameters within the Advance panel of the GUI. Tuned threshold 
values for all subsample images were recorded, and the mean of 
these was used to run the analysis for each image set; these val-
ues can be seen in Table 3. In some instances, the pixel size range 
was also modified to include flowers located further within the 
background of the image. In each tuning case, the user aimed 
to extract as many flowers as possible without any misclassifi-
cation of other detected objects, for example, plant stems. Each 
image set had differing lighting conditions and viewing angles. 
Image Set 1 featured optimal lighting conditions and larger, 
more distinct monoculture stands of Impatiens glandulifera. In 
contrast, Image Sets 2 and 3 lacked these favorable conditions 
and exhibited smaller, less defined plant stands. Each image was 
examined by a user to count identifiable flowers. Flowers that 
were obscured or challenging to identify by the user were not 
included in the count. These were then compared to the amount 

that were correctly classified as flowers and incorrectly classi-
fied (e.g., stems) by the threshold workflow.

In summary, the accuracy metrics show that the software has 
been able to obtain a high precision score (> 79%) but recall could 
be improved (46%–69%). The F1 scores range from 53% to 79% 
and highlight the impact of lower recall scores in comparison to 
the precision scores. The mAP alongside the Precision, Recall, 
and F1 metrics are plotted in Figure 8. The model obtained an 
accuracy rating of 85.7%, 85.4%, and 72.9% for Image Sets 1, 2, 
and 3, respectively. This performance allows for the possible ap-
plication of the software for land management uses and invasive 
species mitigation, as the high precision of the software is ideal 
for users who value minimizing false positive readings. Figure 9 
highlights the relationship between the software detected flow-
ers and the actual flowers within the image.

3.2   |   Visualization

The UAV center points, Field of View (FOV) and object points 
can all be visualized as vector datasets for use in GIS. The center 
points represent the UAV position during image capture inter-
vals, as seen in Figure 10. The FOV lines demonstrate the extent 
of the image on the ground and are calculated from determin-
ing the left and right-most object distance within each image. 
The flower count variable calculated as part of the main semi-
automatic thresholding workflow provides an estimation of 
detected objects within each image. This can then be displayed 
via labels, as seen in Figure 11, or as a heat map with the de-
tected objects variable used as a weight, as seen in Figure 12. In 
Figure 11, multiple location points are within the river due to 
the reflection of the flowers upon the water surface.

4   |   Discussion

The SATT's high mAP scores of 72%–86% across different image 
sets underscore its robustness and accuracy, corroborating find-
ings from similar studies using semi-automatic methods for in-
vasive species detection (Martínez-Sánchez et al. 2019; Rotger 
et  al.  2019). For example, one study focused on mapping the 

TABLE 3    |    Mean upper and lower HSV thresholds and minimum 
object size (pixels) used for the processing of each image set.

Image 
Set 1

Image 
Set 2

Image 
Set 3

Lower threshold H 117 115 118

S 9 29 23

V 0 0 0

Upper threshold H 230 221 225

S 200 144 200

V 0 0 0

Minimum object size (X, 
Y)

15, 15 6, 7 10, 12

FIGURE 8    |    Accuracy metrics for each image set, including Precision, Recall, F1 score, and the mean Average Precision Scores using the 11-point 
average.
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invasive alien species Acacia dealbata in NW Spain, combining 
UAV surveys with Sentinel-2 imagery and automating part of the 
process through scripting for querying, downloading, and mosa-
icking satellite images (Martínez-Sánchez et al. 2019). Another 
study utilized the Automatic Photo Identification Suite (APHIS) 

to identify snakes from photographs by analyzing natural mark-
ings and scale patterns on their heads (Rotger et al. 2019). The 
suggestion that higher detection accuracies could be achieved by 
splitting image sets into smaller sub-groups for fine-tuning high-
lights an area for future research and algorithm optimization.

FIGURE 9    |    A comparison between the software correctly detected flowers, the total number of flowers observed, and software identified flowers 
in each image set.
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FIGURE 10    |    Visualization example of the UAV survey image capture points and field of view (FOV).

FIGURE 11    |    Visualization example of the detected objects/flowers of impatiens glandulifera within each image. Numbers represent the number 
of detected flowers within each image. Images are positioned based on the mean distance of all detected objects.
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The high recall error observed in this study aligns with previous 
findings that UAV altitude and object size significantly impact de-
tection accuracy (Mittal et al. 2020). As UAVs move further away 
from target objects, the resolution decreases, making smaller ob-
jects harder to detect (Redmon 2016; Du et al. 2018). Therefore, 
when a minimum object size is set by the user, any flowers that are 
below this size will not be detected. Furthermore, during the fine-
tuning phase, the user focused on under-classifying flower objects 
so that false positive detections were avoided as much as possible, 
and specifically on classifying the purple color of the flowers rather 
than the white colored flowers. This approach was implemented to 
maintain the precision and reliability of the detections, as the pres-
ence of false positives could undermine the overall effectiveness 
and credibility of the system (Ajadi et al. 2016).

It's important to note that balsam flowers can be naturally white, 
and lightly pink flowers, when illuminated by bright sunlight, 
can also appear white (Burdziakowski and Bobkowska  2021; 
Ramachandran and Sangaiah 2021). Consequently, these pink 
flowers appearing white under bright conditions were not de-
tected, highlighting a potential limitation in the detection pro-
cess and suggesting a need for enhanced colour calibration 
methods or the integration of additional spectral bands to im-
prove detection under varying light conditions (Bradley  2014; 
Burdziakowski and Bobkowska 2021). The detection of flower 
reflections on water surfaces highlights an area for further re-
finement, potentially through the application of advanced image 
filtering techniques to distinguish true objects from reflective 
artefacts (Busch et al. 2013; Yu et al. 2020).

The SATT processes individual images, yielding rapid image 
analysis in the context of invasive species detection. This capa-
bility enables potential real-time processing, reduces the need 
for extensive post-processing, and streamlines fieldwork by 
eliminating the requirement for ground control points. Utilizing 
the EXIF data from these single images, the locations of the 
detected flowers have been mapped. Therefore, this approach 
offers a practical solution for location monitoring, even within 
hazardous and challenging terrain. Additionally, it supports 

change detection through routine surveys and augments the 
available data for informed, data-driven decision making in land 
management.

Figures 9 and 12 both reveal consistent trends between the SATT-
detected flowers and the ground truth data. Notably, Figure 12 
illustrates a robust correlation in hotspot zones across the SATT-
detected flowers and the ground truth data. Consequently, this 
finding holds promise for hotspot identification, potentially 
enhancing early detection and management strategies in these 
areas. Furthermore, it may facilitate more effective resource al-
location and conservation planning.

In comparison to Convolutional Neural Networks (CNNs), the 
SATT's intuitive design and minimal training data requirements 
offer a user-friendly alternative, facilitating broader adoption 
amongst nonexperts. The simplicity and possibility of running 
the program also enable it to be run on a single-board computer 
for real-time detection and processing of flowers. Despite this, 
the tool does record annotations in a format usable by CNNs, 
highlighting the potential for future methodological evolution. 
If a wide range of datasets is obtained, the application of robust 
CNN models could improve detection accuracy and generaliza-
tion across varying conditions, including changes in lighting or 
object sizes. However, the computational demands and exten-
sive training data required for CNNs necessitate further inves-
tigation into their feasibility for rapid assessment or real-time 
applications. By accommodating image conditions to ensure 
consistency, this study bridges the gap between accessible, semi-
autonomous detection tools and more sophisticated machine 
learning methodologies.

4.1   |   Limitations and Future Work

The SATT should be further tested with imagery of varying 
lighting, contrasts, and with differing species of similar flow-
ering time to understand what limits to the flower detection 
process the software may possess. Existing limitations in this 

FIGURE 12    |    Heatmaps of Impatiens glandulifera using the flower per meter as a weighted variable for the semi-automatic thresholding tool 
(SATT) detected flowers (A) and groundtruth flowers (B).
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study example include the misclassification of bunched flowers 
as a single flower, the misclassification of Impatiens glandulifera 
stems as flowers, the white Impatiens glandulifera flowers omit-
ted from detection, and bell-shaped flowers omitted due to the 
ellipsoid kernel shape used.

Furthermore, the datasets only incorporate flowers from a sin-
gle survey area; a larger dataset should be obtained from multiple 
survey areas to account for environmental influence on image 
capture and Impatiens glandulifera density, flower size, and co-
louration. Moreover, the study site we assessed did not incorpo-
rate multiple species with similar flower characteristics, of which 
the SATT tool may struggle to delineate between these. For ex-
ample, in this study if there was a higher occurrence of rosebay 
willowherb (chamaenerion angustifolium), there may have been 
an increase of false positives identified by the SATT due to the 
similar coloring and shape of flowers to Impatiens glandulifera.

The SATT software is still in an early iteration, but future im-
provements of the software to improve usability could include 
automatic image set splitting based on the mean image bright-
ness or variance amongst each image for easier fine-tuning of 
the image subsets. Additionally, the SATT software could run 
multiple thresholding workflows to extract higher quantities of 
objects based on multiple user input thresholds. This might be 
useful in cases where generic HSV values of the desired object 
encapsulate small HSV ranges for other undesirable objects.

5   |   Conclusions

The SATT has a high mAP score of 72%–86%, meaning a low 
chance of false positive detections. More importantly, the soft-
ware detection rate is on trend with total objects per image and 
enables a reliable hotspot/relative difference to be determined 
(and in essence a rank of worst-to-least affected areas to be cal-
culated). Therefore, this enables appropriate targeting of land 
management techniques to control invasive species in harder-
to-access zones along riparian corridors.

The ease of use for the tool, requiring no expert knowledge of 
coding, scientific expertise, or data manipulation, makes the 
SATT accessible to everyone. Users can effortlessly fine-tune the 
tool parameters through the SATT advanced window, adjusting 
threshold values for hue, saturation, and lightness via widget 
sliders. This user-friendly interface allows for efficient iterations 
and immediate visual feedback within the software graphics 
widget. The SATT then automatically transforms detected ob-
jects into GIS vector layers, providing ready-to-use visual data 
layers for further analysis, such as hotspot mapping.

The SATT can be adapted to other objects or invasive species by 
fine-tuning the tool parameters with the SATT advanced win-
dow, although the flowers/objects must be sufficiently different 
from surrounding objects either by shape, size, or colors but ide-
ally all three. This adaptability extends the utility of the SATT 
beyond a single application.

Further research should seek to understand if the SATT would 
function effectively when similar objects sharing the same col-
orations and size characteristics are located within the same 

image. Different detection methods should also be incorporated 
to enable applications to different environmental situations.

In summary, the SATT is a rapid assessment tool that alleviates 
the need for manual image review from UAV surveys, facilitat-
ing user operations without replacing human analysis or func-
tioning as a standalone system.
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