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In this work, we study the effect of flow curvature, or angular momentum, on the
propagation and trapping characteristics of near-inertial waves (NIWs) in a curved front.
The curved front is idealised as a baroclinic vortex in cyclogeostrophic balance. Motivated
by ocean observations, we employ a Gaussian base flow, which by construction possesses
a shield of oppositely signed vorticity surrounding its core, and we consider both cyclonic
and anticyclonic representations of this flow. Following two main assumptions, i.e.
that (i) the horizontal wavelength of the NIW is smaller than the length scale of the
background flow (the WKBJ approximation), and (ii) the vertical wavelength of the NIW
is smaller than the radial distance of interest, we derive the NIW dispersion relation
and discuss the group velocity and direction of energy propagation. We show that the
curvature can (i) increase the critical depth and horizontal extent of the trapping region,
(i1) reduce NIW activity at the centre of the anticyclonic vortex core and enhance it in the
cyclonic shield surrounding the core for high curvatures, (iii) lead to NIW trapping in the
anticyclonic shield surrounding the cyclonic core, and (iv) increase the available band of
NIW frequencies that are trapped. The solutions from the ray-tracing method are supported
by numerical solutions of the governing equations linearised about the cyclogeostrophic
base state. Finally, these methods are applied to an idealised model of oceanic mesoscale
Arctic eddies showing an increase in the critical depth of trapping. Our results — while
applied to polar eddies — equally apply at lower latitudes in both oceans and atmospheres,
highlighting the potential importance of flow curvature in controlling the propagation of
NIW energy.
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1. Introduction

Near-inertial waves (NIWs) are disturbances to the balanced flow in the ocean, with
frequencies close to the inertial frequency (f =22 sinf, where §2 is Earth’s rotation
rate, and 0 is the latitude), with large horizontal and small vertical wavelength, generated
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primarily by the wind stress (Alford et al. 2016). Due to their large vertical shear,
they play a dominant role in vertical mixing (Wunsch & Ferrari 2004) and the oceanic
energy budget (Munk & Wunsch 1998). The NIWs can interact energetically with
the balanced flows and can act, interestingly, as an energy source and an energy sink
for the balanced flow under different conditions (see Gertz & Straub 2009; Whitt &
Thomas 2015; Taylor & Straub 2020; Thomas & Arun 2020; Thomas & Daniel 2021).
Factors such as g-refraction (Gill 1984) and mean flow vorticity (¢-refraction; Asselin &
Young 2020) can modify the propagation characteristics of NIWs, among others. In the
latter case, the geostrophic mean flow vorticity (¢) reduces the local NIW frequency,
‘trapping’ NIWs in the anticyclonic regions — i.e. regions of negative (positive) ¢ in the
northern (southern) hemisphere — leading to their downward propagation and subsequent
dissipation at a critical depth (Lee & Niiler 1998). Over the years, numerous observational
studies reported concentrated NIW energy in anticyclonic regions (Perkins 1976; Elipot,
Lumpkin & Prieto 2010; Voet et al. 2024), providing support for this theory. In the
atmosphere, inertial-gravity waves are known to be generated from vortex dipoles and
jets (Snyder et al. 2007; Wang, Zhang & Snyder 2009) and can interact with the balanced
flows (Serafimovich er al. 2005; Niranjan Kumar et al. 2014).

Kunze (1985) showed NIW trapping using the Wentzel-Kramers-Brillouin-Jeffreys
(WKBJ) approximation (i.e. the horizontal wavelengths of NIWs are considered to be
smaller than the mean flow length scale) to derive the NIW dispersion relation. He showed
that the lower bound of the NIW frequency band shifts to an effective Coriolis frequency
givenby f. = f,/1 + Rog ~ f + ¢ /2, where the approximation is valid for small-gradient
Rossby numbers Rog, =¢/f. Here, {(x, z) is the relative vorticity, while x and z are
horizontal and vertical coordinates of a front, respectively. Using a ray-tracing approach
in a model of barotropic and baroclinic jets, he demonstrated trapping of NIWs with
frequencies f, < w < f in negative vorticity regions. It should be noted that the horizontal
length scales of initial wind-generated NIWs are typically an order of magnitude larger
than the geostrophic mean flow length scales, contrary to the aforementioned WKBJ
approximation. For such a scenario, Young & Ben Jelloul (1997) developed a theory using
multiple-scale analysis for a narrow band of NIWs with frequencies close to the inertial
frequency; improvements on the theory have been reported in the subsequent literature
(Thomas, Smith & Biihler 2017; Asselin & Young 2019). However, the WKBJ theory still
provides an easier alternative to the latter in understanding NIW dynamics, their vertical
propagation through ray tracing, and especially the location of the critical layer. For this
reason, WKBJ theory and ray tracing have been employed frequently in observational
studies (Kunze, Schmitt & Toole 1995; Lelong, Cuypers & Bouruet-Aubertot 2020; Xu
et al. 2022). A recent study by Conn, Callies & Lawrence (2025) found that the WKBJ
approach can be reconciled with the Young-Ben Jelloul (YBJ) method in the limit of weak-
dispersiveness of NIW modes. Using a global plot of wave dispersiveness, they showed
that high modes and high latitudes are weakly dispersive compared to low modes and
mid/low latitudes, respectively (see for eg. Klein & Treguier 1994; Klein & Smith 2001).

Recently, Whitt & Thomas (2013) studied the effects of strong baroclinicity on NIW
trapping in straight fronts using ray tracing, parcel arguments and numerical methods.
They extended the aforementioned expression for the effective Coriolis frequency as f =

fy 1+ Rog — Rig_l, where Rig_1 = (aug/az)z/N2 is the inverse gradient Richardson

number, ug(x, z) is the along-front geostrophic velocity of the background mean flow, and
N (x, z) is the buoyancy frequency. For strongly baroclinic fronts (i.e. large vertical shear),
the lower bound of the NIWs can be reduced considerably. In addition, the horizontal
and vertical extents of NIW propagation are shown to increase due to the baroclinicity
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of the front. Using parcel arguments similar to those of Whitt & Thomas (2013),
Joyce et al. (2013) derived an expression for the effective Coriolis frequency for NIWs

in a baroclinic vortex, f.= f\/(l +2ug/fr)(1+ Rog) — (1 + 2ug/fr)2Rig_1. Here, r
is the radial distance from the centre of the vortex, and the term 2u g /fr, also defined
as the local curvature number Cu, is due to the cyclogeostrophic balance of the mean
flow, and indicates the importance of the centrifugal term over the Coriolis term and the
extent of frontal curvature (Buckingham, Gula & Carton 2021a). It also scales as twice
the ratio of centrifugal to Coriolis accelerations in the momentum equations (Shakespeare
2016). Although the expressions given by Whitt & Thomas (2013) and Joyce et al. (2013)
have been used in observations and simulation works that study NIW propagation in
anticyclonic eddies (Fer et al. 2018; Lelong et al. 2020; Essink et al. 2022; Kawaguchi et al.
2023), either the ray-tracing calculations implemented therein do not include the curvature
term or the eddies considered therein correspond to small Rossby and curvature numbers.
Works such as Llewellyn Smith (1999) and Kafiabad, Vanneste & Young (2021) studied
NIW interaction in an anticyclonic vortex using the YBJ framework, again, at small Rossby
numbers. The effect of the curvature term in the mean flow cyclogeostrophic balance has
only been studied in Qu (2019) using ray-tracing theory in an idealised submesoscale
vortex, and showed that the curvature term increases the critical depth of NIW trapping.
However, the bulk curvature number (Cuy, defined as the maximum of the local curvature
number in the domain) considered in their study is —0.95.

To the best of our knowledge, the effect of the frontal curvature on NIW propagation
over a wide parameter space ranging from straight fronts to highly curved fronts, with bulk
curvature number magnitudes greater than 1, has not been explored yet. Therefore, in the
current work, we use the WKBJ approximation, the ray-tracing approach and numerical
methods to understand the modifications due to curvature in an idealised vortex that
models a part of the curved front. Specifically, we focus on the propagation of sub-inertial
waves in anticyclonic regions of both anticyclonic and cyclonic vortices. In § 2.1, we
present the theory, the governing equation after the WKBJ approximation, the dispersion
relation and group velocity expressions. In § 2.2, we describe the idealised vortex model
used. In § 3, we discuss our findings from the ray-tracing theory. In § 4, we conclude by
describing the implications of our findings by applying the ray-tracing method for typical
Arctic sub-surface eddies. Validation of the ray-tracing theory using numerical solutions
of the linearised governing equations has been provided in Appendix A.

2. Theory
2.1. Dispersion relation and group velocity

We consider a non-hydrostatic, Boussinesq flow on an f-plane composed of a mean
state and a perturbation. The mean state is considered to be a curved oceanic front in a
cyclogeostrophic balance, represented by an axisymmetric vortex with purely azimuthal
flow. The velocity components, in cylindrical coordinates (r, 6, z), of the mean state flow
are (0, v, 0). Here, r, 8 and z are radial, azimuthal and axial coordinates, respectively.
Note that due to axisymmetry, v is a function of only r and z. The governing equations for
the mean state can be simplified into the cyclogeostrophic balance given by 0b/0r = (f +
2v/r) dv/dz, where b is the mean state buoyancy. The linearised governing equations for
the perturbation quantities (u, v, w, P, b) are given by (Buckingham et al. 2021a)
ou 20 apP v av

v
E_(HT)v:_a_r’ E+(J%L§)z,¢+wa—z=0, (2.1a.b)
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ow aP b  db ab 19(ru) dw
=0, - +

0, (2.2a,b,c)

’

, —tu—tw—= — =
ot 0z ot ar 0z r or 0z

where, u, v and w are radial, azimuthal and axial velocities, respectively, P = p/pg is the
pressure, pg is the reference density, b is the buoyancy, and ¢ = d(rv)/r dr is the mean
state vorticity. Note that the perturbation quantities are also assumed to be axisymmetric,
therefore azimuthal derivatives d/06 are neglected in (2.1)—(2.2). Although the gravest
mode in a vortex is observed to be an azimuthal mode number —1 by Kunze et al. (1995),
the axisymmetric assumption (i.e. azimuthal mode number 0) offers simplicity in applying
the WKBJ approximation (e.g. Joyce et al. 2013; Conn et al. 2025). The amplitude of the
perturbation velocities is assumed to be asymptotically smaller than the mean state velocity
scale, so nonlinear terms of perturbation quantities can be ignored. One can therefore
define a perturbation streamfunction as u = dv/dz and w = —(1/r) 9(rv)/dr. Assuming
anormal mode form, ¥ ~ ¥ (r, z) €'“?, of the perturbation streamfunction and substituting
in (2.1)—(2.2) yields, after simplification (Solberg 1936),

v low W 2w 1w 2y
N? — o? —— =) —2M? - 2 _ ) — =0,
( w)<8r2 +r or r2> (81”81 r 8z>+(x ‘”)azz
(2.3)

where N2(r, z) = db/dz is the buoyancy frequency, M>(r, z) = db/dr is the baroclinic
term, x2(r,z) =(f + 20/r)(f +¢) is the effective frequency, and e is the intrinsic
frequency. A non-zero db/dr would imply a variation of density along constant pressure
surfaces, and is the rationale behind calling it the ‘baroclinic term’ (Whitt & Thomas
2013). For perturbations of arbitrary length scales, (2.3) can be solved only numerically.
Instead, noticing that the coefficients are also functions of r and z, one can obtain
the region of wave propagation to be the region where the partial differential (2.3) is
hyperbolic (see Whitt & Thomas 2013). The boundary of such a region is obtained by
equating the discriminant of (2.3) to zero. For a given frequency w, the wave propagation
boundary is given by the contour

\/<N2 1)+ VP (2P 4 M
Wmin = 3 =w

Note that the expression w,;, here is a function of r and z, and so provides the
minimum frequency that the background flow can support at a given spatial location. If the
perturbations are also in a hydrostatic balance, (2.4) simplifies to wy, :=+/ x> — M*/N?
as derived in Joyce et al. (2013) using parcel arguments. One can study the NIW
propagation in such a region using the WKBJ approximation (Kunze 1985; Bender &
Orszag 2013). As the region of interest is far from the centre of the vortex, one can set
(following Brannigan et al. 2017) r =rg (a large quantity) in (2.3), which facilitates the
use of the ansatz ¥ ~ e!®”+72) The resulting equation, to leading order in 1/mro, leads
to the dispersion relation (see Buckingham et al. 2021a)

2 N?k* —2M%km + x>m? _ N212 —2M?1 + %2
B k2 4 m? B 241 '
Here, k and m are wavenumbers in the r and z directions, respectively, and t =k/m.
Note that (2.5) is valid for radial distances r € (1/m, c0). For a typical NIW vertical
wavenumber m ~ 102 m~!, the lower limit is O(100 m), a small number compared

to typical radial length scales of O(10 km). Moreover, as the vertical wavelength
reduces further due to ¢-refraction, the aforementioned lower bound of applicability

2.4

(2.5)

w
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reduces further. Given the dispersion relation (2.5), one can write the group velocity in
the (r, z)-plane as ¢g = (cgr, Cg;), Where
do  (N?*T+M* (1?2 — 1) — x*1) dw

do _ , _0P e 2.6
ok om (T2 + 1) Cor= g, T T (2.6)

Equations (2.5)—(2.6) can now be used to study ray paths in the aforementioned region
of wave propagation. The ray-tracing equations are given by (Lighthill 2001)

dk dw dm dw dr dz

d~ or’ A e At 7 dr

We solve the aforementioned equations numerically. Note that the intrinsic frequency

w is constant along a ray path. The slope of a ray, describing the direction of the energy

propagation, is given by dz/dr = cg;/cg, = —7. For a given intrinsic frequency w = wy, T
can be obtained by solving the quadratic equation in (2.5) as

Cor =

= cqz. 2.7)

M2 O] @)@+ 0, — V2 x)

(N2 — o) (N2 — @) '

Interestingly, this shows that if w;,;, = wg, then the group velocity vector has slope
—M? /(N 2_ a)(%), although substituting (2.8) in (2.6) shows that the group velocity
magnitude vanishes at w,,;, = wo. If the perturbations are hydrostatic, then it reduces to
—M?/N?=—(3b/dr)/(db/dz) i.e. the isopycnal slope as described in Whitt & Thomas
(2013). In other words, the NIW energy propagation is nearly aligned with the isopycnals
close to the wave propagation boundary. The deviation from isopycnal slope depends on
non-hydrostacy. Moreover, rays cannot propagate past the boundary as the group velocity

vanishes, and thus encounter a turning point (where they reflect) or a critical point (where
they stall) at the boundary (Bender & Orszag 2013).

T(r,z2) = (2.8)

2.2. An idealised vortex flow

In the current study, the mean state is considered to be a portion of a curved oceanic
front represented by an idealised vortex. A vortex with positive vorticity in the core
represents a front with positive curvature, and vice versa. Further, one can represent a
straight front at one end in the limit »r — oo, and a highly curved front on the other, for
small, finite r. To describe the parameter space of curvature, a non-dimensional number
termed the ‘bulk curvature number’ (Cujp), as defined in the Introduction, can be used.
It represents the relative importance of centrifugal and Coriolis forces in the momentum
equations (Shakespeare 2016; Buckingham et al. 2021a). A small bulk curvature number
(]Cup| < 1) indicates a nearly straight front accurately described by geostrophic balance.
In contrast, a large bulk curvature number (|Cup| > 1) indicates a highly curved front
better described by a cyclogeostrophic balance.

In addition to the above, we choose the vortex to be surrounded by a region of opposite
vorticity (i.e. a shield) similar to the realistic scenarios (Kunze 1985). A class of Gaussian
vortices defined based on pressure or density is used in literature (Mahdinia et al. 2017,
Essink et al. 2022). However, by construction, such models cannot attain bulk curvature
numbers less than —1, and so cannot be used to explore the wider curvature number space.
Qu (2019) defined a vortex using trigonometric functions that contains a shield of opposite
vorticity surrounding the core. However, the corresponding vorticity in the shield exhibits
a non-physical divergence at the boundaries. In the current study, we consider a class
of generalised Gaussian shielded vortices (termed ‘CLM vortices’) defined directly by

1015 R1-5


https://doi.org/10.1017/jfm.2025.10358

https://doi.org/10.1017/jfm.2025.10358 Published online by Cambridge University Press

R. Patibandla, C.E. Buckingham and A. Tandon

a b _
(@) Anticyclonic core () Cyclonic core £z=0)
3 3 -1.0
2
0.5
1
0 0
-1
D) 1 0.5
-3
3 2 -1 0 1 2 3 3 2 -1 0 1 2 3 10

/T /T

Figure 1. Contour plots of normalised vorticity (i.e. {7y, /2v,,) in the z = 0 plane for (a) an anticyclonic vortex,
and (b) a cyclonic vortex, showing a core region surrounded by a shield of opposite vorticity. The core region
ends at r/r,, = +/2. The relative vorticity magnitude in the shield attains a maximum at r/r,, = 2.

specifying the azimuthal velocity (Carton & McWilliams 1989; Buckingham et al. 2021b).
The corresponding azimuthal velocity and relative vorticity expressions are given by

_ r 1r¢ (z — 20)?
v(r,z)=vm | — ) exp 37 exp 2 )
i iz (2.9)

(. 2) 20, ! ar? 1r¢ (z— z())2
r, 7)) = — ——— Jexp| —=— Jexp| ———— |,
. T'm 4rs P 2r% P h?

where vy, is a characteristic velocity, r,, is the characteristic radius of the vortex, zg is the
depth of the vortex centre, 4 is the e-folding length, and N, is the background buoyancy
frequency. A positive vy, implies a cyclonic vorticity in the core, and a negative v,, implies
an anticyclonic vorticity in the core. In the current study, typical submesoscale vortices
are chosen, i.e. zo=0, 7 =100 m and o =2. The expression for buoyancy (b) can be
obtained, by integrating the cyclogeostrophic balance for the above specified parameters,
as b(r,z) =2v(fr+ 1‘))1*,%1z/r2h2 + lez. Here, the first term is due to the vortex flow
field. The second term is due to the integration and is a function of z alone. Hence
Ng signifies a ‘background’ buoyancy gradient that is separate from the vortex and is
considered a constant here for simplicity. Note that depending on v, the buoyancy gradient
N?>=03b/dz=N g + Nf can attain negative values somewhere in the domain, when the
buoyancy gradient due to the vortex flow field Nf is negative and larger than Ng in
magnitude, implying a gravitational instability. To avoid such a scenario, we choose the
background stratification to be sufficiently large (specifically, N =450 f) so that N2 is
always positive. Finally, for the CLM vortex model defined above, the bulk curvature
number takes the form Cuy = 2v,,/fry,. Therefore, Cup could alternatively be called a
‘vortex Rossby number’ for the specific case of the CLM vortex model.

Below, we present ray-tracing and minimum frequency results for two CLM vortices:
(i) anticyclonic vorticity in the core (or cyclonic vorticity in the shield), and (ii) cyclonic
vorticity in the core (or anticyclonic vorticity in the shield). Figure 1 shows the contour
plot of normalised vorticity, in both cases, plotted on a z =0 plane. As depicted, the
core region ends at r/r,, =+/2 and is surrounded by a region of opposite vorticity, i.e.
a shield. The magnitude of vorticity in the shield attains a maximum at r/r;,, = 2. Note
that the subsequent results, although for the CLM vortex model, have been checked
with other idealised shielded vortex models (such as a shieclded Rankine vortex and a
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Figure 2. Downward-propagating rays (red and green curves) in (a) anticyclonic vortex, and (b) cyclonic
vortex, at small curvature numbers (|Cup|=0.1) and frequency w/f =0.9999. The dashed curves are rays
without curvature terms in the dispersion relation, while the continuous curves are rays with curvature term.
Pale grey and black solid lines represent the boundary of wave propagation calculated from the effective
frequency expressions f, (i.e. non-baroclinic, non-curved scenario), f; (i.e. geostrophic scenario) and wpyi,
(i.e. cyclogeostrophic scenario, see (2.4)), respectively. Here, we choose v,, = £0.5 m s~ ! and r,; = 100 km.

Mahdinia et al. (2017) vortex). The results are found to be in qualitative agreement among
all the vortex models tested.

3. Ray-tracing and wave propagation characteristics

Consider effects of curvature on NIW propagation using ray-tracing analysis and minimum
frequency expression (2.4). Figures 2(a) and 2(b) show the downward-propagating rays
(red and green continuous curves) in both anticyclonic and cyclonic core vortices, for
curvature number |Cup| = 0.1. For such small |Cuy|, it is instructive to do the ray-tracing
analysis by first neglecting the curvature term (i.e. 2v/r) in the dispersion relation and
(2.1), and considering just the baroclinic contribution (dashed lines in figure 2a,b). The
rays are initialised at (r, z) = (r,,, —0.02k) in the anticyclonic core (figure 2a), and at
(r, z) = (3ry, —0.02Ah) in the anticyclonic shield (i.e. the cyclonic core case, figure 2b)
with frequency w = 0.9999 f. The reason for choosing a frequency so close to f is to show
a common NIW frequency among all the plots. Figure 2(a) shows that NIWs propagate
downwards in the core region of anticyclonic vorticity, as expected (Lee & Niiler 1998),
reflecting at the boundary (i.e. at the turning points) given by (2.4), and approaching
a critical point at a critical depth (Whitt & Thomas 2013). Figure 2(b) demonstrates
that NIWs can propagate downwards and become trapped within the shield surrounding
the cyclonic core, as well, an outcome and consideration that we believe is new to the
oceanographic literature. It is evident from figure 2(a) that the rays considering the
curvature term are steeper than the rays with baroclinic terms only. However, in figure 2(b),
the rays are shallower with the inclusion of curvature terms. This contrasting behaviour
can be understood from finding the contribution of the curvature terms to the wavevector
direction (2.8). As the starting point of the ray is close to z =0, one can simplify (2.8) by
substituting z =0, to obtain 2(r,z=0)= (w(z) — Xz) /(N 2_ a)%). An immediate result,
by noting that x2 = (f +20/r)(f +¢), is that the contribution of the curvature term
2v/r is to increase |t| in the anticyclonic core, and decrease |t| in the anticyclonic shield,
thereby increasing the ray slope in figure 2(a) when compared to the purely geostrophic
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Figure 3. Downward-propagating rays (red and green curves) with frequency w/f =0.9999, at different bulk
curvature numbers Cuyp, (a) —0.1 (v, = —0.5 m s~1, =100 km), (b) —1 (v;; = —0.5m s~ r,, = 10 km),
©) =5 (v =—-0.75ms L, r,, =3 km), (d) 0.1, (e) 1, and (f) 5. A solid black curve bounds the region of wave
propagation. Grey dashed curves in the background denote isopycnals. For an anticyclonic vortex, Cup < 0,
and for a cyclonic vortex, Cuj > 0. Note that the region enclosed by blue curves in (c) indicates a possible
symmetric instability region (see text for details).

scenario (dashed curves in figure 2), and vice versa. Also, for 7 to be real, wg should satisfy
X < wp < N, giving the range of r that supports wave propagation. Further, in the straight
front limit Cup, — 0, one can write 2= f2(1+ (4 —r?/r2) Cup exp(—r?/2r2)). For
a given NIW frequency wp (such that x <wg < f), the term (4 — r?/ ”1121) Cuyp should
always be negative. As Cuy is a negative number for the anticyclonic core case, the wave
propagation region is bounded from above by r/r, =2, where 4 —r2/ r,%l =0. For an
anticyclonic shield, the wave propagation region is bounded below by r/r,, = 2. In the
purely geostrophic case, a similar analysis by neglecting 2¢/r in x2 reveals the critical
radius as r/r, = ~/2, i.e. the location where vorticity changes sign. This explains the
contrasting behaviour of the wave propagation region due to curvature in both scenarios.
Because the critical radius (at z = 0) is the same for both the anticyclonic core and shield,
it indicates an increase in the region of wave propagation for the anticyclonic core, and a
decrease in the wave propagation region for the anticyclonic shield, due to the inclusion of
curvature terms (figure 2).

The effect of curvature is explored further by performing a ray-tracing study at
various values of representative |Cup| (=0.1, 1,5) as shown in figures 3(a)-3(f) for
the anticyclonic core and shield, respectively. The isopycnals indicate a near-barotropic
scenario at large |Cup|. A general conclusion from both sets of figures is that the region
of wave propagation increases with an increase in |Cuy|. Furthermore, the location of the
critical layer depth, a location marked by vanishing vertical wavelengths, increases with
the curvature number. However, note that at any Cu,, not including the curvature terms
underpredicts the critical layer depth in the anticyclonic core, and overpredicts it in the
anticyclonic shield. Interestingly, for Cuj, < —1, a region of wave ‘non-propagation’ can

1015 R1-8


https://doi.org/10.1017/jfm.2025.10358

https://doi.org/10.1017/jfm.2025.10358 Published online by Cambridge University Press

Journal of Fluid Mechanics
(b)

~~
Q
N

e < Iy
= e o
T ~ |

<
i
)

Minimum frequency/f

e
[§]

Dashed — only baroclinicity
Continuous — also with curvature

00 w/f=0.9999
00 w/f=08

0 -4
107! 100 107! 10°

| Cuty | [Cuy|

Figure 4. For an anticyclonic core (blue) and an anticyclonic shield (red), plotted as functions of curvature
number magnitude (|Cup|) in a semi-log plot: (a) the minimum frequency that can be trapped, where
hollow circles represent the scenario considering the geostrophic balance, whereas the filled circles show the
scenario considering cyclogeostrophic balance; (b) the location of the critical layer (z.,i;/h) for two different
frequencies w/f = 0.8 (hollow circles) and 0.9999 (hollow squares). Dashed curves correspond to the scenario
without curvature terms in the dispersion relation, while continuous curves correspond to the scenario with
curvature terms.

be observed in the anticyclonic core, as shown in figure 3(c). This can be attributed to
an increase in x> above f2, due to an increased contribution from the nonlinear term
(2¢v/r) for |Cup| > 1. This results in the minimum allowable NIW frequency becoming
super-inertial (i.e. more than f) near the vortex centre, in weakly baroclinic scenarios,
therefore it cannot support trapping of NIWs until the vertical e-folding length (4). It
is worth emphasising here the increase in NIW activity in the shield surrounding the
anticyclonic core (r > +/2), and a corresponding decrease in anticyclonic core (r < +/2)
for z/h > —1 in figure 3(c). Note that the region enclosed by blue curves in figure 3(c)
corresponds to wyi, (1, z) <0, a necessary but not sufficient condition for symmetric
instability (Buckingham et al. 2021a). It becomes a sufficient condition for parcel motions
aligned with isopycnals, but as shown in (2.8), the slope of the group velocity vector
cannot reach the isopycnal slope even at the boundaries of the wave propagation region
(i.e. at wg = wyin). Finally, figure 3 shows that NIWs get trapped significantly below the
vortex, albeit still in the anticyclonic core.

Figure 4(a) shows the minimum NIW frequency that can be trapped, plotted as a
function of the curvature number magnitude. One observes that the NIW frequency band
that is trapped increases with curvature number. In an anticyclonic core, including the
curvature term reduces the lower limit of this band further. In an anticyclonic shield,
however, the lower limit increases, allowing only a narrow band of NIWs to be trapped
as Cup — 0. In other words, the shields of cyclonic, approximately geostrophic vortices or
straight fronts (i.e. small curvature) may not exhibit as appreciable NIW activity as their
submesoscale or highly-curved counterparts.

Note, however, that (2.4) indicates that each NIW frequency stalls at a specific depth
given by its critical layer. For an anticyclonic core, this can be derived analytically by
noting that the critical layer occurs at r =0 and wy,;, (r =0, z) = x (r =0, 7). Therefore,
for a given frequency w, the critical depth is given by z¢,ir/h = —/In (|Cup|/(1 — w/f)).
In other words, the critical depth of an NIW increases with the curvature number, and
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decreases with its separation from f. In figure 4(b), z.rit/ h is plotted as a function of Cuy,
for two frequencies, w = 0.8 f — a typical lower-bound of NIW frequency band (e.g. Fer
et al. 2018), and v = 0.9999 f. In the anticyclonic shield, deriving an analytical expression
for the critical depth z..i;/h is not as straightforward as it is for the anticyclonic core.
However, the vertical location where a ray saturates (in other words, the critical depth)
can be determined numerically using ray tracing. The increase in |zi;| with Cuy, for the
anticyclonic shield is similar to the anticyclonic core. In contrast, considering the curvature
terms (continuous curves) in the dispersion relation, for the anticyclonic shield, predicts a
smaller z.,;; compared to the case without curvature terms (dashed curves).

4. Discussion and conclusions

As mentioned in the Introduction, it is a common practice in the literature to use the
expression forr = f + ¢ /2 to identify the trapping depth of NIWs, even in submesoscale
flow features (Son et al. 2022). One of the main objectives of this work is to calculate
the penalty of neglecting curvature in such flows that have typical curvature number of
O(1). Therefore, we consider two typical Arctic sub-surface eddies: (i) a shallow eddy in
the Canada Basin (Son et al. 2022), and (ii) the Lofoten Basin Eddy (Fer er al. 2018).
These vortices are chosen due to their high bulk curvature numbers. In contrast, for
mesoscale eddies such as the Zapiola Anticyclone and the Cyprus Eddy (Zodiatis et al.
2005; Weijer et al. 2020) with Cup ~ O(1072), a significant increase in the trapping
depth is not expected due to weak curvature effects. The CLM vortex is well suited as
an idealised model in these scenarios. Note that the symmetry of the vortex model about
the r-axis means that one can choose a non-zero z( to obtain a sub-surface eddy. For eddies
(i) and (i), we choose the parameters « = 4 and 2, respectively, to maintain the core—shield
vorticity ratio; other parameters, such as maximum azimuthal velocity and eddy radius, are
obtained from Fer et al. (2018) and Son et al. (2022), respectively. Figure 5(a,b) show the
ray paths and wave propagation boundaries for both the eddies. The results show that the
trapping depth increases due to the curvature term. Specifically, increases of 18 % and
21 % of the vertical e-folding length are observed in eddies (i) and (ii), respectively. In
addition, observations in both Fer er al. (2018) and Son et al. (2022) show that an increase
in NIW activity is found at a location deeper than the critical depth obtained from their
calculations. As presented here, frontal curvature can be a reason for this discrepancy.
However, it has to be noted that the idealised models used here are indeed not perfect
descriptions of the actual eddies, which are usually not axisymmetric, are present in a non-
uniform background stratification, and may be evolving in time. Our future study aims to
take these effects into account.

In this work, we have emphasised the role of frontal curvature in NIW trapping. We
showed that curvature can act to increase the horizontal and vertical extents of the trapping
regions in an anticyclonic core. In contrast, for a given cyclonic core vortex with an
anticyclonic shield, the region of NIW activity reduces with the inclusion of curvature
effects. The slope of energy propagation for NIWs in the curved front is larger than is
predicted from the present-day geostrophic theory (Kunze 1985; Whitt & Thomas 2013)
if the NIWs are present in the anticyclonic core, and smaller if they are present in the
shield. Additionally, a non-trivial NIW non-propagation zone is observed in anticyclonic
core regions at high curvatures, i.e. NIWs are trapped in an annulus around anticyclonic
core vortices, although they stall in the core. By contrast, NIWs are trapped and stall
in the anticyclonic annulus (shield) surrounding cyclonic vortices. Although the current
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Figure 5. Idealised models of typical Arctic eddies: (a) a shallow eddy in the Canada Basin (Son et al.
2022); (b) the Lofoten Basin Eddy in the Norwegian Sea (Fer et al. 2018). The dashed black curves are
wave propagation boundaries obtained without curvature terms, while the continuous black curves are wave
propagation boundaries obtained with curvature terms. The leftward-propagating (green) curve is the ray
corresponding to the scenario without the curvature term in the dispersion relation, while the rightward-
propagating (red) curve is the ray corresponding to the scenario with the curvature term. The background
contour plot describes the non-dimensional relative vorticity (¢ /f).

work considers the axisymmetric mode, the results stay qualitatively the same for the
azimuthal mode -1 found in ocean observations. The main difference is that the frequency
o is now Doppler shifted by —v/r. One can extend this study to realistic curved fronts
and non-circular vortices as well. For example, in an elliptical vortex, our results imply
that the trapping depth is the highest at the focal points and lowest at the centre of the
vortex. Finally, we would like to emphasise the idealised nature of this study. Additional
realistic features such as three-dimensional effects (e.g. variation in azimuthal direction),
nonlinear interactions and wave-mean interactions alter the behaviour of NIW trapping and
are currently being studied. Furthermore, the effects of frontal curvature on wave—eddy
energetics in a submesoscale scenario need attention.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.10358.
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Appendix A. Numerical solution

In this appendix, we present the numerical solution of (2.1) and (2.2) to validate the ray-
tracing results. Numerical viscosities have been added in # and w momentum equations
to smooth errors at the grid scale. We follow the numerical scheme outlined by Whitt
& Thomas (2013) for a highly baroclinic straight front. The governing equation (after
simplification) is discretised using a fourth-order central difference scheme in a 200 x 200
grid. The zero streamfunction boundary conditions (¢ = 0) are implemented at the four
ends of the domain. The right-hand and bottom boundaries are truncated at r/r,, =3 and
7/ h =3, respectively. After the numerical procedure, the energy density (E) is calculated
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from the streamfunction (), following Qu (2019):

P

0
E =
4w?r?

(02 1P +2M2y v+ N2 1y ) (A1)

where the subscripts indicate differentiation with r and z, respectively. The contour plots
of normalised energy density £ = E/max(E) are plotted for two cases of anticyclonic
core vortices and one case of cyclonic core vortex, for NIW frequency w =0.99f, in
figures 1 and 2 of the supplementary material. Note that the background stratification
is chosen to be Np =100 f, 150 f in some cases to ease numerical evaluation, as higher
background stratification requires a higher number of grid points to resolve the closely-
spaced ray paths. For the small |Cuj| anticyclonic core case (see figure Sla of the
supplementary material), a 100 x 100 grid seems to be sufficient, whereas the higher
grid resolution mentioned earlier is needed for the high |Cu,| case (see figure S1b of
the supplementary material) to resolve dense ray paths. A similar observation is also made
for the cyclonic core vortices as well, where the ray paths are denser when compared to
the anticyclonic scenario (see figure S2 of the supplementary material). The numerical
viscosities implemented here are the same as used by Whitt & Thomas (2013). The plots
show that there is a good match between the ray paths and the regions of maximum E.
Although the two upward-propagating rays are not shown in our ray-tracing calculation,
they can be obtained and follow the additional red bands in figure S1a. The region of wave
non-propagation is also clearly obtained as seen in figure S1b.
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