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Abstract
Key message Experimentally elevated  CO2 does not significantly alter the overall leaf reflectance of mature Quercus 
robur L., but increases Plant Senescence Reflectance Index (PSRI) suggesting a change in the ratio of chlorophyll to 
carotene content.
Rising atmospheric  CO2 concentrations, driven by anthropogenic emissions, are projected to reach 550 ppm by 2050. 
Elevated  CO2  (eCO2) is expected to have a fertilisation effect on forests, influencing productivity, water relations, and phe-
nology. However, the impact of  eCO2 on leaf reflectance in mature forests remains poorly understood, despite its critical role 
in radiative transfer processes and remote sensing of forest health. Utilising the Birmingham Institute of Forest Research 
(BIFoR) Free-Air  CO2 Enrichment (FACE) experiment, we investigated the hyperspectral leaf reflectance of 180-year-old 
Quercus robur L. trees exposed to  eCO2 for 7 years. Our results demonstrate that overall leaf reflectance under  eCO2 is 
similar to that of leaves exposed to ambient  CO2, but the Plant Senescence Reflectance Index (PSRI) is significantly higher 
under  eCO2. This index relates to the ratio of foliar chlorophyll and carotene pigments. These findings suggest that Q. robur 
reflectance will not significantly shift under future  CO2 conditions, but the relative content of pigments will change, altering 
the reflectance of specific wavelengths and providing insights into the leaf level physiological and phenological responses 
of mature trees to  eCO2.
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Introduction

Since 1850, net anthropogenic  CO2 emissions have reached 
2400 (± 240) Gt, with concentrations in 2019 surpassing 
levels observed over the past two million years (Calvin 
et al. 2023). Under the ‘business as usual’ RCP 8.5 sce-
nario, atmospheric  CO2 concentrations are predicted to reach 
550 ppm by 2050 (IPCC 2023). Forests are a major com-
ponent of the terrestrial carbon sink, absorbing 2.4 (± 0.4) 
petagrams of carbon per year (Pg C  year−1) globally (Pan 
et al. 2024).  CO2 is the carbon input for photosynthesis in 
plants and elevated  CO2  (eCO2) has a stimulating effect on 
photosynthesis, often referred to as the ‘CO2 fertilisation’ 
effect (Ciais et al. 2013).  CO2 fertilisation of forests, lead-
ing to enhanced productivity, has been observed in recent 
decades (Zhu et al. 2016; Ruehr et al. 2023). However, the 
long-term effect of  eCO2 on mature forests and their role as 
a carbon sink remains uncertain.

The fertilisation response of tree seedlings and sap-
lings to  eCO2 has been extensively experimentally studied 
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using Free-Air  CO2 Enrichment (FACE) experiments (as 
reviewed by Ellsworth et al. 2004; Ainsworth and Long 
2005; Maschler et al. 2022). The first generation of FACE 
experiments provided valuable long-term observations of 
the effect of  eCO2 on young trees, such as sustained ele-
vated photosynthetic rate (Ainsworth and Long 2005) and 
increased fine-root production and throughput of root bio-
mass into the soil (Norby and Zak 2011). However, these 
experiments were conducted in young tree plantations, lim-
iting their application to understanding how mature forests 
will respond to  eCO2 (Norby et al. 2005; U.S. DOE 2020). 
Notably, results from the Aspen FACE project revealed that 
responses observed in seedlings and young trees were not 
always sustained as the stand matured, emphasising the 
effect of tree age on eCO2 responses (Burton et al. 2014). 
Wood analysis of Quercus ilex exposed to a lifetime of 
 eCO2 (at a natural  CO2 spring) revealed that most growth 
enhancement occurs when the tree is young (Hättenschwiler 
et al. 1997), leading to ongoing questions about the growth 
responses of mature forests to  eCO2.

The second generation of FACE experiments seeks to 
explore the capacity of mature trees to response to  eCO2 
across different biomes (Norby et al. 2016). This study is 
based at BIFoR FACE, situated in a 180-year-old Quercus 
robur (Q. robur) dominated woodland in central England, 
which has shown increased photosynthetic activity and 
woody biomass production in the first 7 years of  eCO2 
exposure (Gardner et al. 2022a; Norby et al. 2024). These 
results contrast with the Eucalyptus FACE experiment (Euc-
FACE) based in Australia, where increased carbon uptake 
did not translate into greater carbon sequestration, likely due 
to phosphorous limitation (Jiang et al. 2020). As well as 
the  eCO2 crane experiment in Basel, where after 8 years of 
 eCO2 treatment, radial stem diameter was not affected in 
Quercus petraea or the other deciduous hardwoods tested 
(Bader et al. 2013).

In addition to changes in photosynthetic rate and tree 
growth,  eCO2 has also been shown to affect water relations in 
trees. In a synthesis of 13 long-term experiments (> 1 year), 
Medlyn et al. found European forest trees exposed  eCO2 
had 21% lower stomatal conductance (Medlyn et al. 2001), 
although a recent meta-analysis has shown that the  eCO2 
induced increase in water use efficiency (WUE) was primar-
ily due to increased photosynthesis rather than decreased 
stomatal conductance (Gardner et  al. 2023).  eCO2 has 
been shown to increase WUE in mature deciduous forests 
(Leuzinger and Körner 2007) and Quercus petraea saplings 
(Ofori-Amanfo et al. 2020). After 8 years of  eCO2 treatment, 
water use was significantly reduced in the Basel deciduous 
forest experiment (Bader et al. 2013), but at BIFoR FACE 
although tree’s water use was lower on average under eCO2 
this change was not significant (Quick et al. 2025).

At the leaf level of trees,  eCO2 has been shown to decrease 
chlorophyll content. Onisch et al. reported decreased chloro-
phyll in young Picea and Fagus saplings exposed to  eCO2 
(Onisch et al. 2016); and Tausz et al. found the needles of 
young Picea abies trees had lower chlorophyll when exposed 
to  eCO2 (Tausz et al. 1996). In mature, forest-grown trees 
at the EucFACE experiment mature Eucalyptus tereticornis 
leaves had reduced pigment concentrations (chlorophyll 
and carotenes) per area (Wujeska-Klause et al. 2019). In 
mature Liquidambar styraciflua (sweetgum) leaves from 
the Oak Ridge FACE experiment, after 12 years of  eCO2 
exposure leaves had lower chlorophyll (Warren et al. 2015). 
In the BIFoR FACE experiment,  eCO2 did not affect mass-
based chlorophyll concentrations in mature Q. robur leaves, 
but area-based chlorophyll content significantly increased, 
which was attributed to increased leaf mass per unit area 
(Gardner et al. 2022b). Similarly, mature Quercus ilex and 
Quercus pubescens trees exposed to  eCO2 by a natural 
spring did not show a significant change in the chlorophyll 
content of leaves (Schwanz and Polle 1998a).

ECO2 has been reported to also decrease the nitrogen con-
tent of leaves per unit area (Ellsworth et al. 2004; Ainsworth 
and Long 2005). In mature Liquidambar styraciflua trees, 
foliar nitrogen decreased 17% under long-term  eCO2 (War-
ren et al. 2015). Reduced foliar nitrogen was also found in 
Populus tremuloides, Betula papyrifera, and Acer saccha-
rum saplings (Agrell et al. 2000). It has been indicated that 
reduced foliar allocation of nitrogen to chlorophyll under 
 eCO2 follows total nitrogen content (Warren et al. 2015; 
Wujeska-Klause et al. 2019).  ECO2 has resulted in reduced 
foliar phenol content in Quercus species (Tognetti and John-
son 1999; Watanabe et al. 2021), although some studies have 
found this effect is only temporary (Dury et al. 1998). In the 
BIFoR FACE experiment, no significant effect of  eCO2 on 
the foliar nitrogen content of Q. robur foliar has been found 
(Gardner et al. 2022b).

Studies have also examined the effect of  eCO2 on leaf 
nutrient content, from the perspective of food sources for 
insects. In a range of deciduous species, saplings grown 
under  eCO2 have reduced foliar nutritional quality (Dury 
et  al. 1998). Carbohydrate concentrations, particularly 
starch, increase in young trees exposed to  eCO2 (Kinney 
et al. 1997; Agrell et al. 2000; Coley et al. 2002). Combined 
with reduced nitrogen content, this results in increased foliar 
carbon to nitrogen (C:N) ratios. For example, at the BIFoR 
FACE experiment, the foliar carbon content of fresh leaves 
was found to be significantly higher under  eCO2 (Roberts 
et al. 2022).

ECO2 also decreases the antioxidant content of tree 
leaves. For instance, in mature Mediterranean Quercus trees, 
 eCO2 reduced antioxidant enzyme activity and increased the 
ascorbate pool (Schwanz and Polle 1998b; Marabottini et al. 
2001). In Q. robur seedlings, superoxide dismutase content 
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decreased under  eCO2 (Schwanz et al. 1996) but this has 
not been investigated in mature Q. robur trees. In summary, 
 eCO2 has been shown to lead to a variety of effects on the 
phytochemistry of deciduous trees, and on oak trees in par-
ticular although there is more limited evidence for the effects 
on mature trees in forest settings.

Remote sensing of forest health, productivity, and bio-
diversity relies on the reflectance spectra of leaves (Lausch 
et al. 2016; Kacic and Kuenzer 2022). Across visible to 
infrared wavelengths, leaf reflectance is influenced by fac-
tors such as pigments, leaf structural composition, and water 
content (Grant 1987; Baldini et al. 1997; Sims and Gamon 
2002). Despite its importance, few studies have exam-
ined the effect of  eCO2 on the leaf reflectance of mature 
trees, which could provide important insight into leaf-level 
changes underpinning forest fertilisation or acclimation. 
Hyperspectral reflectance data from forests are widely used 
to remotely sense leaf traits (Chen et al. 2022), classify 
species (Puttonen et al. 2010), and monitor forest health 
(Sonobe and Wang 2017; Torres et al. 2021) under natural 
conditions. Understanding how leaf reflectance will change 
under future  CO2 concentrations is, therefore, crucial for 
accurately monitoring forest health and productivity in a 
changing climate.

Leaf-level hyperspectral reflectance studies on trees 
exposed to  eCO2 are limited and have found variable 
results. Thomas (2005) found an increase in the reflectance 
of photosynthetically active radiation (PAR; 400–700 nm) 
and a decrease in chlorophyll in a glasshouse  eCO2 study 
on tropical Leguminosae saplings (Thomas 2005). In con-
trast, Carter et al. (2000) found no significant effect of 
 eCO2 on the reflectance of young Acer saccharum within 
a 400–850 nm range in open-trop chambers (Carter et al. 
2000). In mature Quercus pubescens trees exposed to life-
time  eCO2 via natural springs, normalised difference veg-
etation index (NDVI) was not affected and nor was Pho-
tochemical Reflectance Index (PRI) despite photosynthetic 
enhancement (Stylinski et al. 2000). Similarly, the Oak 
Ridge FACE experiment reported no significant changes in 
reflectance at the leaf or canopy level for a Liquidambar sty-
raciflua monoculture under eCO2 (Wicklein et al. 2012). In 
the EucFACE experiment, harvested leaf reflectance in the 
PAR spectrum (400–700 nm) was not significantly affected 
by  eCO2 treatment (Wujeska-Klause et al. 2019). However, 
Pintó-Marijuan et al. successfully used near-infrared (NIR; 
1100–2500 nm) reflectance spectroscopy to examine pig-
ment and antioxidant responses of Quercus ilex resprouts 
under  eCO2 (Pintó-Marijuan et al. 2013). Our study aims to 
expand on these findings by examining a broad continuous 
range of hyperspectral reflectance (350–2500 nm) of leaves 
measured in situ in a mature Q. robur forest under  eCO2.

The aim of our study is to investigate whether long-term 
 eCO2 changes the leaf reflectance of mature Q. robur trees 

in terms of total reflectance, spectral profile, and vegeta-
tion indices. The majority of the relevant literature indicates 
 eCO2 does not significantly affect the leaf reflectance of trees 
exposed over long time periods, particularly in mature trees. 
We, therefore, hypothesise that  eCO2 will not significantly 
affect the leaf reflectance profile or total reflectance but may 
affect specific regions linked to physiological or structural 
changes. By examining the entire wavelength range reflec-
tance profile as well as traditional vegetation indices, we 
expect to find more nuanced changes in leaf reflectance.

Methods

Study site

The Birmingham Institute of Forest Research (BIFoR) has 
operated a Free-Air Carbon Enrichment (FACE) experiment 
since 2015 at Mill Haft, Staffordshire, UK (52°48′3.6″ N, 
2°18′0″ W). Mill Haft is 19.1 ha of deciduous woodland 
dominated by Q. robur (pedunculate oak) in the canopy and 
Corylus avellana (common hazel) in the understory, situated 
in a temperate maritime climate (Hart et al. 2020; MacKen-
zie et al. 2021). The underlying geology is Helsby Sand-
stone, and the dominant soil type is Dystric Cambisol, with 
a sandy clay texture (Norby et al. 2024). The long-term aver-
age annual temperature of the site is 9 °C, and the average 
annual rainfall is 690 mm (Norby et al. 2016). Since the  CO2 
fertilisation experiment began in 2017, mean hourly rainfall 
has been recorded by four rain gauges on the BIFoR FACE 
meteorological towers (TR-525M, Texas Electronics, Dallas, 
Texas), alongside daily mean air temperature (HMP155RH, 
Vaisala, Helsinki, Finland). During the measurement period 
of this study, the mean daily rainfall was 1.93 mm, and the 
mean daily temperature was 15.72 °C.

The BIFoR FACE facility is comprised three experi-
mental treatments across nine experimental arrays, each 
30 m in diameter. The treatments are three “elevated  CO2” 
arrays  (eCO2) maintained at 150 ± 38 ppm above ambient 
 CO2, three control arrays exposed to ambient  CO2  (aCO2), 
and three undisturbed woodland areas without fumigation 
infrastructure. In the present study, only four of the infra-
structure arrays were studied due to logistical constraints 
related to tree canopy access. The fumigation infrastructure 
arrays have operated from budburst to leaf fall (early April 
to November) during daylight hours since April 2017, for 
full details of the experimental design, see Hart et al. (Hart 
et al. 2020).
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Leaf reflectance sampling

We recorded the reflectance spectra of adaxial leaf surface 
of Q. robur in the sun exposed canopy of two  aCO2 and two 
 eCO2 arrays from July to October 2023. Leaf reflectance 
measurements were taken on 25th July 2023, 10th August 
2023, 24th August 2023, and 6th October 2023. On each 
measurement day, approximately 30 leaf spectra were taken 
per tree from two trees per array (60 spectra per array). In 
total, 932 leaf spectra were recorded, with 469 from  aCO2 
arrays and 463 from  eCO2 arrays.

Fully expanded leaves were selected that were in the light 
exposed crown, avoiding leaves with significant herbivory. 
From the leaves accessible which met these criteria, every 
third leaf was sampled until 30 spectra had been taken per 
tree.

Reflectance spectra were recorded using a high-perfor-
mance single-beam field spectroradiometer over the range 
350–2500 nm using a LC-RP Pro leaf clip with active light 
source (HR-1024i spectrometer, Spectra Vista Corp, USA). 
The HR-1024i spectrometer combines three dispersion 
grating spectrometers which overlap in their wavelength 
ranges to produce continuous spectra from 350 to 2500 nm. 
The Very Near Infrared (VNIR) spectrometer measures in 
the range of 350–1000 nm with a 1.5 nm sampling inter-
val. The first SWIR spectrometer measures in the range of 
1000–1890 nm with a 3.8 nm sampling interval. The second 
SWIR spectrometer measures in the range of 1890–2500 nm 
with a 2.5 nm sampling interval. The spectrometer was cali-
brated before use by the NERC Field Spectroscopy Facility. 
The leaf clip attachment is coupled to the spectroradiometer 
via a 25° armoured fibre optic. The leaf clip forms a seal 
around the leaf to exclude external light and is illuminated 
by an internal lamp. The leaf reflectance is integrated within 
the field of view, approximately 2 cm diameter. An integrat-
ing sphere was not used, this allowed time efficient sampling 
in the canopy (six times faster) but may lead to overestima-
tion of total reflectance compared to measurements taken 
with single or double integrating spheres (Hovi et al. 2018). 
An integration time of 2 s was used for all measurements.

During leaf reflectance measurements, the spectrometer 
was referenced using the leaf clip’s incorporated reflective 
standard in the leaf clip every 5 min. The HR-1024i applies 
automatic dark signal baseline correction to every meas-
urement by taking a dark spectrum before each reflectance 
measurement.

The leaf clip was attached to the adaxial surface in the 
centre of each leaf, to the left of the midvein, making sure 
to avoid smaller veins.

Hyperspectral processing

High-resolution spectroscopy represents a computational 
and analytical challenge due to large datasets and auto-
correlation between wavelength variables; consequently, 
machine learning techniques are increasingly employed to 
identify key features in spectral datasets (Meza Ramirez 
et al. 2021). We used supervised and unsupervised machine 
learning analyses across the whole spectra to identify prin-
cipal components of variation and regions of the spectra 
that change under  eCO2, alongside conventional vegetation 
index analysis.

All leaf reflectance spectra were imported and processed 
using the SpecDAL package (Lee 2017) in Python 3 (Van 
Rossum and Drake 2009). The overlapping regions of the 
spectra produced by the three spectrometers comprising 
the HR-1024i were stitched to give a continuous spectrum 
from 350 to 2500 nm. The original reflectance spectra were 
interpolated to obtain data at 1.0 nm wavelength intervals. 
Absolute reflectance was calculated by multiplying relative 
reflectance spectra by the laboratory calibrated reflectance 
of the leaf clip’s reference standard panel (as calibrated by 
the NERC Field Spectroscopy Facility, panel manufactured 
by Spectra Vista Corp, USA).

Analysis of the hyperspectral dataset was carried out in 
R version 4.3.2 (R Core Team 2023) using the following 
packages: hyperspec (Beleites and Sergo 2017), hyperSpec.
utils (Mayer 2024), readr (Wickham et al. 2024a), dplyr 
(Wickham et al. 2023), tidyr (Wickham et al. 2024b), fac-
toextra (Kassambara and Mundt 2020), caret (Kuhn 2008), 
FactoMineR (Lê et al. 2008), tibble (Müller and Wickham 
2023), scutr (Ganz 2023), kableExtra (Zhu 2024), stringr 
(Wickham 2023), and effectsize (Ben-Shachar et al. 2020). 
The following packages were used for data visualisation: 
ggplot2 (Wickham 2016), viridis (Garnier et al. 2024), and 
ggpubr (Kassambara 2023).

Hyperspectral analysis

We calculated the mean total leaf reflectance for  eCO2 and 
 aCO2 exposed leaves by integrating reflectance across the 
wavelength range and assessed the effect of  CO2 treatment 
via linear mixed effect modelling.

We calculated the first ten principal components of the 
hyperspectral dataset and evaluated the percentage of vari-
ance explained by each component. Principle component 
analysis is an unsupervised method of dimension reduction. 
We then analysed the difference in values of the first four 
components between  CO2 treatments by visualisation, fol-
lowed by multivariate mixed effect modelling.

To assess the degree of difference between leaf spectra 
exposed to elevated versus ambient  CO2, we tested the ability 
of a machine learning model to predict  CO2 treatment from 
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leaf reflectance spectra. The spectral data were pre-processed 
with centring and scaling. Partial least squares discriminant 
analysis (PLSDA) models were trained on 70% of the leaf 
reflectance measurements (evenly split between leaves meas-
ured in ambient and elevated arrays), using tenfold cross-val-
idation. PLSDA models were calculated with up to 60 com-
ponents, and the accuracy of models with different numbers 
of components was evaluated to select an optimum number 
of components. The PLSDA model with the optimum num-
ber of components was then applied to unseen test spectra, 
and we evaluated the accuracy of the model’s predictions of 
which  CO2 treatment leaves had been exposed to. We used 
the cumulative wavelength importance to understand which 
wavelength regions were most important for class separation 
in the PLSDA model.

Vegetation indices

We calculated a range of vegetation indices from the leaf 
reflectance spectra and compared the average vegetation index 
values of leaves exposed to elevated versus ambient  CO2 using 
mixed effect modelling. The names, formulas, and original 
references of the vegetation indices are listed in Table 1.

Statistical analysis: mixed effects modelling

Our dataset contains a hierarchical structure, individual leaves 
belong to separate trees, arranged in arrays, which then receive 
different  CO2 treatments. We also took measurements over 

time, introducing a time series element to our dataset. To 
explicitly include these sources of variation in our analysis 
of the effect of  eCO2 on different elements of leaf reflectance, 
we used linear mixed effects modelling. Mixed effects model-
ling models the effect of fixed effects (such as  CO2 treatment) 
on response variables, as well as modelling the variation in 
response variable explained by random effects (such as hier-
archical structure or time-series). Throughout our analysis we 
used variations of the model:

The tree ID was used as a random effect throughout 
because it explained significant amounts of variation, 
whereas the array number did not explain any further vari-
ance when included alongside tree ID. Date of measure-
ment for a given tree also explained variance and so was 
included as a nested random effect. Model estimation was 
carried out using Restricted Maximum Likelihood (REML), 
with Satterthwaite’s approximation for degrees of freedom. 
Multivariate mixed effects modelling was used to model 
the response of the first four principal components to  CO2 
treatment.

When comparing  CO2 treatments, density plots are 
used instead of traditional box plots to display the data 
distribution.

Response variable ∼ CO2 + (1|Tree) + (1|Tree ∶ Date)

Table 1  Formula of common vegetation indices calculated from leaf reflectance

Vegetation index Equation References

Normalised
Difference
Vegetation Index

NDVI =
�800−�670

�800+�670
Rouse et al. (1974)

Modified
Chlorophyll
Absorption Ratio
Index

MCARI = [(�700 − �670) − 0.2 ∗ (�700 − �550)] ∗
(

�700

�670

)

Daughtry et al. (2000)

Photochemical
Reflectance Index

PRI =
�570−�530

�570+�530
Gamon et al. (1997)
Peñuelas et al. (1995a)

Plant Senescence
Reflectance Index

PSRI =
�680−�500

�750
Merzlyak et al. (1999)

Normalised Difference Nitrogen 
Index NDNI =

log
(

1

�1510

)

−log
(

1

�1680

)

log
(

1

�1510

)

+log
(

1

�1680

)

Serrano et al. (2002), Fourty et al. (1996)

Normalised Difference Lignin 
Index NDLI =

log
(

1

�1754

)

−log
(

1

�1680

)

log
(

1

�1754

)

+log
(

1

�1680

)

Serrano et al. (2002), Fourty et al. 
(1996), Melillo et al. (1982)

Normalised Difference Water 
Index

NDWI =
�860−�1240

�860+�1240
Gao (1996)

Normalised Phaeophytinisation 
Quotient Index

NPQI =
�415−�435

�415+�435
Peñuelas et al. (1995b), Barnes et al. 

(1992), Ronen and Galun (1984)
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Results

Integrated leaf reflectance

The average reflectance spectra of leaves exposed to  aCO2 
versus  eCO2 are visualised in Fig. 1. Visually, the reflectance 
of leaves exposed to  eCO2 was higher than those exposed 
to  aCO2, except for the green reflectance peak. At the green 
reflectance peak (540 nm), leaves exposed to  eCO2 had 
slightly lower reflectance than leaves exposed to  aCO2. The 
position of the Red-Edge does not visually differ between 
 CO2 treatments. The infrared reflectance peak between 2200 
and 2400 nm was elevated and slightly shifted towards lower 
wavelengths under  eCO2.

The mean integrated reflectance for leaves exposed to 
 eCO2 was 436.67 (95% CI: 432.40–440.93), whereas under 
 aCO2 treatment it was 423.18 (95% CI: 416.34–430.02). 
Using a linear mixed effects model, the average integrated 
leaf reflectance under  aCO2 was an intensity of 423.00 
(Standard Error (SE) = 6.93). Under  eCO2 integrated 
leaf reflectance was on average 13 units higher or 3.07% 

(SE = 9.81, Satterthwaite’s degrees of freedom (DF) = 5.97, 
Satterthwaite’s P = 0.23), though this was not statistically 
significant. Random effects analysis of the date of measure-
ment and tree ID showed that tree-to-tree variability in inte-
grated leaf reflectance accounted for 72.77 variance (Stand-
ard Deviation (SD) = 8.53), while date of measurement 
accounted for 356.67 variance (SD = 18.89). The residual 
variance in integrated leaf reflectance was 3523.52, indicat-
ing large variability which was not explained by  CO2 treat-
ment, the random effects of tree-to-tree, or date of measure-
ment variability. Inclusion of the array number as a random 
effect in the model did not explain any further variance.

Leaf reflectance principal component analysis

The first four principal components (PCs) cumulatively 
explained 97.2% of the total variance in hyperspectral leaf 
reflectance (Fig. 2b, PC1: 64.66%, PC2: 23.33%, PC3: 
7.04%, PC4: 2.31%). The first component (PC1) is loaded 
negatively loaded by wavelengths around the red edge 
(Fig. 2a), while the second component (PC2) is positively 

Fig. 1  Average percentage leaf reflectance spectra across the range of 
350–2500 nm of oak leaves exposed to ambient (red) versus elevated 
(blue)  CO2 treatments at the BIFoR FACE experiment. Shaded areas 

represent ± one standard deviation, with red shading for ambient  CO2 
and blue shading for elevated  CO2
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loaded by the red edge and wavelengths between 750 and 
1500 nm. The third principal component (PC3) is strongly 
positively loaded by wavelengths characterising the green 
peak (550 nm) and red edge (680–750 nm), and the fourth 
component (PC4) is strongly negatively loaded by wave-
lengths characterising the red edge (680–750 nm) and posi-
tively loaded by longer wavelengths. When individual leaf 
reflectance spectra are plotted against combinations of the 
first four principal components (Fig. 2c–f), the spectra show 
limited clustering by  CO2 dosage. Clustering by  CO2 dos-
age is clearer against components two and three (Fig. 2d), 
and three and four (Fig. 2f). As an unsupervised dimen-
sionality reduction method, principal component analysis 
reveals that  CO2 treatment has a limited diverging effect on 
values of the first four principal components of leaf reflec-
tance. Figure 3 shows the difference in density distribution 
of principal component scores between  CO2 treatments, the 

clearest difference is in component three which has a nar-
rower spread of lower scores under elevated  CO2 (Fig. 3c).

To assess whether  CO2 treatment significantly influenced 
leaf reflectance spectra as summarised by the first four prin-
cipal components, we fitted a multivariate linear mixed‐
effects model with  CO2 treatment as a fixed effect and ran-
dom intercepts for tree ID and nested date of measurement.

The model had an intercept of 0.066 (SE = 0.063) for 
ambient  CO2 and the fixed effect of  eCO2 treatment was 
estimated at − 0.1324 (SE = 0.089). However, this difference 
was not statistically significant (DF = 5.9, P = 0.19). Ran-
dom effects analyses indicated low between‐group variation. 
The tree-to-tree variance was 0.01 (SD = 0.10) and among 
the tree‐by‐date combinations 0.016 (SD = 0.13), while the 
residual variance (i.e., variation among individual leaves) 
was substantially larger (0.79; SD = 0.89). Adding the array 
as an additional level of random effect did not explain any 

Fig. 2  Principal component analysis (PCA) of the leaf reflectance 
spectra in the range 350–2500  nm of oak trees exposed to ambi-
ent (red) versus elevated (blue)  CO2 treatments at the BIFoR FACE 
experiment. a Wavelength (nm) loading of the first four principal 

components. b Scree plot of variance explained by increasing the 
number of principal component dimensions. c–f Leaf reflectance of 
trees exposed to ambient (red) versus elevated (blue)  CO2 treatments, 
plotted against combinations of the first four principal components
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further variation in the principal components of leaf reflec-
tance spectra.

Leaf reflectance partial least squares discriminant 
analysis (PLSDA)

Tenfold cross-validation of the PLSDA model on the train-
ing dataset had the highest accuracy with 44 components 
(Fig. 4, accuracy = 0.89). The 44-component PLSDA model 
had an accuracy of 0.88 (95% confidence intervals: 0.84, 
0.92) for assigning unknown leaf spectra to the correct  CO2 
treatment, sensitivity was 0.89, and specificity was 0.87. 
Compared to the ‘no information rate’ (assigning all spec-
tra to  aCO2 class), the PLSDA model was significantly more 
accurate (‘no information rate’ accuracy = 0.50, P < 2e−16). 
Between the two classes  (aCO2 and  eCO2), error rates were 
not significantly different (McNemar’s Test, P = 0.73). 
Figure 5 visualises the cumulative importance of different 
wavelengths in separating the reflectance spectra of  aCO2 
leaves from  eCO2 leaves. Key regions of importance include 
the upper edge of the green reflectance peak (565–580 nm), 
the water absorption region at 1400 nm, and the shortwave 
infrared peak at 1600–1720 nm. The 44-component PLSDA 
model was able to accurately separate leaf spectra exposed 
to  aCO2 from those exposed to  eCO2.

Vegetation indices

Linear mixed‐effects models were fitted to examine the 
impact of  CO2 treatment on each vegetation index, with ran-
dom intercepts for tree and for tree-by-date to account for the 
hierarchical structure. The results of these models are pre-
sented in Table 2.  CO2 treatment did not have a significant 
effect on the value of most of the vegetation indices tested 
except PSRI. Random effect analysis revealed moderate tree-
to-tree variation in all vegetation indices, and moderate vari-
ation between dates of measurement, although the majority 
of variation resided at the residual level indicating the pre-
dominant source of variation in most vegetation indices in 
this experiment was at the leaf level and was not affected by 
 CO2 treatment. Figure 6 visualises the distributions of veg-
etation index values of leaves exposed to ambient or elevated 
 CO2. Although MCARI did not differ significantly between 
 CO2 treatments, the distribution of values under  eCO2 is 
much narrower than under  aCO2 indicating reduced variance 
in MCARI values under  eCO2. Similarly, there is a narrower 
distribution of values around the median NDNI and NPQI 
values in leaves exposed to  eCO2.

PSRI was significantly higher in leaves exposed to  eCO2 
compared to  aCO2 (see Table 2, + 2.6 ×  102 PSRI relative 
to  aCO2, t (5.97) = 2.5, P = 0.049). Random effects analysis 
revealed moderate variability among trees (variance = 0.14, 
SD = 0.012) and dates (variance = 0.24, SD = 1.5 ×  10−4), 
although most of the variation resided at the residual level 
(variance = 1.8 ×  10−3, SD = 0.043). Leaves exposed to 

Fig. 3  Density plots showing 
the distribution of values of the 
first four principal components 
(PC1-4) in leaf reflectance 
spectra of oak trees exposed 
to ambient (red lines) versus 
elevated (blue lines)  CO2 treat-
ment. Vertical dashed lines indi-
cate mean principal component 
value per treatment (ambient in 
red, elevated in blue). Panel a 
represents principal component 
1, panel b represents principal 
component 2, panel c represents 
principal component 3, and 
panel d represents principal 
component 4. Data taken from 
mature Quercus robur trees at 
the BIFoR FACE experiment, 
Staffordshire
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 eCO2 exhibited higher PSRI values throughout the meas-
urement period, whereas the PSRI of leaves exposed to  aCO2 
increased steadily from July to October. Figure 6i shows 
how the average PSRI per  CO2 treatment changed over time.

Discussion

Our analysis shows that most regions of mature Q. robur 
leaf reflectance spectra and derived vegetation indices were 
not significantly affected by  eCO2 treatment after 7 years of 
 eCO2 exposure, except in the case of PSRI which was higher 
in  eCO2 exposed leaves.

In our study, leaves exposed to  eCO2 showed a non-sig-
nificant trend of increased the integrated leaf reflectance, 
3.2% higher than leaves exposed to  aCO2. Leaf reflectance 
measurements taken with an integrating sphere give a more 
accurate measurement of total leaf reflectance and any 
albedo effects by including all possible angles of reflectance, 
however, when taking many measurements in the forest 
canopy the speed and practicality of leaf clip reflectance 

measurements outweighed any benefits an integrating sphere 
may have offered. Thomas et al. who found a significant leaf 
reflectance under  eCO2 in saplings of tropical tree species 
using an integrated sphere, although the extent of reflectance 
increase varied from 9% to 23% by species (Thomas 2005). 
It has been suggested that such changes could affect forest 
albedo (Thomas 2005). Forest albedo, which refers to the 
amount of solar radiation reflected back to the atmosphere 
by forests, plays a critical role in regulating the Earth’s cli-
mate and is a source of uncertainty in the radiation budget 
of climate models (Alibakhshi et al. 2020). Forest albedo is 
influenced not only by forest structure but also by leaf-level 
optical properties (Hollinger et al. 2010; Meunier et al. 2022; 
Henniger et al. 2023). For example, in China, forest greening 
between 2002 and 2019 was accompanied by an increase in 
shortwave albedo (Yan et al. 2021). Luyssaert et al. high-
lighted the lack of consideration of changes to forest albedo 
in the management of forests aimed at offsetting  CO2 emis-
sions (Luyssaert et al. 2018). Despite this, the effect of  eCO2 
on forest albedo remains understudied. Our results suggest 
that in the long-term  eCO2 may not have a significant effect 

Fig. 4  Cross-validation tuning of a partial least squares discriminant 
analysis (PLSDA) model to separate leaves exposed to elevated ver-
sus ambient  CO2 by their reflectance spectra. Model accuracy is plot-

ted against number of model components, with the optimum number 
of model components for maximum accuracy highlighted as a red cir-
cle (44 components, 0.89 accuracy)
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on the total leaf reflectance of mature Q. robur, but more 
detailed analysis of total leaf reflectance and transmission 
using an integrating sphere would be necessary to predict 
the affect of  eCO2 on oak forest albedo. Further analysis is 
needed to understand how the total reflectance of different 
mature tree species will respond to future  CO2 concentra-
tions, as well as the effect on temperate forest albedo.

As hypothesised, the spectral reflectance profile of leaves 
exposed to  eCO2 was similar to that of leaves exposed to 
 aCO2. The spectral signature as summarised by the first four 
principal components was not significantly affected by  CO2 
treatment after accounting for hierarchical structure. The 
large residual in the mixed effects model of principal com-
ponents suggests that most of the variation in leaf reflectance 
spectra arose at the leaf level rather than at the tree or tem-
poral level. Most of the vegetation indices examined also did 
not respond to  CO2 treatment, although the reduced spread 
of MCARI, NDNI, and NPQI values under  eCO2 could 
indicate some form of directional response. The majority 
of previous studies which have examined the effect of  eCO2 
on the leaf reflectance of trees have also not found a sig-
nificant  eCO2 effect in mature Quercus pubescens (Stylinski 
et al. 2000), in young Acer saccharum (Carter et al. 2000), 
in mature Liquidambar styraciflua (Wicklein et al. 2012), 

nor in mature Eucalyptus tereticornis (Wujeska-Klause et al. 
2019). Significantly increased reflectance in the green peak 
and red edge was reported in Pinus strobus L exposed to 
 eCO2 (Carter et al. 1995).  eCO2-induced spectral changes 
have also been reported in crops (Gray et al. 2010; Tormena 
et al. 2019). On balance, the lack of  eCO2 response in the 
spectral profile of Q. robur in this study is in keeping with 
previous research in deciduous tree species. This suggests 
the spectral profile of future deciduous forests will not be 
broadly altered by future  CO2 concentrations.

Our PLSDA model is useful in highlighting the regions 
of the spectra which differed most between  CO2 treatments 
and so answering the question “how does  eCO2 affect leaf 
reflectance?” in a nuanced way. The key regions of differ-
entiation were the upper edge of the green reflectance peak, 
the water absorption region at 1400 nm, and the shortwave 
infrared peak around 1650 nm. First, the green reflectance 
peak is affected by the overlapping reflectance peaks of 
different chlorophyll, carotene, and anthocyanin pigments 
(Sims and Gamon 2002), so changes in the upper edge green 
peak reflectance could reflect a change in one or multiple 
pigment concentrations.

The 1400 nm water absorption peak was also important 
in differentiating between leaves exposed to different  CO2 

Fig. 5  Cumulative wavelength (nm) importance for class separation 
of  CO2 treatments (ambient  CO2 versus elevated  CO2) by leaf reflec-
tance spectra in partial least squares discriminant analysis (PLSDA) 

model. Colours indicate the importance of each wavelength to the 
discrimination model
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treatments. In a different species of oak (Quercus agrifolia), 
the 1650 nm peak has also been shown to correspond to leaf 
water status (Pu et al. 2003), but it has not been explicitly 
characterised in Q. robur. In a global meta-analysis,  ECO2 
has been shown to increase leaf water content under drought 
conditions (Wang et al. 2022). Generally,  eCO2 has been 
found to increase vegetation’s water use efficiency (WUE) as 
a result of stomatal closure and/or increased photosynthetic 
activity (Gilbert et al. 2011; Gardner et al. 2023). Addition-
ally, in the BIFoR FACE experiment, there were no signifi-
cant changes to water use under  eCO2.

Wavelengths in the 1650  nm reflectance peak were 
the most important in the PLSDA model’s differentiation 
between  CO2 treatments. Tormena et al. (2019) also iden-
tified a response to  eCO2 in coffee leaf reflectance bands 
around 1657 nm and 1698 nm via PLSDA (Tormena et al. 
2019). The 1650 nm peak is an indirect reflectance band, 
due to chemicals such as cellulose (Curran 1989) and 
affected by leaf water content (DANSON et al. 1992; Tian 
et al. 2001). The cell wall hemicellulose content increased 
in Betula pendula leaves exposed to  eCO2 (Oksanen et al. 
2005), but the effect of  eCO2 on leaf cellulose content in oak 
species has not been well examined. More broadly,  eCO2 has 
been shown to increase leaf carbohydrate content (Kinney 
et al. 1997; Agrell et al. 2000; Coley et al. 2002), and at 
the BIFoR FACE experiment foliar carbon content in fresh 
leaves was significantly higher under  eCO2 (Roberts et al. 
2022), which could include changes to cellulose content. 
While firm conclusions cannot be drawn from the PLSDA 
analysis, the importance of wavelengths in the upper green 
reflectance, water absorption band, and 1650 nm peak are 
useful to highlight as directions for future investigation of 
the foliar effects of  eCO2 in mature deciduous trees.

The one vegetation index which  CO2 treatment had a sig-
nificant effect on was PSRI. PSRI is sensitive to the ratio of 
carotene to chlorophyll pigments in the leaf and is used as a 
quantitative measure of senescence-induced degradation of 
chlorophyll (Merzlyak et al. 1999). PSRI was significantly 
higher under  eCO2 and was elevated early in the growing 
season compared to trees exposed to  aCO2. This indicates 
changes in the relative content of carotenes and chlorophyll 
under  eCO2. Since no changes in chlorophyll content have 
been found with  eCO2 treatment at BIFoR FACE (Gardner 
et al. 2022b), the increase in PSRI is more likely to be due 
to increased carotene content than decreased chlorophyll. 
Reductions in carotene content with eCO2 treatment have 
been found previously (Loladze et al. 2019). In the only 
study on Q. robur, the decrease in carotenoid content under 
 eCO2 was not significant (Schwanz and Polle 2001), but 
this study was on seedlings in pots so may not be transfer-
rable to adult trees in a mature forest. Norby et al. (2024) 
reported leaf loss started earlier in some years under  eCO2 
at the BIFoR FACE experiment, which could also lead to Ta
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earlier chlorophyll breakdown and elevated PSRI (Norby 
et al. 2024). Other FACE experiments have also reported 
extended senescence (Sigurdsson 2001), although in pop-
lar senescence was delayed by  eCO2 (Cotrufo et al. 2005; 
Taylor et al. 2008). In tree seedling experiments white birch 
and basswood, autumn senescence accelerated under  eCO2 
(Li et al. 2019; Tedla et al. 2020). Ontogeny is easier to 
study in herbaceous plants, but there are also mixed effects 
of  eCO2 on herbaceous plant senescence (Curtis et al. 1989; 
de la Mata et al. 2012). We would encourage future work 
to examine the pigment concentrations of leaves from the 
BIFoR FACE experiment via HPLC, to quantify the changes 
in carotenes indicated by our spectral data and how pigments 
change seasonally in relation to senescence.

In large scale ecosystem manipulation experiments, like 
the BIFoR FACE experiment, engineering and financial 
constraints limit the number of replicate arrays and thus 
limit the “n” of the study. With small numbers of replicate 
arrays, very large changes are needed between treatments 
to produce statistically significant results using traditional 

statistical methods (Norby et al. 2024). Mixed effect model-
ling goes someway to address this issue. However, the value 
of observations from large ecosystem manipulation experi-
ments should not be dismissed on account of the difficulty 
in producing statistically significant results while avoiding 
pseudo-replication (Davies and Gray 2015).

Conclusion

Long-term exposure to  eCO2 did not significantly change the 
intensity of leaf reflectance or the overall spectra of mature 
Q. robur trees. However, the Plant Senescence Reflectance 
Index (PSRI) increased under  eCO2 conditions, indicating a 
change in the ratio of chlorophyll to carotene pigments. Our 
analysis also highlighted reflectance changes in the infrared 
spectrum, which may correspond to alterations in leaf water 
content and carbohydrate content. Hyperspectral leaf reflec-
tance is a useful tool for understanding the consequences 

Fig. 6  a–h Density plots showing the distribution of values of range 
of vegetation indices of oak leaves exposed to ambient (in red) or ele-
vated (in blue)  CO2 treatment. Dashed lines indicate the mean value 

of each vegetation index for each  CO2 treatment. i Time series of 
mean Plant Senescence Reflectance Index (PSRI) for each  CO2 treat-
ment
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of future atmospheric CO₂ concentrations on foliar features 
such as pigments.
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