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Abstract

Identifying the drivers of ecosystem dynamics, and how responses vary spatially

and temporally, is a critical challenge in the face of global change. Grasslands in

sub-Saharan Africa are vital ecosystems supporting biodiversity, carbon storage,

and livelihoods through grazing. However, despite their importance, the pro-

cesses driving change in these systems remain poorly understood, as cross-scale

interactions among drivers produce complex, context-dependent dynamics that

vary across space and time. This is particularly relevant for woody vegetation

dynamics, which are often linked to degradation processes (e.g., woody

encroachment), with consequences for biodiversity, forage availability, and fire

regimes. Here, we used satellite data and structural equation models to investi-

gate the effects of rainfall, temperature, fire, and population density on woody

vegetation dynamics in four African grassland regions (the Sahel grasslands,

Greater Karoo and Kalahari drylands, Southeast African subtropical grasslands,

and Madagascar) during 1997–2016. Across all regions, rainfall was consistently
positively correlated with increased woody vegetation, while higher tempera-

tures were associated with decreased woody vegetation, suggesting that water

availability promotes woody plant growth, whereas rising aridity limits it.

Unexpectedly, fire had a negative effect on woody cover only in the Greater

Karoo and Kalahari drylands, while in Madagascar, higher temperatures and

greater population density reduced fire; yet these relationships did not translate

into significant indirect effects on woody vegetation. These findings illustrate

the complex ways by which environmental and anthropogenic drivers shape

woody vegetation dynamics in grasslands across sub-Saharan Africa. Compared

to savannas, fire plays a weaker and more region-specific role in grasslands,

where its feedback with woody cover is less consistent. The opposing effects of

rainfall and temperature may currently constrain woody expansion, but climate

change could disrupt this balance and further weaken fire’s limited regulatory

role. These differences highlight the need for management strategies tailored to

the distinct climate–vegetation dynamics of grassland systems.

Introduction

Understanding how global environmental change will

affect natural ecosystem dynamics is a central challenge in

ecology. Gaining such understanding is made difficult by

the complexity of natural systems, with changes that are

often context-dependent across space and time (Spake

et al., 2022) due to cross-scale interactions among drivers

(Spake et al., 2019). Grasslands are a key biome for which

context dependency in the drivers affecting ecosystem

dynamics is common yet poorly understood (Bardgett

et al., 2021; Li et al., 2024).
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Grassy ecosystems, including grasslands and savannas,

comprise approximately one-third of terrestrial ecosys-

tems and are subject to widespread degradation that is

leading to increasing concern for both biodiversity and

human well-being (Bardgett et al., 2021; Str€omberg & Sta-

ver, 2022). This is particularly true for the African conti-

nent, where grassy ecosystems constitute the dominant

vegetation cover, host diverse endemic faunas and flora,

and provide a multitude of material and non-material

benefits to humans (Osborne et al., 2018). Here, domi-

nant drivers of loss and degradation include climate

change, conversion to cropland or forest, fire suppression,

and overgrazing (Parr et al., 2024; Stevens et al., 2022). In

addition, interactions among these drivers often trigger

degradation processes. Woody plant encroachment, for

instance, impoverishes grassy ecosystems as woody vegeta-

tion replacing the grass layer pushes the system toward a

secondary state (e.g., shrubland, woodland) (Nerlekar &

Veldman, 2020) with lower herbaceous plant diversity

and palatability (Venter et al., 2017; Wieczorkowski &

Lehmann, 2022).

Understanding the drivers of grassy ecosystem dynam-

ics and their interactions over time and space is essential

for improving predictions of how these ecosystems will

respond to global environmental change and ultimately

preventing their degradation (Abdi et al., 2022). However,

this is complex due to the numerous direct and indirect

processes related to climate, soil, and disturbances (Pausas

& Bond, 2020), and because grassy ecosystems encompass

both grasslands and savannas, that is, two distinct

sub-ecosystems where these processes may not operate in

the same way (Bardgett et al., 2021).

Grasslands are ecosystems dominated by indigenous

(i.e., native) or natural (i.e., established through natural

processes such as seed dispersal by wind or animals) grass

species, differing from savannas, which are transitional

woody–herbaceous systems between grassland and forest

(Allen et al., 2011). Grasslands exist below 650–1000 mm

of annual rainfall (mm/year), while forests generally occur

above 2500 mm/year (Aleman et al., 2020; Mayer & Kha-

lyani, 2011). Savannas are found between these ranges,

with the grassland–savanna–forest transition largely deter-

mined by interactions between rainfall, vegetation, and

fire (Pausas & Bond, 2020). Shady, rainy environments

inhibit flammable conditions and hamper grass growth,

which suppresses fire and promotes woody plant estab-

lishment (Wei, Wang, Brandt, et al., 2020). In contrast,

seasonal rainfall sustains open systems promoting the col-

onization of flammable grasses, which in turn intensifies

fires and excludes woody plants at rates that may vary

with different rainfall accumulation periods before the fire

season (Archibald et al., 2009). Accordingly, the feedback

between fire and woody vegetation is generally negative,

that is, one suppresses the other. However, the interplay

between rainfall, vegetation, and fire is more complex and

influenced by other drivers. Intensive rainfall before or

after the core wet season, for instance, can promote

woody over grassy vegetation (Brandt et al., 2019). Mean-

while, increasing temperature could trigger fires either by

facilitating seasonal fuel curing or as C4 grasses have

high-temperature photosynthesis, which leads to fast bio-

mass build-up in warmer ecosystems (Lehmann

et al., 2014). Yet the opposite was also observed, as a

recent sequence of drought years caused a decrease in fuel

loads and fire events (Wei, Wang, Fu, et al., 2020). Fur-

ther, anthropogenic factors such as land cover changes,

increasing atmospheric CO2, and management practices

can also have either positive or negative effects on woody

vegetation and fire activity (Alvarado et al., 2020; Hansen

et al., 2013).

These examples highlight that while we know the over-

all drivers of woody vegetation dynamics in grassy ecosys-

tems for sub-Saharan Africa, the degree to which their

effects change across space and time remains unclear. Part

of this inconsistency may relate to the fact that, generally,

large-scale studies do not explicitly assess grasslands but

rather consider grasslands and savannas together or inves-

tigate ecosystems based on aridity levels. This potentially

conflates any different responses these two types of grassy

ecosystems may have to changes in climate, disturbances,

and their interactions. Remote sensing offers a powerful

tool to address this challenge by providing accessible, spa-

tially explicit, and repetitive observations of environmen-

tal and anthropogenic variables, aiding in the assessment

of various ecological processes in grasslands and savannas

as distinct ecosystems (Masenyama et al., 2022). While

optical-based indexes such as the normalized difference

vegetation index, the enhanced vegetation index, and the

leaf area index are widely used resources for grassland

dynamic assessments (Wang et al., 2022), recent studies

have highlighted the effectiveness of other remote sensing

technologies (e.g., microwave-based, hyperspectral, or

very high-resolution data) in investigating terrestrial eco-

systems and enhancing monitoring capabilities (e.g.,

Brandt et al., 2018, 2020; Brown et al., 2024). However,

these technologies remain underutilized in grassland stud-

ies (Ali et al., 2016). Here we used microwave- and

optical-based satellite data and structural equation models

(SEMs) to quantify the relative importance of environ-

mental and anthropogenic variables in driving woody

dynamics across major grasslands of sub-Saharan Africa.

Through a hypothesis-driven approach, we examined

both direct and indirect (i.e., mediated by fire) effects of

these variables, aiming to identify regional pathways

determining the likelihood of grasslands transitioning to a

woody state. We hypothesized a prevailing direct role of
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rainfall on woody vegetation and fire. Similarly, we antici-

pated negative feedback between fire and woody vegeta-

tion and dry season rainfall to promote woody

vegetation. We did not have any specific expectations

regarding direct or indirect effects of temperature and

human population density on woody vegetation. We did

not try to anticipate to what extent support for each

hypothesis varied across space and time. These hypotheses

are based on the literature for grassy ecosystems in gen-

eral, so they may be less relevant for grasslands. Under-

standing if this is the case is a key focus of our study.

Materials and Methods

Study area

The European Space Agency (ESA) Climate Change Initia-

tive (CCI) Land Cover programme aims to maximize the

potential of long-term satellite data to produce accurate

land cover classification for effective land dynamic and cli-

mate modeling studies. The ESA CCI land cover map

(v2.0.7, 300 m spatial resolution) describes the land surface

in 22 classes following the United Nations Land Cover Clas-

sification System (UN-LCCS) (ESA, 2017). Here we used

this product to define grasslands in sub-Saharan Africa by

selecting classes 110 (mosaic herbaceous cover >50% and

tree and shrub <50%) and 130 (grassland) and excluding

areas dominated by croplands, trees, or where the herba-

ceous cover is lower than 50%. By doing so, we were able to

produce a strict grassland mask that (i) fits our interest in

naturally grass-dominated ecosystems (as opposed to more

mixed grass-tree savanna regions) and (ii) matches the clas-

sification of grassland of the Intergovernmental Panel on

Climate Change (ESA, 2017). Later, to account for

context-dependency (e.g., ecological and climatic heteroge-

neity that exists across Africa, distinct socio-ecological his-

tories among regions), we opted to subdivide grasslands by

applying the One Earth Bioregions framework (One

Earth, 2020). This framework aggregates similar (Dinerstein

et al., 2017) terrestrial ecoregions into larger-scale ecologi-

cal systems that are therefore better suited for broad

regional assessments (e.g., our study). The four One Earth

Bioregions are Sahel Acacia savannas (hereafter referred to

as Sahel grasslands for clarity), Greater Karoo and Kalahari

drylands, Southeast African subtropical grasslands, and

Madagascar (Fig. 1). More preprocessing information on

how we produced the grassland mask is reported in

Appendix S1.

Data

Table 1 provides an overview of the key features of the

datasets used in this study. All data were resampled to a

common spatial resolution of 25 km 9 25 km, the coars-

est among our datasets, using the aggregate and resample

functions from the R package ‘terra’ (Hijmans

et al., 2022). Our analysis covers the period from 1997 to

2016, which corresponds to the time span available across

all datasets.

Vegetation optical depth (VOD) describes the attenua-

tion of the microwave signal by the vegetation layer

(Meesters et al., 2005). It is proportional to the vegeta-

tion water content of aboveground vegetation, so higher

VOD values indicate high vegetation water content and

more energy attenuation (e.g., dense vegetation), whereas

lower VOD values refer to limited vegetation water con-

tent, little attenuation, and higher transmissivity (e.g.,

sparse vegetation) (Chaparro et al., 2024). Compared to

optical-based products, VOD is insensitive to atmo-

spheric haze and dust, cloud cover, or sun illumination

(Li et al., 2021). We used the VOD Climate Archive

(VODCA) Ku band (18.70–19.35 GHz) to exploit the

longest available time series and because of its good level

of agreement with other VOD, leaf area index, and vege-

tation continuous field global products (Moesinger

et al., 2020). Here we took annual minimum values to

reduce the effects of the green herbaceous layer and

Figure 1. Grassland extent as obtained from the ESA CCI land cover

map (classes 110, i.e., herbaceous cover >50% and tree and shrub

<50%, and 130, i.e., grassland) and indicated by the One Earth

framework (One Earth, 2020). The four bioregions are Sahel

grasslands (780 pixels), Greater Karoo and Kalahari drylands (287

pixels), Southeast African subtropical grasslands (271 pixels), and

Madagascar (319 pixels) (see also Appendix S1).

742 ª 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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produce a VOD signal that is more representative of the

general woody cover community (e.g., shrubs, small

trees, large trees). This is a common approach in remote

sensing-based assessments of arid and semi-arid ecosys-

tems (e.g., Andela et al., 2013, 2017; Brandt et al., 2017;

D’Adamo et al., 2021; Forkel et al., 2019), as supported

by previous studies showing strong agreement between

VOD and in-situ measurements of woody vegetation in

drylands (Tian et al., 2016, 2017). Burned area data were

obtained from the Global Fire Emissions Database

(GFED), v4s. This product provides burned area from

GFED4 complemented with the contribution of small

fires (s), among other data (e.g., fire carbon, dry matter

emissions) (van der Werf et al., 2017). Burned area rep-

resents a direct estimate of fire impacts on ecosystems

and has the advantage of persisting on the land surface,

thus preventing potential fire data gaps due to cloud

and smoke cover spells (Andela et al., 2017). We first

converted monthly burned area fraction (dimensionless)

to monthly burned area (ha) using the ancillary grid

map (m2) that is embedded with the data and, second,

we aggregated monthly burned area into annual sum

composites. Daily rainfall data from Climate Hazards

group Infrared Precipitation with Stations (CHIRPS

v2.0) (Funk et al., 2015) were used to produce annual

sums (mm year�1) and to calculate the dry season rain-

fall (Liebmann et al., 2012) (Appendix S2). Uncertainty

assessments based on mean absolute error have shown

that CHIRPS data outperform many other products,

including both those that incorporate gauge stations and

those that do not, as well as reanalysis data (Beck

et al., 2017; Funk et al., 2015). Temperature data were

obtained from the Climatologies at High resolution for

the Earth’s Land Surface Areas (CHELSA v2.1) (Karger

et al., 2017). Compared to the deprecated v1.2 version,

CHELSA v2.1 replaces ERA-Interim with ERA5 reanaly-

sis atmospheric temperature as input. This shift

introduced a change in the lapse rate calculation, now

based on pressure levels between 950 and 850 hPa rather

than across the entire atmosphere (Karger et al., 2021).

While this change may affect high-altitude regions where

temperature gradients are steeper, it is unlikely to influ-

ence the results for low-altitude areas, such as the grass-

lands investigated here, where temperature variation with

elevation is less pronounced. Validation exercises have

shown that CHELSA v2.1 achieves similar accuracy to

other global temperature products (Karger et al., 2017).

Monthly data from daily means of synoptic hourly tem-

perature at 2 metres were converted from Kelvin to Cel-

sius and then averaged to produce annual mean

composites. Soil moisture data were taken from the ESA

CCI program (Dorigo et al., 2017). Produced as an

active, passive, and active-passive merged product, we

used the merged product (v04.2) as it combines the

advantages of active (better for averagely vegetated areas)

and passive (preferable over sparse vegetation and at dis-

tinguishing between wet and dry soils) observations

(Gruber et al., 2019). We created annual soil moisture

composites by summing only good quality daily data

(i.e., pixels without issues) each year (m3 m�3). Soil

moisture data were used to assess the role of soil mois-

ture on woody vegetation and the effect of moisture

availability on fire (Lehmann et al., 2014). The Gridded

Population of the World (GPWv4) dataset provides spa-

tially explicit global distribution of the human popula-

tion (CIESIN, 2018). GPWv4 data do not rely on

ancillary data sources (e.g., land cover, vegetation indi-

ces), thus precluding potential problems of collinearity

with VOD (Brandt et al., 2017). We used population

density data (persons km�2) adjusted to the 2015 revi-

sion of the United Nations World Population Prospects

to investigate the effect of people on woody vegetation

and fire dynamics (Archibald et al., 2010; Brandt

et al., 2017). A continuous population density time

Table 1. The datasets used for our analysis and their main characteristics. Rainfall data were used to calculate annual sums as well as dry season

rainfall (see Appendix S2).

Name Data Time series Resolution References

VODCA VOD (unitless) 1987–2017 Monthly 25 km 9 25 km Moesinger et al. (2020)

GFED Burned area (ha) 1997–2016 Monthly 25 km 9 25 km van der Werf et al. (2017)

CHIRPS Rainfall (mm year�1)

Dry season rainfall (mm)

1981 to near present Daily 5 km 9 5 km Funk et al. (2015)

CHELSA Temperature (°C) 1980–2019 Monthly 1 km 9 1 km Karger et al. (2017)

ESA CCI SM Soil moisture (m3 m�3) 1987–2016 Daily 25 km 9 25 km Dorigo et al. (2017)

GPW Population density (persons km�2) 1995–2020 Annual 1 km 9 1 km CIESIN (2018)

Abbreviations: CHELSA, Climatologies at High Resolution for the Earth’s Land Surface Areas; CHIRPS, Climate Hazards Group Infrared Precipitation

with Stations; ESA CCI SM, European Space Agency Climate Change Initiative for Soil Moisture; GFED, Global Fire Emissions Database; GPW,

Gridded Population of the World (see text for more details); VODCA, Vegetation Optical Depth Climate Archive.
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series was produced using the available data (i.e., 2000,

2005, 2010, 2015, and 2020) to interpolate missing years

(Abel et al., 2020).

Statistical analysis

Structural equation modeling (SEM) is a probabilistic tool

that allows the inclusion of multiple dependent and inde-

pendent variables with different distributions in a single

framework (Lefcheck, 2016). Unlike standard regression,

SEM is capable of evaluating both direct and indirect

effects among variables, which is typical within complex

natural ecosystems (Fan et al., 2016). Here we used an

SEM approach as it is a useful tool for testing causal rela-

tionships hypothesized from theory and knowledge (Leh-

mann et al., 2014). Our statistical modeling workflow

consisted of four steps:

1. Hypotheses: We reviewed the literature on direct and

indirect relationships among variables in the grassland-

savanna-forest transition (Fig. 2A) (see Introduction).

Based on this, we created an initial most plausible

hypothesis (represented by a causal structure), which

we then modified to both simpler and more complex

hypotheses to account for all ecologically reasonable

combinations among variables (corresponding to alter-

native causal structures) (Fig. 2B). This exercise also

allowed us to assess whether simpler SEMs are able to

explain grassland dynamics better than more complex

ones. We ended up with a total of 37 plausible hypoth-

eses, each of which was formalized as an individual

causal SEM structure (Appendix S3). All SEMs have

VOD as the main response variable, with the effect of

the other variables quantified directly and/or indirectly

via burned area. Two exceptions were dry season rain-

fall and previous year VOD, which we deemed reason-

able predictors of VOD only (Brandt et al., 2019) and

were not included as indirect predictors of VOD to

avoid any circular causality problems (Bowman

et al., 2015). Annual rainfall was specified as a predic-

tor of both VOD and burned area. We acknowledge

that fire regimes may be better explained by rainfall

preceding the fire season, yet we only used annual

rainfall as it was strongly collinear (Pearson’s

r > 0.774) with rainfall metrics accumulated over 6,

12, 18, and 24 months before the fire season

(Appendix S4) (Karp et al., 2023).

2. Model runs: All SEMs were run using the psem func-

tion in the R package ‘piecewiseSEM’ (Lefcheck

et al., 2020). Rather than fitting continent-wide models

with all years, separate models were fit for each biore-

gion (i.e., Sahel grasslands, Greater Karoo and Kalahari

drylands, Southeast African subtropical grasslands, and

Madagascar) and year (i.e., 1997–2016) to be able to

account for both the spatial and temporal dependency

structures of the data and, importantly, to assess to

what extent support for each hypothesis varied across

space and time. Preliminary model runs revealed

strong spatial autocorrelation (SAC) in the residuals,

indicated by statistically significant (P < 0.001) Mor-

an’s I values and correlograms (Dormann et al., 2007).

To account for SAC, SEMs were embedded with spatial

autoregressive error models produced with the error-

sarlm function in the R package ‘spatialreg’ (Bivand,

Piras, et al., 2022). Errorsarlm models handle SAC

through spatial weighting matrices computed as the

Euclidean distance between neighboring sites (i.e.,

pixels) (Bivand & Wong, 2018). We calculated spatial

weighting matrices using the dnearneigh function from

the R package ‘spdep’ (Bivand, Altman, et al., 2022),

setting the lower and upper distance bounds at 0 and

39 km, respectively (39 km is the distance that allows

all pixels to be linked to at least another pixel, includ-

ing some farther pixels at the edge of the bioregions).

The upper distance bound of 39 km did not vary sig-

nificantly across bioregions as the data are regularly

gridded (Appendix S5). SEM path coefficients were

calculated as standardized regression coefficients (b) to
enhance comparability across responses of different

units. The indirect effect of a variable on VOD was

calculated by multiplying the b coefficients of the two

respective paths.

3. Model selection: We used Fisher’s C and chi-squared

(v2) goodness of fit measures to identify SEM specifi-

cations that best reproduce the relationships among

the variables in the sample data (hereafter well-fitted

SEMs). Fisher’s C is calculated as negative two times

the sum of the natural logarithms of the p-values from

all unspecified paths, and a resulting P > 0.05 suggests

that the model is well structured (i.e., no paths are

missing) (Haynes et al., 2022). Similarly, v2 tests

whether there is a discrepancy between the

model-implied and observed covariance matrices, and

also in this case P > 0.05 is recommended (Fan

et al., 2016). In each year and each bioregion, we

therefore selected only SEMs showing P > 0.05 for

Fisher’s C and v2. The number of well-fitted SEMs was

then refined by calculating the difference in the Akaike

information criterion (DAIC) between each SEM and

the SEM with the lowest AIC (Cade, 2015) and select-

ing only SEMs with DAIC <3 (hereafter final SEMs)

(Burnham et al., 2011). We present the results for each

bioregion by performing natural model averaging of

the final SEM b coefficients both annually with 95%

confidence intervals (CIs) and averaging over the entire

1997–2016 period. We took this approach as the values

of the statistically significant b coefficients did not

744 ª 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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change appreciably over time (coefficient of variations

<5%). Effects were classified as weak, moderate, or

strong depending on whether their absolute mean was

below one, between one and two, or above two stan-

dard deviations, respectively. Full results for each bio-

region, including the list of final SEMs, Fisher’s C with

P-values, chi-squared with P-values, degrees of free-

dom, DAIC, Nagelkerke R2, b coefficients with

P-values and 95% CIs, as well as the standard devia-

tion and coefficient of variation of b coefficients for

each year, are reported in Appendix S6.

4. Model evaluation. Although final SEMs were selected

via satisfactory Fisher’s C, v2, and DAIC values, we fur-

ther evaluated them by calculating Nagelkerke r2 and

plotting residuals against fitted values for each variable

included and not included in the model, latitude and

longitude, and time (Zuur & Ieno, 2016)

(Appendix S7). This step is important to assess the

goodness of fit of any saturated SEMs (i.e., all variables

are linked), as these have no degrees of freedom (Cor-

tina et al., 2017). The four-step statistical modeling

workflow is shown in Fig. 3.

The preprocessing we computed before the statistical

analysis is detailed in Appendix S8. All analyses were per-

formed within the R environment, version 4.2.1 (Posit

Team, 2023).

Results

Only about 12% of our 37 hypothesized SEM causal

structures could satisfy the criteria for selection as final

SEMs each year (Tables S6.1, S6.3, S6.5, S6.7). Notably,

simple SEM structures were systematically excluded from

this subset, indicating that the observed direct and indi-

rect relationships were better captured by the more com-

plex structures.

Figure 2. The key elements in the grassland-savanna-forest transition as commonly reported in the literature (see Introduction) and their

described overall effect (positive (+), negative (�), or both (+/�)) on woody vegetation and fire (in gray are the variables excluded from the

analysis as not available for our study regions during 1997–2016) (A). The initial hypothesis (left), and an example of a simpler (middle) and more

complex (right) hypothesis as indicated by the corresponding SEM causal structure. Vegetation optical depth (VOD) is the main response variable.

Burned area (BA) is both a predictor and response variable. Other variables are annual rainfall (Rain), temperature (T), dry season rainfall (DSR),

population density (PD), soil moisture (SM), and previous year VOD (VODyr-1). The full list of the 37 SEM causal structures is reported in

Appendix S3 (B).
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In Sahel grasslands, rainfall showed a strong positive

direct effect on both VOD (average b = 0.216) and

burned area (b = 0.256) (Fig. 4A). VOD showed a mod-

erate negative direct relationship with temperature

(b = �0.216) while being largely unaffected by other vari-

ables. As expected, previous year’s VOD was a strong pre-

dictor of VOD (b = 0.511) (Fig. 4A and Table S6.2). The

Greater Karoo and Kalahari drylands and Southeast Afri-

can subtropical grasslands showed overall similar relation-

ships regarding the effects of rainfall on VOD and burned

area, temperature on VOD, and previous year’s VOD on

VOD (b coefficients of the remaining relationships were

largely negligible) (Fig. 4B,C and Tables S5.4 and S5.6).

In addition, in the Greater Karoo and Kalahari drylands,

we also found a weak negative direct effect (b = �0.031)

of burned area on VOD. This is likely because the Greater

Karoo and Kalahari drylands are the only bioregion where

VOD significantly increased during 1997–2016, which

indicates a potential increase in woody vegetation and,

therefore, stronger feedback with burned area (Fig. S9.2).

Madagascar also featured a positive relationship between

rainfall and both VOD (b = 0.126) and burned area

(b = 0.208) and a moderate negative direct effect of tem-

perature on VOD (b = �0.037), yet here, we observed a

strong negative direct effect of both temperature

(b = �0.429) and population density (b = �0.354) on

burned area (Fig. 4D and Table S6.8). Noticeably, both

these variables showed a sharp change during 1997–2016
(Fig. S9.4).

Three key features were shared by all bioregions. First,

we did not observe any significant indirect effects (i.e.,

mediated by burned area) of the variables on VOD. In

Sahel grasslands, for instance, the indirect effect of rainfall

on VOD was much weaker (b = 0.256 9 0.012 = 0.0031)

than its direct effect (b = 0.216) (Fig. 4A). This finding

applied also in the case of strong direct effects of variables

on burned area (e.g., temperature and population density

in Madagascar) (Fig. 4D). Second, we noticed that the

direct effects of precipitation and temperature on VOD

had similar magnitudes but opposite signs. Given the

marginal role of other variables, these diametrically oppo-

site effects might have constrained changes in VOD,

except for the Greater Karoo and Kalahari drylands.

Finally, all final SEMs showed both satisfactory residual

plots (Appendix S7) and explained a high degree of varia-

tion in VOD as indicated by high Nagelkerke r2 values,

that is, r2 = 0.88 in Sahel grasslands, r2 = 0.96 in Greater

Karoo and Kalahari drylands, r2 = 0.84 in Southeast Afri-

can subtropical grasslands, and r2 = 0.94 in Madagascar

(Fig. 4A–D and Tables S6.1, S6.3, S6.5, S6.7). The high

Nagelkerke r2 values are likely related to the strong spatial

autocorrelation component observed in the gridded data

and, hence, to the high explanatory power of the spatial

weighting distances, which statistically control for this

autocorrelation, in our models.

Discussion

Ecological systems are complex because of the many

interactions among biotic and abiotic components that

occur at different spatiotemporal scales (Spake

et al., 2019). As such, scientists tend to characterize eco-

logical relationships as context-dependent (Spake

et al., 2023) or with narrative descriptions of relationships

(Zellmer et al., 2006). Our results, however, help disen-

tangle this complexity for grassland systems by clarifying

the role of temperature, rainfall, fire, and population den-

sity on woody dynamics at broad spatiotemporal scales.

Figure 3. The four-step statistical modeling workflow. Thirty-seven hypotheses were tested by fitting spatial autoregressive error models within a

structural equation modeling (SEM) framework in each year and each bioregion. Well-fitted SEMs were identified by means of satisfactory Fisher’s

C and v2 goodness of fit measures. From well-fitted SEMs, we selected final SEMs based on DAIC value. Final SEMs were further evaluated using

Nagelkerke r2 and residual plots.
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In addition, they also provide empirical evidence of com-

plexity. The low number of final SEMs each year, for

instance, indicates that only specific combinations of vari-

ables yield meaningful explanations of woody dynamics.

Further, final SEMs are systematically described by more

complex structures, suggesting that simple models includ-

ing only woody vegetation, burned area, and one or two

other variables are not able to characterize the ecological

relationships in time and space (Appendix S6).

Yet complexity does not mean that ecosystems have

no common features. Rainfall controls both woody vege-

tation and burned area, which is expected as water avail-

ability is known to be the key resource for both plant

growth (Ogutu et al., 2021) and fuel availability (Leh-

mann et al., 2014; Staver et al., 2017) in arid and

semi-arid regions of Africa. However, and contradicting

our initial hypothesis, dry season rainfall did not predict

woody vegetation dynamics, suggesting that the establish-

ment of woody plants in these bioregions is more related

to rainfall totals (Garc�ıa Criado et al., 2020) than rainfall

timing (Brandt et al., 2019). This is likely because the

four grassland regions investigated here received very lit-

tle rainfall during the dry season, implying that the wet

season rain largely corresponds to annual rainfall

(Appendix S4). In contrast to rainfall, temperature

showed a consistent negative effect on woody vegetation.

While this is unsurprising as rainy days are generally

colder, climate change-driven rising aridity may cause

woody plants to be more prone to hydraulic failure

(Abel et al., 2023). Notably, precipitation and tempera-

ture had overall comparable but diametrically opposite

effects on woody vegetation, potentially contributing to

the prevention of encroachment, as indicated by the lim-

ited changes observed in VOD during 1997–2016
(Appendix S9). This result partly contradicts previous

studies showing sharper increases in VOD in the dry-

lands of the Sahel (Brandt et al., 2017; Moesinger

et al., 2020). However, this discrepancy likely stems from

differences in land cover data, as results can vary

depending on the product or masking approach used to

define the study area. Additionally, time series differ-

ences may also play a role, as trends in vegetation

indices and biophysical variables depend on the period

analyzed. For example, recent research has shown that

different ecosystem indicators exhibited distinct trends

before and after 2000, ultimately influencing overall

trend calculations (Ogutu et al., 2021). Notwithstanding

this, our results indicate that any future imbalance

between precipitation and temperature may push the

system toward a woody state, a risk that becomes

increasingly relevant under ongoing climate change. Pro-

jections for Africa indicate rising temperatures and more

frequent droughts, while rainfall patterns are expected to

become more variable across the continent (Osborne

et al., 2018), likely disrupting the balance between water

availability and thermal stress and potentially tipping

grassland systems toward woody-dominated landscapes.

This transition appears already underway in the Greater

Karoo and Kalahari drylands, that is, the only bioregion

with a clear, positive VOD trend, where rising tempera-

tures and stable precipitation may be driving woody

plant proliferation (Fig. S9.2). While an increase in VOD

independent of rainfall contradicts conventional under-

standing of woody vegetation dynamics, other studies

have documented similar patterns of expansion not pri-

marily driven by rainfall (D’Adamo et al., 2021). Con-

tributing factors include low population growth rates

(Brandt et al., 2017), rising anthropogenic CO2 levels

(Saintilan & Rogers, 2015), and shifts in both high and

low herbivory pressure (Venter et al., 2018; Ward

et al., 2014). Additionally, the observed decline in

burned area, potentially due to fire suppression, land

fragmentation, or shifts in traditional burning practices

(He et al., 2019), reinforces this trend, as reduced fire

activity is known to promote woody encroachment

(Fig. 4B and Fig. S9.2) (Andela et al., 2017). Ultimately,

the negative feedback between woody vegetation and fire

appears less widespread in grasslands than savanna eco-

systems of sub-Saharan Africa, emerging only at higher

VOD levels, as observed in the Greater Karoo and Kala-

hari drylands. This evidence underscores the importance

of distinguishing between these two ecosystems, as the

weaker fire-woody vegetation feedback of grasslands may

reduce the capacity of fire to regulate woody cover, a

Figure 4. Final structural equation models (SEM) of the direct and indirect effects (i.e., mediated by burned area) of burned area (BA), annual

rainfall (Rain), temperature (T), dry season rainfall (DSR), population density (PD), soil moisture (SM), and previous year VOD (VODyr-1) on

vegetation optical depth (VOD) (left) and standardized regression coefficient (b) with 95% CIs during 1997–2016 (right) for Sahel grasslands (A),

Greater Karoo and Kalahari drylands (B), Southeast African subtropical grasslands (C), and Madagascar (D). The thickness of the arrows is scaled

to the b coefficients, which are calculated by natural model averaging the final SEMs in each year and later during 1997–2016. Black represents

positive effect and red represents negative effect. Cyan crosses indicate years in which all available final SEM structures did not include the path

between the two variables. No CIs for years with only one available b coefficient. The direct effects of rainfall and temperature on VOD are

similar but opposite in sign (positive and negative, respectively) in all bioregions. Overall, no significant relationships were observed between

burned area and VOD. The indirect effects of any variable on VOD were negligible. Full details are reported in Appendix S6.
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limitation that could become more pronounced under

global environmental change. Previous studies have

reached similar conclusions, reporting a sharp increase

in tree density across a broad rainfall gradient, even

where fire regimes have remained historically stable

(Case & Staver, 2017). This suggests that controlling

woody encroachment may require fire frequencies

exceeding historical levels. However, such an approach

conflicts with livestock grazing, which reduces fire inten-

sity by depleting fuel loads, potentially forcing land

managers to choose between maintaining grazing pro-

ductivity and preventing ecosystem transition to a woody

state (Case & Staver, 2017). Madagascar also displayed a

few distinct features, that is, the effect of temperature

and human population density on fire (Fig. S9.4). This

may relate not only to the different geographical setting

(i.e., island vs. continental) but also to widespread

human activities in the country (Ralimanana

et al., 2022). Unsustainable agriculture and overexploita-

tion, for instance, are likely explanations for our results,

as fragmented landscapes reduce fuel connectivity and,

therefore, fire spread (Bowman et al., 2020). Further,

these anthropogenic activities (e.g., clearing woody vege-

tation) may explain why fire decline did not trigger

woody encroachment (Phelps et al., 2022).

Conclusions

Broad, remote sensing-based ecological studies are invalu-

able for complementing local-scale research and generaliz-

ing patterns, processes, and interactions into broader

predictions. In this study, we were specifically interested

in naturally grass-dominated ecosystems, rather than

savannas, to analyze their woody dynamics, a task that

required a careful approach to biome classification. While

variations in classification approaches and methods make

it challenging to unequivocally distinguish biomes using

remote sensing-based land cover products, our procedure,

based on pure grassland classes from the ESA CCI land

cover map (Fig. 1 and Appendix S1), provided new

insights into the role of environmental and anthropogenic

factors in shaping long-term woody dynamics in the

major grasslands of sub-Saharan Africa. Unsurprisingly,

precipitation was a key driver of woody vegetation

dynamics and fire, whereas the relationship between fire

and woody cover that is well-documented in savannas

appeared to be less significant in grasslands, suggesting

that grassland fire management practices may need dis-

tinct approaches from those used in savannas. The weak

relationship with fire is perhaps surprising given our

inclusion of pixels with up to 49% woody vegetation.

However, if anything, this inclusion would bias our

results toward stronger fire-woody vegetation feedback,

thereby strengthening confidence in our findings. Despite

the weaker relationship between fire and woody cover in

grasslands, we did not observe significant woody

encroachment in our study area (except for Greater

Karoo and Kalahari drylands), indicating that other fac-

tors may be equally important in maintaining a grassland

state. Therefore, while fire management remains impor-

tant, it should be implemented as part of an approach

that accounts for these interacting drivers (McLauchlan

et al., 2020). Temperature consistently exhibited a nega-

tive effect on woody vegetation, while dry season rainfall,

population density, and soil moisture had only minor

influences. Overall, the role of these drivers in controlling

woody vegetation dynamics was consistent across space

and time, yet changes or interactions for one or more

variables in Greater Karoo and Kalahari drylands and

Madagascar led to local, context-dependent patterns that

need to be accounted for to plan effective grassland man-

agement (Bullock et al., 2021; Lu et al., 2024). On the

other hand, it is also possible that some patterns might

have resulted from variables not investigated here (e.g.,

atmospheric CO2, grazing, soil texture, etc.) (Case & Sta-

ver, 2018; Stevens et al., 2017). Another caveat to our

findings is that the coarse spatial resolution of VOD data

did not allow us to capture finer-grain processes and

changes. For instance, a surprisingly large number of

non-forest trees was observed in African drylands using

10–0.5 m spatial resolution satellite data (Reiner

et al., 2023). Similarly, the contribution of small fires

undetectable from coarse spatial resolution products is

decisive for appropriate burned area and fire emission

estimations in Africa (Ramo et al., 2021). Consequently,

the low resolution of our data may have constrained the

detection of indirect effects in our SEMs, as

higher-resolution data could reveal more significant inter-

actions among environmental variables. Furthermore, uti-

lizing higher spatial resolution would eliminate the need

to resample land cover maps, enabling more precise

biome delineation. These points suggest that the consis-

tent availability of high-resolution remote sensing data

will be essential to better understand finer-grain dynamics

and, ultimately, terrestrial ecosystem distribution (Zhang

et al., 2019).
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