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Introduction

Understanding how global environmental change will
affect natural ecosystem dynamics is a central challenge in
ecology. Gaining such understanding is made difficult by
the complexity of natural systems, with changes that are

Abstract

Identifying the drivers of ecosystem dynamics, and how responses vary spatially
and temporally, is a critical challenge in the face of global change. Grasslands in
sub-Saharan Africa are vital ecosystems supporting biodiversity, carbon storage,
and livelihoods through grazing. However, despite their importance, the pro-
cesses driving change in these systems remain poorly understood, as cross-scale
interactions among drivers produce complex, context-dependent dynamics that
vary across space and time. This is particularly relevant for woody vegetation
dynamics, which are often linked to degradation processes (e.g., woody
encroachment), with consequences for biodiversity, forage availability, and fire
regimes. Here, we used satellite data and structural equation models to investi-
gate the effects of rainfall, temperature, fire, and population density on woody
vegetation dynamics in four African grassland regions (the Sahel grasslands,
Greater Karoo and Kalahari drylands, Southeast African subtropical grasslands,
and Madagascar) during 1997-2016. Across all regions, rainfall was consistently
positively correlated with increased woody vegetation, while higher tempera-
tures were associated with decreased woody vegetation, suggesting that water
availability promotes woody plant growth, whereas rising aridity limits it.
Unexpectedly, fire had a negative effect on woody cover only in the Greater
Karoo and Kalahari drylands, while in Madagascar, higher temperatures and
greater population density reduced fire; yet these relationships did not translate
into significant indirect effects on woody vegetation. These findings illustrate
the complex ways by which environmental and anthropogenic drivers shape
woody vegetation dynamics in grasslands across sub-Saharan Africa. Compared
to savannas, fire plays a weaker and more region-specific role in grasslands,
where its feedback with woody cover is less consistent. The opposing effects of
rainfall and temperature may currently constrain woody expansion, but climate
change could disrupt this balance and further weaken fire’s limited regulatory
role. These differences highlight the need for management strategies tailored to
the distinct climate—vegetation dynamics of grassland systems.

often context-dependent across space and time (Spake
et al., 2022) due to cross-scale interactions among drivers
(Spake et al., 2019). Grasslands are a key biome for which
context dependency in the drivers affecting ecosystem
dynamics is common yet poorly understood (Bardgett
et al., 2021; Li et al., 2024).
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Grassy ecosystems, including grasslands and savannas,
comprise approximately one-third of terrestrial ecosys-
tems and are subject to widespread degradation that is
leading to increasing concern for both biodiversity and
human well-being (Bardgett et al., 2021; Stromberg & Sta-
ver, 2022). This is particularly true for the African conti-
nent, where grassy ecosystems constitute the dominant
vegetation cover, host diverse endemic faunas and flora,
and provide a multitude of material and non-material
benefits to humans (Osborne et al., 2018). Here, domi-
nant drivers of loss and degradation include climate
change, conversion to cropland or forest, fire suppression,
and overgrazing (Parr et al., 2024; Stevens et al., 2022). In
addition, interactions among these drivers often trigger
degradation processes. Woody plant encroachment, for
instance, impoverishes grassy ecosystems as woody vegeta-
tion replacing the grass layer pushes the system toward a
secondary state (e.g., shrubland, woodland) (Nerlekar &
Veldman, 2020) with lower herbaceous plant diversity
and palatability (Venter et al,, 2017; Wieczorkowski &
Lehmann, 2022).

Understanding the drivers of grassy ecosystem dynam-
ics and their interactions over time and space is essential
for improving predictions of how these ecosystems will
respond to global environmental change and ultimately
preventing their degradation (Abdi et al., 2022). However,
this is complex due to the numerous direct and indirect
processes related to climate, soil, and disturbances (Pausas
& Bond, 2020), and because grassy ecosystems encompass
both grasslands and savannas, that is, two distinct
sub-ecosystems where these processes may not operate in
the same way (Bardgett et al., 2021).

Grasslands are ecosystems dominated by indigenous
(i.e., native) or natural (i.e., established through natural
processes such as seed dispersal by wind or animals) grass
species, differing from savannas, which are transitional
woody—herbaceous systems between grassland and forest
(Allen et al., 2011). Grasslands exist below 650—-1000 mm
of annual rainfall (mm/year), while forests generally occur
above 2500 mm/year (Aleman et al.,, 2020; Mayer & Kha-
lyani, 2011). Savannas are found between these ranges,
with the grassland—savanna—forest transition largely deter-
mined by interactions between rainfall, vegetation, and
fire (Pausas & Bond, 2020). Shady, rainy environments
inhibit flammable conditions and hamper grass growth,
which suppresses fire and promotes woody plant estab-
lishment (Wei, Wang, Brandt, et al., 2020). In contrast,
seasonal rainfall sustains open systems promoting the col-
onization of flammable grasses, which in turn intensifies
fires and excludes woody plants at rates that may vary
with different rainfall accumulation periods before the fire
season (Archibald et al., 2009). Accordingly, the feedback
between fire and woody vegetation is generally negative,
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that is, one suppresses the other. However, the interplay
between rainfall, vegetation, and fire is more complex and
influenced by other drivers. Intensive rainfall before or
after the core wet season, for instance, can promote
woody over grassy vegetation (Brandt et al., 2019). Mean-
while, increasing temperature could trigger fires either by
facilitating seasonal fuel curing or as C, grasses have
high-temperature photosynthesis, which leads to fast bio-
mass build-up in warmer ecosystems (Lehmann
et al., 2014). Yet the opposite was also observed, as a
recent sequence of drought years caused a decrease in fuel
loads and fire events (Wei, Wang, Fu, et al., 2020). Fur-
ther, anthropogenic factors such as land cover changes,
increasing atmospheric CO,, and management practices
can also have either positive or negative effects on woody
vegetation and fire activity (Alvarado et al., 2020; Hansen
et al., 2013).

These examples highlight that while we know the over-
all drivers of woody vegetation dynamics in grassy ecosys-
tems for sub-Saharan Africa, the degree to which their
effects change across space and time remains unclear. Part
of this inconsistency may relate to the fact that, generally,
large-scale studies do not explicitly assess grasslands but
rather consider grasslands and savannas together or inves-
tigate ecosystems based on aridity levels. This potentially
conflates any different responses these two types of grassy
ecosystems may have to changes in climate, disturbances,
and their interactions. Remote sensing offers a powerful
tool to address this challenge by providing accessible, spa-
tially explicit, and repetitive observations of environmen-
tal and anthropogenic variables, aiding in the assessment
of various ecological processes in grasslands and savannas
as distinct ecosystems (Masenyama et al., 2022). While
optical-based indexes such as the normalized difference
vegetation index, the enhanced vegetation index, and the
leaf area index are widely used resources for grassland
dynamic assessments (Wang et al.,, 2022), recent studies
have highlighted the effectiveness of other remote sensing
technologies (e.g., microwave-based, hyperspectral, or
very high-resolution data) in investigating terrestrial eco-
systems and enhancing monitoring capabilities (e.g.,
Brandt et al., 2018, 2020; Brown et al., 2024). However,
these technologies remain underutilized in grassland stud-
ies (Ali et al., 2016). Here we used microwave- and
optical-based satellite data and structural equation models
(SEMs) to quantify the relative importance of environ-
mental and anthropogenic variables in driving woody
dynamics across major grasslands of sub-Saharan Africa.
Through a hypothesis-driven approach, we examined
both direct and indirect (i.e., mediated by fire) effects of
these variables, aiming to identify regional pathways
determining the likelihood of grasslands transitioning to a
woody state. We hypothesized a prevailing direct role of
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rainfall on woody vegetation and fire. Similarly, we antici-
pated negative feedback between fire and woody vegeta-
tion and dry season rainfall to promote woody
vegetation. We did not have any specific expectations
regarding direct or indirect effects of temperature and
human population density on woody vegetation. We did
not try to anticipate to what extent support for each
hypothesis varied across space and time. These hypotheses
are based on the literature for grassy ecosystems in gen-
eral, so they may be less relevant for grasslands. Under-
standing if this is the case is a key focus of our study.

Materials and Methods

Study area

The European Space Agency (ESA) Climate Change Initia-
tive (CCI) Land Cover programme aims to maximize the
potential of long-term satellite data to produce accurate
land cover classification for effective land dynamic and cli-
mate modeling studies. The ESA CCI land cover map
(v2.0.7, 300 m spatial resolution) describes the land surface
in 22 classes following the United Nations Land Cover Clas-
sification System (UN-LCCS) (ESA, 2017). Here we used
this product to define grasslands in sub-Saharan Africa by
selecting classes 110 (mosaic herbaceous cover >50% and
tree and shrub <50%) and 130 (grassland) and excluding
areas dominated by croplands, trees, or where the herba-
ceous cover is lower than 50%. By doing so, we were able to
produce a strict grassland mask that (i) fits our interest in
naturally grass-dominated ecosystems (as opposed to more
mixed grass-tree savanna regions) and (ii) matches the clas-
sification of grassland of the Intergovernmental Panel on
Climate Change (ESA, 2017). Later, to account for
context-dependency (e.g., ecological and climatic heteroge-
neity that exists across Africa, distinct socio-ecological his-
tories among regions), we opted to subdivide grasslands by
applying the One Earth Bioregions framework (One
Earth, 2020). This framework aggregates similar (Dinerstein
et al., 2017) terrestrial ecoregions into larger-scale ecologi-
cal systems that are therefore better suited for broad
regional assessments (e.g., our study). The four One Earth
Bioregions are Sahel Acacia savannas (hereafter referred to
as Sahel grasslands for clarity), Greater Karoo and Kalahari
drylands, Southeast African subtropical grasslands, and
Madagascar (Fig. 1). More preprocessing information on
how we produced the grassland mask is reported in
Appendix S1.

Data

Table 1 provides an overview of the key features of the
datasets used in this study. All data were resampled to a
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Figure 1. Grassland extent as obtained from the ESA CCl land cover
map (classes 110, i.e., herbaceous cover >50% and tree and shrub
<50%, and 130, i.e., grassland) and indicated by the One Earth
framework (One Earth, 2020). The four bioregions are Sahel
grasslands (780 pixels), Greater Karoo and Kalahari drylands (287
pixels), Southeast African subtropical grasslands (271 pixels), and
Madagascar (319 pixels) (see also Appendix S1).

common spatial resolution of 25 km x 25 km, the coars-
est among our datasets, using the aggregate and resample
functions from the R package ‘terra’ (Hijmans
et al., 2022). Our analysis covers the period from 1997 to
2016, which corresponds to the time span available across
all datasets.

Vegetation optical depth (VOD) describes the attenua-
tion of the microwave signal by the vegetation layer
(Meesters et al., 2005). It is proportional to the vegeta-
tion water content of aboveground vegetation, so higher
VOD values indicate high vegetation water content and
more energy attenuation (e.g., dense vegetation), whereas
lower VOD values refer to limited vegetation water con-
tent, little attenuation, and higher transmissivity (e.g.,
sparse vegetation) (Chaparro et al., 2024). Compared to
optical-based products, VOD is insensitive to atmo-
spheric haze and dust, cloud cover, or sun illumination
(Li et al., 2021). We used the VOD Climate Archive
(VODCA) Ku band (18.70-19.35 GHz) to exploit the
longest available time series and because of its good level
of agreement with other VOD, leaf area index, and vege-
tation continuous field global products (Moesinger
et al., 2020). Here we took annual minimum values to
reduce the effects of the green herbaceous layer and
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Table 1. The datasets used for our analysis and their main characteristics. Rainfall data were used to calculate annual sums as well as dry season

rainfall (see Appendix S2).

Name Data Time series Resolution References
VODCA VOD (unitless) 1987-2017 Monthly 25 km x 25 km Moesinger et al. (2020)
GFED Burned area (ha) 1997-2016 Monthly 25 km x 25 km van der Werf et al. (2017)
CHIRPS Rainfall (mm year™") 1981 to near present Daily 5 km x 5 km Funk et al. (2015)
Dry season rainfall (mm)
CHELSA Temperature (°C) 1980-2019 Monthly 1 km x 1 km Karger et al. (2017)
ESA CCI SM Soil moisture (m3 m~3) 1987-2016 Daily 25 km x 25 km Dorigo et al. (2017)
GPW Population density (persons km~2) 1995-2020 Annual T km x 1 km CIESIN (2018)

Abbreviations: CHELSA, Climatologies at High Resolution for the Earth’s Land Surface Areas; CHIRPS, Climate Hazards Group Infrared Precipitation
with Stations; ESA CCl SM, European Space Agency Climate Change Initiative for Soil Moisture; GFED, Global Fire Emissions Database; GPW,
Gridded Population of the World (see text for more details); VODCA, Vegetation Optical Depth Climate Archive.

produce a VOD signal that is more representative of the
general woody cover community (e.g., shrubs, small
trees, large trees). This is a common approach in remote
sensing-based assessments of arid and semi-arid ecosys-
tems (e.g., Andela et al., 2013, 2017; Brandt et al., 2017;
D’Adamo et al., 2021; Forkel et al., 2019), as supported
by previous studies showing strong agreement between
VOD and in-situ measurements of woody vegetation in
drylands (Tian et al., 2016, 2017). Burned area data were
obtained from the Global Fire Emissions Database
(GFED), v4s. This product provides burned area from
GFED4 complemented with the contribution of small
fires (s), among other data (e.g., fire carbon, dry matter
emissions) (van der Werf et al., 2017). Burned area rep-
resents a direct estimate of fire impacts on ecosystems
and has the advantage of persisting on the land surface,
thus preventing potential fire data gaps due to cloud
and smoke cover spells (Andela et al.,, 2017). We first
converted monthly burned area fraction (dimensionless)
to monthly burned area (ha) using the ancillary grid
map (m?) that is embedded with the data and, second,
we aggregated monthly burned area into annual sum
composites. Daily rainfall data from Climate Hazards
group Infrared Precipitation with Stations (CHIRPS
v2.0) (Funk et al., 2015) were used to produce annual
sums (mm year ') and to calculate the dry season rain-
fall (Liebmann et al, 2012) (Appendix S2). Uncertainty
assessments based on mean absolute error have shown
that CHIRPS data outperform many other products,
including both those that incorporate gauge stations and
those that do not, as well as reanalysis data (Beck
et al, 2017; Funk et al, 2015). Temperature data were
obtained from the Climatologies at High resolution for
the Earth’s Land Surface Areas (CHELSA v2.1) (Karger
et al., 2017). Compared to the deprecated v1.2 version,
CHELSA v2.1 replaces ERA-Interim with ERA5 reanaly-
sis atmospheric temperature as input. This shift

introduced a change in the lapse rate calculation, now
based on pressure levels between 950 and 850 hPa rather
than across the entire atmosphere (Karger et al.,, 2021).
While this change may affect high-altitude regions where
temperature gradients are steeper, it is unlikely to influ-
ence the results for low-altitude areas, such as the grass-
lands investigated here, where temperature variation with
elevation is less pronounced. Validation exercises have
shown that CHELSA v2.1 achieves similar accuracy to
other global temperature products (Karger et al., 2017).
Monthly data from daily means of synoptic hourly tem-
perature at 2 metres were converted from Kelvin to Cel-
sius and then averaged to produce annual mean
composites. Soil moisture data were taken from the ESA
CCI program (Dorigo et al, 2017). Produced as an
active, passive, and active-passive merged product, we
used the merged product (v04.2) as it combines the
advantages of active (better for averagely vegetated areas)
and passive (preferable over sparse vegetation and at dis-
tinguishing between wet and dry soils) observations
(Gruber et al., 2019). We created annual soil moisture
composites by summing only good quality daily data
(i.e., pixels without issues) each year (m® m™?). Soil
moisture data were used to assess the role of soil mois-
ture on woody vegetation and the effect of moisture
availability on fire (Lehmann et al., 2014). The Gridded
Population of the World (GPWv4) dataset provides spa-
tially explicit global distribution of the human popula-
tion (CIESIN, 2018). GPWv4 data do not rely on
ancillary data sources (e.g., land cover, vegetation indi-
ces), thus precluding potential problems of collinearity
with VOD (Brandt et al., 2017). We used population
density data (persons km™?) adjusted to the 2015 revi-
sion of the United Nations World Population Prospects
to investigate the effect of people on woody vegetation
and fire dynamics (Archibald et al, 2010; Brandt
et al., 2017). A continuous population density time
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series was produced using the available data (i.e., 2000,
2005, 2010, 2015, and 2020) to interpolate missing years
(Abel et al., 2020).

Statistical analysis

Structural equation modeling (SEM) is a probabilistic tool
that allows the inclusion of multiple dependent and inde-
pendent variables with different distributions in a single
framework (Lefcheck, 2016). Unlike standard regression,

SEM is capable of evaluating both direct and indirect

effects among variables, which is typical within complex

natural ecosystems (Fan et al., 2016). Here we used an

SEM approach as it is a useful tool for testing causal rela-

tionships hypothesized from theory and knowledge (Leh-

mann et al, 2014). Our statistical modeling workflow
consisted of four steps:

1. Hypotheses: We reviewed the literature on direct and
indirect relationships among variables in the grassland-
savanna-forest transition (Fig. 2A) (see Introduction).
Based on this, we created an initial most plausible
hypothesis (represented by a causal structure), which
we then modified to both simpler and more complex
hypotheses to account for all ecologically reasonable
combinations among variables (corresponding to alter-
native causal structures) (Fig. 2B). This exercise also
allowed us to assess whether simpler SEMs are able to
explain grassland dynamics better than more complex
ones. We ended up with a total of 37 plausible hypoth-
eses, each of which was formalized as an individual
causal SEM structure (Appendix S3). All SEMs have
VOD as the main response variable, with the effect of
the other variables quantified directly and/or indirectly
via burned area. Two exceptions were dry season rain-
fall and previous year VOD, which we deemed reason-
able predictors of VOD only (Brandt et al.,, 2019) and
were not included as indirect predictors of VOD to
avoid any circular causality problems (Bowman
et al., 2015). Annual rainfall was specified as a predic-
tor of both VOD and burned area. We acknowledge
that fire regimes may be better explained by rainfall
preceding the fire season, yet we only used annual
rainfall as it was strongly collinear (Pearson’s
r > 0.774) with rainfall metrics accumulated over 6,
12, 18, and 24 months before the fire season
(Appendix S4) (Karp et al., 2023).

2. Model runs: All SEMs were run using the psem func-
tion in the R package ‘piecewiseSEM’ (Lefcheck
et al., 2020). Rather than fitting continent-wide models
with all years, separate models were fit for each biore-
gion (i.e., Sahel grasslands, Greater Karoo and Kalahari
drylands, Southeast African subtropical grasslands, and
Madagascar) and year (i.e., 1997-2016) to be able to

F. D'Adamo et al.

account for both the spatial and temporal dependency
structures of the data and, importantly, to assess to
what extent support for each hypothesis varied across
space and time. Preliminary model runs revealed
strong spatial autocorrelation (SAC) in the residuals,
indicated by statistically significant (P < 0.001) Mor-
an’s I values and correlograms (Dormann et al., 2007).
To account for SAC, SEMs were embedded with spatial
autoregressive error models produced with the error-
sarlm function in the R package ‘spatialreg’ (Bivand,
Piras, et al., 2022). Errorsarlm models handle SAC
through spatial weighting matrices computed as the
Euclidean distance between neighboring sites (i.e.,
pixels) (Bivand & Wong, 2018). We calculated spatial
weighting matrices using the dnearneigh function from
the R package ‘spdep’ (Bivand, Altman, et al., 2022),
setting the lower and upper distance bounds at 0 and
39 km, respectively (39 km is the distance that allows
all pixels to be linked to at least another pixel, includ-
ing some farther pixels at the edge of the bioregions).
The upper distance bound of 39 km did not vary sig-
nificantly across bioregions as the data are regularly
gridded (Appendix S5). SEM path coefficients were
calculated as standardized regression coefficients (f5) to
enhance comparability across responses of different
units. The indirect effect of a variable on VOD was
calculated by multiplying the f coefficients of the two
respective paths.

. Model selection: We used Fisher’s C and chi-squared

(%) goodness of fit measures to identify SEM specifi-
cations that best reproduce the relationships among
the variables in the sample data (hereafter well-fitted
SEMs). Fisher’s C is calculated as negative two times
the sum of the natural logarithms of the p-values from
all unspecified paths, and a resulting P > 0.05 suggests
that the model is well structured (i.e., no paths are
missing) (Haynes et al., 2022). Similarly, j* tests
whether there is a discrepancy between the
model-implied and observed covariance matrices, and
also in this case P> 0.05 is recommended (Fan
et al, 2016). In each year and each bioregion, we
therefore selected only SEMs showing P > 0.05 for
Fisher’s C and y°. The number of well-fitted SEMs was
then refined by calculating the difference in the Akaike
information criterion (AAIC) between each SEM and
the SEM with the lowest AIC (Cade, 2015) and select-
ing only SEMs with AAIC <3 (hereafter final SEMs)
(Burnham et al., 2011). We present the results for each
bioregion by performing natural model averaging of
the final SEM f coefficients both annually with 95%
confidence intervals (Cls) and averaging over the entire
1997-2016 period. We took this approach as the values
of the statistically significant f coefficients did not
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Figure 2. The key elements in the grassland-savanna-forest transition as commonly reported in the literature (see Introduction) and their
described overall effect (positive (+), negative (=), or both (+/—)) on woody vegetation and fire (in gray are the variables excluded from the
analysis as not available for our study regions during 1997-2016) (A). The initial hypothesis (left), and an example of a simpler (middle) and more
complex (right) hypothesis as indicated by the corresponding SEM causal structure. Vegetation optical depth (VOD) is the main response variable.
Burned area (BA) is both a predictor and response variable. Other variables are annual rainfall (Rain), temperature (T), dry season rainfall (DSR),
population density (PD), soil moisture (SM), and previous year VOD (VODy,.;). The full list of the 37 SEM causal structures is reported in

Appendix S3 (B).

change appreciably over time (coefficient of variations
<5%). Effects were classified as weak, moderate, or
strong depending on whether their absolute mean was
below one, between one and two, or above two stan-
dard deviations, respectively. Full results for each bio-
region, including the list of final SEMs, Fisher’s C with
P-values, chi-squared with P-values, degrees of free-
dom, AAIC, Nagelkerke R?* S coefficients with
P-values and 95% Cls, as well as the standard devia-
tion and coefficient of variation of f coefficients for
each year, are reported in Appendix S6.

4. Model evaluation. Although final SEMs were selected
via satisfactory Fisher’s C, 12, and AAIC values, we fur-
ther evaluated them by calculating Nagelkerke * and
plotting residuals against fitted values for each variable
included and not included in the model, latitude and
longitude, and time (Zuur & Ieno, 2016)
(Appendix S7). This step is important to assess the

goodness of fit of any saturated SEMs (i.e., all variables

are linked), as these have no degrees of freedom (Cor-

tina et al., 2017). The four-step statistical modeling

workflow is shown in Fig. 3.

The preprocessing we computed before the statistical
analysis is detailed in Appendix S8. All analyses were per-
formed within the R environment, version 4.2.1 (Posit
Team, 2023).

Results

Only about 12% of our 37 hypothesized SEM causal
structures could satisfy the criteria for selection as final
SEMs each year (Tables S6.1, S6.3, S6.5, S6.7). Notably,
simple SEM structures were systematically excluded from
this subset, indicating that the observed direct and indi-
rect relationships were better captured by the more com-
plex structures.
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Figure 3. The four-step statistical modeling workflow. Thirty-seven hypotheses were tested by fitting spatial autoregressive error models within a
structural equation modeling (SEM) framework in each year and each bioregion. Well-fitted SEMs were identified by means of satisfactory Fisher’s
C and »? goodness of fit measures. From well-fitted SEMs, we selected final SEMs based on AAIC value. Final SEMs were further evaluated using

Nagelkerke % and residual plots.

In Sahel grasslands, rainfall showed a strong positive
direct effect on both VOD (average f = 0.216) and
burned area (ff = 0.256) (Fig. 4A). VOD showed a mod-
erate negative direct relationship with temperature
(p = —0.216) while being largely unaffected by other vari-
ables. As expected, previous year’s VOD was a strong pre-
dictor of VOD (f = 0.511) (Fig. 4A and Table S6.2). The
Greater Karoo and Kalahari drylands and Southeast Afri-
can subtropical grasslands showed overall similar relation-
ships regarding the effects of rainfall on VOD and burned
area, temperature on VOD, and previous year’s VOD on
VOD (f coefficients of the remaining relationships were
largely negligible) (Fig. 4B,C and Tables S5.4 and S5.6).
In addition, in the Greater Karoo and Kalahari drylands,
we also found a weak negative direct effect (f = —0.031)
of burned area on VOD. This is likely because the Greater
Karoo and Kalahari drylands are the only bioregion where
VOD significantly increased during 1997-2016, which
indicates a potential increase in woody vegetation and,
therefore, stronger feedback with burned area (Fig. S9.2).
Madagascar also featured a positive relationship between
rainfall and both VOD (ff = 0.126) and burned area
(p = 0.208) and a moderate negative direct effect of tem-
perature on VOD (ff = —0.037), yet here, we observed a
strong negative direct effect of both temperature
(p = —0.429) and population density (ff = —0.354) on
burned area (Fig. 4D and Table S6.8). Noticeably, both
these variables showed a sharp change during 1997-2016
(Fig. S9.4).

Three key features were shared by all bioregions. First,
we did not observe any significant indirect effects (i.e.,
mediated by burned area) of the variables on VOD. In
Sahel grasslands, for instance, the indirect effect of rainfall
on VOD was much weaker (f = 0.256 x 0.012 = 0.0031)

than its direct effect (f = 0.216) (Fig. 4A). This finding
applied also in the case of strong direct effects of variables
on burned area (e.g., temperature and population density
in Madagascar) (Fig. 4D). Second, we noticed that the
direct effects of precipitation and temperature on VOD
had similar magnitudes but opposite signs. Given the
marginal role of other variables, these diametrically oppo-
site effects might have constrained changes in VOD,
except for the Greater Karoo and Kalahari drylands.
Finally, all final SEMs showed both satisfactory residual
plots (Appendix S7) and explained a high degree of varia-
tion in VOD as indicated by high Nagelkerke r* values,
that is, r* = 0.88 in Sahel grasslands, > = 0.96 in Greater
Karoo and Kalahari drylands, * = 0.84 in Southeast Afri-
can subtropical grasslands, and * = 0.94 in Madagascar
(Fig. 4A-D and Tables S6.1, S6.3, S6.5, S6.7). The high
Nagelkerke r* values are likely related to the strong spatial
autocorrelation component observed in the gridded data
and, hence, to the high explanatory power of the spatial
weighting distances, which statistically control for this
autocorrelation, in our models.

Discussion

Ecological systems are complex because of the many
interactions among biotic and abiotic components that
different (Spake
et al., 2019). As such, scientists tend to characterize eco-
logical relationships as context-dependent (Spake
et al., 2023) or with narrative descriptions of relationships
(Zellmer et al., 2006). Our results, however, help disen-
tangle this complexity for grassland systems by clarifying

occur  at spatiotemporal  scales

the role of temperature, rainfall, fire, and population den-
sity on woody dynamics at broad spatiotemporal scales.
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Figure 4. Final structural equation models (SEM) of the direct and indirect effects (i.e., mediated by burned area) of burned area (BA), annual
rainfall (Rain), temperature (T), dry season rainfall (DSR), population density (PD), soil moisture (SM), and previous year VOD (VODy.;) on
vegetation optical depth (VOD) (left) and standardized regression coefficient (8) with 95% Cls during 1997-2016 (right) for Sahel grasslands (A),
Greater Karoo and Kalahari drylands (B), Southeast African subtropical grasslands (C), and Madagascar (D). The thickness of the arrows is scaled
to the B coefficients, which are calculated by natural model averaging the final SEMs in each year and later during 1997-2016. Black represents
positive effect and red represents negative effect. Cyan crosses indicate years in which all available final SEM structures did not include the path
between the two variables. No Cls for years with only one available B coefficient. The direct effects of rainfall and temperature on VOD are
similar but opposite in sign (positive and negative, respectively) in all bioregions. Overall, no significant relationships were observed between
burned area and VOD. The indirect effects of any variable on VOD were negligible. Full details are reported in Appendix S6.

In addition, they also provide empirical evidence of com-
plexity. The low number of final SEMs each year, for
instance, indicates that only specific combinations of vari-
ables yield meaningful explanations of woody dynamics.
Further, final SEMs are systematically described by more
complex structures, suggesting that simple models includ-
ing only woody vegetation, burned area, and one or two
other variables are not able to characterize the ecological
relationships in time and space (Appendix S6).

Yet complexity does not mean that ecosystems have
no common features. Rainfall controls both woody vege-
tation and burned area, which is expected as water avail-
ability is known to be the key resource for both plant
growth (Ogutu et al., 2021) and fuel availability (Leh-
mann et al., 2014; Staver et al., 2017) in arid and
semi-arid regions of Africa. However, and contradicting
our initial hypothesis, dry season rainfall did not predict
woody vegetation dynamics, suggesting that the establish-
ment of woody plants in these bioregions is more related
to rainfall totals (Garcia Criado et al., 2020) than rainfall
timing (Brandt et al,, 2019). This is likely because the
four grassland regions investigated here received very lit-
tle rainfall during the dry season, implying that the wet
season rain largely corresponds to annual rainfall
(Appendix S4). In contrast to rainfall, temperature
showed a consistent negative effect on woody vegetation.
While this is unsurprising as rainy days are generally
colder, climate change-driven rising aridity may cause
woody plants to be more prone to hydraulic failure
(Abel et al., 2023). Notably, precipitation and tempera-
ture had overall comparable but diametrically opposite
effects on woody vegetation, potentially contributing to
the prevention of encroachment, as indicated by the lim-
ited changes observed in VOD during 1997-2016
(Appendix S9). This result partly contradicts previous
studies showing sharper increases in VOD in the dry-
lands of the Sahel (Brandt et al, 2017; Moesinger
et al., 2020). However, this discrepancy likely stems from
differences in land cover data, as results can vary
depending on the product or masking approach used to
define the study area. Additionally, time series differ-
ences may also play a role, as trends in vegetation

indices and biophysical variables depend on the period
analyzed. For example, recent research has shown that
different ecosystem indicators exhibited distinct trends
before and after 2000, ultimately influencing overall
trend calculations (Ogutu et al., 2021). Notwithstanding
this, our results indicate that any future imbalance
between precipitation and temperature may push the
system toward a woody state, a risk that becomes
increasingly relevant under ongoing climate change. Pro-
jections for Africa indicate rising temperatures and more
frequent droughts, while rainfall patterns are expected to
become more variable across the continent (Osborne
et al.,, 2018), likely disrupting the balance between water
availability and thermal stress and potentially tipping
grassland systems toward woody-dominated landscapes.
This transition appears already underway in the Greater
Karoo and Kalahari drylands, that is, the only bioregion
with a clear, positive VOD trend, where rising tempera-
tures and stable precipitation may be driving woody
plant proliferation (Fig. S9.2). While an increase in VOD
independent of rainfall contradicts conventional under-
standing of woody vegetation dynamics, other studies
have documented similar patterns of expansion not pri-
marily driven by rainfall (D’Adamo et al., 2021). Con-
tributing factors include low population growth rates
(Brandt et al, 2017), rising anthropogenic CO, levels
(Saintilan & Rogers, 2015), and shifts in both high and
low herbivory pressure (Venter et al, 2018; Ward
et al., 2014). Additionally, the observed decline in
burned area, potentially due to fire suppression, land
fragmentation, or shifts in traditional burning practices
(He et al., 2019), reinforces this trend, as reduced fire
activity is known to promote woody encroachment
(Fig. 4B and Fig. S9.2) (Andela et al., 2017). Ultimately,
the negative feedback between woody vegetation and fire
appears less widespread in grasslands than savanna eco-
systems of sub-Saharan Africa, emerging only at higher
VOD levels, as observed in the Greater Karoo and Kala-
hari drylands. This evidence underscores the importance
of distinguishing between these two ecosystems, as the
weaker fire-woody vegetation feedback of grasslands may
reduce the capacity of fire to regulate woody cover, a

748 © 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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limitation that could become more pronounced under
global environmental change. Previous studies have
reached similar conclusions, reporting a sharp increase
in tree density across a broad rainfall gradient, even
where fire regimes have remained historically stable
(Case & Staver, 2017). This suggests that controlling
woody encroachment may require fire frequencies
exceeding historical levels. However, such an approach
conflicts with livestock grazing, which reduces fire inten-
sity by depleting fuel loads, potentially forcing land
managers to choose between maintaining grazing pro-
ductivity and preventing ecosystem transition to a woody
state (Case & Staver, 2017). Madagascar also displayed a
few distinct features, that is, the effect of temperature
and human population density on fire (Fig. S9.4). This
may relate not only to the different geographical setting
(i.e., island vs. continental) but also to widespread
human activities in the country (Ralimanana
et al., 2022). Unsustainable agriculture and overexploita-
tion, for instance, are likely explanations for our results,
as fragmented landscapes reduce fuel connectivity and,
therefore, fire spread (Bowman et al., 2020). Further,
these anthropogenic activities (e.g., clearing woody vege-
tation) may explain why fire decline did not trigger
woody encroachment (Phelps et al., 2022).

Conclusions

Broad, remote sensing-based ecological studies are invalu-
able for complementing local-scale research and generaliz-
ing patterns, processes, and interactions into broader
predictions. In this study, we were specifically interested
in naturally grass-dominated ecosystems, rather than
savannas, to analyze their woody dynamics, a task that
required a careful approach to biome classification. While
variations in classification approaches and methods make
it challenging to unequivocally distinguish biomes using
remote sensing-based land cover products, our procedure,
based on pure grassland classes from the ESA CCI land
cover map (Fig. 1 and Appendix S1), provided new
insights into the role of environmental and anthropogenic
factors in shaping long-term woody dynamics in the
major grasslands of sub-Saharan Africa. Unsurprisingly,
precipitation was a key driver of woody vegetation
dynamics and fire, whereas the relationship between fire
and woody cover that is well-documented in savannas
appeared to be less significant in grasslands, suggesting
that grassland fire management practices may need dis-
tinct approaches from those used in savannas. The weak
relationship with fire is perhaps surprising given our
inclusion of pixels with up to 49% woody vegetation.
However, if anything, this inclusion would bias our
results toward stronger fire-woody vegetation feedback,

Characterizing Drivers of Grassland Dynamics

thereby strengthening confidence in our findings. Despite
the weaker relationship between fire and woody cover in
grasslands, we did not observe significant woody
encroachment in our study area (except for Greater
Karoo and Kalahari drylands), indicating that other fac-
tors may be equally important in maintaining a grassland
state. Therefore, while fire management remains impor-
tant, it should be implemented as part of an approach
that accounts for these interacting drivers (McLauchlan
et al., 2020). Temperature consistently exhibited a nega-
tive effect on woody vegetation, while dry season rainfall,
population density, and soil moisture had only minor
influences. Overall, the role of these drivers in controlling
woody vegetation dynamics was consistent across space
and time, yet changes or interactions for one or more
variables in Greater Karoo and Kalahari drylands and
Madagascar led to local, context-dependent patterns that
need to be accounted for to plan effective grassland man-
agement (Bullock et al., 2021; Lu et al., 2024). On the
other hand, it is also possible that some patterns might
have resulted from variables not investigated here (e.g.,
atmospheric CO,, grazing, soil texture, etc.) (Case & Sta-
ver, 2018; Stevens et al., 2017). Another caveat to our
findings is that the coarse spatial resolution of VOD data
did not allow us to capture finer-grain processes and
changes. For instance, a surprisingly large number of
non-forest trees was observed in African drylands using
10-0.5 m spatial resolution satellite data (Reiner
et al., 2023). Similarly, the contribution of small fires
undetectable from coarse spatial resolution products is
decisive for appropriate burned area and fire emission
estimations in Africa (Ramo et al., 2021). Consequently,
the low resolution of our data may have constrained the
detection of indirect effects in our SEMs, as
higher-resolution data could reveal more significant inter-
actions among environmental variables. Furthermore, uti-
lizing higher spatial resolution would eliminate the need
to resample land cover maps, enabling more precise
biome delineation. These points suggest that the consis-
tent availability of high-resolution remote sensing data
will be essential to better understand finer-grain dynamics
and, ultimately, terrestrial ecosystem distribution (Zhang
et al., 2019).
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