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Abstract
High Mountain Asia (HMA) holds the highest concentration of frozen water outside the polar
regions, serving as a crucial water source for more than 1.9 billion people. Precipitation represents
the largest source of uncertainty for future hydrological modelling in this area. In this study, we
propose a probabilistic machine learning framework to combine monthly precipitation from 13
regional climate models developed under the Coordinated Regional Downscaling Experiment
(CORDEX) over HMA via a mixture of experts (MoE). This approach accounts for seasonal and
spatial biases within the models, enabling the prediction of more faithful precipitation
distributions. The MoE is trained and validated against gridded historical precipitation data,
yielding 32% improvement over an equally-weighted average and 254% improvement over
choosing any single ensemble member. This approach is then used to generate precipitation
projections for the near future (2036–2065) and far future (2066–2095) under RCP4.5 and RCP8.5
scenarios. Compared to previous estimates, the MoE projects wetter summers but drier winters
over the western Himalayas and Karakoram and wetter winters over the Tibetan Plateau,
Hengduan Shan, and South East Tibet.

1. Introduction

HighMountain Asia (HMA) storesmore frozenwater
than anywhere else in the world after the Arctic
and Antarctic polar caps. Its glaciers and snow-
fields, shown in figure 1, provide fresh water to
more than 1.9 billion people through Asia’s main
rivers (Immerzeel et al 2020). Despite the critical
importance of these water resources, much remains
unknown about their distribution and how they will
evolve under climate change. Among all hydrological
drivers, precipitation contributes the greatest uncer-
tainty to modelling future water security over HMA
(Nie et al 2021, Orr et al 2022, Wester et al 2023).
The main tools for understanding future precipita-
tion over HMA are regional climate models (RCMs)
(Maussion et al 2014, Palazzi et al 2015, Norris et al
2017, 2019, 2020, Orr et al 2017). However, com-
plex orography and the lack of in situ hydrological

observations, combinedwith limited RCM resolution
and parametrisations overmountains, make precipit-
ation difficult to model in this region (Orr et al 2017,
Girona-Mata et al 2024, Tazi et al 2024, 2025). To
overcome these challenges and understand the range
of possible changes in precipitation, RCMs with dif-
ferent model physics and parametrisations are run,
and their outputs combined.

Such collections of climate models are known
as multi-model ensembles. In general, multi-model
ensembles improve the accuracy of historical pre-
dictions and provide a way to explore the uncer-
tainties in model-based climate projections (Kharin
and Zwiers 2002, Palmer et al 2005, Stainforth et al
2007). However, the way in which models are com-
bined is controversial (Tebaldi and Knutti 2007).
This includes disagreements about how to meas-
ure aggregate accuracy (Eyring et al 2019), deal
with ensemble outliers (Sanderson and Knutti 2012),
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account for the proximity of model design (Knutti
2010,Masson and Knutti 2011), and address an infin-
ite number of possible ensemble members (Tél et al
2020). As a result, the Intergovernmental Panel on
Climate Change opted for the unweighted average of
the global climate models (GCMs) from the Climate
Model Intercomparison Project (CMIP) in their pre-
vious reports, using model spread as the uncertainty
for future predictions (Flato et al 2014)4.

In this paper, we present a probabilistic machine
learning framework with the aim of combining pre-
cipitation outputs from 13 RCMs developed under
the Regional Downscaling Experiment (CORDEX)
for CMIP5. This method leverages the RCMs’ het-
erogeneous seasonal and spatial biases to generate
precipitation probability distributions for any loca-
tion and month. This is achieved through a two-
step approach. First, we compute statistical surrog-
ates of the RCMs, i.e. a representation of their sim-
ulated precipitation field. For a given climatological
period, we compile the empirical precipitation distri-
bution for each RCM, location, and month. We then
model the empirical distributions with Gaussian pro-
cesses (GPs). GPs have been used in previous research
for similar problems, such as spatiotemporal aggrega-
tion of GCMs using deep kernel learning (Harris et al
2013) or to find the latent signal of a temperature
change inGCMensembles for a single location (Amos
et al 2022).

Second, we aggregate the RCM surrogate pre-
dictions at each spatiotemporal point via a mixture
of experts (MoE), where distributions of experts
(i.e. RCM surrogates) are combined using weights.
We parametrise the weight of each expert by their
Wasserstein distance with respect to historical data
(Asian Precipitation-Highly Resolved Observational
Data Integration Towards Evaluation of Water
Resources or APHRODITE) and a learnt ‘statistical
temperature’. Our ensemble learningmethod is there-
fore similar to Bayesian model averaging (Min et al
2007, Olson et al 2016,Massoud et al 2023), where the
similarity of the probability distribution with respect
to historical data is used as a measure of faithfulness.
However, unlike previous ensembling techniques, our
method neither gives each RCM one vote, nor does it
completely discard outliers with less accurate distri-
butions; it only down-weighs them. As more experts
are added, more precipitation events are considered,
and the final distributions are refined.

Our main goal is to compare this method with
that of Sanjay et al (2017). Their work presented
CORDEX CMIP5 runs over HMA. We study the
same domain, time periods, and RCMs using both
a learnt MoE and an equally-weighted (EW) RCM
aggregation scheme. The latter is equivalent to the

4 The sixth report (AR6) discards ‘hot-models’ from CMIP6 that
have been shown to be overly sensitive to emission forcing (Zelinka
et al 2020, Lee et al 2021, Hausfather et al 2022).

ensembling method used in Sanjay et al (2017). The
paper is structured as follows. The study area and data
are first described in section 2. The method is then
summarised in section 3 and validated in section 4.
Predictions for a historical reference period (1976–
2005), the near future (2036–2065), and the far future
(2066–2095) for RCP4.5 and RCP8.5 are analysed in
section 5. Finally, limitations and further work are
discussed in section 6.

2. Study area and datasets

2.1. Study area
Following Sanjay et al (2017), we study precipita-
tion over HMA between 20◦–40◦ N 60◦–100◦ E as
shown in figure 1 and three mountain subregions:
the West Himalaya and Karakoram (HMA1, 32◦–
39◦ N 71◦–79◦ E), the Central and East Himalaya
(HMA2, 27◦–32◦ N 76◦–93◦ E), and the Hengduan
Shan and Southeast Tibet (HMA3, 27◦–32◦ N 93◦–
103◦ E). In addition to including most glaciers for
HMA, these subregions are also representative of key
synoptic atmospheric patterns that drive precipita-
tion in this area. Precipitation over HMA1 is strongly
influenced by the western disturbances during winter
(December to March), while precipitation distribu-
tions overHMA2 andHMA3 aremainly driven by the
Indian summermonsoon and the East Asian summer
monsoon, respectively, from June to September. The
study area also overlaps the Hindu Kush Himalayan
(HKH) region. As defined by the International Centre
for Integrated Mountain Development, the HKH
extends from 16◦ to 39◦ N and 61◦ to 105◦ E and
encompasses more than 4192 000 km2 of mountains
over Afghanistan, Bangladesh, Bhutan, China, India,
Myanmar, Nepal, and Pakistan (Bajracharya and
Shrestha 2011).

2.2. CORDEX-WAS
CORDEX is a global initiative that aims to provide
high-resolution climate data for regional and local
applications. CORDEX for the West Asia domain
(CORDEX-WAS, −20◦–50◦ N 20◦–115◦ E), also
known as the South Asia domain, uses RCMs to
dynamically downscale global climate simulations
from CMIP5 over most of HMA (Taylor et al 2012,
Sanjay et al 2017). CORDEX-WAS outputs are chosen
over other RCMsimulations for their accessibility and
rigorous experimental protocol which allow for the
straightforward comparison of many models (Giorgi
and Gutowski Jr 2015). CORDEX-WAS is made up of
13 models using three RCMs and ten driving CMIP5
GCMs, as listed in table 1.

The CORDEX outputs are stored on a 0.44◦

rotated grid (approximately 50 km resolution).
However, for simplicity, we use interpolated outputs
on a 0.5◦ regular grid. For precipitation, the Centre
for Climate Change Research at Indian Institute of
Tropical Meteorology used bilinear interpolation to
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Figure 1.Map of High Mountain Asia showing major rivers and lakes (Lehner and Grill 2013), glaciers (RGI Consortium 2017),
permafrost (Westermann et al 2024), the HKH boundary as defined by ICIMOD (2008), and three mountain subregions used for
this study: the West Himalaya and Karakoram (HMA1), the Central and East Himalaya (HMA2), the Hengduan Shan and
Southeast Tibet (HMA3). The map also includes the standardised names of the glacierised mountains regions (GTN-G 2023)
referenced in this paper.

Table 1. CORDEX-WAS RCMs with CMIP5 driving models. Note that GFDL-ESM2M, MPI-ESM-LR, and CNRM-CM5 each drive two
RCMs.

RCM Driving CMIP5 model

IITM-RegCM4 CanESM2 (Chylek et al 2011)
(Giorgi et al 2012) GFDL-ESM2M (Dunne et al 2012)

CNRM-CM5 (Voldoire et al 2013)
MPI-ESM-MR (Jungclaus et al 2013)
IPSL-CM5A-LR (Dufresne et al 2013)

SMHI-RCA4 CSIRO-Mk3.6 (Jeffrey et al 2013)
(Samuelsson et al 2015) EC-Earth (Hazeleger et al 2010)

MIROC5 (Watanabe et al 2010)
MPI-ESM-LR (Jungclaus et al 2013)
IPSL-CM5A-MR (Dufresne et al 2013)
GFDL-ESM2M
CNRM-CM5a

MPI-REMO2009 MPI-ESM-LRb

(Teichmann et al 2013)
a The SMHI-RCA4 CNRM-CM5 model output only extends to 2085 for

RCP8.5.
b MPI-REMO2009 MPI-ESM-LR model output only begins from 1961.

regrid the RCM data (Sanjay Jayanarayanan, Scientist
2025). We analyse CORDEX-WAS monthly precip-
itation outputs over 20◦–40◦ N and 60◦–105◦ E for
historical (1950–2005) and projected (2006–2100)
scenarios. Historical scenario experiments use estim-
ates of greenhouse gas concentrations, aerosols, and
land use (from observed or reconstructed data) to
drive the GCMs. Projected scenario experiments are
based on representative carbon pathways (RCPs),
i.e. theoretical future emissions scenarios. In this
paper, outputs for RCP4.5 and RCP8.5 are invest-
igated. RCP4.5 represents a stabilisation pathway,
where emissions peak around 2040 and then decline,
while RCP8.5 represents a high-emissions pathway
with minimal policy intervention. Going forward, we

simplify simulation names to ‘GCM RCM’, e.g. the
IITM-RegCM4 simulation driven by IPSL-CM5A-LR
becomes IPSL RegCM4.

2.3. APHRODITE
APHRODITE is a gridded precipitation dataset ran-
ging from 1951 to 2015 with a spatial resolution of
0.25◦ (Yatagai et al 2012). APHRODITE has one of
the best spatiotemporal coverages over HMA and is
one of the most studied and accurate precipitation
products for the region (Dimri 2021). The dataset
was created through the interpolation of precipita-
tion gauge observations using a custom correlation
distance lookup table. We use the monthly precipit-
ation product APHRO_V1101 specifically developed

3
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Figure 2. APHRODITE precipitation medians between 1976 and 2005 for the summer monsoon (left) and winter (right).

for monsoon Asia. Figure 2 plots APHRODITE pre-
cipitation between 1976 and 2005.

3. Method

This section presents our ensemble learning method,
summarised in figure 3.

3.1. RCM surrogate models
3.1.1. GPs
To create the surrogate models for each RCM, we
consider a regression problem with a dataset of
N paired inputs X := {xi}Ni=1 and noisy observa-
tions Y := {yi}Ni=1, where i denotes the ith data
pair. Each input xi is a three-dimensional vector of
(month, latitude, longitude). Each observation yi is a
scalar, corresponding to a prediction of precipitation
by an RCM.

The problem is modelled as yi = f(xi)+ ϵi, where
we assume that the noise ϵi ∼N (0,σ2

n) is independ-
ently and identically distributed. The function f can
be represented with a GP (Rasmussen and Williams
2006). GPs are powerful non-parametric Bayesian
models. A GP is a distribution over functions for
which every finite set of outputs is jointly Gaussian
distributed. GPs are fully specified by a mean func-
tion µ(·) and a kernel function k(·, ·), which depend
on hyperparameters θµ and θk, jointly referred to as θ.
If we assume f to be a GP, i.e. f ∼ GP(µ(·),k(·, ·)), it
follows that f(X)∼N (µX,KX+σ2

nI)where (µX)i :=
µ(xi) is aN-dimensional vector and (KX)ij = k(xi,xj)
is an N ×N covariance matrix.

A posterior GP conditioned on the dataset D =
(X,Y) can be inferred. This joint probability distribu-
tion of precipitation is updated using all data at every
month and location of the RCM simultaneously. The
GP is then trained by learning the optimal hyper-
parameters from the data. This optimisation is per-
formed by maximising the log-marginal likelihood of
the model

θ̂ = argmax
θ

[logp(Y|X,θ)]

= argmax
θ

[
logN

(
Y|µX (θµ) ,KX (θK)+σ2

nI
)]
.

(1)

Finally, the GP can be sampled repeatedly
at multiple arbitrary inputs. For a given input
at an arbitrary month, latitude, and longitude,
i.e. a test point x∗, not necessarily seen in the train-
ing data, the mean and variance of the posterior pre-
dictive distribution of f(x∗) are given by

E
f |D

[f(x∗)] = µ(x∗)+KT
∗
(
KX+σ2

nI
)−1

(Y−µX) ,

(2)

Var
f |D

[f(x∗)] = k(x∗,x∗)−KT
∗
(
KX+σ2

nI
)−1

K∗, (3)

where K∗ = k(X,x∗) is an N-dimensional vector.
The GP is a joint probability distribution of pre-

cipitation updated using all data at every month and
location of the RCM simultaneously. Once trained,
the GP can be sampled repeatedly at multiple arbit-
rary inputs.

3.1.2. Warped GPs
In its original formulation, the posterior distribu-
tion of the GP is normal. However, monthly precip-
itation y is generally log-normally distributed (Tazi
et al 2024). Warped GPs handle non-normality in
the data by transforming the target variables and GP
outputs via a warping function (Snelson et al 2003).
For this problem, we use a Box-Cox function gλ(·) as
the warping function. The warped outputs ỹ are then
given by

ỹ= gλ (y) =

{
yλ−1
λ for λ ̸= 0,

logy for λ= 0,
(4)

where precipitation y> 0 is assumed to be positive
and λ is the scaling factor. The scaling factor is optim-
ised to make the distribution of gλ(y) as Gaussian
as possible by maximising the log-likelihood of the
model parameters arising from placing a Gaussian
distribution over the transformed observations (Box
andCox 1964). In this study, we use a different optim-
ised scaling factor λr for each RCM r

Finally, to recover the skewness and more com-
plex distributional characteristics of the RCM data,
the corresponding inverse transform is applied to the
GP outputs. Henceforth, we will use f(·) to denote the

4
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Figure 3. Ensemble learning method. For a given emission scenario and climatological period, each of the R RCMs outputs from

CORDEX-WAS are split into Jmanageable spatiotemporal domains,D( j)
r for the jth domain and rth RCM. A GP is fit to each

domain and then combined using a BCM. The outputs of each RCM BCM are then combined using a weighted mixture model or
mixture-of-experts (MoE) with weights {wr}Rr=1.

function that models the warped output ỹ. We will
denote the unwarped function, whichmay have heavy
tails in its distribution, as fλ(·) := g−1

λ ( f(·)). Details
on the distribution of the unwarped precipitation can
be found in appendix B.

3.1.3. Chained GPs
For this application, the variance of precipitation y
should be considered as intrinsic climatological vari-
ance rather than noise. The GP output should there-
fore be heterogeneous in its variance, i.e. heteroske-
dastic. To address these requirements, we use chained
GPs (Saul et al 2016) to model the variance and mean
as latent functions such that

p(ỹi |f1, f2,xi) =N
(
ỹi
∣∣∣ f1 (xi) ,α( f2 (xi))) , (5)

where f1 ∼ GP(0,k1(·, ·)), f2 ∼ GP(0,k1(·, ·)) and α
is a function used to map the outputs of f2 to posit-
ive values. This mapping is required as the output of
α represents the variance of a Gaussian distribution.
Here, we apply an exponential function α( f2(xi)) =
ef2(xi), but other functions, such as softplus, could be
used. For our work, we use a shortcut to calculate the
variance at each point without using further approx-
imations, such as inducing points (Titsias 2009), by
exploiting the gridded nature of our data.

3.1.4. Bayesian committee machines (BCMs)
Due to GP’s poor scalability to large datasets, we use
robust BCMs as a way of combining multiple GPs
and speeding up inference (Tresp 2000, Deisenroth
and Ng 2015, Cohen et al 2020). To do this, the
training dataset is partitioned into J subsets of size
M (so N= JM) where M≪ N. We define these sub-
sets or domains as D( j) = (X( j),Y( j)) for j = 1, . . . , J.
GPs are then used to model each domain. The
robust BCMGPs share kernel hyperparameters, stop-
ping individual experts from overfitting their local
subset of data. Assuming conditional independence
between domainsD( j) and by repeated application of
Bayes’ theorem, the following predictive distribution
is obtained by combining the separate GP models:

p( f(x∗) |D) =

∏J
j=1 p

βj(x∗)
j

(
f(x∗) |D( j)

)
p−1+

∑
j βj(x∗) ( f(x∗))

, (6)

where p( f(x∗)) is the prior distribution of the GP
evaluated at test point x∗ and βj controls the contri-
bution of expert j (see appendixA). The robust BCM’s
predictive mean and precision (inverse of the vari-
ance) are given by

µrbcm∗ : = E
f |D(1)···D( j)

[f(x∗)]

=
(
σrbcm
∗

)2 J∑
j=1

βj (x∗)
(
σj
∗
)−2

µj∗, (7)

(
σrbcm
∗

)−2
: = Var

f |D(1)···D( j)
[f(x∗)]

−1

= (1−M)
(
σprior
∗

)−2
+

J∑
j=1

βj (x∗)
(
σ
j
∗

)−2
,

(8)

respectively, where µj∗ and (σ
j
∗)

−2 are the mean and
precision of the predictive posterior given domain
D( j), and (σ

prior
∗ )−2 is the prior precision of p( f∗).

This setup conserves the properties of an exact GP
while improving scalability, moving from O(N3)
for training and O(N2) for prediction to O(JM3)
and O(JM2) respectively (Deisenroth and Ng 2015).
For our work, the domains are divided tempor-
ally, such that each domain contains precipita-
tion for a particular month over the whole spatial
area.

With these adaptations, GPs can be used to inter-
polate large empirical distributions. To compare the
RCM surrogates with the APHRODITE dataset intro-
duced in section 2.3, we evaluate the surrogate GPs at
the APHRODITE grid points. In figure 4, we illustrate
the typical surrogate output with CSIRO RegCM4 for
February. The surrogate distributions closely match
the empirical RCM histograms, which can substan-
tially differ with time and location.

3.2. Surrogate aggregation
3.2.1. MoE
The RCM surrogates are aggregated via the weighted
sum of their posterior probability distributions. We
refer to this weighted mixture model as a MoE. The
resulting distribution for a given test point x∗ is

5
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Figure 4. CSIRO RegCM4 BCM distributions between 1951 and 2005 for the month of February. The figure shows the median of
the surrogate distributions over HMA (left). The surrogate distributions (blue line) are compared with the empirical histograms
(orange bars) for two example locations (top and bottom right). The full surrogate distributions are faithful to the original RCM
distributions, which differ significantly depending on time and location.

pMoE ( fλ (x∗) |w,D) =

R∑
r=1

wrpr
(
fλr

(x∗) |Dr

)
. (9)

Here, D is the dataset for all RCMs, and Dr is the
dataset for the rth RCM for r= 1, . . . ,R. The distribu-
tion pr( fλr

(x∗)|Dr) is the unwarped rth RCM surrog-
ate distribution conditioned onDr. It is not Gaussian
and depends on the warping parameter λr The scalar
wr = wr(x∗) is the weight of the rth RCM at x∗. It is
constrained to be

∑R
r=1wr = 1 and wr > 0.

3.2.2. Weights
We would like to choose weights w such that
the MoE accurately predicts future and past pre-
cipitation distributions. Without prior knowledge,
the simplest weighting would be wr = 1/R, i.e. an
equally-weighted mixture of the RCM surrogates,
not assigning more importance to any particular
RCM. Instead, we inform the weights through a ref-
erence dataset (APHRODITE; see section 2.3), hav-
ing previously downscaled RCM predictions onto the
same grid using the surrogate models, as shown in
section 3.1.1 and figure 4.

A naive approach would be to directly learn the
weights that maximise the likelihood of the para-
meters (APHRODITE). However, there are two pit-
falls to this method. First, the number of effect-
ive parameters (R− 1= 12), compared to the num-
ber of datapoints at each location and time (∼30),
results in overfitting the R model weights (not
shown). Second, direct maximum likelihood optim-
isation could upweigh RCM surrogates that individu-
ally predict precipitation poorly, but when summed
together best approximate APHRODITE. We want
to ensure that RCM surrogates that contribute signi-
ficantly to the aggregate are independently close fits
to APHRODITE. This condition prevents error com-
pensation in the MoE.

Thus, we inform the weights using a measure
of distance between the distribution of each RCM
surrogate and that of APHRODITE. We choose the
Wasserstein distance (Panaretos and Zemel 2019),
which originates from optimal transport theory and
represents the minimum cost of moving the prob-
ability density of one distribution into the shape of
another. For two empirical distributions P andQ, the
Wasserstein distanceW is given by:

W(P,Q) =

(
1

N

N∑
i=1

∥Xi −Yi∥p
)1/p

, (10)

where Xi and Yi are the samples of P and Q, respect-
ively, and p is the moment of the distribution we are
interested in. Here, we use the first moment p= 1,
which represents the shift of the distribution mean.
We calculate theWasserstein distances with respect to
a reference historical period for each APHRODITE
grid point and month. Previous research has shown
that evaluating the shapes of the distribution rather
than the differences in the absolute precipitation out-
puts better distinguishes how well the models rep-
resent precipitation (Martinez-Villalobos and Neelin
2021). We therefore scale the 95th percentile of the
BCM outputs to match those of APHRODITE and
thus avoid comparing RCMs based on systematic
biases in their precipitation output.

We then introduce the statistical temperature T,
which interpolates between choosing the most accur-
ate RCM (T= 0) and equally weighting the RCMs
(T→∞). Using this concept, the weights are para-
metrised as

wr =
e−h(Wr)/T∑
r′ e

−h(Wr′ )/T
, (11)

where h(·) is some monotonically increasing func-
tion. The statistical temperature T is then optimised

6
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tomaximise the likelihood on the APHRODITE data-
set. We chose h(·) = ln(·), which reduces the vari-
ation between the Wasserstein distances. This choice
meets our criteria for the weights to vary smoothly
in space and to not choose a single RCM. To further
stabilise optimisation, we maximised the likelihood
around a 5× 5 grid surrounding each location. The
RCM surrogates with the smallest Wasserstein dis-
tances and themaximumMoEweights over HMA are
shown in appendix C.

4. MoE validation

To evaluate the performance of theMoE approach rel-
ative to the EW, the historical experiment is divided
into two sets: a training period (1951–1980) and a
validation period (1981–2005). We use the continu-
ous rank probability score (CRPS, Hersbach 2000) to
measure the distance between the predicted (MoE or
EW) and observed (APHRODITE) cumulative distri-
bution functions (CDF) F. The CRPS is defined as
the integral of the squared difference between the pre-
dicted CDF F(y) and the observed CDF Fobs(y) over
the range of possible values y:

CRPS=

ˆ ∞

−∞
(F(y)− Fobs (y))

2 dy. (12)

Smaller scores therefore imply more skill.
The spatiotemporal distribution of the differ-

ences between the MoE and EW CRPS are presen-
ted in figure 5. The MoE CRPS values are in most
cases smaller than the EW CRPS values, with the
MoE approach yielding an average improvement
of 31% over EW. The greatest improvements are
over the Karakoram mountains and Himalayas, with
an annual average difference of −0.34 mm d−1

for the West Himalaya and Karakoram (HMA1),
−0.24 mm d−1 for the Central and East Himalaya
(HMA2), and−0.14mm d−1 for the Hengduan Shan
and Southeast Tibet (HMA3).

The differences between MoE and EW can be
explained by the relative contribution of RCMmem-
bers to the ensemble distributions. For example, over
certain areas along the central-eastern Tibetan plat-
eau the MoE method assigns dominant weight to
one or two RCM surrogates (maximum weight⩾0.7,
figure C2). On the other hand, EW dilutes the skill by
not down-weighting members with poorer perform-
ance, thus broadening the predictive distribution and
inflating CRPS.

In contrast, areas where no significant change
in scores is observed tend to correspond to loca-
tions where the MoE learns close to equal weighting
(see figure C2). This occurs in the south Himalaya
during the summer monsoon, where the spread in
Wasserstein distance between experts collapses and
the learned weights revert towards 1/13. Here, MoE
gains largely disappear. Indeed, EW sometimes shows

marginally superior performance. Therefore, the spa-
tial pattern of CRPS improvementmirrors the pattern
of weight concentration: where model skill hetero-
geneity is large, MoE expert selection yields signific-
ant gains; where expert skill converges, EW averaging
suffices. TheMoE also improves over taking any indi-
vidual expert, i.e. RCM surrogate, by 254% as illus-
trated in figures D1 and D2.

5. Refined climatologies

To generate refined historical and future climatolo-
gies, we optimise the weights over the entire histor-
ical period (1951–2005), maximising the data avail-
able for training. We then use these weights to gen-
erate MoE ensemble predictions for the same climate
scenarios and time periods as Sanjay et al (2017): (i)
historical (1976–2005), (ii) RCP4.5 near (2036–2065)
and future (2066–2095), and (iii) RCP8.5 near and far
future. In the following analysis, we focus on histor-
ical and far-future periods to generate projected pre-
cipitation trends relative to a historical baseline. The
near-future projections show similar trends to the far
future, but with less pronounced changes, and are
included in appendix F.

5.1. Historical predictions
Figure 6 plots the relative error for median precip-
itation (REMP) of the MoE and EW with respect
to APHRODITE for the historical period. For the
monsoon season, the MoE and EW both under-
and overestimate precipitation for the Himalaya and
Karakoram (HMA1 and HMA2). More specifically,
the models predict a wet bias for the Karakoram,
inner Himalayas, and western Tibetan Plateau and a
dry bias for the outer Himalayas. Precipitation over
the eastern Tibetan Plateau, Hengduan Shan, and
Southeast Tibet (HMA3) is generally underestimated
by both models. For winter, the MoE again under-
and overestimates precipitation across the three stud-
ied subregions, but with larger wet biases, while the
EW largely overestimates precipitation across all three
areas during winter.

The third row of figure 6 plots the difference
between the MoE and EW REMP. The MoE makes
large improvements over the EW, particularly in loca-
tions where the EW overestimates precipitation. This
corresponds to a difference in REMP of 2.02 for
the West Himalaya and Karakoram (HMA1), 0.32
for the Central and East Himalaya (HMA2), and
0.08 for the Hengduan Shan and Southeast Tibet
(HMA3) over the summer. During winter, larger
improvements are obtained with REMP differences
of 1.58, 3.02, and 2.33 for the West Himalaya and
Karakoram (HMA1), the Central and East Himalaya
(HMA2), and the Hengduan Shan and Southeast
Tibet (HMA3), respectively. In summary, the MoE
predicts smaller median precipitation values com-
pared to the EW, more in line with APHRODITE.

7
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Figure 5.MoE and EW CRPS differences over the held-out validation period (1981–2005). The MoE and EW outputs are
generated from 105 RCM surrogate samples for each month and location. Negative values (blue) imply MoE matches
APHRODITE more closely while positive values (red) represent times and locations where the EW performs better. The MoE
outperforms the EW for each month, in particular over the Karakoram and Himalayan arc.

However, MoE predictions are still subject to large
errors, and bias correction would still be needed
before use. For completeness, we include the histor-
ical predictions biases in mm d−1 in appendix E.

5.2. Future projections
Figure 7 shows far-future MoE projections with
respect to the historical period. For RCP4.5 and
RCP8.5, the monsoon season is projected to see an
increase in median precipitation over most of HMA,
with the exception of the north Hindu Kush moun-
tains. The greatest changes occur over Kunlunmoun-
tains and Southeast Tibet. More specifically, the MoE
predicts an average increase of 15% for the West
Himalaya and Karakoram (HMA1), 23% for the
Central and East Himalaya (HMA2), and 27% for
the Hengduan Shan and Southeast Tibet (HMA3)
for RCP8.5. Compared to RCP4.5, RCP8.5 presents a
more pronounced wetting trend over the study area.

For winter, the MoE projects an increase in
median precipitation over the north and north-
east HKH, with the largest changes occurring over
the Quilian Shan and East Kunlun mountains. The
Hindu Kush mountains and the outer Himalayas
show an overall decrease in precipitation for this
season. These trends lead to mixed predictions for

the West Himalaya and Karakoram (HMA1) and the
Central and EastHimalaya (HMA2), with average rel-
ative changes of 15% and −7% for RCP8.5, respect-
ively. Winter precipitation over the Hengduan Shan
and Southeast Tibet (HMA3) is expected to increase
with an average relative change of 27%. Compared to
RCP4.5, RCP8.5 generally presents more pronounced
wetting and drying trends during winter.

Finally, the relative changes in precipitation from
the MoE can be compared with those from the EW.
Figure 8 plots the difference between the MoE and
EW relative changes for the far-future RCP8.5 scen-
ario with respect to their historical reference predic-
tions. The plot shows that for large areas, includ-
ing the Tibetan Plateau over summer and the Hindu
Kush, the relative precipitation changes predicted by
the MoE and the EW stay within±10% across differ-
ent percentiles. However, many locations also present
significant changes.

During the summer monsoon, positive differ-
ences in predicted precipitation changes (i.e. MoE
increase relative to EW) are observed over the West
Himalaya, Karakoram and Kunlun mountains with
median and 95th percentile differences reachingmax-
imum values of 54% and 32% for HMA1. This sug-
gests that the probability of events associated with

8
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Figure 6. Historical MoE and EW relative error for median precipitation (REMP) with respect to APHRODITE over HMA. The
MoE REMP (top), the EW REMP (middle), and the REMP difference between MoE and EW (bottom) are plotted for the
historical reference period (1976–2005) for the summer monsoon (left) and winter (right). The MoE and EW outputs are
generated from 105 RCM surrogate samples for each month and location. The MoE makes large improvements over the EW, in
particular, over locations where precipitation is overestimated by the EW.

Figure 7. Relative changes between far-future (2066–2095) and historical (1976–2005) MoE precipitation. The plot shows the
median changes for RCP4.5 (top) and RCP8.5 (bottom) during the summer monsoon (left) and winter (right) for the far-future
across HMA. The MoE output is generated from 105 RCM surrogate samples for each month and location. The MoE predicts
large departures from the precipitation predicted for the historical reference period.

very high precipitation rates, such as floods and
landslides, could be higher compared to previous
estimates. During winter, the MoE predicts a greater
decrease in projected precipitation over the inner
Himalayas and Karakoram, with median differences
achieving minimum values of −31% for HMA1 and
−27% for HMA2. This could signify a decrease in
the contribution of winter precipitation to solid water
resources. At the same time, large positive differences

are observed over the Tibetan Plateau and Southeast
Tibet, with maximum differences in median values of
51% for HMA2 and 62% for HMA3.

6. Discussion

This paper explored probabilistic ensemble learn-
ing to aggregate RCMs. Using a MoE model, precip-
itation predictions were improved compared to an

9
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Figure 8.MoE and EW relative prediction differences for the far future (2066–2095) under RCP8.5 across HMA with respect to
their historical reference predictions. The plot shows the differences between the predicted relative changes for the 5th percentile
(bottom), median (middle), and 95th percentile (top) during the summer monsoon (left) and winter (right). The MoE and EW
outputs are generated from 105 RCM surrogate samples for each month and location. Although for many locations the MoE and
EW projections are similar, there are significant difference in predictions during both the summer monsoon and winter over key
mountain ranges.

EW approach. Unlike other ensembling techniques,
this method does not narrow the non-discountable
envelope of climate change, but refines it. With GPs
as its foundational building blocks, the MoE should
work equally well with RCMs on different grids and
can be straightforwardly applied to any kind ofmodel
ensemble. However, this study does present several
limitations.

First, we assume that the driving variables from
the driving GCMs are sufficiently well-modelled
to dynamically downscale precipitation. In reality,
CMIP5 GCMs present large differences in their pre-
dictions over HMA (Palazzi et al 2015, Panday et al
2015). Moreover, recent studies incorporating more
realistic aerosol scenarios further amplify future pre-
cipitation uncertainty (Wilcox et al 2020, Jiang et al
2023). This poor representation of precipitation in
RCMs can be observed in this study through the
optimal weights chosen by the MoE: when no model
in the ensemble performs particularly well, the MoE
chooses weights close to the EW. This is the case for
the Hindu Kush during winter and for the Tibetan
Plateau during summer (cf figures 6 and C2). This
behaviour, in turn, implies poor representation of
the two main precipitation drivers for HMA: the East
Asian summer monsoon and western disturbances.
Further work could use this framework to explain
performance differences across RCMs by analysing
other output variables, such as pressure or humidity
fields.

Second, the methods used to create the RCM sur-
rogates have several limitations. By applying GPs, we
assume that the RCM outputs are unimodal. In real-
ity, this is not always the case, and we could be miss-
ing out on inter-annual variability. The degree to
which the individual GP samples are consistent in
time and space is also uncertain. Using a probabilistic
surrogate for the RCM means that future precipita-
tion scenarios can be sampled thanks to the correl-
ations learnt between different locations and times.
However, by aggregating data over time, the RCM
surrogate, and by extension the MoE, could plaus-
ibly sample two high precipitation values for neigh-
bouring locations ormonths, although the joint event
is statistically unlikely. Reintroducing some of the
information from the RCM time series would be
needed to ensure further consistency.

Third, the weighting function used to aggregate
the RCMs, although well motivated, has an arbitrary
form. There is significant room to refine the approach
through more case studies. Finally, monthly precipit-
ation is not the only variable linked to water secur-
ity over HMA. To get a more holistic view of future
changes, and thus the risk of extreme events such as
floods and droughts, the experiments in this paper
could be repeated with variables such as temperat-
ure or the number of cumulative dry and wet days.
Extreme value analysis could also be applied to calcu-
late updated rates of return for single or compound-
ing hydrological extremes.
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7. Conclusion

This paper investigated a MoE approach to aggreg-
ate an ensemble of RCMs. This ensemble learning
method is generalisable to other climate variables
and model ensembles and could be applied to model
aggregation problems in other fields. The MoE was
applied to the CORDEX-WAS ensemble over HMA
and was found to be more accurate than the EW aver-
age or any single ensemble member for a held-out
validation period. Compared to the EW, the MoE
projects wetter summers but drier winters over the
western Himalayas and Karakoram and wetter win-
ters over the Tibetan Plateau, Hengduan Shan, and
South East Tibet for both the near and far future
under RCP4.5 and RCP8.5.
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Appendix A. BCM softmax-variance
control

Following Cohen et al (2020), we use their general
expression for expert weights:

βj (x∗)∝ exp
(
−1/ψj (x∗)τ

)
,

M∑
j=1

βj (x∗) = 1,

(A.1)

where τ is a temperature parameter (with a sim-
ilar function to the variable T in section 3.2) that
controls the sparsity between experts by multiplicat-
ively compounding the weights of stronger experts.
The function ψj(x∗) describes the level of con-
fidence of the jth expert at test point x∗. Like

Cohen et al (2020), we set ψj(x∗) to the pos-
terior predictive variance at x∗, i.e. σ2

j (x∗) and
choose τ = 1/8.

Appendix B. MoE probability distribution

The transformed precipitation ỹ for the rth RCM sur-
rogate at some input coordinate x∗ is assumed to be
normally distributed. Suppressing input variables and
fixed hyperparameters, we have

pr (ỹr) =
1√
2πσ2

r

exp

(
− (ỹr −µr)

2

2σ2
r

)
. (B.1)

The distribution for y can then be found by trans-
forming the coordinates and calculating the Jacobian
pr(ỹr(y))

dỹr
dy , yielding

p ′
r (y) =

yλr−1√
2πσ2

r

exp

−

(
yλr−1
λr

−µr

)2
2σ2

r

 . (B.2)

However, there is a small issue with this procedure.
Inverting the transformation, we find that for λr ̸=
0, y(ỹ) = (λrỹ+ 1)1/λr . This quantity is ambiguous
for ỹr <−1/λr, as the fractional power of a negat-
ive number is ill-defined. To remedy this, we restrict
the domain of ỹ to (−1/λr,∞), with the cost that we
need to renormalise the probability distribution by its
integral. Defining

Cr : =

ˆ ∞

−1/λr

dỹrp
′
r (ỹr) =

ˆ ∞

−(λ−1
r +µr)/σr

1√
2π

e−x2/2

=
1

2

(
1+ erf

[
1√
2σ2

r

(
1

λr
+µr

)])
, (B.3)

the properly normalised probability distribution for y
is given by

pr (y) =
yλr−1

Cr

√
2πσ2

r

exp

−

(
yλr−1
λr

−µr

)2
2σ2

r

 ,
(B.4)

with domain y ∈ [0,∞). In practice, we expect Cr to
be very close to one.

Finally, given some weights {wr}r, the MoE’s dis-
tribution is given by

p(y) =
∑
r

wrpr (y) , (B.5)

with the constraint that
∑

rwr = 1.
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Appendix C.Which RCM, when and where?

Figure C1. RCMs with the smallest Wasserstein distances for each month and location over HMA. The distances are calculated
using the scaled distributions of precipitation between 1951 and 2005. The spatial distribution of these models is not random but
follows distinct spatiotemporal patterns.
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Figure C2.MaximumMoE weights for each month and location over HMA. The weights are optimised between 1951 and 2005.
Here, one RCM surrogate (BCM) is never chosen over all others, i.e. the maximum wr is never 1. The maximum BCM weighting
is highest over the Hindu Kush during the summer and over the Tibetan Plateau during the winter. Conversely, the MoE with
close to equal-weights (i.e. maximum wr → 1/13) is more advantageous during the summer monsoon over the Tibetan Plateau
and during the winter over Hindu Kush.
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Appendix D. MoE and BCMCRPS differences

Figure D1. Annual CRPS difference between the MoE and RCM surrogates (BCM) for the held-out validation period
(1981–2005). The MoE outputs are generated from 105 RCM surrogate samples for each month and location. Negative values
(blue) imply MoE matches APHRODITE more closely while positive values (red) represent times and locations where the BCM
performs better. Overall, the MoE outperforms the BCMs over the entire year with large improvement over HMA1 and HMA2,
especially for the RegCM4 surrogates.
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Figure D2. Scorecard showing the differences between the CRPS yielded by the MoE and that of each RCM surrogate (BCM) as
well as the EW over the held-out validation period (1981–2005). Each cell represents the difference for a specific model and
month, averaged over the entire spatial domain. The MoE and EW outputs are generated from 105 RCM surrogate samples for
each month and location. Positive values (red) indicate higher CRPS for the MoE compared to the BCM, while negative values
(blue) indicate lower CRPS for the MoE compared to the BCM.

Appendix E. Historical predictions biases

Figure E1. Historical MoE and EW bias for median precipitation with respect to APHRODITE over HMA. The MoE bias (top),
the EW bias (middle), and the bias difference between MoE and EW (bottom) are plotted for the historical reference period
(1976–2005) for the summer monsoon (left) and winter (right). The MoE and EW outputs are generated from 105 RCM
surrogate samples for each month and location. The MoE makes large improvements over the EW, in particular, over locations
where precipitation is overestimated by the EW.
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Appendix F. Near-future predictions

Figure F1. Relative changes between near-future (2036–2065) and historical (1976–2005) MoE precipitation across HMA. The
plot shows the median changes for RCP4.5 (top) and RCP8.5 (bottom) during the summer monsoon (left) and winter (right).
The MoE and EW outputs are generated from 105 RCM surrogate samples for each month and location. Results are similar to
far-future predictions with less pronounced changes.

Figure F2.MoE and EW relative prediction differences for the near future (2066–2095) under RCP8.5 across HMA with respect
to their historical reference predictions. The plot shows the difference between the predicted relative changes for the 5th percentile
(bottom), median (middle), and 95th percentile(top) during the summer monsoon (left) and winter (right). The MoE and EW
outputs are generated from 105 RCM surrogate samples for each month and location. Results are similar to far-future predictions
with less pronounced differences.
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