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A B S T R A C T

Present day mapping captures fine land cover/land use (LC/LU) details, but future/alterative LC/LU scenarios 
are typically constructed at coarser spatial resolution, hindering comparisons.

ECOBRIDGE (Ecology and Biodiversity Integrated Downscale Generation) is an open, knowledge-based 
ArcGIS Pro workflow, to produce high-resolution LC/LU maps from coarser sources. ECOBRIDGE draws on 
specialist knowledge to parse a low-resolution baseline and scenario, a higher-resolution baseline and infor-
mation defining LC/LU change, to generate high-resolution spatial data for the scenario.

These outputs are produced in the form of two datasets: as a raw pixel map and as an intelligent mapping 
layout which considers the structure of the landscape. The datasets created by ECOBRIDGE can contribute to 
more detailed analysis, bridging the gap between low-resolution datasets and more precise high-resolution 
information.

1. Introduction

The way that humans use and modify the earth’s surface is one of the 
most fundamental drivers of our impact on the planet. Categorising 
these drivers has resulted in the interlinked concepts of Land Cover (LC) 
and Land Use (LU). These terms have often been used interchangeably, 
even if the consensus is that these are two very different concepts 
(Bununu et al., 2023). Generally, LC is defined (García-Álvarez et al., 
2022) in terms of the natural, biological, and physical components that 
can be found on the surface of the Earth (for example, water, rock, sand, 
etc.) while LU relates to how societies employ the land in question 
(García-Álvarez et al., 2022). Alternatively, LC can be detected by Earth 
observation means, while LU identification needs social, economic, and 
even historical interpretation (Yang et al., 2014). However, these con-
cepts are very tightly linked, since the activities that humans perform on 
the land (LU) are strongly determined by the natural materials which 
can be found on it (LC), with complex relationships existing between LC 
and LU (Meyfroidt et al., 2018). It is therefore appropriate to consider 
the two concepts in tandem.

Whilst changes in LU and LC have taken place throughout the history 
of humankind (Hassan et al., 2016), the pace of change is accelerating 

with 32 % of the global land surface affected over the past six decades 
(Winkler et al., 2021). Currently, Land Use and Land Cover Change 
(LULCC) is driving transformation in ecosystem biodiversity (Jung et al., 
2020), soil composition and degradation, and species distribution 
(Dendoncker et al., 2006), flood risk (Zhu et al., 2019), air quality 
(Mccarty and Kaza, 2015), and other environmental phenomena. These 
changes are, in turn, driving economic, social and political trans-
formations (Lambin et al., 2003). LULCC is also closely linked to climate 
change, since a changing environment affects what land covers are 
possible as well as the way land is used, and LULCC can also be a climate 
change driver or mitigator (e.g. via creation or restoration of 
carbon-sequestering land covers).

The relevance of LULCC for 21st century societies has highlighted the 
importance of developing techniques for detecting, analysing and fore-
casting these transformations. While LULCC monitoring and exploration 
has been boosted in recent years by the advancement and increased 
affordability of satellite technologies (Walsh et al., 2024) and Un-
manned Aerial Vehicles (UAVs) (Kleinschroth et al., 2022), these new 
technological advancements do not provide trend detection or fore-
casting of future LULCC by themselves (Chen et al., 2019). Modelling 
complements these remote sensing technologies and allows us to detect 
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drivers, explore dynamics, and analyse what-if LULCC scenarios 
(Verburg et al., 2006). Scenario approaches do not attempt to predict the 
future, but instead aim to explore multiple potential futures, to gain a 
better understanding of the range and uncertainties of the potential 
pathways and impacts of LULCC (Audsley et al., 2006; Moss et al., 
2010). Scenarios help to prioritise further research and identify LULC 
policy options (Gaur and Singh, 2023), but vary widely in their aims, the 
systems to which they are applied and how they are constructed. For 
example, scenarios can be based on economic or non-economic factors 
(Overmars et al., 2007), may be spatially explicit or not (Ren et al., 
2019), and can be statistical/empirical (Sun and Robinson, 2018) or 
based on rules (Verburg et al., 2004). There are many tools to create 
scenarios and to translate scenario narratives into quantifiable changes 
in LULC (Britz et al., 2011). Many scenario developers then produce 
spatially explicit realisations (i.e. maps) of LULCC, which allow the 
exploration of spatial variation in scenario outcomes and allow for 
scenario impacts on environmental and socioeconomic outcomes to be 
modelled via tools which require such spatial data as inputs (Finch et al., 
2021). As a result, there are many existing LULC maps available, from a 
wide range of scenarios, generated by a wide range of methods (Friedl 
et al., 2022).

Traditionally, most methods and models that allow the production of 
spatially explicit LULCC scenarios produce outputs at low spatial reso-
lutions, typically equivalent to 1 km × 1 km or coarser. This is generally 
because scenario generation models are computationally expensive, so 
running them at finer scales is costly in terms of time or computational 
power, and because reliable data on the drivers and constraints of 
LULCC at finer scales is often lacking (e.g. the ownership and manage-
ment of individual land parcels). However, this places limitations on the 
use of these outputs for practical applications at the local level (Friedl 
et al., 2022). A lack of high-resolution output predictions can also lead to 
under or overestimation of model output (Woodman et al., 2023) and 
limits our ability to simulate many environmental processes that are 
highly dependent on fine-scale spatial context (Giuliani et al., 2022).

In recent years, the increase in computing capacity, new modelling 
approaches and higher-quality baseline LULC datasets, combined with a 
bigger demand for LULCC models and applications, have meant that 
downscaling methods for higher-resolution LULC scenario maps are 
being developed. These systems employ different strategies to generate 
fine resolution data from lower resolution information. Many use sta-
tistical or probabilistic methods: e.g. Hoskins et al. (2016), Giuliani et al. 
(2022). Other approaches have also been identified, including the use of 
integrated assessment models (West et al., 2014), but the main alter-
native approach to statistical downscaling strategies is the use of 
rule-based methods. Designers of rule-based methods have often com-
bined expert knowledge with interpretations of spatial storylines, 
analysis of past LULCC, and high-resolution datasets (Rickebusch et al., 
2011). This knowledge, the core of rule-based strategies, is often 
expressed as transitions (Le Page et al., 2016): change vectors governing 
how data will be transformed from low-level to high-level resolution.

ECOBRIDGE aims to provide a flexible, rule-based workflow for 
downscaling existing coarse-scale spatially explicit LULC scenario out-
puts to finer resolutions. We have developed ECOBRIDGE to fill the need 
in the environmental and ecological sector for a flexible system that can 
provide high-resolution datasets from coarser sources by integrating 
transferable scientific knowledge channelled in the form of transition 
rules. We structured the rule-based design of ECOBRIDGE into what can 
be described as an expert system. Expert Systems are part of the wider 
domain of Artificial Intelligence. They are designed to emulate the way 
expert humans carry out some tasks (Lucas & Van Der Gaag, 1991). At 
the core of Expert Systems there is a knowledge base, which contains the 
human expertise on the field in question, stored in a way that allows it to 
be used and processed efficiently. Expert Systems also include an 
inference engine, which is the set of rules and reasonings that drive the 
correct processing of the information in the knowledge base. ECO-
BRIDGE was designed to work efficiently over large (regional to 

national) extents and aimed at ensuring that the knowledge encapsu-
lated in ECOBRIDGE was shareable and accessible to all. Additionally, 
like many developers of expert systems (Klyuchko, 2018), we also 
wanted to make a workflow which could be run in desktop-level devices 
such as minicomputers or dedicated workstations, but which would not 
require high levels of computing power or virtualisation.

2. Methods

The ECOBRIDGE workflow was originally developed to downscale 
existing UK-extent 1 km resolution scenarios (Malcolm et al., 2023) to 
finer resolutions that would allow input into process-based models of 
landscape use by a range of taxa (Gardner et al., 2024) and was based on 
a sequence of downscaling steps in ArcGIS applied by Blaydes et al. (in 
review).

2.1. Input LULC maps

To characterise LULCC, ECOBRIDGE requires four different input 
spatial datasets. 

• a low-resolution baseline,
• a high-resolution baseline,
• a low-resolution scenario,
• and a polygon dataset of landscape parcels.

The polygon dataset ensures that the output landscapes retain the 
realism of the way landscapes are configured into discrete units (e.g. 
agricultural fields) and avoids artefactual hard boundaries at the edges 
of low-resolution grid cells. A user could simply use a vectorised version 
of the high-resolution baseline if an independent representation is not 
available.

For our study, we used the Land Cover Map 2020 (LCM2020) pro-
duced by UKCEH to supply requirements 1, 2 and 4. The LCM2020 is a 
suite of geospatial land cover datasets (raster and polygon) which 
describe the UK land surface in 2020. These were produced at the UK 
Centre for Ecology & Hydrology by classifying satellite images from 
2020. We used the 1 km (Morton et al., 2022a) (dataset 1), 10m (Morton 
et al., 2022b) (dataset 2), and polygon (Morton et al., 2022c) (dataset 4) 
land cover maps.

2.2. Scenarios

To develop and test our workflow, we used 1 km resolution scenarios 
developed by Malcolm et al. (2023). These comprise 12 UK-extent LULC 
maps (11 scenarios plus a modelled baseline), with a thematic resolution 
similar to the ten Land Cover Map aggregate classes, but with additional 
classes introduced under scenarios (e.g. agroforestry, bioenergy crops). 
The LULC maps had been originally developed by rule-based extrapo-
lation from LCM2020, so that spatial extent and resolutions aligned, and 
the classes followed the same numbering system. This allowed a robust 
test of the workflow, with large spatial extent, radical changes in LULC 
and the introduction of novel land use classes, without introducing 
complexities extraneous to the workflow (e.g. recoding LULC classes, 
matching spatial extents, projection and resolutions).

2.3. Expert knowledge and transition table

Rule-based downscaling models use transitions, i.e. sets of user-led 
conditions which define how changes will occur from an initial state 
to its projections under a given scenario (Lucas & Van Der Gaag, 1991). 
In our workflow, these transitions are defined in the form of a comma 
separated values (CSV) file provided by the user. We refer to this as the 
transition table. This is the fundamental route by which expert knowl-
edge on LULCC is used to parametrise the workflow. It can be con-
structed by researchers and/or practitioners coming together to decide 
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which LULCC transitions are likely to happen in real life and which land 
covers are unlikely to change, informed by local knowledge and/or by 
examination of historic changes (e.g. Redhead et al., 2020).

In ECOBRIDGE, the first row of the transition table CSV file is 
reserved for headers. In addition to the header row, the transition table 
must consist of 2 pairs of 2 columns. The first pair (Table 1, Low- 
Resolution Baseline Class and Low-Resolution Scenario Class) in-
dicates the transition from the low-resolution baseline (column 1) to the 
low-resolution scenario (column 2). The second pair of columns deals 
with how high-resolution spatial data within that low-resolution tran-
sition (column 1 – column 2) will change from the high-resolution 
baseline (column 3) to the high-resolution scenario projection (column 
4).

For instance, the first row in Table 1 indicates that, in low-resolution 
baseline pixels classified as class 2 which become class 6 pixels in the 
low-resolution scenario projection, high-resolution class 1 pixels remain 
unchanged.

2.4. Overarching workflow and development environment

At ECOBRIDGE’s core is a geoprocessing workflow built on ArcGIS 
Pro’s Modelbuilder programming platform (Fig. 1). The main geo-
processing workflow is complemented by five additional python scripts.

The downscaling workflow and algorithms at the core of ECO-
BRIDGE have been designed on the ArcGIS Pro environment. They have 
been tested and validated using the 3.2 version of the platform. 
Compatibility with other builds, particularly older versions, is not 
guaranteed. We used ArcGIS Pro Advanced edition, with the Spatial 
Analyst and Image Analyst extensions.

The ECOBRIDGE workflow has been run on both desktop (Windows 
10 and 11) and virtualised environments successfully. Virtualisation has 
been carried out on a Parallels VM from a Mac OS host. To guarantee an 
accelerated performance, the ArcGIS Pro development environment for 
ECOBRIDGE was set up with a configuration which included using GPU 
processing by default. Before running ECOBRIDGE, it is recommended 
that users verify that the source datasets are aligned and share the same 
coordinate system. It is also recommended that the processing extent 
mirrors that of the required area of analysis. In ArcGIS Pro, this involved 
making sure that the environment Snap variable was configured to 
match one of the low-resolution datasets, and this is recommended best 
practice for this and similar platforms. This allowed us to guarantee that 
the results of the different stages of the workflow were aligned correctly 
to the source of change: the transitions at low-resolution level. Before 
executing the workflow, it is recommended to visually verify that the 
different layers align correctly using a map view.

2.5. Geoprocessing workflow

The ECOBRIDGE workflow starts by ingesting all required spatial 
inputs. In later stages of the workflow, the polygon dataset will be used 
to rearrange the raw reclassified pixels into structures that reflect the 
real landscape layout. By default, inbound image datasets are wrapped 
into an eight-bit Esri pixel grid.

Next, the transition table is ingested. The workflow expects the 
transition table to be a CSV file of four columns of integer values. The 
first two columns of the transition table are read, isolating the individual 

low-resolution transitions (column 1 and column 2). Then, for each in-
dividual pair of low-resolution transition values in columns 1 and 2, the 
pixels that match these values from the low-resolution baseline (column 
1) and the low-resolution scenario (column 2) are extracted (Fig. 2), 
saving the output into two auxiliary raster files, which include the 
extracted values from column 1 and 2, respectively. Then, these two 
auxiliary raster files are subtracted. Subtracting the extracted raster files 
produces a raster file where overlapping pixels produce a numeric 
output, while the rest of the cells are Null. This allows us to map cells 
where a matching transition has taken place. The datasets resulting from 
the subtracting operations are stored in the geodatabase.

The workflow then iterates through the geodatabase and vectorises 
the raster datasets resulting from the subtraction process to create a 
series of templates or masks (Fig. 3). These masks, which match the 
location of each individual low-resolution transition, are then applied to 
the high-resolution dataset: they are used to clip it. These sections of the 
finer baseline are stored into the local main ArcGIS Pro geodatabase as 
individual raster datasets and are labelled in a way that reflects the low- 
resolution transitions that originated them to enable their identification 
in the next processing step.

Through this labelling, ECOBRIDGE can establish the low-resolution 
transition which originated each cell and, by revisiting the transition 
table and parsing the values in columns 3 and 4, can determine which 
high-resolution transitions should be applied to them. Thus, driven by 
the chains of changes specified in the transition table, cells undergo a 
pixel reclassification process (Fig. 4). Once this process has been 
completed, ECOBRIDGE runs a cleaning routine to delete previously 
created segmentation raster files, to free memory space and boost 
execution speed.

Next, ECOBRIDGE combines the reclassified clipped cells, overlaying 
them on the original fine-resolution baseline. In this way, areas without 
changes keep existing values: the reclassified areas are slotted into the 
correct locations, creating a complete mosaic of reclassified and original 
datasets. The resulting mosaic is the raw downscaled dataset, which is 
stored in the geodatabase as downscaled_output_RAW.tif.

At this stage, another cleaning routine is activated, and the 
remaining auxiliary datasets created during the execution are deleted. 
This optimization is complemented by an additional process, which 
consists of compacting the geodatabase to optimise performance.

The ECOBRIDGE workflow uses zonal statistics (Fig. 5) to summarise 
the higher-resolution majority pixel count for the downscaled output 
dataset, in relation to each parcel in the ingested polygon dataset. Once 
these figures have been calculated, the polygon data is updated and 
finally, a rasterisation function is called to turn this feature class dataset 
into a final raster file at the finer resolution: the resulting file keeps the 
landscape structure, but it also includes the downscaled information.

3. Results

3.1. ECOBRIDGE interface and execution

ECOBRIDGE can be accessed as an ArcGIS Pro toolbox within the 
ESRI platform of spatial software services. Users can integrate it into 
their ArcGIS Pro working environment. This integration can be carried 
out locally by accessing the.atbx file with the tools code. The tool User 
Interface (Fig. 6) is a simple menu which consists of five textboxes and a 
Run button. The different parameters can be dragged and dropped to the 
corresponding component, or they can be found by browsing through 
the folder system. In addition to specifying the different datasets needed 
to run the ECOBRIDGE workflow, users are also advised to plot them in 
ArcGIS Pro and make sure that the projections and processing extent are 
correctly configured.

ECOBRIDGE’s execution running time depends on the datasets being 
processed, the transitions being implemented, and the equipment used. 
On a high-end GPU-enabled device, processing datasets covering the 
whole of the UK consistently took approximately 6 h. The user is 

Table 1 
Sample transition table, first three rows. The transition table used for testing and 
development of ECOBRIDGE had over 300 rows/rules.

Low-Resolution 
Baseline Class

Low-Resolution 
Scenario Class

High-Resolution 
Baseline Class

High-Resolution 
Downscaled Class

2 6 1 1
2 6 2 6
2 6 3 3
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informed of the software progress by a constant feed of messages indi-
cating the stage at which the workflow is, and the operation being 
carried out.

The results of the execution of ECOBRIDGE are best exemplified in 
Figs. 7 and 8 below. Fig. 7 shows a 10 class, 1 km × 1 km Land Cover 
baseline for a sample area of Southern England (top right, A), and the 
12-class scenario output for the same area (bottom left, B). In this, the 
increase of broadleaf and coniferous woodland is evident, together with 

the introduction of new land cover classes such as silvoarable regions in 
the north of the image. The bottom right image (C) in Fig. 7 shows the 
high-resolution (10 m) map for the same area. In Fig. 8, the changes 
driven by the baseline-scenario transitions are apparent in the increase 
of woodland to the detriment of improved grassland and arable land 
cover, and, to a lesser measure, in the presence of silvoarable cover. The 
top row (D, E) is also characterised by the presence of square patterns 
and sharp edges where transitions occurred and land cover in contiguous 

Fig. 1. Simplified flowchart of the ECOBRIDGE core workflow design. LR: Low Resolution, HR: High Resolution.

Fig. 2. Simplified flowchart of the segmentation stage.
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regions differ, while the bottom row (F, G) shows how the application of 
the rasterisation process of ECOBRIDGE helps to mitigate the appear-
ance of sharp edges in the downscaled output. ECOBRIDGE reclassifies 
all polygons in the parcel dataset using the predominant underlying 
pixel class. Thus, it helps restore the original landscape features, deliv-
ering an artifact-free, natural-looking downscaled dataset (see Fig. 9).

4. Validation

The ECOBRIDGE workflow has been validated following a qualita-
tive and quantitative approach, focusing on the detection of unwanted 
results or anomalies. The validation process cannot per se determine 
whether the changes that occur through the datasets are correct (since 

Fig. 3. – Simplified flowchart of the extraction stage.

Fig. 4. – Simplified flowchart of the reclassification stage.

Fig. 5. Simplified flowchart of the rasterisation stage.
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scenarios produce hypothetical change and we have no actual change 
against which to compare it) but can help us confirm that all expected 
changes take place, that no changes take place in an unanticipated way 
and the ability of the tool to handle unexpected inputs in the transition 
table.

4.1. Qualitative validation

Qualitative validation consisted of carrying out a visual assessment 
of the downscaled results. This involved manually inspecting the four 
raster datasets, identifying the different transitions at play in both low- 
and high-resolution datasets, and checking that the expected value 
changes took place. This process lacks the automation and comprehen-
siveness of statistical or software-based methods but, like other authors 
particularly in the field of Earth Observation (Pulla et al., 2023), we 
found that this was a crucial step during the initial stages of develop-
ment of the ECOBRIDGE workflow to verify that pixels were selecte-
d/omitted correctly for each given transition.

To carry out this manual verification of results we used the Create 
Accuracy Assessment Points workflow in the ArcGIS Pro Image Analyst 
dataset. A total of 500 accuracy assessment points were plotted on a 
section of the downscaled output of approximately 7500 km2 in 
Southern England. Randomly distributed points were created for each 
class, according to the proportional area of the class. Zonal statistics 
were calculated for each accuracy assessment point to establish their 
overlapping pixel at different scales. Similar exercises at the UK scale 
were also carried out during various stages of ECOBRIDGE’s 
development.

4.2. Quantitative validation

Additional checks were carried out to verify the correctness of the 
results. For example, we compared the changes in pixel counts between 
the low-resolution baseline and the scenario output datasets, and the 
changes which occurred between the high-resolution baseline and 
downscaled data (Fig. 9). These changes were compared across the two 
groups and datasets. As expected, proportional total count variation on 
the low-resolution datasets were mirrored by similar changes in the 
high-resolution images to within ±5 %.

Fig. 6. Ecobridge graphical user interface.

Fig. 7. – Legend and map showing location of the testing and validation area (top-left). The remaining three panels show input datasets to ECOBRIDGE: A) Low- 
resolution baseline, B) low-resolution scenario input, C) high-resolution baseline.
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The results of the quantitative analysis were consistent with our 
expectations: changes in land cover values at low resolution were 
replicated by similar changes at high resolution. Some discrepancies are 
to be expected. In our example, the low-resolution scenario output is the 

result of a modelling process in which, among other impacts, some areas 
of arable and grassland cover (C3 and C4) become broadleaf woodland 
(C1). While the validation shows that this transformation occurs as ex-
pected at both high- and low-resolution levels, downscaling does affect 

Fig. 8. Top row (D,E) shows raw downscaled output from ECOBRIDGE (D), with close-up view of yellow circled area (E). Bottom row (F, G) shows re-rasterised 
downscaled output (F), with close-up view of yellow circled area (G). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.)

Fig. 9. – Bar plot of percentage cover of LULC classes in ECOBRIDGE coarse resolution inputs, and fine resolution input/output datasets for the test area. Category 
axis represents land cover classes from class 1 (C1) to class 41 (C41).
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the intensity of the change. This is to be expected: low-resolution models 
tend to have a more generalised impact compared to their high- 
resolution equivalent, since they tend to simplify and aggregate de-
tails. The high-resolution results reflect the fact that, while C3 and C4 
are the majority classes in many 1 km pixels, these cells also include a 
variety of other classes (including C1) which only become apparent once 
the downscaling process has taken place.

4.3. Change-detection analysis

The ArcGIS Pro platform includes a set of tools for pixel change 
detection analysis. In particular, the Change Detection feature, within 
the Image Analysist extension, allows us to obtain a breakdown of all the 
changes produced between different raster files. In this way, we can 
establish the changes that occurred between the low-resolution baseline 
and scenario output and, crucially, the derived high-resolution transi-
tions. This process produces a table of transitions which should exactly 
mirror the transition table: any erroneous transitions would be detected 
when comparing the combination results with the original transition 
table.

The Change Detection feature requires the Image Analyst extension. 
Users who lack access to that library can use the Combine feature to 
carry out a similar quantitative validation. This was used to create a 
table which included all pixel combinations for the four land cover 
datasets in question. In ArcGIS Pro, this feature requires the four land 
cover datasets and the extent and needs to be configured to consider the 
minimum possible cell size. By comparing the table produced by 
Combine with the transition table, we were able to confirm that no 
unexpected pixel changes had taken place. The only type of transitions 
shown by Combine which does not appear in the transition table are 
overlaps of same-value pixels at both high and low resolution. This is 
exemplified in the Sankey diagram below (Fig. 10), showing how, 
beyond the parameters specified by the transition table, all low- 
resolution baseline class 1 pixels overlap low-resolution scenario 
output class 1 pixels. Furthermore, as expected, the Sankey diagram 
shows how no changes at high-resolution occur, other than those indi-
cated by the transition table. In this context, all high-resolution pixels in 
the baseline coincide with a high-resolution pixel of the same class in the 
downscaled output. Had the downscale process been unsuccessful or 
erroneous, changes both at low-resolution and high-resolution level 
would have followed additional, arbitrary combinations.

5. Discussion

5.1. Uses and limitations

ECOBRIDGE has been thoroughly tested on the Malcolm et al. (2023)
scenarios, but its scope and application can include virtually any sce-
narios where baselines (low and high resolution) and transition table are 
available. For example, the workflow could be used to downscale 
datasets produced using the Shared Socioeconomic Pathways (SSPs) 
scenario frameworks (Brown et al., 2022; Riahi et al., 2017) as done by 
Blaydes et al. (in review). SSPs resolution depends on the model they are 
applied to, with most modelling applications ranging from hundreds to 
tens of kilometres.

ECOBRIDGE is not alone in the field of workflows or tools to 
downscale model outputs. Other examples include the Downscaler 
package, a command-based package to downscale species distribution 
based on statistical methods. The Statistical DownScaling Model (SDSM) 
(Wilby and Dawson, 2013) is a downscaling tool based on statistical 
methods, which focuses on downscaling climate datasets. SLEUTH 
(Clarke, 2008), consists of grids of cells which change according to a 
transition table. SLEUTH, however, focuses on urban growth scenarios, 
usually at a maximum resolution of 30m, requires specific, complex 
parameters, and employs historical information. The CLUE-S Model 
(Verburg et al., 2002) supports high-resolution datasets and it is also 
driven by a transition table, but requires extensive datasets and speci-
alised parametrisations, increasing its complexity. Similarly, CA-Markov 
(Cellular Automata - Markov) is a powerful tool to simulate and predict 
LULCC, but it requires several historical and complex datasets to 
operate.

While undoubtedly useful, these tools are either highly specialised to 
a particular use case or require extensive parametrisation with complex 
data. ECOBRIDGE differs from these tools in that it allows expert 
knowledge on a specific field to completely govern LULCC predictions. 
The advantages of using ECOBRIDGE to downscale scenario outputs are 
therefore many. In general, downscaling requires fewer computing re-
sources than applying complex models to fine resolution datasets to 
recreate scenarios from scratch. The fact that ECOBRIDGE does not 
involve high computing costs increases its flexibility. ECOBRIDGE can 
be applied at local, regional and country level according to the analysis 
required, without having to migrate to a more powerful computer 
platform. This flexibility is also highlighted in the way a user can adjust 
the transition table to obtain more nuanced outputs for different areas 
within a bigger extent. Thus, it is possible to run ECOBRIDGE exclusively 

Fig. 10. Sankey diagram illustrating transition from low-resolution (LR) class 1 (C1) baseline pixels to LR scenario output C1 pixels, and subsequent transition from 
underlaying high-resolution (HR) class 1 to class 10 (C1 to C10) pixels to identical high-resolution scenario output pixels.
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for regions which share common patterns and drivers of LULCC 
(Goodwin et al., 2022) through the creation of area-specific individual 
transition tables in combination with vector files for the areas in ques-
tion. The workflow can also handle the introduction of new classes in the 
transition table (i.e. where new code is used for cells undergoing a 
specific combination of fine and coarse scale LULC transition) and the 
re-coding of LULC classes between baseline and scenario data (i.e. use of 
different integer codes to individual LULCs), provided care is taken 
when the user constructs the transition table to avoid human error.

While its simplicity and ease of use are some of the outstanding 
features of ECOBRIDGE, they are also its main limitation. Other pa-
rameters which could potentially enrich ECOBRIDGE outputs, such as 
those used by SLEUTH (Clarke, 2008), CA-Markov (Li et al., 2016), and 
CLUE-S (Verburg et al., 2002), are ignored by ECOBRIDGE: the tool 
relies exclusively on the quality of the expert knowledge provided. 
Where expert knowledge is insufficient to populate the rows of the 
transition table, determining which fine-scale changes take place within 
coarse-scale transitions, it may be possible to populate the table from 
literature or analysis of historic changes (Redhead et al., 2020), but in 
such situations there may be other, more appropriate tools to use that 
reflect this uncertainty (e.g. those based on statistical/probabilistic 
assignment). Adding probabilistic capabilities to the deterministic 
approach used in ECOBRIDGE has been identified as another way to 
enhance the workflow in potential future upgrades.

All data-based systems depend on the quality and availability of the 
information at their disposal for their correct performance, and ECO-
BRIDGE is no exception. While ECOBRIDGE can employ any raster 
baseline and scenario datasets, the quality of these data will ultimately 
define the quality of the downscaled outputs and their usability. This is 
an inherent weakness of any digital system which depends on input data 
for its results. However, where the user is aware of the potential for 
missing or erroneous data in the baselines, ECOBRIDGE can be used to 
help manage these issues successfully. By codifying known potential 
baseline inaccuracies or data voids within ECOBRIDGE’s knowledge 
base (i.e. the transition table), the workflow can help to address some of 
these issues and act as a de facto error filter. For example, by specifying 
known implausible combinations of baseline and scenario pixels and 
producing specified downscaled pixel outputs to be used as error 
markers or ‘canary’ outputs, ECOBRIDGE can act as a QA and error 
detection tool.

A final limitation is the reliance of ECOBRIDGE on ESRI’s ArcGIS Pro 
platform. While the use of this powerful environment has allowed us to 
accelerate the development of the tool, it limits the use of ECOBRIDGE to 
those with the required licences. Further investigation of implementing 
the ECOBRIDGE workflow on more openly available platforms is an 
obvious avenue for further, future development.

6. Conclusions

ECOBRIDGE forms a straightforward and flexible way for users to 
downscale spatial LULC scenario outputs, in an efficient and reproduc-
ible manner. The user interface and data requirements are simple, and 
this simplicity is also heightened by the use of a modern platform. 
ECOBRIDGE can contribute to propagating expert knowledge and 
enabling users to carry out LULCC model output analysis with increased 
accuracy and detail, helping the scientific community in understanding 
past and future LULCC trajectories at local level and beyond.

CRediT authorship contribution statement

Josep Serra Gallego: Writing – original draft, Visualization, Vali-
dation, Software, Methodology, Formal analysis, Conceptualization. 
Hollie Blaydes: Writing – review & editing, Conceptualization. Emma 
Gardner: Writing – review & editing, Conceptualization. Richard F. 
Pywell: Writing – review & editing, Supervision. J. Duncan Whyatt: 
Writing – review & editing, Conceptualization. John W. Redhead: 

Writing – review & editing, Supervision, Data curation, 
Conceptualization.

Software availability

Name of software: ECOBRIDGE.
Repository: https://github.com/jogismeuk/ECOBRIDGE.git.
Developer: Josep Serra Gallego, UK Centre for Ecology & Hydrology, 

MacLean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 
8BB

Year first available: 2024.
Hardware required: GPU-enabled desktop or laptop computer.
Software required: ArcGIS Pro.
Public access.
Data availability: The low-resolution baseline (Morton et al., 2022a), 

high-resolution baseline (Morton et al., 2022b) and parcels (Morton 
et al., 2022c) datasets are available on the NERC Environmental Infor-
mation Data Centre repository. The scenario dataset (Malcolm et al., 
2023) used is not yet publicly available.

Cost: Free.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

This research was supported through the Natural Environment 
Research Council (NERC) award number NE/V006878/1 as part of the 
DRUID (Drivers and Repercussions of UK Insect Declines) project. HB 
was supported by the Natural Environment Research Council (NERC) 
through the Envision Doctoral Training Partnership and project industry 
partner Low Carbon (grant number NE/R010226/1).

Data availability

The authors do not have permission to share data.

References

Audsley, E., Pearn, K.R., Simota, C., Cojocaru, G., Koutsidou, E., Rounsevell, M.D.A., 
Trnka, M., Alexandrov, V., 2006. What can scenario modelling tell Us about future 
European scale agricultural land use, and what not? Environ. Sci. Pol. 9 (2), 
148–162. https://doi.org/10.1016/J.ENVSCI.2005.11.008.

Britz, W., Verburg, P.H., Leip, A., 2011. Modelling of land cover and agricultural change 
in Europe: combining the CLUE and CAPRI-Spat approaches. Agric. Ecosyst. Environ. 
142 (1–2), 40–50. https://doi.org/10.1016/J.AGEE.2010.03.008.

Brown, C., Seo, B., Alexander, P., Burton, V., Chacón-Montalván, E.A., Dunford, R., 
Merkle, M., Harrison, P.A., Prestele, R., Robinson, E.L., Rounsevell, M., 2022. Agent- 
based modeling of alternative futures in the British land use system. Earths Future 10 
(11). https://doi.org/10.1029/2022EF002905.

Bununu, Y.A., Bello, A., Ahmed, A., 2023. Land cover, land use, climate change and food 
security. Sustain. Earth Rev. 6 (1). https://doi.org/10.1186/s42055-023-00065-4.

Chen, M., Vernon, C.R., Huang, M., Calvin, K.V., Kraucunas, I.P., 2019. Calibration and 
analysis of the uncertainty in downscaling global land use and land cover projections 
from GCAM using demeter (v1.0.0). Geosci. Model Dev. (GMD) 12 (5), 1753–1764. 
https://doi.org/10.5194/GMD-12-1753-2019.

Clarke, K.C., 2008. Mapping and modelling land use change: an application of the 
SLEUTH model. Lecture Notes in Geoinformation and Cartography 
0 (9783540691679), 353–366. https://doi.org/10.1007/978-3-540-69168-6_17.

Dendoncker, N., Bogaert, P., Rounsevell, M., 2006. A statistical method to downscale 
aggregated land use data and scenarios. J. Land Use Sci. 1 (2–4), 63–82. https://doi. 
org/10.1080/17474230601058302.

Finch, T., Day, B.H., Massimino, D., Redhead, J.W., Field, R.H., Balmford, A., Green, R. 
E., Peach, W.J., 2021. Evaluating spatially explicit sharing-sparing scenarios for 
multiple environmental outcomes. J. Appl. Ecol. 58 (3), 655–666. https://doi.org/ 
10.1111/1365-2664.13785.

Friedl, M.A., Woodcock, C.E., Olofsson, P., Zhu, Z., Loveland, T., Stanimirova, R., 
Arevalo, P., Bullock, E., Hu, K.T., Zhang, Y., Turlej, K., Tarrio, K., McAvoy, K., 
Gorelick, N., Wang, J.A., Barber, C.P., Souza, C., 2022. Medium spatial resolution 
mapping of global land cover and land cover change across multiple decades from 

J. Serra Gallego et al.                                                                                                                                                                                                                          Environmental Modelling and Software 193 (2025) 106616 

9 

https://github.com/jogismeuk/ECOBRIDGE.git
https://doi.org/10.1016/J.ENVSCI.2005.11.008
https://doi.org/10.1016/J.AGEE.2010.03.008
https://doi.org/10.1029/2022EF002905
https://doi.org/10.1186/s42055-023-00065-4
https://doi.org/10.5194/GMD-12-1753-2019
https://doi.org/10.1007/978-3-540-69168-6_17
https://doi.org/10.1080/17474230601058302
https://doi.org/10.1080/17474230601058302
https://doi.org/10.1111/1365-2664.13785
https://doi.org/10.1111/1365-2664.13785


landsat. Frontiers in Remote Sensing 3, 894571. https://doi.org/10.3389/ 
FRSEN.2022.894571/BIBTEX.
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