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Abstract. Drought impact forecasting is essential for enhancing preparedness and mitigation strategies. However, identifying 

key predictors and achieving reliable predictions remains challenging. Previous studies have shown promise in developing 

indicator-impact relationships and yet these are often region- and impact type-specific. Here, utilized the European Drought 

Impact Inventory (EDII), and a wide range of meteorological and hydrological predictors, including the Standardized 

Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), and soil moisture indices (SSMI), to 15 

develop a generalized forecasting framework for predicting drought impacts in the UK across different lead times. We firstly 

compared multiple machine learning models for drought impact prediction and identified Random Forest (RF) as the most 

effective model. Our results show that RF delivers the highest accuracy for short-term forecasts (0-3 months), with performance 

declining beyond six months, similar to trends observed in weather prediction models. At longer lead times, the model 

incorporates a broader set of predictors to maintain accuracy. Key findings highlight the importance of long-accumulation-20 

period drought indicators, particularly SPEI24, and deep-layer soil moisture (SSMI L4), which were identified as the most 

influential predictors. A generalized model approach was employed, aggregating drought impacts from various regions, and 

the model was validated using unseen datasets from within the UK, using parts of the EDII UK dataset held back from the 

training, confirming its robustness. A pilot application to a completely different country (Germany) highlights the potential for 

extrapolation to new domains. Gridded impact predictions were also developed, and successfully captured the spatial 25 

distribution of observed impacts, and a spatially explicit evaluation showed reasonable agreement between predicted and 

observed drought impacts. Although uncertainties persist, particularly for long lead times, our findings suggest that a 

generalized approach based on hydrometeorological indices provides an effective framework for operational drought impact 

forecasting, supporting early warning systems and decision-making in drought risk management. 

 30 
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1 Introduction 

1.1 Background to impact-based drought early warning 

Globally, droughts are one of the most damaging natural hazards, causing severe and often catastrophic impacts on lives and 

livelihoods. Drought impacts are felt across all economic sectors as well as on terrestrial and freshwater ecosystems, and the 

ecosystem services that they sustain. Recent years have seen devastating droughts and, increasingly, these droughts have been 35 

attributed more confidently to anthropogenic warming (Faranda et al., 2023). Droughts are expected to become more severe 

in many parts of the world (e.g. Vicente-Serrano et al. (2022)) with some of the greatest impacts likely in some of the most 

vulnerable regions of the Global South, where the impact of droughts has been shown to be a demonstrable constraint on 

economic development (Zaveri et al., 2023). Yet, given the ubiquity of droughts across all climate zones, and the dependence 

of economic sectors on water security, even in relatively wealthy countries, drought risk is increasing and projected to grow 40 

through the 21st century.  

In recognition of the of ubiquitous and increasing impacts of drought, the international community has long called for improved 

systems to proactively manage drought. ‘Three Pillars’ of drought management (IDMP, 2025; Wilhite et al., 2014) can be 

recognised, including: (i) monitoring and early warning, (ii) risk and impact assessment and risk mitigation, (iii) preparedness 

and response. Over recent decades, there have been a growth in drought early warning systems (DEWs), with many parts of 45 

the globe covered by existing systems, and huge investments to improve coverage in under-represented areas (e.g. 

EarlyWarningsforAll, 2023).   Nevertheless, while there have been, and continue to be, major advances in the monitoring of 

hydrometeorological variables (e.g. precipitation and temperature), in general most early warning frameworks do not include 

impacts on society and the environment. Bachmair et al. (2016b) conducted a literature review and surveyed 33 drought 

monitoring systems globally. They concluded that while impacts are considered in some systems, in general there is a lack of 50 

incorporation of impact information in DEWs - even if impact information is being collected.  

More generally, across all natural hazards, over the last decade there has been increasing recognition of the need to move 

beyond traditional hydrometeorological early warning systems and to develop ‘impact-based’ forecasts that ‘bridge the gap’ 

between physical science and actionable information. However, such systems are generally far more evolved for flooding and 

windstorms than they are for drought (e.g. see the review of Merz et al. (2020)).  This is due to many factors, including the 55 

different (generally wider and longer) spatial and temporal scales of drought hazard, as well as the complexities of drought 

impacts, which are often diffuse, non-structural and can occur at significant delays after the event (Bachmair et al., 2016b, 

2017).  

In a recent review, Shyrokaya et al. (2023) surveyed the state-of-the-art in efforts to develop impact-based forecasting of 

droughts: a majority were scientific studies, with only a few examples of practical applications. The review highlights that 60 

while there are few ‘operational’ systems, the last decade has seen a growth in the underpinning science needed for more 

impact-focused DEWS. In particular, there has been a growth in studies that seek to link drought indicators (i.e. 

hydrometeorological variables used to quantify drought status) to impacts (e.g. Tanguy et al., 2023; Wang et al., 2020). In 
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addition, a recent World Meteorological Organization (WMO) report provides a comprehensive review of current drought 

impact collection efforts and highlights the importance of forecasting, data requirements, and the diverse data types that can 65 

reveal impact signals (Smith et al., 2025). Shyrokaya et al. (2023) highlight seven challenges to the development of impact-

based forecasting systems, including (among others): fundamental limitations of data availability; constraints in the statistical 

models used to develop drought impact functions; biases in the current literature towards certain drought indicators 

(meteorological), impact sectors (agriculture) and geographies (a focus on Europe). In the latter case, the focus on Europe 

largely reflects the existence of the European Drought Impact Report Inventory (EDII) (Stahl et al., 2016a), a centralised 70 

dataset of consistently recorded drought impacts that has been the basis of a number of efforts to statistically link drought 

indicators to impacts (e.g. Stagge et al. (2015); Bachmair et al. (2016a, 2017); Blauhut et al. (2015); Shyrokaya et al. (2025)). 

1.2 The need for drought impact forecasts in the UK 

Despite being stereotypically a wet country, the UK has experienced drought events that have had significant impacts on 

people, water supplies and the environment. Historic events are still viewed as benchmark droughts, in particular 1976, in 75 

terms of their impact (Barker et al., 2019; Marsh et al., 2007), but a string of events over the recent past (2010-2012 (Kendon 

et al., 2013), 2018-2019 (Turner et al., 2021) and 2022 (Barker et al., 2024)) have provided a focus for improving drought 

management, communication and investment in drought research. These efforts have resulted in practical tools to better 

monitor and prepare for droughts, including the UK Water Resources Portal (Barker et al., 2022) and the UK Hydrological 

Outlook (Prudhomme et al., 2017), but have focussed on monitoring/forecasting the hydrometeorological hazard of drought. 80 

Engagement with stakeholders as early as 2015 identified the understanding of when and where drought impacts were 

occurring as a key gap in managing droughts (Hannaford et al., 2019). More recent engagement has highlighted the need for 

drought impact information (both during and after an event) as a barrier to proactive event response and management (Facer-

Childs et al., 2025). 

The often-slow onset of droughts poses a significant challenge for monitoring and identifying impacts in real-time (although 85 

the rapid onset of flash droughts can be equally challenging), especially if additional resources need to be deployed (e.g., 

environmental monitoring and surveys) (AghaKouchak et al., 2023; Noguera et al., 2023; Wilhite et al., 2007). This means 

that in many cases most drought impact information is defined and/or collected after an event has ended, and with the 

distributed nature of drought management and response in the UK (both sectoral and in each of the constituent countries), 

much of this information is not openly nor widely available. Although impacts are a key factor in the official declaration of a 90 

drought event in England (Environment Agency, 2025) alongside hydrometeorological and environmental indicators, there is 

no objective definition of impact, nor the number, type or severity of impacts, nor how this should be combined with 

hydrometeorological and environmental indicators to define drought (other than suggested ‘possible’ drought impacts 

associated with each stage of drought). 

There has been a proliferation of drought impact datasets in recent years – although as noted above, many are still not yet 95 

available or openly available (in particular, those used operationally by the environmental regulators). Indirect measures for 
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impacts, or datasets in which a drought signal can be seen, are also increasing in number - including those collected and used 

by environmental regulators or researchers (e.g. Biological Records Centre https://www.brc.ac.uk/, e.g.  Oliver et al. (2015)), 

collected by citizen science initiatives (e.g., Crowd Water https://crowdwater.ch/, Seibert et al. (2019)) or using earth 

observation data (e.g. Bachmair et al. (2018)). As such, there is a need to develop tools and methods that can harness these 100 

new streams of data that can turn them into information to support proactive drought management. In lieu of a holistic and 

complete UK focussed drought impact database, here we demonstrate the use of the European Drought Impact Database 

(EDID, previously EDII, a European scale database manually populated from a range of documentary sources (Stahl et al. 

(2016b, 2024)) to develop a generalised approach for forecasting drought impacts using machine learning methods. Our 

analysis was completed prior to the release of EDID, and therefore relies specifically on the EDII subset. 105 

1.3 Gaps in previous approaches 

The existing literature can be assessed on several key aspects, including: whether the study aims to predict the number of 

impact occurrences or their likelihood; the application of one or multiple machine learning models with or without 

intercomparison; the focus on regional and/or sector-specific modelling versus aggregated impact data; the validation of 

models using unseen datasets; the distinction between forecasting future impacts and making predictions based on historical 110 

data; and whether the results are presented in a gridded format. This framework provides a structured approach to evaluating 

prior research and identifying trends in impact prediction studies. 

Blauhut et al. (2015) and Stagge et al. (2015) were among the first to model the likelihood of drought impact occurrences 

across various sectors in European countries with available impact data, using binary classifications of impact occurrence/non-

occurrence using a logistic regression approach. Stagge et al. (2015) also applied Generalized Additive Models (GAMs) to 115 

relate impact occurrences to drought indices, marking the first use of a non-parametric alternative to Linear Regression (LR) 

in this context. Similarly, O’Connor et al. (2023) used Logistic LR and GAMs to examine the relationship between drought 

indices and impacts in Ireland.  

Building on these approaches, Bachmair et al. (2015) examined the effectiveness of different drought indicators or 

combinations thereof in explaining impact occurrences at the region level in Germany. Unlike the earlier studies, they also 120 

considered the number of impact occurrences, identifying specific threshold values that link drought indicators to impact 

events. Expanding on this approach, Bachmair et al. (2016a) used a Random Forest (RF) model for number of impact reports 

prediction using impact data from the UK and Germany. Torelló-Sentelles and Franzke (2022) also used a region-specific RF 

model to predict the number of occurrences of drought impacts across Spain. In addition, Bachmair et al. (2017) further 

compared different modelling approaches, including LR, RF, and the Hurdle method, for the south-east of England.  125 

Studies up to this point primarily focus on sector-specific or location-specific data, or both. However, Sutanto et al. (2019, 

2020) conducted the first study that lumped categories both spatially within the selected region and at the country scale over 

Germany to predict the likelihood of impact occurrence. In addition, they were also the first to attempt forecasting these 

likelihoods using dynamical weather forecasts. 
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Hobeichi et al. (2022) compared nine different machine learning models to predict the likelihood of impact occurrences in 130 

Texas, USA, and provided gridded risk maps and forecasts with lead times of up to three months using the lagged indicators 

approach. Similarly, Stephan et al. (2023) assessed how well predicted impact estimates from one Alpine region aligned with 

reported drought impacts in other regions and evaluated the models' ability to re-forecast drought impacts.  

Where reported drought impact data are not available, some studies have used proxies for impacts. For example, crop yields 

have been used as indicators of agricultural impacts (Parsons et al., 2019; Tanguy et al., 2023), and wildfire activity has served 135 

as an indicator of meteorological impacts (Gudmundsson et al., 2014) to establish the relationship between drought indicators 

and impacts. 

Although these previous studies have attempted to predict drought impacts using different approaches individually, there is no 

comprehensive study that compiles and evaluates all these aspects together (i.e., occurrence, severity, likelihood, cross-

validation, forecast performance). For example, while a general modelling approach using a lumped impact dataset was 140 

implemented by Sutanto et al. (2019, 2020), it was limited to likelihood estimation. Stephan et al. (2023) addressed model 

cross-validation across different time periods and spatial scales, but their study lacked independent validation. Moreover, most 

early studies applied preprocessing (i.e. censored time periods when selecting drought events) restricting their ability to fully 

assess model accuracy over an extended timeframe and their applicability in an operational decision-making context. 

Furthermore, while impact prediction has been widely explored, only a few studies have incorporated forecasting, limiting the 145 

understanding of how well models perform in predicting future drought impacts.  

These methodological limitations highlight gaps in the literature, emphasizing the need for a more integrated approach that 

combines multiple perspectives to improve the robustness and generalizability of drought impact predictions. 

1.4 Aims and objectives 

The aim of the study is to build on previous research that has developed drought indicator-impact linkages and extend the 150 

concept to develop a drought impact forecasting framework. We develop a generalised modelling approach to test the 

predictability and forecasting ability of new ‘unseen’ cases (e.g. in future periods, or where impact data is lacking). Although 

we develop the model in the UK, we aim to develop a framework that can be applied in other locations or regions of the world. 

To do this, we evaluate machine learning models calibrated using impact data for the UK as a whole (i.e. with all regions 

lumped together), assessing their prediction and forecasting performances by using independent (unseen) datasets within the 155 

UK, by purposefully holding back data from the training set. We also test potential for wider portability by applying the models 

in a completely different country, selecting Germany as a relatively well-sampled country from the EDII and building on past 

comparisons between these two countries (Bachmair et al., 2016a; Shyrokaya et al., 2025). Finally, the best performing 

machine learning model was trained and run with lagged drought indicators to forecast drought impacts and the forecast 

performance evaluated using an independent dataset. We also create gridded drought impacts maps to assess the spatial 160 

variability and severity of the impacts.  

Therefore, the objectives of this study are as follows: 
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• Develop a single, generic framework for drought impact prediction. 

• Test different machine learning methods for their suitability for forecasting drought impacts. 

• Validate the model, including its performance on unseen cases. 165 

• Assess the potential of a lagged indicator-based model framework for forecasting capability. 

• Develop an approach to produce and evaluate gridded, spatial drought impact predictions. 

2 Methodology 

This section outlines the methodological framework and data utilized for predicting drought impacts through machine learning 

(ML) approaches. The methodology includes impact data preprocessing, drought indicator calculation, model selection, and 170 

performance evaluation. The study period of 1970-2012 was selected according to the drought impact data availability for the 

UK in the EDII. Detailed steps in preparing the input data for ML integration, alongside the training, testing, and validation 

strategies for the models, are given below to ensure reproducibility and robustness in the predictions. The methodology is 

summarised in Figure 1 and consists of two steps: (1) model development and evaluation, and (2) prediction and forecasting 

with the best-performing model for different lead times. In this context, the term ‘prediction’ is used as ‘forecast’ at zero lead 175 

time. 

 

Figure 1 Schematic representation of the study methodology 

2.1 Data Sources 

We used the European Drought Impact Inventory (EDII), a comprehensive database that systematically documents drought 180 

impacts across Europe, for the drought impact dataset. The EDII organises impacts into 15 categories spanning various sectors, 

such as agriculture, water resources, ecosystems, and society, and provides detailed event-based records (Stahl et al., 2016a). 

To be included in the EDII, the impact must be negative and must also meet two criteria: (i) the observed impact must be 

clearly attributable to drought, and (ii) the source of the report must be credible and properly cited. While several studies have 
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used EDII reports to model the statistical relationship between drought indices and categorised impacts, we considered drought 185 

impacts collectively, without distinguishing specific categories, to focus on the overall relationship between drought conditions 

and their reported consequences. We focus on the EDII database for the UK at the NUTS1 level, where NUTS (Nomenclature 

of Units for Territorial Statistics) is a geocode standard for subdividing countries into regions for statistical analysis, with 

NUTS1 representing major socio-economic regions. Although the UK has adopted the ITL (International Territorial Levels) 

system post-Brexit, we use the NUTS classification as our study period primarily covers the pre-Brexit era. 190 

Before using the impact dataset, a post-processing was applied to the “drought impact report” (EDII entry), following the 

methods used in previous studies (Bachmair et al., 2015, 2016a, 2017; Blauhut et al., 2015). Specifically, records without start 

or end dates (month/season) were excluded from the dataset. For entries containing only seasonal information, the season is 

divided into monthly intervals, with the start month as the beginning date and the end month as the concluding date. Once the 

season is broken down into months, all impact reports are assigned to each of the three months, ensuring that the full seasonal 195 

information is captured for each month. After the post-processing, we converted the EDII entries into a “drought impact 

occurrence” (I) by determining the total number of impact occurrences (NI) for each NUTS1 region and month. The EDII data 

for UK NUTS1 regions, both before and after post-processing, is presented in Table 1. Three regions; North East England, 

Scotland, and Northern Ireland are excluded from the model development  stage as there was insufficient drought impact data 

for the modelling approach. 200 

Table 1 Information about NUTS1 Regions: post-processed total number of impact occurrences (NI (PP)), Number of months with 

observed impact data (# Months (NI>0), Arable Area Ratio (AAR) and Population Ratio (PopR) 

NUTS1 ID Name NI (PP) # Months (Nl>0) AAR (%) PopR (%) 

UKC North East (England) 26 9 3.3 4.1 

UKD North West (England) 473 46 3 10.9 

UKE Yorkshire and the Humber 178 32 10.7 8.6 

UKF East Midlands (England) 403 43 15.2 7.6 

UKG West Midlands (England) 275 35 8.6 9 

UKH East of England 513 70 19.9 9.1 

UKI London 289 61 0.1 13.8 

UKJ South East (England) 1210 109 11 13.5 

UKK South West (England) 441 85 14.2 8.2 

UKL Wales 866 45 1.7 4.6 

UKM Scotland 60 8 11.7 7.7 

UKN Northern Ireland 4 4 0.6 2.8 

UK  United Kingdom 4738 547 100 100 

 

In this study, we utilised key drought indicators; Standardised Precipitation Index (SPI) (McKee et al., 1993), Standardised 

Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010), and Standardised Soil Moisture Index (SSMI) 205 

(Afshar et al., 2022) to quantify drought conditions. All indicators are derived from the ERA5-Land (Muñoz-Sabater et al., 
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2021) precipitation, temperature, and soil moisture dataset. The primary reason for selecting the ERA5-Land reanalysis dataset 

was its global availability, which ensures the consistency and scalability of the data across different regions. This feature not 

only allowed us to comprehensively analyse drought conditions in the UK but also provided the potential to apply the machine 

learning models developed in this study to other regions worldwide. In practical terms, ERA-5-Land also offers potential for 210 

supporting near-real-time application in the UK, unlike current in-situ data streams available within current early warning tools 

such as the UK Water Resources Portal. 

SPI measures precipitation anomalies, making it effective for identifying meteorological droughts, while SPEI incorporates 

both precipitation and potential evapotranspiration (PET) as an index of climatic water balance, to capture the combined effects 

of temperature and precipitation on drought severity. For the PET calculation, we used the FAO Penman-Monteith equation 215 

(Allen et al., 1998), a widely recognised method for estimating PET based on physical and climatic principles. This approach 

integrates various meteorological variables, including solar and thermal radiation, wind speed, dew temperature, and air 

temperature, all of which were sourced from the ERA5-Land dataset. SPI and SPEI were calculated using a 1969 to 2010 

reference period for 1, 3, 6, 9, 12, 24-, and 48-month accumulation periods to capture a range of drought conditions. 

The SSMI, on the other hand, evaluates soil moisture variability, offering critical insights into agricultural and hydrological 220 

drought impacts. For the SSMI, we used all four levels of soil moisture (volumetric soil water) data available in the ERA5-

Land dataset. These levels correspond to different soil depths: 0–7 cm, 7–28 cm, 28–100 cm, and 100–255 cm. By 

incorporating soil moisture data across multiple depths, we were able to capture a more comprehensive view of soil moisture 

dynamics, which is crucial for understanding both short-term and long-term drought impacts on agriculture and hydrology. 

For the SSMI calculation, normalisation was applied to the soil moisture by first calculating the long-term (1970-2022) mean 225 

and standard deviation of soil moisture for each month across the study period. The SSMI was then computed by subtracting 

the long-term mean for a given month from the soil moisture value and dividing the result by the long-term standard deviation 

(Afshar et al., 2022). 

In addition to the drought indicators, we also incorporated regional information, such as Land Cover Class (LCC) based arable 

area ratio (AAR) and Population Ratio (PopR), as predictors in the models. These regional variables were treated as static 230 

values, reflecting the underlying characteristics of the region. The AAR was obtained from the CORINE Land Cover dataset 

(Copernicus Land Monitoring Service, 2020), where we calculated the ratio of non-irrigated agricultural land in each NUTS1 

region over the UK. This metric provided valuable context for understanding the vulnerability of different regions to drought 

impacts, particularly in terms of agricultural land use. Although most of the drought impact reports across the UK are 

dominated by hydrological impacts, we included the AAR as a predictor to assess whether the model would reflect this pattern 235 

by assigning lower importance to it. The PopR obtained from the WorldPop 2020 dataset (Tatem, 2017), representing the 

proportion of the population in each NUTS1 region, was also included as a predictor. Regions with higher population densities 

may not only experience different drought impacts due to increased human exposure but are also more likely to have those 

impacts reported. These regional variables included into model to enhance its ability to predict drought impacts by accounting 
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for regional susceptibility and socio-economic factors that could also influence the report-based impact dataset. The AAR and 240 

PopR values for UK NUTS1 regions, are given in Table 1. 

All drought indicators in this study were calculated by first averaging the required input variables—such as precipitation, PET, 

or soil moisture—over the NUTS1 region. This regional averaging process ensures that the data is representative of the regional 

conditions, capturing spatial variability within the defined area. Once the regional averages were computed, the drought 

indices, including SPI, SPEI, and SSMI, were calculated. A total of 20 predictors (18 drought indicators and 2 regional 245 

variables) were used to predict the NI.  

Multicollinearity, a condition where predictors are highly correlated, can negatively impact the accuracy of linear models by 

inflating coefficient estimates and making the model unstable. However, in this study, we chose not to eliminate collinear 

variables initially to ensure the development of a generalizable model that could be applied across different NUTS1 regions or 

other locations. By including all drought indicators as predictors, we aimed to capture the full range of potential influences on 250 

drought impacts, recognising that while these indicators may be collinear in some regions, they might not exhibit the same 

relationships in others. Subsequently, we discarded indicators step by step to analyse their effects on prediction performance, 

enabling us to better understand the contribution of individual predictors while maintaining the model's overall adaptability. 

2.2 Machine Learning Algorithms 

In this study, we evaluated five machine learning algorithms to predict drought impacts. Random Forest (RF) (Breiman, 2001), 255 

an ensemble method based on decision trees, was used for its ability to handle non-linear relationships and interactions between 

variables. Quantile Random Forest (Quantile RF) (Meinshausen, 2006) extends RF by providing not only point predictions 

but also uncertainty estimates, making it suitable for predicting drought impacts with varying levels of confidence. The 

eXtreme Gradient Boost (XGBoost) (Chen and Guestrin, 2016), a powerful gradient-boosting algorithm, was selected for its 

efficiency and high performance in handling large, complex datasets. Additionally, we employed Least Absolute Shrinkage 260 

and Selection Operator (Tibshirani, 1996) with Cross-Validation (LASSOCV), a regression method that performs both variable 

selection and regularization to improve model interpretability and prevent overfitting. Finally, Linear Regression was included 

as a baseline model to compare with more complex algorithms, offering insights into the relationship between drought 

indicators and impacts through a simple, interpretable approach. The caret package in R (Kuhn, 2008) was used for all model 

implementations.  265 

All details regarding the ML models used in this study can be found in the relevant references and the model parameters used 

can be found in the Supplementary Information. These sources provide comprehensive information on the algorithms, their 

implementation, and their application in similar contexts, allowing for a deeper understanding of the methods employed. 

2.3 Model Development, Training and Validation 

For the model development, we used the monthly NI values as the predictand, representing the observed drought impacts in 270 

the UK. The drought indicators (SPI, SPEI calculated over various accumulation periods and SSMI at 4 different levels) served 
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as the predictors in the models, alongside regional information such as AAR and PopR. The generalized ML models were 

developed using datasets from all UK regions at the NUTS1 level, with all sectoral impact reports aggregated into a single 

category representing drought impact, rather than adopting a region- or sector-specific modelling strategy. This country-scale 

framework enhances the model’s applicability across diverse spatial contexts and enables the use of a larger, more diverse 275 

dataset, providing the necessary data points to train models that are both accurate and generalizable across the entire country. 

To ensure robust model performance and prevent overfitting during training of the models, we applied two different cross-

validation (CV) approaches. 

Type 1 CV: We applied a repeated 10-fold cross-validation method, which involves partitioning the data into ten subsets, 

training the model on nine subsets, and testing it on the remaining subset. This 10-fold process was repeated three times, and 280 

the results were averaged to provide a more reliable estimate of the model’s performance. 

Type 2 CV: To further evaluate the model's ability to generalize across both spatial and temporal dimensions, we implemented 

an additional cross-validation strategy. In this approach, the data was divided into 44 subsets (comprising 37 years and seven 

NUTS1 regions). The model was trained using data from 36 years and then used to predict the drought impact for each of the 

44 subsets, at each step. Additionally, predictions were made for each NUTS1 region using data from the other six regions. 285 

The overall performance of the model was assessed based on the accuracy of these 44 independent predictions, encompassing 

both temporal and spatial validation. 

The Type 2 CV approach was applied only to the best-performing model identified through the Type 1 CV process. This 

additional validation was conducted to assess whether there was any improvement in the model’s performance when 

accounting for both spatial and temporal variation. This also ensures the model’s spatial-temporal transferability, as considered 290 

in Stephan et al. (2023). 

Additionally, data from two NUTS1 regions (East of England and South East (England)) and six years (2007-2012) from the 

remaining regions were reserved for independent validation (1,536 data points), providing an unseen dataset to assess the 

model's ability to predict drought impacts for data that were not part of the training phase. This method allowed us to 

comprehensively evaluate the model's predictive power and ensure its applicability across different regions and time periods 295 

in the UK. To extend the independent validation beyond the UK border, we also ran the model over three selected NUTS1 

regions in Germany for period between 1970-2018 (1,764 data points), based on drought impact data availability. Details of 

the selected NUTS1 regions are provided in Table S2. 

After generating predictions for the monthly number of drought impact reports, we converted these predicted values into 

drought severity measures using the percentile methodology. The method is applied to maintain the true scale of impacts while 300 

addressing and adjusting for various biases present in reports across different regions (Shyrokaya et al., 2024). This approach 

involved ranking the predicted values within the historical distribution of predicted drought impact reports and then assigning 

a corresponding percentile rank at each NUTS1 region. The conversion was performed using the tercile methodology, where 

0 indicates no impact, 0–33% moderate impact, 33–66% severe impact, and 66–100% corresponds to extreme impact. 

Therefore, it provides a standardised way to interpret the predicted number of reports in the context of past drought events, 305 
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allowing for a clearer understanding of drought severity and its potential impacts based on model predictions. Before 

converting the predicted number of drought impact reports into drought severity measures, any predicted values less than one 

were assigned a value of zero. In addition, to evaluate the accuracy of the models in predicting the occurrence or non-

occurrence of drought impacts, both the observed and predicted NI values were converted into binary form (0 and 1). A value 

of 1 was assigned to months with impacts, while a value of 0 indicated no impact. 310 

2.4 Performance Metrics 

All machine learning models were trained using Root Mean Squared Error (RMSE) as the performance metric during the 

training phase based on observed and predicted monthly NI values. However, to assess the final model performance and overall 

accuracy, we used Area Under the Curve (AUC) as the evaluation metric. The AUC metric was calculated to evaluate model 

performance, both for the binary classification (0-1) of drought impacts and for drought severity categories. To assess the 315 

model’s ability to discriminate between drought and non-drought conditions, the AUC for the binary classification (AUCbinary) 

was computed. The model performance of predicting severity categories was evaluated using macro averaging (Baccianella et 

al., 2009), which calculates the AUC for each class individually and then takes the arithmetic mean of the results (AUCclass). 

This macro averaging approach ensures that the performance of the model is assessed across all drought severity categories, 

providing a balanced evaluation of its predictive capability across different levels of drought impact. In interpreting the results, 320 

higher AUC values correspond to greater predictive accuracy, with an AUC of 0.5 indicating performance equivalent to random 

chance, and values approaching 1.0 reflecting a model with strong discriminatory capability. 

In addition to evaluating overall model performance, we also assessed the importance of individual features to understand their 

influence on the model’s predictions. To do this, we used the varImp function from the caret package in the R environment, 

which calculates variable importance based on the specific model type employed (Kuhn, 2008). For tree-based models, such 325 

as random forests and decision trees, importance is typically measured by metrics reflecting the reduction in node impurity, 

such as the total decrease in Gini impurity or the mean decrease in accuracy. These metrics indicate the relative contribution 

of each feature to the predictive capability of the model. 

2.5 Impact based Forecasting and Gridded Impacts 

Impact-based forecasting involves predicting the potential impacts of an event, such as drought, using relevant data and ML 330 

techniques. In this approach, we used lagged drought indices at various time scales (e.g., 1, 3, 6, 9, 12, 18, and 24-months lead 

times) as predictors to generate forecasts. Therefore, the forecast models for different lead times were trained using 

corresponding lagged predictors. For example, to forecast drought impacts in May 1995 at a 3-month lead time, the model was 

trained using predictors from February 1995. Additionally, the likelihood of drought occurrences was calculated using the 

same lagged indices approach. For this purpose, the model was retrained in classification mode rather than regression mode to 335 

classify the occurrence or non-occurrence of drought impacts, thereby enabling probabilistic predictions of drought impact 

https://doi.org/10.5194/egusphere-2025-3176
Preprint. Discussion started: 11 July 2025
c© Author(s) 2025. CC BY 4.0 License.



12 

 

likelihood. This dual use of regression and classification enhances both the precision of forecasts and the ability to assess 

drought risk. All forecast models were also trained by using the Type 2 CV approach. 

For the forecasting module, we only used the best-performing ML algorithm evaluated based on its prediction phase (where 

all the predictors are obtained from the same month as impact observed) accuracy. Differing from the ML algorithm 340 

comparison section, we developed two individual models to forecasts NI values (to later converted into severity categories) 

and likelihood of occurrences.  

In the final step, to produce gridded impact predictions and forecasts, all predictors were calculated at the original spatial 

resolution of approximately 9 km grid cells across the UK, while regional information was kept constant for all grid cells 

within each NUTS1 region. These gridded predictors were then input into the best-performing machine learning model, 345 

enabling impact predictions at the same high spatial resolution. This approach provides detailed spatial information, allowing 

for a clearer and more precise understanding of the geographic distribution of drought impacts across the country. 

3 Results 

Building upon the established methodological framework and data preparation, this section presents a comprehensive 

evaluation of the machine learning models’ performance, along with the forecasts and gridded results produced by the best-350 

performing model. 

3.1 Comparison of Models 

As the first step of our evaluation, we compared the performance of the models based on the RMSE obtained during both the 

training and independent validation periods. Table 2 shows the performance metrics of various models based on Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), r², and Area Under the Curve (AUC) values for both binary and classification 355 

tasks. The training MAE, RMSE, and r² values are calculated from cross-validation (average of the metrics obtained from each 

k-fold prediction), while the AUC values are derived from the final run of the calibrated models. 

Focusing on RMSE, which measures the prediction error between the observed and predicted total number of impact 

occurrences, Random Forest (RF) achieves the lowest RMSE values in both training (3.74) and independent validation (4.77) 

periods compared to the other models. This suggests that RF has the best predictive accuracy, making it the most reliable 360 

model for minimising error. In contrast, models such as LASSO and Linear Regression exhibit significantly higher RMSE 

values (5.25 and 5.06, respectively, in the validation phase), indicating worse predictive performance. The XGBoost model, 

despite being known for its high efficiency in many machine-learning tasks, has an RMSE of 4.95 during validation, slightly 

higher than RF, which suggests it may be not generalising well to the unseen data.   

Examining AUC values, RF also performs well in both binary and classification tasks, with AUCbinary values of 0.94 (training) 365 

and 0.78 (validation), which are higher than those of the other models. Quantile Random Forest (QRF) has similar AUC values 

in training (0.94) but lower in validation (0.60). XGBoost, which often excels in classification problems, has lower AUC values 
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(0.76 in training and 0.70 in validation), suggesting that it may not be as effective in handling the dataset compared to RF. The 

LASSO and Linear Regression models show the weakest AUC values, indicating poor classification capability.   

Overall, the superior performance of RF in terms of lower RMSE and higher AUC values suggests that it captures the 370 

underlying patterns in the data better than the other models. The relatively poor performance of models like LASSO and Linear 

Regression stem from their inability to capture complex nonlinear relationships, leading to higher prediction errors. XGBoost, 

despite being a strong model, might require further hyperparameter tuning or additional feature engineering to improve its 

generalisation capability (Chen and Guestrin, 2016). 

The selection of RF as the best-performing model is further supported by previous studies (e.g. Hobeichi et al., 2022), which 375 

have consistently identified RF as the most effective model for impact-based prediction using indicators. Additionally, RF is 

not only accurate but also easy to use, making it a practical choice for similar predictive tasks and/or operational systems. 

 

Table 2 Model Performance Metrics 

Model Data MAE RMSE r2 AUCbinary AUCclass 

Random Forest (RF) 
Training (CV Type 1) 0.92 3.74 0.42 0.94 0.85 

Ind. Validation 1.44 4.77 0.21 0.78 0.64 

Quantile Random Forest 

(Quantile RF)  

Training (CV Type 1) 0.63 4.14 0.32 0.94 0.87 

Ind. Validation 1.38 5.13 0.12 0.60 0.56 

XGBoost 
Training (CV Type 1) 0.88 3.65 0.40 0.76 0.70 

Ind. Validation 1.47 4.95 0.15 0.70 0.60 

LASSOCV 
Training (CV Type 1) 1.65 4.59 0.11 0.71 0.63 

Ind. Validation 2.18 5.25 0.08 0.72 0.60 

Linear Regression  
Training (CV Type 1) 1.57 4.51 0.11 0.72 0.63 

Ind. Validation 2.09 5.06 0.10 0.71 0.59 

Random Forest (RF) 
Training (CV Type 2) 0.90 3.08 0.47 0.95 0.85 

Ind. Validation 1.45 4.78 0.20 0.78 0.62 

 380 

After the RF model was evaluated as the best-performing model according to the CV Type 1 approach, we further calibrated 

it using the CV Type 2 approach, which allows us to assess its accuracy across different time periods and spatial regions. RF 

CV Type 2 achieved strong training metrics (RMSE=3.08 and r2=0.47) and maintained competitive validation results 

(RMSE=4.78), comparable to RF CV Type 1 but with slightly improved training performance. Additionally, RF CV Type 2 

achieved high AUCbinary (0.95) and AUCclass (0.85) scores, reflecting its robustness in classification tasks. Therefore, from this 385 

point onward, the following analysis refers to the results of the CV Type 2 RF model (hereafter referred to as RF). 
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3.2 Predictive Performance of the Generalized ML Model for the UK 

In Table 2, the overall results for the UK were compared, and the best-performing model was identified. From this point 

onward, we will evaluate the performance of the generalized RF model across each NUTS1 region. London was initially 

selected as a representative NUTS1 region to demonstrate the conversion of predicted NI into severity categories and to 390 

generate likelihood of occurrence plots. In this case, the model first predicted NI values, which were then classified into 

predefined severity levels. Additionally, a separate Random RF model, using the same input variables, was developed to 

estimate the likelihood of occurrence. The results of both models are presented in Figure 2. 

 

Figure 2 Observed and predicted number of impacts (NI), their corresponding severity categories and likelihood of occurrences for 395 
the NUTS1 London region. Panel a) illustrates the predicted (red) and observed (black) NI values (square root transformed) using 

the best-performing machine learning model, Random Forest (RF). The blue line denotes the threshold for predicted NI values: 

values less than one are assigned as zero, indicating no drought impact. Panel b) displays the predicted and observed NI values 

converted into severity categories using the tercile method. Panel c) shows the predicted (red) and observed (black) likelihood of 
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occurrence. The grey-shaded areas in all panels represent the independent temporal validation period (2007-2012), during which 400 
the data was excluded from the training phase. 

The figure shows an example of the conversion of both predicted and observed NI values (Figure 2a) into severity categories 

(Figure 2b) and predicted likelihood of the occurrences (Figure 2c) for London. The variation across different classes is clearly 

visible in Panel (b), where the differences in raw NI values are less pronounced, as shown in Panel (a). However, the model 

predicts the time of occurrences with good accuracy, regardless of the severity category. Panel (c) indicates that the predicted 405 

likelihood of occurrence (red line) remains relatively responsive in the independent validation period, but some observed 

events (black bars) are not fully anticipated by the model, suggesting potential false negatives.  

The similar severity category plots for the selected NUTS1 are shown in Figure 3. The figure provides a detailed comparison 

between observed and predicted drought impact severities across four NUTS1 regions for the 1970-2012 period: Wales, North 

West England, South East (England), and East of England. The left panels (a, c, e, g) illustrate the severity categories, while 410 

the right- panels (b, d, f, h) show the likelihood of occurrence of drought impacts. The South East (England) and East of 

England regions were used as spatially independent validation regions.  

In the severity categories plots (Figure 3 a, c, e, g), the model successfully captures extreme and severe drought impact periods, 

particularly in the early 1970s and mid-1970s across all regions. In Wales and North West England, the highest observed 

impact severities correspond well with the predicted ones, although there are some instances where the model underestimates 415 

or overestimates the magnitude of impacts (e.g. 1990 and 2010). South East (England) and East of England, as spatially 

independent validation regions, show a reasonable agreement between observed and predicted impact severities, with the 

model generally detecting periods of increased drought severity. However, there are some overpredictions in moderate 

categories, particularly in more recent years (e.g. 1990 – 1995 period and around 1997), where the model assigns drought 

impacts even when none were observed. 420 

The likelihood of occurrence plots (Figure 3b, d, f, h) provide further insight into the model’s predictive skill. Peaks in observed 

drought impact occurrences (black bars) align well with the predicted likelihood (red line) in several key drought periods. For 

example, in Wales and North West England, the model predicts high likelihood values during major drought events in 1974 

and 1975, indicating that it successfully identifies periods of increased risk. In South East (England) and East of England, the 

model’s likelihood values fluctuate more, but still demonstrate the ability to capture broad trends in drought impact 425 

occurrences. However, there are cases where the predicted likelihood remains relatively high even when no observed impacts 

occur, suggesting some false positives. 

During the independent validation periods (grey-shaded areas in Figure 3), the predictive performance of the model is 

particularly important. The model continues to provide reasonable impact severity predictions and likelihood estimates, 

reinforcing its capability to generalise beyond the training period. In spatially independent validation regions, such as South 430 

East (England) and East of England, the results remain meaningful, as the model can still identify drought-prone periods even 

without prior exposure to data from these areas. While some uncertainty remains, the overall patterns suggest that the model 
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is effective in predicting drought impacts and capturing key drought events across different regions. The predictions of NI for 

all NUTS1 regions 1970-2012 are provided in Figure S1. 

 435 

Figure 3 Observed and predicted drought severity categories (panels a), c) e) and g)) and likelihood of occurrence (panels b), d), f) 

and h)) for selected UK NUTS1 regions for 1970-2012. Grey-shaded areas in panels a) - d) indicate temporally independent validation 

period (2007-2012), while panels e) and f) South East (England) and g) and h) East of England represent spatially independent 

validation. 

To further evaluate the robustness of the model beyond the UK, we extended our validation to Germany to assess its predictive 440 

performance in a different geographical context (despite the model being exclusively trained on data from the UK). This 
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validation allows us to examine whether the model can generalise well to new regions with potentially different environmental 

and socioeconomic conditions. The results, including both severity category classifications and the likelihood of occurrence 

predictions for occurrence in three German NUTS1 regions—Baden-Württemberg, Sachsen, and Brandenburg, are presented 

in Figure 4. 445 

 

Figure 4 Observed and predicted drought severity categories (panels a), c) and e)) and likelihood of occurrences (panels b), d) and 

f) for three NUTS1 regions in Germany 1970-2020. The spatially independent validation for all three regions is shown with the grey-

shaded areas. 

The left column (panels a, c, e) categorises severity based on NI, while the right column (panels b, d, f) shows the likelihood 450 

of occurrence over time. The results demonstrate that the model performs well despite being trained on UK data, successfully 

capturing many observed severe and extreme events. Notably, in panels (a) and (b) for Baden-Württemberg, even single impact 

reports are detected by the model in both severity and likelihood, highlighting its sensitivity to capturing rare events. Similarly, 

around 1984 in panels (e) and (f) for Brandenburg, the model successfully identifies an observed impact, reinforcing its 

effectiveness in detecting individual occurrences or drought periods which have impacts. Some discrepancies exist where 455 

predicted severity does not align with recorded observations (e.g. 1976, 1990 – 1995). Likewise, the likelihood graphs reveal 
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cases where the model predicts high occurrence probabilities without corresponding observed impacts. Overall, these findings 

emphasise the model’s strong predictive capability, even when applied outside its original calibration region, while also 

underscoring the importance of comprehensive impact data to validate and refine predictions. 

Table 3 Performance Metrics of the RF Model for NUTS1 Regions in UK and Germany 460 

NUTS1 ID Name 
RMSE AUCBinary AUCClass 

Training Validation Training Validation Training Validation 

UKD North West (England) 2.849 2.675 0.97 0.64 0.882 0.532 

UKE Yorkshire and the Humber 0.535 1.806 0.98 0.646 0.896 0.523 

UKF East Midlands (England) 0.839 6.656 0.94 0.94 0.859 0.611 

UKG West Midlands (England) 0.779 2.973 0.92 0.919 0.779 0.728 

UKH East of England - 2.968 - 0.795 - 0.639 

UKI London 0.775 1.081 0.97 0.685 0.818 0.542 

UKJ South East (England) - 6.829 - 0.779 - 0.628 

UKK South West (England) 0.783 2.848 0.93 0.775 0.876 0.565 

UKL Wales 3.303 1.929 0.91 0.564 0.785 0.484 

UK United Kingdom 1.766 4.782 0.945 0.780 0.848 0.622 

DE1 Baden-Württemberg - 7.851 - 0.653 - 0.590 

DE2 Bayern - 4.227 - 0.721 - 0.614 

DE4 Brandenburg - 2.659 - 0.683 - 0.583 

DE Germany - 5.372 - 0.661 - 0.589 

 

Table 3 provides the performance metrics (RMSE and AUC values) of the generalised RF model for predicting drought impacts 

across NUTS1 regions in the UK and Germany. The AUC values are presented separately for binary (AUCBinary) and 

categorical (AUCCategory) predictions where RMSE values are obtained from predicted and observed NI values. As expected, 

the UK achieves higher overall AUC values for both binary and categorical predictions, with validation averages of 0.780 465 

(binary) and 0.622 (categorical). Germany shows lower performance, with validation averages of 0.661 (binary) and 0.589 

(categorical). For binary predictions (validation), the East Midlands achieves the highest AUC value (0.940), reflecting 

excellent model performance. For categorical predictions (validation), the West Midlands achieves the highest AUC value 

(0.728), indicating strong prediction capability in this region. Relatively, the model performance was poorer in Wales and 

Brandenburg, particularly for categorical predictions in the validation phase. In general, the AUCclass values were notably lower 470 

than the AUCbinary values due to the stringent sensitivity of the macro-average AUC metric and the fact that the model was not 

specifically calibrated to predict severity classes (Table 3). These class values were determined separately for each region 

using percentiles derived from both predicted and observed impact reports. Consequently, lower AUCclass values are expected. 

For instance, if an observed "extreme" impact is classified as "severe" in the predictions, it is considered a misclassification, 

leading to a reduced AUC score. 475 
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3.3 Impact based Forecasting Results 

We evaluated the RF model’s ability to predict drought impacts over varying lead times by comparing different input datasets 

(i.e. varying combinations drought indicators and regional statistics). In this analysis, we systematically reduced the type of 

predictors to assess their individual contributions to prediction and forecasting accuracy.  

 480 

Figure 5 Prediction and forecast accuracy of the RF model for the UK as a whole in binary (impact/no impact) and severity category. 

The x-axis represents prediction lead times, ranging from immediate predictions ("Pred.") to 24-month forecasts, while the y-axis 

shows AUC values, indicating model accuracy. The colours correspond to different model configurations based on their input data, 

as specified in the legend. The black line represents the model using all predictors, while the coloured lines indicate models with 

progressively fewer predictors. Squares denote binary classification results, while circles indicate categorical classification results. 485 

Figure 5 presents the Area Under the Curve (AUC) values over different lead times, comparing model performances in both 

training (dashed lines) and validation (solid lines) phases. Notably, when AUC values drop below 0.6 or approach 0.5, this 

indicates poor predictive skill or no predictability, meaning the model performs only marginally better than random guessing. 

The general trend across all models shows a decline in AUC as lead time increases, indicating a decrease in predictive accuracy 

over longer periods. The binary classification results (squares) tend to achieve higher AUC values compared to categorical 490 

classification (circles), reflecting the higher sensitivity of categorical metrics. Notably, the training AUC (dashed lines) remains 

higher than the validation AUC (solid lines), especially at shorter lead times, suggesting some degree of model overfitting. 

The SPEI only model (light blue lines) had the lowest performance, meaning that using only predictors based on SPEI leads 

to weaker predictions. Beyond 12 months, AUC values for all models converge, suggesting that long-term predictions become 
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less reliable regardless of the input data. The PopR and AAR does not significantly affect model accuracy, as similar AUC 495 

values are obtained from models with (black lines) and without (coloured lines) these predictors. 

3.4 Impact of Drought Indices on Model Accuracy (Variable Importance) 

After reviewing the overall performance trends shown in Figure 5, we selected two model types ("All Indices" and 

"SPEI+SSMI") to better understand the key variables influencing drought impact predictions. By comparing these model types, 

we aim to determine whether including all indices provides meaningful improvements or if a more focused selection of 500 

drought-related indicators (SPEI and SSMI) is sufficient. The results offer insights into how drought impact forecasts evolve 

over time, highlighting shifts in variable importance and the challenges associated with long-term predictions. 

 

Figure 6 Variable Importance values for Prediction and Forecast Lead Times obtained from two model types - "All Indices" (circles) 

and "SPEI+SSMI" (squares). The size of the markers represents variable importance, the colour indicates different levels of 505 
importance, and the transparency of the markers reflects the AUC values, with darker shades indicating higher predictive 

performance. 

Figure 6 shows the importance of different predictors in forecasting across various lead times for the “All Indices” and 

“SPEI+SSMI” models. Up to a 3-month lead time, both models agree on variable importance by selecting SPEI24 as the most 

important variable. Similarly, at the 3-month lead time, both models also highlight SPEI48 and SSMI Level 4 as significant 510 

predictors. However, beyond 3 months, where the AUC values less than 0.75, the "All Indices" model starts prioritising 

population ratio (PopR) as the most important variable, while the AAR does not show any significant importance at any lead 

time. Beyond 6 months, the models show a noticeable shift in variable importance, with both approaches beginning to assign 
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relevance to nearly all available predictors. This widespread distribution of importance suggests that rather than relying on a 

few dominant variables, the models attempt to incorporate as much information as possible to maintain predictive skill. This 515 

behaviour indicates that as lead time increases, the strength of individual predictor signals weakens, forcing the model to 

compensate by utilising a broader range of input variables. However, this does not necessarily improve accuracy, as seen in 

the overall transparency increase, indicating decreasing AUC values. The increased reliance on multiple predictors at longer 

lead times highlights the challenge of long-term drought forecasting, where the relationships between predictors and impacts 

become less distinct due to the influence of external, unmodeled factors. 520 

3.5 Gridded Impacts  

To evaluate the spatial distribution of predicted drought impacts, we ran the models using gridded inputs. This approach allows 

for a more detailed assessment of how well the model captures regional variations in drought impact severity and assess its 

ability to generalise across different temporal and spatial conditions. Figure 7 presents comparisons between observed and 

predicted drought impacts for two known drought periods, July 1984 and April 2012, with forecasts made at both 0-month and 525 

3-month lead times. There is a strong spatial agreement between observed and predicted values, with high-impact areas in 

central and southeastern England aligning well in both observed and modelled datasets. The severity categories (Figure 7c, k) 

further confirm this agreement, showing that the most severe drought conditions are concentrated in similar regions, 

particularly in southeastern and central parts of the UK. The likelihood of occurrence maps (Figure 7d, l) provide additional 

support, demonstrating high probabilities of impact in these focal regions. Notably, April 2012 is a completely unseen event 530 

that was not included in the model training, yet the model still captures meaningful spatial patterns, demonstrating its ability 

to generalise beyond the training dataset. 

The 3-month lead time (Figure 7e–h, m–p) show a notable decline in prediction accuracy. While the spatial patterns in panels 

(f) and (n) still capture some aspects of the observed occurrences (Figure 7e, m), the intensity and extent of high-impact areas 

are less pronounced. The severity maps (Figure 7g, o) continue to highlight the general drought-prone areas but exhibit more 535 

dispersed patterns, suggesting increased uncertainty at longer lead times. Most importantly, the likelihood of occurrence maps 

(Figure 7h, p) show a clear decrease in probability values relative to the lead time 0 versions (Figure 7d, l). 
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Figure 7 Observed Regional and Predicted/Forecasted Gridded model results over UK for July 1984 and April 2012 and forecast 

lead times of 0 and 3 months. Panels (a) and (i) show the observed occurrences (√𝑵𝑰), while panels (b) and (j) display the predicted 540 
occurrences for the same months. 
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4 Discussion 

4.1 A generic framework for drought impact prediction  

This study aimed to develop a general and adaptable framework for predicting drought impacts, including in regions lacking 

sufficient impact data. Several machine learning methods and combinations of predictor variables were evaluated to identify 545 

the most effective approach for forecasting drought impacts. Validation on unseen data was conducted to assess model 

robustness, and the potential benefits of incorporating lagged indicators were also explored. A method was developed to 

generate spatial, grid-based drought impact maps to support localized assessments. 

A key distinction of this study lies in its generalized modelling approach, which aggregates all available impact data across 

the UK to forecast the total number of drought impact reports using regression techniques. This approach combines data from 550 

all sectors and regions and transforms the predicted report counts into severity categories for classification-based forecasting. 

Importantly, these severity categories were defined using the frequency distribution of observed impacts, rather than traditional 

drought index thresholds. Additionally, a binary classification model was trained to estimate the likelihood of drought impact 

occurrence (presence vs. absence), enhancing the framework’s predictive scope. By integrating regression-based, 

classification-based, and probabilistic predictions, this study provides a comprehensive modelling framework that 555 

encompasses a range of widely-used approaches to communicate and visualize impact forecasts. These complementary 

approaches collectively enhance the relevance and practicality of drought impact forecasts for a wide range of users, including 

analysts, planners, and policy-makers. Regression-based predictions offer continuous estimates of impact severity, supporting 

trend analysis and model validation. Classification outputs translate these into clear, actionable categories that facilitate 

decision-making. Probabilistic forecasts capture uncertainty, making them valuable for risk-informed planning and early 560 

warning efforts. 

Although this generalized strategy contrasts with region-specific modelling suggested by Shyrokaya et al. (2023), it addresses 

the critical challenge of applying impact-based forecasting in data-scarce regions. This is particularly relevant in light of 

findings by Sutanto et al. (2020), who noted that insufficient impact data often limit the development of drought impact 

functions for certain regions and sectors. Our approach contributes towards closing this gap by incorporating independent 565 

spatial validation and assessing model performance in regions not included in the training data. However, it is important to 

acknowledge that the model has, so far, only been tested in Germany, a region that is hydroclimatologically and socio-

economically comparable to the UK. While this supports the feasibility of a generalised modelling framework, its performance 

in regions with contrasting climates or socio-economic conditions (e.g., the Mediterranean) remains uncertain. Further testing 

across a broader set of EDII regions is therefore essential, and future work could involve developing region-specific models 570 

using a similar framework for more divergent contexts. 
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4.2 Key findings from model development and validation  

In this study we used uncensored drought impact time series that span the full range of hydrological conditions, including 

normal and wet periods. Unlike many prior studies that focused solely on drought event periods, this approach offers a more 

comprehensive assessment of model performance across varying conditions. Evaluating the model's ability to perform 575 

consistently during both dry and non-dry periods is crucial for developing operational forecasting systems, which must function 

reliably regardless of the current drought status. This broader framework enhances the applicability of the model in real-time 

early warning systems, further solidifying its real-world utility. 

The results support the feasibility of a general framework for accurately predicting drought impacts. Among the tested methods, 

the RF model consistently outperformed others in predicting impacts, both in the UK and in cross-regional validation with 580 

German data. These findings are consistent with previous studies conducted in both the UK and Germany, which also identified 

the RF model as the most effective approach for drought impact modelling (Bachmair et al., 2016a; Sutanto et al., 2020). 

Although we applied accuracy metrics consistent with those used in previous studies, direct comparison of model performance 

remains challenging due to methodological differences, such as the use of censored time periods and differing prediction 

targets, which limit the fairness of a one-to-one performance assessment. 585 

We tested different predictor combinations to evaluate their contribution to model performance (Figure 5). Regional features 

such as population density and arable land area were included but did not significantly improve the model, suggesting that 

broader climatic and hydrological indicators exert a greater influence on drought impacts at the regional scale. The uncertain 

role of population density (PopR) may stem from inconsistent reporting patterns, as areas with higher population density are 

generally associated with more frequent impact submissions. However, its relevance (particularly at longer lead times) may 590 

not be purely a statistical artefact. While we used static regional values for PopR, it is still plausible that this variable captures 

underlying patterns of exposure or reporting likelihood, which become more influential as the predictive power of dynamic 

hydrometeorological variables weakens over time. For example, in forecasts issued during winter for the upcoming summer, 

drought-related impacts such as hosepipe bans, restrictions on recreational water use, or changes in landscaping practices may 

be more prevalent or more likely to be reported in densely populated areas. In this context, PopR may not influence the physical 595 

manifestation of drought, but it can still inform where and when impacts are observed and reported. Therefore, PopR could be 

selected as an important predictor at longer lead times due to its association with reporting behaviour and human exposure, 

rather than representing a spurious correlation alone. Similarly, the fact that AAR is not identified as an important predictor 

does not diminish the potential significance of the variable. Rather, it reflects its limited effectiveness in the UK context, where 

agricultural impact reports constitute only a small minority of the EDII data (Stagge et al., 2015). This alignment suggests that 600 

the variable’s predictive value may be context-dependent and influenced by the relative prevalence of reported agricultural 

impacts. These predictors were included as trial exemplars, but future work should explore more comprehensive vulnerability 

indicators. The UNCCD report (Barker et al., 2021) and its references highlight alternative social, economic, and infrastructural 

factors that may better capture regional drought vulnerability.  
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Although SPI and SPEI indices are highly correlated in the UK, the RF model is capable of managing this multicollinearity. 605 

Moreover, the inclusion of both SPI and SPEI as inputs was intentional to facilitate the model’s adaptability to other regions, 

where the relationship between these indices may differ. However, limitations remain regarding the accuracy and regional 

consistency of input data such as ERA5-Land climate variables and soil moisture indices (SSMI), particularly due to their 

potential inability to fully capture local conditions. These include overestimation of low-intensity precipitation events, 

uncertainties in soil moisture estimates, and reduced reliability in complex terrain (Lavers et al., 2022; Muñoz-Sabater et al., 610 

2021). Nevertheless, the model’s flexible structure allows for the integration of more regionally validated datasets, including 

satellite-based soil moisture products, to improve performance. The generalizability of this framework and its potential 

applicability to other climatic regions require further testing across diverse environments in future work. Finally, as machine 

learning models are entirely dependent on their training data, the selection of the reference period used to calculate drought 

indicators is critical. Inconsistencies between the reference period used during model training and that employed during 615 

operational implementation can introduce significant bias, potentially leading to over- or underestimation of drought impacts. 

Ensuring consistency in the reference period across both phases is therefore essential for maintaining model reliability. 

Discrepancies between the model outputs and historical records were observed in both the UK and Germany. For example, the 

model overestimated the impacts of the 1976 and 1990 – 1995 droughts in the UK (Marsh et al., 2007). Similarly, during the 

1976 (Baker et al., 2021) and 1990-1995 droughts in Germany, the model produced high likelihood scores despite the absence 620 

of recorded impact observations. These inconsistencies are likely due to incomplete, missing, or underreported impact records 

rather than deficiencies in the model itself, especially given that drought conditions during these periods are well-documented 

in the literature and supported by drought indicators (Bachmair et al., 2016a; Marsh et al., 2007). In addition, regarding model 

validation in the German case, differences in national reporting practices and variations in data availability may also contribute 

to these discrepancies, as reflected in the lower AUC scores for Germany (Figure 4). Furthermore, evidence of the impacts 625 

associated with the drought events discussed here can be found in alternative sources such as 1990-1995 UK drought (Parry 

et al., 2011) and Germany droughts (Schellnhuber et al., 1994), supporting the interpretation that these model predictions 

should not be considered false alarms. In contrasts, Bachmair et al. (2016a) also suggested that the use of RF modelling can 

aid in identifying detailed impacts during periods when the model predicts drought impacts, but no corresponding observed 

data is recorded. 630 

4.3 Forecasting drought impacts and possible applications 

Similar to previous studies over the UK using EDII data, where different metrics were calculated due to the varying nature of 

each study, long-accumulation-period drought indicators, particularly SPEI24 (Bachmair et al., 2016a, 2017; Stagge et al., 

2015), along with deep-layer soil moisture (SSMI L4), were consistently identified as the most influential predictors. This 

highlights the importance of long-term drought conditions and deep soil moisture in determining drought impacts, particularly 635 

in hydrologically driven events. Beyond a six-month lead time, model performance relied on a wider set of indicators, 
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compensating for weaker signals from individual variables. This demonstrates both the value of multi-indicator forecasting 

and the inherent challenge of declining accuracy over extended forecast periods. 

To avoid introducing additional uncertainty into the model, we deliberately chose to use lagged drought indicators rather than 

forecast-based indices, which depend on seasonal climate forecasts. The strong predictive performance of long-accumulation 640 

SPEI values (e.g., SPEI24 and SPEI48) supports this decision, as such indicators are assumed to provide more temporal 

stability than the inherently variable extended- or long-range meteorological forecasts. The combination of “SPEI + SSMI” 

proved to be a particularly robust predictor set, especially at longer lead times, while also reducing reliance on less consistent 

predictors such as population data (Figure 6). These findings reinforce the notion that short-term forecasts (0–3 months) are 

generally more dependable, while caution is necessary when extending beyond six months due to heightened uncertainty. In 645 

future work, a comparative analysis of forecast-based drought indicators (derived from seasonal climate forecasts) and lagged 

indicators could help clarify the relative accuracy and reliability of these two approaches for drought impact modelling. 

Gridded impact forecasts further demonstrate the model’s ability to reproduce high-resolution spatial patterns of drought 

severity and potential for impacts (Figure 7). Observed and predicted high-impact areas aligned particularly well in central and 

southeastern England. The severity maps confirmed consistency across spatial scales, and the likelihood of occurrence maps 650 

revealed high probabilities in the same focal regions. Notably, the model accurately captured the April 2012 drought (an event 

entirely excluded from training data) demonstrating its potential for generalization. Predictive confidence declined with 

increasing lead time, as expected, due to the influence of external and unmodeled factors. Still, the model consistently identified 

key drought-prone regions, showing that spatially explicit impact-based forecasting remains viable at extended lead times, 

albeit with more caution needed in interpretation. In contrast, validating predictions in northern UK regions remains 655 

challenging due to sparse reporting, likely related to lower population density and underreporting rather than an absence of 

drought conditions. This underscores the need for improved data collection in underrepresented areas. Nevertheless, the key 

point is that this exercise demonstrates clear potential for using models trained with impact data aggregated at the regional 

scale to be applied at the higher resolution available via the hydrometerological predictors. While the outputs should be treated 

as ‘indicative’ at present, such ‘on the ground’ information could be very valuable for water managers (regulators, water 660 

utilities, conservation groups) who are charged with managing drought impacts at the sub-regional (typically catchment) scale. 

4.4 Suggestions  

A key factor in developing reliable ML models for drought impact prediction is the availability of comprehensive and high-

quality datasets. While meteorological drought indicators are readily accessible, impact records remain limited and 

inconsistent, both in the UK and indeed internationally (Bachmair et al., 2016b; Shyrokaya et al., 2024). Although the model 665 

achieved high recall, uncertainty persists around whether false positives reflect true model error or unreported impacts. 

Improving dataset coverage and consistency would support more robust model validation and clearer interpretation of 

predictions. One way to improve model accuracy may involve excluding training periods with known drought events but no 

recorded impacts, reducing noise in the data. Additionally, drought impact reporting depends on observers, which can lead to 
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underreporting in sparsely populated or less-monitored regions. Future work can build on the work presented here to use the 670 

growing range of impact datasets (as highlighted in the introduction) to progress in this space. Firstly, alternative high-

resolution impact datasets (in situ ecological impact monitoring datasets, high-resolution incident data like NIRS, crop-yield 

data, citizen science (e.g. Bloomin’ Algae maps, 2025; Freshwater data explorer, 2025) as well as at the global scale (e.g. 

EDID, EO data) could be used to validate some of the high-resolution gridded impacts presented here. More generally, these 

datasets could also be used to refine the ML approach and develop finer resolution models.   675 

Finally, there are emerging avenues that could be used to generate impact datasets for training and validation of impact 

forecasting models in the UK. The news media is a potentially valuable source. Drought impact datasets have been developed 

for both the UK (Dayrell et al., 2022), Ireland (O’Connor et al., 2023) using selected media resources and with significant 

manual intervention. A very high-resolution dataset has been developed for a catchment in southeast England (Ascott et al., 

2025) using a range of documentary sources assembled by community interest groups. Meanwhile in other countries, Natural 680 

Language Processing, Large Language Models and ML approaches have shown some promise for generating impact datasets 

(López-Otal et al., 2025; Madruga de Brito et al., 2025).  

5 Conclusion 

In conclusion, this study presents a generalizable and adaptable machine learning framework for forecasting drought impacts, 

demonstrating robust performance in both predicting the total number of impact occurrences (NI) and estimating the likelihood 685 

of occurrence. By adopting a lumped modelling approach and validating the model on temporally and spatially unseen datasets, 

including cross-national applications, we highlight the framework’s potential to support impact-based forecasting even in data-

scarce regions. The RF model consistently emerged as the most effective, particularly in capturing drought impacts in the UK, 

and showed promising transferability when applied to Germany. While model performance was influenced by the 

characteristics of the training data, where it’s dominated by hydrological impacts in the UK, the results indicate strong potential 690 

for broader application. Future improvements could be achieved by incorporating more spatially diverse and sector-balanced 

impact datasets, such as EDID, which would enhance model generalization to data-sparse areas. Nonetheless, additional 

evaluation and refinement are necessary to assess how well the model performs across varying climate zones, ecosystems, and 

socioeconomic conditions. Overall, this study contributes to advancing operational impact based drought forecasting by 

offering a scalable approach that performs reliably across different conditions, regions, and data constraints. 695 
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