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Abstract The interhemispheric relation of deep‐water ventilation and surface‐ocean productivity may have
played a prominent role in past atmospheric CO2 regulation. However, how these processes vary on orbital‐
millennial timescales remains poorly understood. Here, we present high‐resolution proxy data and model
simulations on the variability of biological productivity and deep water circulation for the abyssal northwestern
Pacific Ocean spanning 20–60 kyr. We found that enhanced surface productivity increased during Heinrich
Stadials (HS) and long term, caused by intensified westerly winds and associated dust fertilization, implying
CO2 extraction from the atmosphere and increased nutrient supply to the euphotic zone. A similar increase in
productivity for the Southern Ocean during Heinrich events implies enhanced upwelling and exhalation of CO2

to the atmosphere, indicative for an interhemispheric carbon cycle seesaw on millennial time scales. However,
the longer‐term global cooling demonstrates that deep ocean carbon storage and degassing was predominantly
modulated by the North Pacific Ocean.

Plain Language Summary The ocean's ability to store and release carbon via bio‐ and
physiochemical processes makes it a prime candidate for driving changes in atmospheric carbon dioxide
concentration and hence global climate on millennial‐to orbital time‐scales. Our records and model simulations
suggest that surface nutrient utilization was a critical factor into draw down atmospheric CO2 into deep Pacific
Ocean for carbon storage on those time scales. Our study emphasizes the importance of the deep subarctic
Pacific Ocean as being a potential region for absorbing more atmospheric CO2, while the Antarctic Southern
Ocean tends to release CO2 to the atmospheric.

1. Introduction
The ocean's ability to store and release carbon via bio‐ and physiochemical processes makes it a prime candidate
for driving changes in atmospheric carbon dioxide (CO2) on millennial‐to‐orbital time‐scales, thereby impacting
the global climate system (Sigman et al., 2021; Toggweiler, Russell, & Carson, 2006). Numerous studies have
suggested that the Southern Ocean plays a key role in influencing the glacial‐interglacial variability of atmo-
spheric pCO2 (Sigman et al., 2010). Moreover, the stratification and convection in the water masses of the
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Southern Ocean have a vital impact on the global heat uptake and carbon budget (Le Quere et al., 2007), which are
associated with oscillations in the Atlantic Meridional Overturning Circulation (AMOC), which can occur during
Heinrich Stadials (HS) (Weber et al., 2022) and Dansgaard‐Oeschger (D‐O) events (Walczak et al., 2020).
However, despite being the largest oceanic carbon reservoir (X. Zhang et al., 2021; Zhou &McManus, 2024), the
role of the Pacific Ocean's role during past millennial‐scale climate variability is much less well constrained.

It has been previously suggested that the North Pacific Ocean was important for regulating the exchange of carbon
between the atmosphere and ocean interior on millennial timescale, as evidenced by neodymium and boron
isotope studies during the last deglaciation (Gray et al., 2018; Walczak et al., 2020). However, bio‐physical
responses in the North Pacific to D‐O cycles remain still poorly understood due to uncertainties on deep and
intermediate water formation, as well as upwelling intensity that regulates nutrient cycles and oceanic outgassing
of CO2 (Gray et al., 2018; Praetorius et al., 2020), along with changes in iron‐limited primary productivity (Du
et al., 2022; Lam et al., 2013). Although a recent study suggests that the Northeastern Pacific is influenced by iron
fertilization from volcanic ash, triggered by regional ice unloading (Du et al., 2022; Zhong et al., 2022), enhanced
deep water ventilation in the North Pacific may be another oceanic process that fuels marine productivity, ulti-
mately driving air‐sea carbon partitioning (Okazaki et al., 2010, 2012). Potential factors put forward to explain
changes in the oceanic CO2 ventilation onmillennial timescales include sea ice volume (Detlef et al., 2020;Weber
et al., 2022; Worne et al., 2019), Glacial North Pacific Intermediate Water (GNPIW) (Gong et al., 2019; Gray
et al., 2018; Rae et al., 2014), and flushing of Antarctic Bottom Water (Du et al., 2018). In this study, we present
high‐resolution proxy data of export productivity, bottom water current variability, and upwelling rate changes
during the last glacial period (20–60 kyr) from a high‐sedimentation rate (average 12 cm/kyr) core NP02 collected
on the northwestern Pacific Ocean abyssal plain at ∼5,000 m water depth (Figure 1 and Figure S1 in Supporting
Information S1). By comparing our new North Pacific data with published Southern Ocean records from the
Antarctic Zone and climate modeling results, our proxy data‐model comparison supports bipolar forcing and
seesaw of atmospheric CO2 at millennial time‐scales.

2. Materials and Methods
Oceanographic currents in the North Pacific are dominated by two large‐scale gyres, the subpolar gyre and the
subtropical gyre, separated by the Subarctic Front, which is marked by the pronounced latitudinal sea surface
temperature (SST) gradient (Figure 1a). This gradient is also seen within salinity, whilst the subtropical gyre is
comparatively saltier and nutrient poor (Locarnini et al., 2013). The study area encompasses the region from the
Kuroshi‐Oyashio transition area to the Western subarctic gyre. Under present‐day conditions, deep water is not
produced in the North Pacific by higher precipitation relative to evaporation (Warren, 1983), and this region is the
terminus of global deep‐water circulation. The studied gravity core NP02 (40.47583°N, 150.1022°E, 5,177 m
water depth) in the ocean basin of the northwestern Pacific is bathed in Lower Circumpolar DeepWater (LCDW),
which is sourced from the Southern Ocean water mass (Figure S1a in Supporting Information S1). However,
NPIW is defined by the salinity minimum at depths of 300–800 m with a density range centered at 2.67–26.9 σθ
under the North Pacific subtropical gyre (Yasuda, 1997) (Figure 1b).

As carbonate preservation is poor and, at best, sporadic, chronological control of sediment core NP02 is based on
14C measurements and relative paleointensity combined with visible‐tephra‐based tephrochronology (Gai
et al., 2021, 2023) (Table S1 in Supporting Information S1). In general, linear sedimentation rates vary between
2.57 and 18.7 cm/kg (average of 12.2 cm/ka), which translates into a sub‐millennial time resolution for our
reconstructions. Therefore, this core with a high depositional rate is expected to capture deep water changes in
response to abrupt climate transitions over the time period ∼21–57 kyr. For this study, sediment samples for
geochemical and mineral analysis, grain size analysis were taken at 1–3 cm (80–250 kyr on average) spacing
throughout the core. Full details of analytical methods are provided in Text S2 in Supporting Information S1.

The iTRACE simulation is used to unravel the potential mechanism for bipolar coherence at millennial time-
scales. The iTRACE is an isotope‐enabled transient climate experiment covering 20–11 ka, performed in the
state‐of‐the‐art isotope‐enabled Community Earth SystemModel (iCESM1.3) (Brady et al., 2019; He et al., 2021;
J. Zhang et al., 2017). It follows a similar strategy as in the previous transient TraCE‐21ka simulation (Z. Liu
et al., 2009). The horizontal resolution of the atmosphere and land model is 1.9° × 2.5°, with 30 vertical hybrid
coordinate levels in the atmosphere; the horizontal resolution of the ocean and sea ice model is nominal 1°, with
60 vertical levels in the ocean (He et al., 2021).
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The iTRACE simulation is forced by four forcing factors that are applied additively from the Last Glacial
Maximum (LGM; 20 ka). The first experiment was integrated with changing ice sheets and ocean bathymetry
(ICE). The continental ice sheets were modified at the beginning of each 1,000‐year interval (e.g., 19, 18, 17,
16 ka…) based on the ICE‐6G reconstruction (Peltier et al., 2014). The next adds insolation forcing (ICE+ORB),
followed by greenhouse gas concentrations (ICE + ORB + GHG) (Laskar, Robutel, Joutel, Gastineau, Correia,
et al., 2004). At last, the iTRACE simulation (ICE + ORB + GHG + MWF) was branched from the
ICE + ORB + GHG run by adding meltwater forcing. The meltwater fluxes, which largely emulated the scheme
used in the TraCE‐21ka simulation (Z. Liu et al., 2009), were designed to broadly align with the reconstructed sea
level changes rather than to simulate the exact timing and routing of each meltwater event. Previous studies have

Figure 1. Map of the studied area. (a) Core NP02 (study site, red star) is located in the North Pacific Ocean, and sites studied
in the literature (yellow dots) are discussed in this study; (b) Ocean and atmospheric circulation in the North Pacific Ocean.
Major ocean currents are based on Brown et al. (2001). The position of the Westerly Jet is based on Y. Zhang and Huang
(2011). Other atmospheric systems are shown schematically. Ocean temperatures (scale to right) are from the World Ocean
Atlas 2013, drawn with Ocean Data View software (Schlitzer, 2015).
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shown a good performance of iTRACE in modeling the deglacial climate (Z. Liu et al., 2023; Zhu et al., 2022).
We investigate the difference between HS1 and LGM in the model to infer climate responses during HSs. One
caveat of using iTRACE is that the boundary conditions (e.g., greenhouse gasses and orbital parameters) and
external forcings (e.g., freshwater fluxes) during HS 1‐5 are not all the same. However, previous studies applying
freshwater forcings under different boundary conditions show consistent hemispheric scale responses despite
minor regional differences (Kageyama et al., 2013; Okumura et al., 2009; R. Zhang & Delworth, 2005), which is
not unexpected due to the predominant impact of AMOCweakening in these experiments. The repeated responses
registered in proxy records further support the similarities between different HSs.

3. Long‐Term Dust Fertilization Enhanced Biological Pump in the North Pacific
The sedimentary opal content serves as a reliable and widely utilized qualitative method for reconstructing
historical fluctuations in export production within the subarctic North Pacific (Y. Liu et al., 2022; Rae et al., 2020)
and oceanic upwelling in the Southern Ocean (Kaiser et al., 2021;Weber et al., 2022). Our findings (Figure 2d and
Figure S3d in Supporting Information S1) show high peaks during intervals corresponding to HSs identified in
Greenland ice cores (Andersen et al., 2004) particularly the prominent stadials HS4, HS5, and HS5a, with the
exception of HS3, which marks the coldest period of the past 60,000 years in the northern high latitudes, as
discussed later (Figure 2a). This stadial increase in productivity in the Subarctic North Pacific is consistent with
higher productivity in the Antarctic Zone of the Southern Ocean (Figure 2e; Figure S2f in Supporting Infor-
mation S1) thereby reinforcing the bipolar coherence observed over millennial timescales (Ai et al., 2020; Lu
et al., 2022; Studer et al., 2015). There is also strong consistency with redox‐sensitive elemental concentrations
(Figure S2h in Supporting Information S1) at core NP02. High productivity occurs under oxic conditions, which
correspond to Antarctic Isotope Maximum events (Barbante et al., 2006) that themselves coincide with HSs (i.e.,
HS2, 4, 5, and 5a) (Figure 2a and Figure S3a in Supporting Information S1).

We observe prominent high‐amplitude, millennial‐scale variability in export productivity in the North Pacific
(Figure 2d), overlaying the prolonged decline in CO2 due to global cooling (Figure 2g, Köhler et al., 2017). This
reduction of CO2 suggests a gradual sequestration of CO2 and thus accumulation of Si in the deep Pacific, which
explains the improved preservation of exported biogenic opal (Rafter et al., 2022). Enhanced nutrient accumu-
lation supports the “nutrient deepening” hypothesis (Boyle, 1988), which suggests that nutrients are transferred
from upper and mid‐depth waters to the abyssal layers during glacial periods. The North Pacific data indicate that
the extent of change in preformed nutrients likely explained most of the decrease in glacial atmospheric pCO2

(Jaccard et al., 2009).

The increased nutrient utilization at NP02 would suggest a more efficient biological pump in the North Pacific
during HSs (Figure 2d). Iron is a crucial micronutrient that restricts primary production in the modern subarctic
Pacific, equatorial Pacific, and Southern Ocean (Kim et al., 2021). In the context of global cooling, strong links
between dust supply (Figure 2c) (Ruth et al., 2007; Xiao et al., 2021) and opal content in the North Pacific
(Figure 2d) present evidence that iron has played a significant role in influencing productivity in the North
Pacific.

This is also supported by the eolian dust fertilization in glacial periods across the Japan Sea and mid‐latitude
Pacific, accompanying increased export productivity variability (Hovan et al., 1991; Kawahata et al., 2000).
This mechanism is clearly shown in our model simulation. In the northern China desert–source region for dust
transported to the North Pacific (Figure 3a), extensive drying during HSs enhances dust production (Figure 3b).
Transport of eolian dust to the northwestern Pacific is further enhanced by strengthened westerly winds
(Figure 3b), which is a response to high‐latitude cooling and a steepened meridional temperature gradient during
HS1 (Nagashima et al., 2011).

Both enhanced deposition of opal and eolian dust in Greenland ice core records (Ruth et al., 2007) (Figure 2d)
occurred during HS 2, 4, 5, but not during HS3. This also corresponds to the Heinrich event, which discharged ice
from the Laurentide or Greenland Ice sheet. Given that HS3 was the coldest period of the past 60,000 years in the
northern high latitudes (Andersen et al., 2004) (Figure 2a), the intensified cooling in the Northern Hemisphere due
to reduced insolation appears to have played a crucial role as a negative feedback mechanism in the collapse of the
marine‐based Greenland Ice Sheet. This phenomenon influenced the dynamic atmospheric interaction between
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Figure 2.
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the North Atlantic and the Northern Hemisphere westerlies during HSs. In general, from the long‐term pCO2

decline (Köhler et al., 2017) (Figure 2g), the increased nutrient utilization would cause enhanced pCO2

sequestration in the North Pacific during HSs.

4. Potential Mechanism for Bipolar Coherence at Millennial Timescales
Our core NP02 is located along the flow path of Lower Circumpolar Deep Water (LCDW), sourced from the
Southern Ocean (Kawabe & Fujio, 2010). On this basis, periods of vigorous abyssal circulation (i.e., higher
current speeds of the LCDW) detected at core NP02 (Figure 2f) are consistent with periods of destratification in
the Antarctic Zone of the Southern Ocean (Figure 2e), thought to be driven by coupled atmosphere‐ocean (Watson
et al., 2015; Wu et al., 2021) and sea‐ice processes (Weber et al., 2022). Previous studies showed that a southward
shift of the westerlies in the Southern Hemisphere enhanced wind stress at the latitude of Drake Passage during
HSs (Toggweiler, Russell, Carson, et al., 2006), which resulted in strengthened air‐sea coupling with the Ant-
arctic Circumpolar Current and enhanced upwelling via Ekman transport (Anderson et al., 2009).

Our model simulations support that a southward shift of the southern westerlies induces strengthened upwelling in
the Southern Ocean (red shadings in Figures 4b and 4d between 60° and 80°S), which would be responsible for
transmitting CO2 into the atmosphere. We find that the concentrations of trace elements sensitive to bottom water
oxygen concentrations at core NP02, such as uranium (U), vanadium (V), and gallium (Ga) (Jin et al., 2006),
reveal abyssal North Pacific oxygenation changes over the past 60 ka (Figures S3g and S3h in Supporting In-
formation S1). Over the North Pacific Ocean, strengthened downwelling agrees with our trace element records
showing more oxic conditions (Figure S3h in Supporting Information S1). This increased North Pacific down-
welling (blue shadings in Figures 4b and 4d near 40°N) is closely related to decreased surface water buoyancy
driven by cooling and drying (Figure 3b).

A deeper penetration of glacial NPIW during Northern Hemisphere cold events, nutrient supply to the euphotic
zone may have been reduced over extensive regions of the North Pacific (Rafter et al., 2022). This is because
nutrient supply from subsurface waters possibly decreased during HSs, which is expected to form NPIW with
low nutrients due to downwelling (Li et al., 2017) (Figure S3c in Supporting Information S1). This is further
evidenced by basin‐wide decline in export productivity during HSs, as noted from studies in the Bering Sea
(Riethdorf et al., 2013) (SO201‐2‐85KL), and the Okhotsk Sea (PC‐7R) (Gorbarenko et al., 2012) (Figure S1a
in Supporting Information S1). Conversely, our sortable silt data (Figure 2f) and redox sensitive elements
(Figure S3h in Supporting Information S1) support that the Southern Ocean leakage is increased with wind
stress due to heat flux changes, Antarctic warming, and southward‐intensified Southern Hemisphere westerlies
(Anderson et al., 2009; Skinner et al., 2020) (Figure 2g), influencing atmospheric CO2 and climate change at
millennial timescales. In general, both opal records show enhanced productivity during Heinrich events. In the
Southern Ocean, this means enhanced upwelling and more CO2 exhalation to the atmosphere; in the North
Pacific, opal increase extracts CO2 from the atmosphere and sequesters it in the deeper ocean. Accordingly, our
work supports a bipolar CO2 cycle seesaw, which is similar to that discovered in the North Atlantic (Yu
et al., 2023).

5. A Search for Mechanisms and Future Implications
The enhancement of upwelling at millennial timescales allows us to infer the coupling relationship between the
dynamics of the Southern Ocean south of the Polar Front and climate change (Y. Liu et al., 2022). Although the
Southern Ocean is vital for regulating Pleistocene pCO2 variability, similar processes may have taken place in the
subarctic Pacific, as evidence suggests that around 30 ppm of pCO2 was released into the atmosphere due to

Figure 2. Millennium variabilities in productivity, bottom water current and the associated paleoclimate during 20–60 ka. (a) Oxygen isotope record of the North
Greenland Ice Core Project (NGRIP) (Andersen et al., 2004) and Northern Hemisphere summer insolation (65°N, July–September) (Laskar, Robutel, Joutel, Gastineau,
Correia, & Levrard, 2004); (b) Complication of North Atlantic 231Pa/230Th, reflecting the strength of the Atlantic Meridional Overturning Circulation (Böhm
et al., 2015; Henry et al., 2016; McManus et al., 2004); (c) Dust flux of NGRIP; dust flux was calculated using the published dust concentration data (Ruth et al., 2007);
(d) productivity recorded by opal content at core NP02 (this study); (e) opal content in Site MD07‐3134 from Scotia's Sea Iceberg Alley; (f) Sortable silt mean grain size
reflecting deep water current speed at core NP02 (this study); (g) Atmospheric pCO2 (Köhler et al., 2017); Gray bars indicate Heinrich Stadials (HS2‐5a).
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increased overturning during the last deglaciation (Gray et al., 2018). In comparison to the deep‐water CO3
2−

levels in the North Atlantic, Southern Ocean ventilation was also a key factor in modulating millennial deep
Atlantic carbon storage and atmospheric CO2 variations over the last glacial cycle (Yu et al., 2023). Our records
and model simulations suggest, alongside published data, that surface nutrient utilization was a critical factor in
modulating deep Pacific carbon storage and atmospheric CO2 variations over the long‐term cycle. Importantly,
our data underscore a previously underappreciated role of North Pacific biological pump efficiency in regulating
deep‐sea carbon sequestration and atmospheric CO2 (Rafter et al., 2022). Moreover, it does not currently appear
feasible to quantify the relative decrease of atmospheric CO2 in the Northern Hemisphere to the relative increase
in the Southern Hemisphere based on our proxies given the very complex interactions of the interhemispheric
atmospheric‐ocean‐ice system. Future, successive model simulations of the marine carbon cycle should be
considered to address this question.

During HSs, thermal wind balance, associated with the meridional temperature gradient at Northern Hemisphere
high latitudes, was coupled with the expansion and strengthening of the North Pacific Ocean Gyre, which arises in
our model as both effects are driven by concurrent changes in wind stress curl (Gray et al., 2018, 2020; Rae
et al., 2014). As demonstrated by model simulations, our results support that Southern Ocean upwelling was
causally linked to pulses of atmospheric CO2 during the last glacial and deglacial periods, which coincided with
dynamics in the North Pacific deep water (Menviel et al., 2014, 2018) (Figure 4).

In light of the ongoing and possible future weakening of the AMOC (Biló et al., 2024; van Westen et al., 2024), it
is crucial to comprehensively understand how processes in polar oceans, particularly in the Antarctic zone of the
Southern Ocean and the subarctic North Pacific, influence atmospheric CO2 levels and related ocean acidification
(Gray et al., 2023). Overall, our study emphasizes the importance of the deep subarctic Pacific Ocean as a po-
tential location to absorb more atmospheric CO2 on the long timescales, while the Southern Ocean tends to release
more atmospheric CO2 during abrupt climatic changes.

Figure 3. Simulated annual precipitation (mm/day) and 850 hPa wind (m/s) in iTRACE. (a) Annual mean in LGM;
(b) Changes in HS1 compared with LGM.
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Data Availability Statement
All model data supporting our findings are available at Zhong (2024). The information for the TraCE21ka ex-
periments can be found in https://trace‐21k.nelson.wisc.edu/portal.html. Figures were plotted with the NCAR
Command Language (version NCL 6.4.0; NCAR Command Language, 2019), and codes for figures plotted in
this study are available when required.
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