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Abstract 

Understanding the relationships between bacteria, their ecological and genomic traits, and their environment is important to elu- 
cidate microbial community dynamics and their roles in ecosystem functioning. Here , w e examined the relationships between soil 
properties and bacterial traits within highly managed agricultural soil systems subjected to ara b le cr op r otations or mana gement as 
permanent grass. We assessed the bacterial communities using metabarcoding and assigned each amplicon trait scores for rRNA copy 
number, genome size, and guanine-cytosine (GC) content, which are classically associated with potential growth rates and specializa- 
tion. We also calculated the niche breadth trait of each amplicon as a measure of social ubiquity within the examined samples. Within 

this soil system, we demonstrated that pH was the primary driver of bacterial traits. The weighted mean trait scores of the samples 
r ev ealed that bacterial communities associated with soils at lower pH ( < 7) tended to have larger genomes (potential plasticity), have 
mor e rRNA (higher gr owth rate potential), and ar e mor e ubiquitous (hav e less niche specialization) than the bacterial communities 
from higher pH soils. Our findings highlight not only the association between pH and bacterial community composition but also the 
importance of pH in driving community functionality by directly influencing genomic and niche traits. 

Ke yw ords: genomic traits; metabarcoding; land use; soil properties; agricultural systems; microbial ecology; social niche breadth 
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Introduction 

Micr obial genomic tr aits suc h as genome size and rRN A cop y 
number are key indicators of niche breadth and ecological strate- 
gies in soil bacterial communities (von Meijenfeldt et al. 2023 ).
These traits reflect the ability of microorganisms to adapt to vary- 
ing environmental conditions (Chuckran et al. 2021 ), including nu- 
trient availability, pH, and organic matter (OM) content. Under- 
standing the relationship between soil properties and microbial 
genomic traits is crucial for advancing our knowledge of microbial 
ecology, particularl y in a gricultur al systems, wher e soil mana ge- 
ment practices can significantly alter these properties. 

Agricultur al soils r epr esent a significant portion of land use in 

the United Kingdom, with 70% of the total land area classified as 
Utilised Agricultur al Ar ea (UAA) (DEFRA. 2023 ). In 2023, the to- 
tal arable area in the UK was reported to be just over 6.0 million 

hectares, accounting for ∼36% of the UAA (DEFRA. 2023 ). Soils 
in these a gricultur al systems vary widely in pH and OM content,
whic h ar e critical factors that influence soil dwelling micr obial 
communities and their genomic traits (Zhang et al. 2020 , Nay- 
lor et al. 2022 ). Pr e vious studies hav e shown that conv ersion to 
arable land leads to modified microbial communities, where the 
consequences include reductions in functionality and decreases 
in genes relating to important biogeochemical cycles, including 
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hose that influence the cycling and fate of carbon, phosphorous
nd nitrogen containing compounds (Peng et al. 2024 ). Simulta-
eousl y, the a ge of mana ged and permanent gr ass fields, k e y for
roviding food and income, affects the microbial community, es- 
eciall y bacteria, thr ough the influence of soil physicochemical
r operties, suc h as pH (Seaton et al. 2022 ). 

Microbial metabolic versatility (Klappenbach et al. 2000 ) and 

he ability of taxa to thrive in diverse and fluctuating environ-
ents (Wang et al. 2023 ) are typically associated with larger

enome sizes and increased rRN A cop y numbers . Con v ersel y,
maller genomes and fewer rRNA copies suggest specialization 

nd efficiency under more stable or resource-limited conditions 
Chuc kr an et al. 2021 ). The ability of soil microbial communities
o adapt to changes in soil properties, such as pH and OM con-
ent, is reflected in these genomic traits, which in turn influence
he ov er all health and functionality of the soil ecosystem. For
xample, Wilhelm et al. ( 2023 ) demonstrated a positive relation-
hip between genome size and rRNA copy number in soil bacteria.
hese genomic tr aits ar e r ele v ant for understanding the classical
oncept of ecological niche breadth, which defines the range of
onditions under which organisms can survive in Carscadden et 
l. ( 2020 ). Although nic he br eadth has pr e viousl y been assessed
ith respect to environmental variables, it has been limited to
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pecific taxa (Bennett and Lenski 1993 ) or environments (Kuang
t al. 2012 ). Importantly, the notion of generalists, taxa found in
any samples or predefined habitats, and specialists, taxa that

r e r ar e or highl y fastidious (Cobo-Simón and Tamames 2017 ),
ave not been assessed in soils under land use effects, necessitat-

ng the need to understand how anthropogenic influences affect
he social niche breadth (SNB) of microorganisms. We hypothe-
ised that the environmental factors pH and OM play a significant
 ole in sha ping micr obial comm unities and their genomic tr aits
nd tested their relationships within highly managed agricultural
oils where the broadly observed inverse relationship between pH
nd OM is decoupled. Specifically, we propose that gradients in pH
nd OM differ entiall y influence individual micr obial tr aits includ-
ng ubiquity and genome size (Fig. 1 ). To test the relationship be-
ween microbial traits and these environmental influences, we as-
essed microbial communities and their traits in soils from arable
nd grassland sites across 245 samples from 69 fields at 20 farms
n southern United Kingdom/England. By le v er a ging systematic
ampling and molecular methods, our study provides novel in-
ights into the relationship between soil properties and microbial
enomic traits in agricultural systems, especially arable and per-
anent ( ≥4 years) grass fields, the latter of which are relatively

nknown. Our findings highlight the importance of soil pH as a
 e y factor influencing microbial genomic tr aits, suc h as size and
ic he br eadth, c hallenging the vie w that nutrient av ailability (car-
on content) determines these traits in isolation. These results
ave important implications for understanding microbial adap-
ation in a gricultur al soils and the management of soils in these
ystems for specific ecological outcomes. 

ethods 

ample collection 

uring the Autumn of 2019, 245 subsurface ( < 15 cm) soils were
ampled from 68 fields in southern England, by Agrii-Masstock
rable (UK) Limited. Of these 214 samples were from fields des-

gnated as arable , ha ving been in cereal (wheat and barley) and
il seed r a pe r otation for ≥4 years; 15 fields were mixed arable
nd gr ass r otations of barley and gr ass for ≥4 years; and 16 fields
er e permanent gr ass, wher e no other crop had been grown for ≥4
ears ( Supplementary Table 1 ). The samples were collected into
ample boxes and transported immediately to NRM—Cawood Sci-
ntific (Berkshire, UK) for processing. 

hysicochemical measurements and DNA 

xtraction 

oil physicoc hemical measur ements wer e made at NRM—
a wood Scientific (Berkshire , UK): pH, OM content as a percent-
ge of dry mass by loss on ignition (LOI); phosphorus, potassium,
agnesium as mg per litre; and sand (0.063–2.000 mm), silt (0.002–

.063 mm), and clay ( < 0.002 mm) content as a percentage of total.
ample properties are listed in Supplementary Table 1 . 

DN A extraction w as performed on 0.2 g of dried, milled soil
ample using the Qiagen Po w er Soil HTP-96 kit (Cat. No. 12955-4)
ollowing the manufacturer’s instructions. 

CR and sequencing 

he extracted DN A w as used to generate metabar coding sequence
ata. Briefly, amplicons were produced using a two-step amplifi-
ation a ppr oac h, with Illumina Nexter a ta gged primers tar geting
he V4-5 region of 16S rRNA: 515f GTGYCAGCMGCCGCGGTAA and
06r GGA CTA CNV GGGTWTCTAAT (Walters et al. 2015 ) with each
rimer modified at 5 ′ with the addition of Illumina pr e-ada pter
nd Nextera sequencing primer sequences. 

Amplicons were generated using high-fidelity DNA polymerase
Q5 Taq; New England Biolabs). After an initial denaturation at
5 ◦C for 2 min, the Pol ymer ase Chain Reaction (PCR) conditions
ere as follows: 30 cycles of denaturation at 95 ◦C for 15 s, anneal-

ng at 55 ◦C for 30 s, and extension at 72 ◦C for 30 s. A final exten-
ion step of 10 min at 72 ◦C was performed. PCR products were
urified using Merc k MultiScr een PCR filter plates following man-
facturer’s instructions. MiSeq adapters and 8 nt dual-indexing
arcode sequences (Kozich et al. 2013 ) were added during the sec-
nd PCR amplification step. After an initial denaturation at 95 ◦C
or 2 min, the PCR conditions were eight cycles of denaturation at
5 ◦C for 15 s, annealing at 55 ◦C for 30 s, and extension at 72 ◦C for
0 s, with a final extension of 10 min at 72 ◦C. 

The amplicon size was determined using an Agilent 2200
apeStation system, and the library was normalized using the
GS Normalization Kit (Norgen Biotek), with subsequent quantifi-
ation using the Qubit dsDNA HS kit (Thermo Fisher Scientific).
he pooled libr aries wer e further purified by gel extraction (QI-
quic k, Qia gen) and diluted to 400 pM with 7.5% Illumina PhiX.
enaturation of the library was achieved by adding a 10% fi-
al volume of 2N NaOH and incubating at r oom temper atur e for
 min, follo w ed b y neutralization with an equal v olume of 2N HCl.
he library was then diluted to its load concentration using Illu-
ina HT1 Buffer. The final denaturation was performed by heat-

ng to 96 ◦C for 2 min, follo w ed b y cooling in crushed ice . T he am-
licon library was sequenced on an Illumina MiSeq using V3 600
ycle r ea gents. 

ioinforma tic anal ysis 

llumina demultiplexed sequences were processed in R using
 AD A2 (Callahan et al. 2016 ) to filter, denoise, and merge the se-
uences with the following parameters: primer sequences were
 emov ed with cutadapt (Martin 2011 ) and reads were truncated
o 250 and 200 bases, forw ar d and r e v erse, r espectiv el y. The filter-
ng settings were as follows: maximum number of Ns (maxN) =
 and maximum number of expected errors (maxEE) = (5,5). Se-
uences wer e der eplicated and the D AD A2 cor e sequence v ariant

nference algorithm was applied. Forw ar d and reverse reads were
hen merged using the mergePairs function to produce amplicon
equence variants (ASVs). Chimeric sequences were removed us-
ng removeBimeraDenovo at default settings and sequence tables
ere constructed from the resultant ASVs. ASVs were subjected

o taxonomic assignment using the assignTaxonomy function and
ILVA v138.1 (Quast et al. 2013 ) training database. 

acterial community beta-diversity and 

nvironmental dri v ers 

xamination of community composition was carried out in R us-
ng Microeco (Liu et al. 2020 ) and Vegan (Oksanen et al. 2015 ).
riefly, samples with < 8000 reads were removed along with the
 emov al of sequence variants identified as chloroplast and mito-
hondrial, or those not belonging to the domains of Bacteria or Ar-
 haea, and eac h sample’s data wer e r ar efied to 7555 r eads befor e
ray–Curtis distance matrix calculations and non-metric multi-
imensional scaling (NMDS) analysis and plotting. Correlations
etween environmental variables were examined at the phylum
e v el using the cal_cor function. 

https://academic.oup.com/femsmicrobes/article-lookup/doi/10.1093/femsmc/xtaf008#supplementary-data
https://academic.oup.com/femsmicrobes/article-lookup/doi/10.1093/femsmc/xtaf008#supplementary-data
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Figure 1. Conceptual dia gr am (hypothesis)—at br oad scale , the en vir onmental v ariables soil OM and soil pH ar e coupled. Her e we examine highl y 
managed soils where OM and pH are decoupled and examine the relationship of these k e y environmental variables upon the microbial traits rRNA 

copies (growth rate potential), genome size (metabolic versatility), and niche breadth (ubiquity). 
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Genomic trait assessment 
To estimate the genome size of the identified taxa based on taxo- 
nomic information, ASVs were assigned values using representa- 
tiv e genomes pr esent in the IMG-ER public database (Markowitz et 
al. 2009 ). To do this, ASV taxonomies were matched iteratively to 
IMG-ER r epr esentativ e genomes as described b y Marko witz et al.
( 2009 ). Genomic traits summarised by the database were down- 
loaded (20th September 2024) for all isolate, single-cell amplified,
and metagenome-assembled genomes. Based on the availability 
of taxonomies in the IMG-ER database, r ele v ant genomic traits 
such as genome size, rRNA operon copy number, coding density,
and GC content wer e r etained. ASVs with unclassified genera were 
iter ativ el y matc hed to higher taxonomic r anks . For example , if a 
particular genus did not have a genome size, the genome size of 
the family to which the genus was ascribed was used. To confirm 

rRN A cop y numbers, a FASTA file containing the r epr esentativ e se- 
quences of all ASVs was used to a ppr oximate rRNA copies using 
an Artificial Neural Network Approximator 16 (Miao et al. 2024 ).
A consensus of the rRNA copies was used for subsequent anal- 
yses . T he weighted mean rRNA copies, weighted mean GC, and 

weighted mean genome size of each sample were calculated us- 
ing the rarified sequence abundance table. 

Social niche breadth 

To determine the nic he br eadth of the identified ASVs within 

the dataset, we used the SNB metric, as described by Miejen- 
feldt et al. ( 2023 ). SNB quantifies the diversity of ecological in- 
teractions that a microbial taxon engages in by analysing co- 
occurr ence patterns acr oss samples. First, the taxonomic pr o- 
files wer e r ar efied to equal sequencing depths to avoid bias 
fr om differ ential sequencing cov er a ge. The r ar efied data wer e 
then formatted and processed using the calculate_SNB .p y script 
fr om the SNB anal ysis toolkit ( https:// github.com/ MGXlab/ social _ 
nic he _ br eadth _ SNB ). SNB scor es for each ASV were calculated 

based on their co-occurrence with other taxa, reflecting the 
range of ecological networks an ASV interacts with, where higher 
scores indicate a more generalist strategy and lo w er scores re- 
flect specialization. For each sample, a weighted mean SNB 

score was computed by combining the SNB scores of all ASVs 
pr esent, weighted individuall y by their abundance (count), to 
pro vide an o verall measure of the sample’s comm unity nic he 
br eadth. This a ppr oac h was used to assess how environmental 
factors influence microbial generalization or specialization across 
samples. 
hylogenetic and PhyloFactor analysis 

 or ph ylogenetic anal ysis, we gener ated a m ultiFasta file fr om
he ASV table produced by the D AD A2 pipeline. We utilized the
ECIPHER pac ka ge in R to align the DN A sequences. Follo wing
lignment, we constructed a Neighbor-Joining tree based on a dis-
ance matrix calculated from the aligned sequences using the 

aximum likelihood (ML) method, employing the general time 
 e v ersible model for optimization. The resulting optimized ML
r ee serv ed as the basis for subsequent phylogenetic analyses, in-
luding downstream PhyloFactor analysis (Washburne et al. 2017 ).
his anal ysis incor por ated taxonomic data, whic h wer e com-
ined into a single column (lineage), along with the ASV abun-
ances and associated metadata. To further e v aluate potential
iases in the estimated SNB across different lineages, including
ominant and r ar e taxa, we assessed phylogenetic signals within
he dataset. Specifically, we estimated Blomberg’s K and Pagel’s 
ambda using phylogenetic generalized least squares regression 

or statistical inference (see Code availability). 
As highlighted abo ve , to analyse phylogenetic factors driving

atterns in community composition, we employed the PhyloFac- 
or pac ka ge in R, wher e the input was the phyloseq object. We
nsured that the phylogenetic tree was unrooted using the un-
 oot function fr om the a pe pac ka ge, a critical step for the proper
unctioning of the PhyloFactor method. The ASV abundances were 

odelled as a r esponse v ariable to the SNB score of the indi-
idual ASVs, a ppl ying a log-r atio tr ansformation and establish-
ng a significance threshold of 0.01. We specified several factors
 n = 15) to be e v aluated, fr om whic h the detailed summaries of
he PhyloFactor anal ysis wer e extr acted, selecting for significant
axa. 

For data visualization, isometric log-ratio (ILR) boxplots, incor- 
orating the ILR results into the phyloseq object through a cus-
om function (see Code av ailability), wer e gener ated. This allo w ed
or ILR stratification by high- or low-SNB scores, with separation
ased on median av er a ge weighted SNB scor es. A phylogenetic
ree was constructed to visualize the relationships between taxa 
nd the SNB category, highlighting the significant taxa identified 

n the analysis (see Code availability). 

a ta anal ysis and figures 

 (v4.1) was used for data analysis and figure generation using
he ggplot2 pac ka ge . T he mgcv pac ka ge was used for the r egr es-
ion analyses, while any differential analysis was performed using 
unctions in base R. 

https://github.com/MGXlab/social_niche_breadth_SNB
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esults 

H and OM together shape the microbial 
ommunity composition 

gricultur al fields hav e been shown to support the functioning
f varied microbial communities. To understand how these inten-
iv el y utilized soils vary in microbial composition, diversity, and
bundance, we analysed 245 soil samples collected from arable,
ixed ar able-gr ass, and permanent gr ass fields acr oss southern

ngland (Fig. 2 a). 
T he a v er a ge pH of these soil samples was 7.6 (r ange 5.6–8.7),

nd the av er a ge OM content (determined b y LOI) w as 7.7% (range
.1%–16.1%). A weak but significantl y positiv e r elationship be-
ween pH and OM ( r 2 = 0.08, P < .001) was observed (Fig. 2 b). An
rdination analysis (Fig. 3 ) revealed that the soil bacterial commu-
ities wer e primaril y structur ed by pH. Furthermor e, we observ ed
 significant relationship betw een ar c haea: bacteria r atios within
he samples and pH ( Supplementary Fig. 4 a and b). 

road taxonomic variability across arable and 

ermanent grass fields 

n-depth classification and analysis of the taxonomic compo-
ents of the soils led to the observation of Actinobacteria, Pro-
eobacteria, Chlor oflexi, Verrucomicr obiota, Acidobacteria, Firmi-
utes, Bacter oidota, Cr enarc haeota, Planctomycetota, and Myx-
coccota phyla being within the 10 most abundant and cos-
opolitan phyla within the soils (Fig. 4 a). Among these, the abun-

ant phyla Entotheonellaeota, Cr enarc haeota, Acidobacteria, Pr o-
eobacteria, Nitr ospir ota, NB1-j, Methylomir abilota, RCP2-54, and
acter oidota wer e found to be positiv el y corr elated/associated
ith pH (Fig. 4 b). A selection of the same taxa also positiv el y

orrelated with OM. Conversely, taxa, such as Firmicutes, Ver-
ucomicrobiota, and WPS-2, were negatively correlated with pH.
r okaryotic div ersity (Simpson’s) was found to incr ease with soil
H (Fig. 4 c). 

oil properties influence genomic traits of 
acteria 

iv en the observ ed v ariability in comm unity composition and
bundance, it is important to understand the effect of inher-
nt soil properties on bacterial communities within these agri-
ultural soils. To achieve this, we assessed the relationship be-
ween the dominant soil properties (pH and OM-LOI) and the ge-
omic traits of bacteria found in these soils. Importantly, we fo-
used on genome size and rRN A cop y number whic h ar e indica-
ive of life history, ecolog ical strateg ies, and e volutionary ada pta-
ion. Genomic traits of the observed taxa were determined using
enome r epr esentativ es obtained from the publicly available IMG-
R database (see the ’Methods’ section). We found a positive cor-
elation between the weighted mean genome size and weighted

ean rRN A cop y number per genome (Fig. 5 ). Inter estingl y, we
ound that se v er al samples with lar ger mean genome sizes and in-
reased rRN A cop y numbers w er e observ ed at decr easing pH le v-
ls. Generalized ad diti ve model analysis (Table 1 ) confirmed mean
v er a ge rRNA copy number (a ve .rrna) and mean av er a ge genome
ize (a ve .gs) ar e significantl y associated with soil pH (adj. P < .05;
able 2 ). 

acterial niche breadth is influenced by soil 
roperties 

ince microbial composition and genomic tr aits wer e influenced
 y soil properties, w e used the SNB of the individual taxa to cal-
ulate each sample’s weighted mean SNB score. We found a clear
istinction between the weighted mean SNB v alues, driv en pri-
arily by pH (Fig. 6 ). For example, at low pH le v els, samples ex-

ibited a higher SNB scor e, wher eas the scor e was r educed at
igher pH. The genome sizes within these communities varied
nd were diverse , with a verage genome sizes ranging from 3 263
35 bp to 4 840 393 bp (3 805 988 bp av er a ge). To rule out phylo-
enetic and abundance biases, we applied phylofactorization to
ssess phylogenetic signals linked to SNB scores. Of the 15 fac-
ors tested, 46% (7/15) were associated with high SNB, whereas the
 emainder wer e associated with low SNB ( Supplementary Fig. 2 ).
otabl y, these SNB scor es wer e independent of phylogenetic clas-

ification ( Supplementary Fig. 3 ), suggesting that environmental
actors primaril y sha pe comm unity composition. Factor 6 was
 epr esentativ e of all factors where taxa across the bacterial tree
ere included in the low and high SNB clades along the tree

 Supplementary Fig. 2 ). Additionally, phylogenetic and abundance
actors did not bias SNB, as both dominant and r ar e taxa were rep-
esented in the low and high SNB groups ( Supplementary Fig. 2 ).
o further investigate the drivers of SNB, i.e ., soil properties , we
sed generalized ad diti ve models to establish their importance
nd significance. Generalized ad diti ve model analysis confirmed
hat alongside pH and OM, both av er a ge GC content (av e.gc;
upplementary Fig. 1 ) and av er a ge rRN A cop y number (a ve .rrna)
ere significant drivers of SNB within the observed microbial

ommunity (adj. P < .05; Table 2 ). 

iscussion 

ur study underscores the significant influence of pH and OM
measured as LOI) on shaping microbial community composition
n soils from rotational arable (Aciego and Brookes 2008 ) and per-

anent grass fields, and demonstrates that the primary structur-
ng factor for these microbial communities is pH. The association
etween soil pH and OM at the national scale and across all habi-
at types shows a clear relationship between acidity and increas-
ng OM (LOI) (Emmett et al. 2010 ), demonstrating that this sam-
le set does not conform to the br oadl y typical trend of high LOI
t low pH (Kupka and Gruba 2022 ). This non-conformity can be
xplained due to the limited land use range, and because of the
r e v alence of samples with basic parent material where this trend
reaks down (Armbruster et al. 2021 ). By focusing on highly man-
ged soil systems situated on more basic parent material, we have
onstrained our study to soils that are under the most intensive
orms of land use, where the conventional pH–LOI relationship is
ot consistently observed (Armbruster et al. 2021 ). This study ex-
mined the underlying microbial mechanisms and niche dynam-
cs in these soils , which ma y differ significantly from soils under
ess intensive land use or management strategies, such as wood-
ands , heaths , and bogs . 

Our taxonomic analysis of the soils r e v ealed a br oad div er-
ity, spanning se v er al phyla, including abundant soil bacteria
Delgado-Baquerizo et al. 2018 , Bickel and Or 2021 ) such as Acti-
obacteria, Proteobacteria, Planctomycetota, Chloroflexota, and
errucomicr obiota. A positiv e corr elation between pH and OM
ith Entotheonellaeota, Acidobacteria and the archaea Crenar-

haeota, suggests that these taxa ma y pla y critical roles in adapt-
ng to and mediating the effects of these environmental factors,
roviding further insight into the ecological strategies emplo y ed
y these microbial communities. Indeed archaeal taxa have previ-
usly been identified as good indicators of soil OM content (Arm-
ruster et al. 2021 ). Ada ptions to low-pH envir onments or high
M le v els may be due to specialized metabolic pathways or eco-

https://academic.oup.com/femsmicrobes/article-lookup/doi/10.1093/femsmc/xtaf008#supplementary-data
https://academic.oup.com/femsmicrobes/article-lookup/doi/10.1093/femsmc/xtaf008#supplementary-data
https://academic.oup.com/femsmicrobes/article-lookup/doi/10.1093/femsmc/xtaf008#supplementary-data
https://academic.oup.com/femsmicrobes/article-lookup/doi/10.1093/femsmc/xtaf008#supplementary-data
https://academic.oup.com/femsmicrobes/article-lookup/doi/10.1093/femsmc/xtaf008#supplementary-data
https://academic.oup.com/femsmicrobes/article-lookup/doi/10.1093/femsmc/xtaf008#supplementary-data
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Figure 2. (a) Map of the United Kingdom showing the sample site distribution within southern England ( n = 245; point alpha = 0.25); (b) relationship 
between soil samples’ OM content (LOI) and soil pH ( P < .001, linear r egr ession). The size of the filled circles indicates the measured OM of individual 
samples. 
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Figure 3. NMDS plot of soil beta div ersity, wher e point size indicates the percentage of OM by LOI, point colour indicates soil pH, and shape indicates 
cr opland r otation type. NMDS str ess v alue (0.12) is indicated at the top right. 

Table 1. Summary of generalized ad diti ve model—significant relationships of weighted mean rRNA copies (a ve .rrna), weighted mean GC 

content (a ve .gc), and weighted mean genome size (a ve .gs), with soil pH. 

Formula: pH ∼ s(Organic_Matter_LOI) + s(ave.gs) + s(ave.rrna) + s(ave.gc) 
Parametric coefficients: 

Estimate Std. Error t- value P r( > | t | ) 
(Intercept) 7.56244 0.03526 214.5 < 2e-16 ∗∗∗

Approximate significance of smooth terms: 
Edf Ref.df F P -value Signif 

s(a ve .rrna) 1.906 2.399 52.175 < 2e-16 ∗∗∗
s(a ve .gc) 2.994 3.815 5.033 0.000 924 ∗∗∗
s(a ve .gs) 7.533 8.462 4.760 2.52e-05 ∗∗∗
s(Organic_Matter_LOI) 8.155 8.785 1.331 0.162284 

Signif. codes: 0 ‘ ∗∗∗’ 0.001; ‘ ∗∗’ 0.01; ‘ ∗’ 0.05; ‘.’ 0.1; ‘ ’ 1. 
R-sq.(adj) = 0.459; deviance explained = 50.5%. 
GCV = 0.3303; scale est. = 0.30083; n = 242. 
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ogical interactions that are adventitious. Malik et al. ( 2017 ) pre-
iousl y r eported taxa associated with low and high pH gr adients
ith specific functional ada ptations suc h as incr eased r espir ation
nd metabolism of aromatic compounds. Alternatively, microbial
nter actions, both m utual and anta gonistic , ma y shape the com-
osition and responses of the microbial community (Ratzke and
ore 2018 ). The role of soil carbon fluxes as a k e y function of mi-
r obial inter actions (Wu et al. 2024 ) is further supported by Gar-
ia et al. ( 2023 ) who reported that soil carbon le v els ar e influ-
nced by microbial interactions . Furthermore , Cole et al. ( 2024 )
 ecentl y r eported that in low-pH soils, land use intensification
ncr eases micr obial physiological constr aints and decr eases car-
on use efficiency. These findings contribute to a growing body
f knowledge on the complex interactions between soil proper-
ies and microbial community structure, particularly in managed
cosystems. 
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Figure 4. (a) Bar plot of the top 10 abundant phyla faceted by pH. pH6: samples ranging from pH 5.6–6.5, pH7: samples from pH 6.6–7.5, pH8: samples 
from pH 7.6–8.5, and pH9: samples from and above pH 8.5. (b) Correlations observed between all phyla and measured environmental variables 
(Spearman’s corr elation, P -v alues: ∗∗∗ .001, ∗∗ .01, ∗ .05). (c) Relationship between Simpson’s diversity index and soil pH (adj. R 2 = 0.24, P < .001, linear 
r egr ession), OM (LOI) as the point size, and the sample’s alpha diversity as the colour gradient. 
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Figure 5. Scatter plot illustrating the significant positiv e r elationship between the weighted mean genome size and weighted mean rRN A cop y number, 
R 2 = 0.19, P < .001, linear r egr ession; OM (LOI) as point size and sample pH as colour gradient. 

Table 2. Summary of generalized ad diti ve model—significant relationships of pH, OM (Organic_Matter_LOI), and weighted mean rRNA 

copy number (a ve .rrna), with weighted mean SNB (a ve .snb) score . 

Form ula: av e.snb ∼ s(Organic_Matter_LOI) + s(pH) + s(av e.gs) + s(av e.rrna) + s(av e.gc) 
Parametric coefficients: 

Estimate Std. Error t- value P r( > | t | ) 
(Intercept) 0.566 325 0.0 005 157 1018 < 2e-16 ∗∗∗

Approximate significance of smooth terms: 
edf Ref.df F P -value Signif 

s(pH) 7.869 8.663 74.332 < 2e-16 ∗∗∗
s(Organic_Matter_LOI) 1 1 11.912 0.000 668 ∗∗∗
s(a ve .rrna) 6.771 7.866 5.98 1.53E-06 ∗∗∗
s(a ve .gc) 2.884 3.682 2.937 0.032 546 ∗
s(a ve .gs) 1 1 2.212 0.138 335 

Signif. codes: 0 ‘ ∗∗∗’ 0.001; ‘ ∗∗’ 0.01; ‘ ∗’ 0.05; ‘.’ 0.1; ‘ ’ 1. 
R-sq.(adj) = 0.865; deviance explained = 87.6%. 
GCV = 7.0331e-05; scale est. = 6.4367e-05; n = 242. 
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The observed variability in microbial community composi-
ion and abundance across different soil types further led us
o hypothesise that microbial genomic traits may reflect adap-
iv e str ategies . T he positiv e corr elation between genome size and
RN A cop y number across these soils suggests that these genomic
raits may be k e y indicators of microbial life history strategies,
cological adaptability, and evolutionary processes. Interestingly,
e found that larger genomes and increased rRN A copies w ere as-

ociated with lo w er pH (see Table 1 ), suggesting soil-specific adap-
ations. Our observ ations ar e in a gr eement with the r ecent r eport
y Wang et al. ( 2023 ), where genome sizes across soils from pH
.7 to 7.2 decreased with higher pH, and also align with the find-
ngs of Malik et al. ( 2017 ), where at higher pH, a higher GC con-
ent is observed, leading to reduced genome size (Almpanis et al.
018 ). Our results suggest that non-acidophilic bacteria, typically
bserved in soil, do not follow the genome streamlining trends re-
orted by Cortez et al. ( 2022 ). Larger genomes and higher rRNA
opy numbers may provide a competitive adv anta ge in nutrient-
oor, complex or lo w er pH environments b y enabling more effi-
ient resource utilization and rapid responses to environmental
hanges and opportunities. A study by Wang et al. sho w ed that
oil pH is the k e y dri v er of micr obial comm unity composition in
armland soils compared to nutrients (Wang et al. 2019 ). Ho w e v er,
iven the effect of pH, on nutrient availability, it is conceivable
hat low pH soils may have higher nutrient availability, and there-
or e nutrient complexity, compar ed to higher pH soils (Neina 2019 ,
arrow and Hartemink 2023 ). Collectively, we hypothesise that
his is likely because of lo w er pH soils being more environmen-
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Figure 6. Scatter plot showing the positive relationship between the weighted mean genome size and weighted mean SNB, R 2 = 0.08, P < .001, linear 
r egr ession. The pH colour gradients sho w ed an increasing mean SNB and mean genome size with acidity. 
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tally and spatially variable. Although specific gene types are not 
associated with bacterial pH pr efer ences (Ramoneda et al. 2023 ),
anion/cation transporters , phosphatases , and efflux pumps ha ve 
been identified in taxa that share pH associations (Ramoneda et 
al. 2023 ). 

These results emphasize the importance of considering ge- 
nomic traits when assessing microbial community dynamics in 

response to soil properties, as they offer valuable insights into the 
ada ptiv e str ategies of micr obial taxa in differ ent ecological con- 
texts . Furthermore , mean sample SNB estimates revealed that pH 

was a major determinant of niche differentiation within the mi- 
cr obial comm unity. It is likel y that taxa in low (pH 5.5) to neutr al 
pH soils are diverse (Luan et al. 2023 ) and may possess broader 
ecological nic hes, potentiall y due to the need to exploit a wider 
r ange of r esources or toler ate mor e v ariable conditions . T his find- 
ing supports the idea that metabolic v ersatility, whic h is closely 
correlated with genome size, is higher in communities inhabiting 
low pH soils. As pr e viousl y stated, Wilhelm et al. ( 2023 ) demon- 
str ated a positiv e r elationship between genome size and rRNA 

copy number in soil bacteria; howe v er, Wilhelm et al. ( 2023 ), our 
findings indicate that pH, rather than carbon content, is the domi- 
nant factor influencing genome size in the soils we examined. This 
suggests that care must be taken when using the average genome 
size as a proxy for carbon content or soil health, as pH may play 
a more significant role in shaping microbial genomic traits than 

pr e viousl y thought. Additionall y, Malik et al. ( 2018 ) identified a pH 

threshold of 6.2, above which significant shifts in carbon use ef- 
ciency occur, leading to smaller, more specialized genomes with 

arro w er SNB at higher pH le v els . T he diversity in genome sizes
oupled with SNB indicates that microbial taxa may employ dif-
er ent str ategies to cope with the c hallenges posed by v arying pH
e v els and significant additional driv ers, suc h as genome size and
RN A cop y number. Our results are in line with the hypothesis that
ar ger genomes ar e associated with incr eased metabolic ca paci-
ies (Piton et al. 2023 ), potentially explaining the increased niche
r eadth. Collectiv el y, our findings emphasize the need to under-
tand how soil properties influence microbial ecology, particularly 
n managed ecosystems, where soil conditions may deviate from 

r oader, natur al tr ends. 
Ov er all, this study provides new insights into the relation-

hips among soil physicochemical properties, microbial commu- 
ity composition, and genomic traits in arable and permanent 
rass soils . T hese findings c hallenge existing par adigms and high-
ight the need for further r esearc h on the specific mechanisms by
hic h micr obial comm unities ada pt to and thriv e in soils with
typical pH and OM relationships. By integrating taxonomic, ge- 
omic , and ecological analyses , this study offers a compr ehensiv e
nderstanding of the factors that drive microbial diversity and 

unction in these important a gricultur al ecosystems. 
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