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Abstract

Understanding the relationships between bacteria, their ecological and genomic traits, and their environment is important to elu-
cidate microbial community dynamics and their roles in ecosystem functioning. Here, we examined the relationships between soil
properties and bacterial traits within highly managed agricultural soil systems subjected to arable crop rotations or management as
permanent grass. We assessed the bacterial communities using metabarcoding and assigned each amplicon trait scores for rRNA copy
number, genome size, and guanine-cytosine (GC) content, which are classically associated with potential growth rates and specializa-
tion. We also calculated the niche breadth trait of each amplicon as a measure of social ubiquity within the examined samples. Within
this soil system, we demonstrated that pH was the primary driver of bacterial traits. The weighted mean trait scores of the samples
revealed that bacterial communities associated with soils at lower pH (<7) tended to have larger genomes (potential plasticity), have
more rRNA (higher growth rate potential), and are more ubiquitous (have less niche specialization) than the bacterial communities
from higher pH soils. Our findings highlight not only the association between pH and bacterial community composition but also the
importance of pH in driving community functionality by directly influencing genomic and niche traits.

Keywords: genomic traits; metabarcoding; land use; soil properties; agricultural systems; microbial ecology; social niche breadth

Introduction

Microbial genomic traits such as genome size and rRNA copy
number are key indicators of niche breadth and ecological strate-
gles in soil bacterial communities (von Meijenfeldt et al. 2023).
These traits reflect the ability of microorganisms to adapt to vary-
ing environmental conditions (Chuckran et al. 2021), including nu-
trient availability, pH, and organic matter (OM) content. Under-
standing the relationship between soil properties and microbial
genomic traits is crucial for advancing our knowledge of microbial
ecology, particularly in agricultural systems, where soil manage-
ment practices can significantly alter these properties.
Agricultural soils represent a significant portion of land use in
the United Kingdom, with 70% of the total land area classified as
Utilised Agricultural Area (UAA) (DEFRA. 2023). In 2023, the to-
tal arable area in the UK was reported to be just over 6.0 million
hectares, accounting for ~36% of the UAA (DEFRA. 2023). Soils
in these agricultural systems vary widely in pH and OM content,
which are critical factors that influence soil dwelling microbial
communities and their genomic traits (Zhang et al. 2020, Nay-
lor et al. 2022). Previous studies have shown that conversion to
arable land leads to modified microbial communities, where the
consequences include reductions in functionality and decreases
in genes relating to important biogeochemical cycles, including

those that influence the cycling and fate of carbon, phosphorous
and nitrogen containing compounds (Peng et al. 2024). Simulta-
neously, the age of managed and permanent grass fields, key for
providing food and income, affects the microbial community, es-
pecially bacteria, through the influence of soil physicochemical
properties, such as pH (Seaton et al. 2022).

Microbial metabolic versatility (Klappenbach et al. 2000) and
the ability of taxa to thrive in diverse and fluctuating environ-
ments (Wang et al. 2023) are typically associated with larger
genome sizes and increased rRNA copy numbers. Conversely,
smaller genomes and fewer rRNA copies suggest specialization
and efficiency under more stable or resource-limited conditions
(Chuckran et al. 2021). The ability of soil microbial communities
to adapt to changes in soil properties, such as pH and OM con-
tent, is reflected in these genomic traits, which in turn influence
the overall health and functionality of the soil ecosystem. For
example, Wilhelm et al. (2023) demonstrated a positive relation-
ship between genome size and rRNA copy number in soil bacteria.
These genomic traits are relevant for understanding the classical
concept of ecological niche breadth, which defines the range of
conditions under which organisms can survive in Carscadden et
al. (2020). Although niche breadth has previously been assessed
with respect to environmental variables, it has been limited to
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specific taxa (Bennett and Lenski 1993) or environments (Kuang
et al. 2012). Importantly, the notion of generalists, taxa found in
many samples or predefined habitats, and specialists, taxa that
are rare or highly fastidious (Cobo-Simén and Tamames 2017),
have not been assessed in soils under land use effects, necessitat-
ing the need to understand how anthropogenic influences affect
the social niche breadth (SNB) of microorganisms. We hypothe-
sised that the environmental factors pH and OM play a significant
role in shaping microbial communities and their genomic traits
and tested their relationships within highly managed agricultural
soils where the broadly observed inverse relationship between pH
and OM is decoupled. Specifically, we propose that gradients in pH
and OM differentially influence individual microbial traits includ-
ing ubiquity and genome size (Fig. 1). To test the relationship be-
tween microbial traits and these environmental influences, we as-
sessed microbial communities and their traits in soils from arable
and grassland sites across 245 samples from 69 fields at 20 farms
in southern United Kingdom/England. By leveraging systematic
sampling and molecular methods, our study provides novel in-
sights into the relationship between soil properties and microbial
genomic traits in agricultural systems, especially arable and per-
manent (>4 years) grass flelds, the latter of which are relatively
unknown. Our findings highlight the importance of soil pH as a
key factor influencing microbial genomic traits, such as size and
niche breadth, challenging the view that nutrient availability (car-
bon content) determines these traits in isolation. These results
have important implications for understanding microbial adap-
tation in agricultural soils and the management of soils in these
systems for specific ecological outcomes.

Methods

Sample collection

During the Autumn of 2019, 245 subsurface (<15 cm) soils were
sampled from 68 fields in southern England, by Agrii-Masstock
Arable (UK) Limited. Of these 214 samples were from fields des-
ignated as arable, having been in cereal (wheat and barley) and
oil seed rape rotation for >4 years; 15 fields were mixed arable
and grass rotations of barley and grass for >4 years; and 16 fields
were permanent grass, where no other crop had been grown for >4
years (Supplementary Table 1). The samples were collected into
sample boxes and transported immediately to NRM—Cawood Sci-
entific (Berkshire, UK) for processing.

Physicochemical measurements and DNA
extraction
Soil physicochemical measurements were made at NRM—
Cawood Scientific (Berkshire, UK): pH, OM content as a percent-
age of dry mass by loss on ignition (LOI); phosphorus, potassium,
magnesium as mg per litre; and sand (0.063-2.000 mm), silt (0.002-
0.063 mm), and clay (<0.002 mm) content as a percentage of total.
Sample properties are listed in Supplementary Table 1.

DNA extraction was performed on 0.2 g of dried, milled soil
sample using the Qiagen Power Soil HTP-96 kit (Cat. No. 12955-4)
following the manufacturer’s instructions.

PCR and sequencing

The extracted DNA was used to generate metabarcoding sequence
data. Briefly, amplicons were produced using a two-step amplifi-
cation approach, with Illumina Nextera tagged primers targeting
the V4-5 region of 165 rRNA: 515f GTGYCAGCMGCCGCGGTAA and

8061 GGACTACNVGGGTWTCTAAT (Walters et al. 2015) with each
primer modified at 5" with the addition of Illumina pre-adapter
and Nextera sequencing primer sequences.

Amplicons were generated using high-fidelity DNA polymerase
(Q5 Tag; New England Biolabs). After an initial denaturation at
95°C for 2 min, the Polymerase Chain Reaction (PCR) conditions
were as follows: 30 cycles of denaturation at 95°C for 15 s, anneal-
ing at 55°C for 30 s, and extension at 72°C for 30 s. A final exten-
sion step of 10 min at 72°C was performed. PCR products were
purified using Merck MultiScreen PCR filter plates following man-
ufacturer’s instructions. MiSeq adapters and 8 nt dual-indexing
barcode sequences (Kozich et al. 2013) were added during the sec-
ond PCR amplification step. After an initial denaturation at 95°C
for 2 min, the PCR conditions were eight cycles of denaturation at
95°C for 15 s, annealing at 55°C for 30 s, and extension at 72°C for
30 s, with a final extension of 10 min at 72°C.

The amplicon size was determined using an Agilent 2200
TapeStation system, and the library was normalized using the
NGS Normalization Kit (Norgen Biotek), with subsequent quantifi-
cation using the Qubit dsDNA HS kit (Thermo Fisher Scientific).
The pooled libraries were further purified by gel extraction (QI-
Aquick, Qiagen) and diluted to 400 pM with 7.5% Illumina PhiX.
Denaturation of the library was achieved by adding a 10% fi-
nal volume of 2N NaOH and incubating at room temperature for
5 min, followed by neutralization with an equal volume of 2N HCI.
The library was then diluted to its load concentration using Illu-
mina HT1 Buffer. The final denaturation was performed by heat-
ing to 96°C for 2 min, followed by cooling in crushed ice. The am-
plicon library was sequenced on an Illumina MiSeq using V3 600
cycle reagents.

Bioinformatic analysis

Mllumina demultiplexed sequences were processed in R using
DADA? (Callahan et al. 2016) to filter, denoise, and merge the se-
quences with the following parameters: primer sequences were
removed with cutadapt (Martin 2011) and reads were truncated
to 250 and 200 bases, forward and reverse, respectively. The filter-
ing settings were as follows: maximum number of Ns (maxN) =
0 and maximum number of expected errors (maxEE) = (5,5). Se-
quences were dereplicated and the DADA? core sequence variant
inference algorithm was applied. Forward and reverse reads were
then merged using the mergePairs function to produce amplicon
sequence variants (ASVs). Chimeric sequences were removed us-
ing removeBimeraDenovo at default settings and sequence tables
were constructed from the resultant ASVs. ASVs were subjected
to taxonomic assignment using the assignTaxonomy function and
SILVA v138.1 (Quast et al. 2013) training database.

Bacterial community beta-diversity and
environmental drivers

Examination of community composition was carried out in R us-
ing Microeco (Liu et al. 2020) and Vegan (Oksanen et al. 2015).
Briefly, samples with <8000 reads were removed along with the
removal of sequence variants identified as chloroplast and mito-
chondrial, or those not belonging to the domains of Bacteria or Ar-
chaea, and each sample’s data were rarefied to 7555 reads before
Bray-Curtis distance matrix calculations and non-metric multi-
dimensional scaling (NMDS) analysis and plotting. Correlations
between environmental variables were examined at the phylum
level using the cal_cor function.
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Figure 1. Conceptual diagram (hypothesis)—at broad scale, the environmental variables soil OM and soil pH are coupled. Here we examine highly
managed soils where OM and pH are decoupled and examine the relationship of these key environmental variables upon the microbial traits TRNA
copies (growth rate potential), genome size (metabolic versatility), and niche breadth (ubiquity).

Genomic trait assessment

To estimate the genome size of the identified taxa based on taxo-
nomic information, ASVs were assigned values using representa-
tive genomes presentin the IMG-ER public database (Markowitz et
al. 2009). To do this, ASV taxonomies were matched iteratively to
IMG-ER representative genomes as described by Markowitz et al.
(2009). Genomic traits summarised by the database were down-
loaded (20th September 2024) for all isolate, single-cell amplified,
and metagenome-assembled genomes. Based on the availability
of taxonomies in the IMG-ER database, relevant genomic traits
such as genome size, rRNA operon copy number, coding density,
and GC content were retained. ASVs with unclassified genera were
iteratively matched to higher taxonomic ranks. For example, if a
particular genus did not have a genome size, the genome size of
the family to which the genus was ascribed was used. To confirm
TRNA copy numbers, a FASTA file containing the representative se-
quences of all ASVs was used to approximate rRNA copies using
an Artificial Neural Network Approximator 16 (Miao et al. 2024).
A consensus of the rRNA copies was used for subsequent anal-
yses. The weighted mean rRNA copies, weighted mean GC, and
weighted mean genome size of each sample were calculated us-
ing the rarified sequence abundance table.

Social niche breadth

To determine the niche breadth of the identified ASVs within
the dataset, we used the SNB metric, as described by Miejen-
feldt et al. (2023). SNB quantifies the diversity of ecological in-
teractions that a microbial taxon engages in by analysing co-
occurrence patterns across samples. First, the taxonomic pro-
files were rarefled to equal sequencing depths to avoid bias
from differential sequencing coverage. The rarefied data were
then formatted and processed using the calculate_SNB.py script
from the SNB analysis toolkit (https://github.com/MGXlab/social
niche_breadth_SNB). SNB scores for each ASV were calculated
based on their co-occurrence with other taxa, reflecting the
range of ecological networks an ASV interacts with, where higher
scores indicate a more generalist strategy and lower scores re-
flect specialization. For each sample, a weighted mean SNB
score was computed by combining the SNB scores of all ASVs
present, weighted individually by their abundance (count), to
provide an overall measure of the sample’s community niche
breadth. This approach was used to assess how environmental
factors influence microbial generalization or specialization across
samples.

Phylogenetic and PhyloFactor analysis

For phylogenetic analysis, we generated a multiFasta file from
the ASV table produced by the DADA?2 pipeline. We utilized the
DECIPHER package in R to align the DNA sequences. Following
alignment, we constructed a Neighbor-Joining tree based on a dis-
tance matrix calculated from the aligned sequences using the
maximum likelihood (ML) method, employing the general time
reversible model for optimization. The resulting optimized ML
tree served as the basis for subsequent phylogenetic analyses, in-
cluding downstream PhyloFactor analysis (Washburne et al. 2017).
This analysis incorporated taxonomic data, which were com-
bined into a single column (lineage), along with the ASV abun-
dances and associated metadata. To further evaluate potential
biases in the estimated SNB across different lineages, including
dominant and rare taxa, we assessed phylogenetic signals within
the dataset. Specifically, we estimated Blomberg’s K and Pagel’s
Lambda using phylogenetic generalized least squares regression
for statistical inference (see Code availability).

As highlighted above, to analyse phylogenetic factors driving
patterns in community composition, we employed the PhyloFac-
tor package in R, where the input was the phyloseq object. We
ensured that the phylogenetic tree was unrooted using the un-
root function from the ape package, a critical step for the proper
functioning of the PhyloFactor method. The ASV abundances were
modelled as a response variable to the SNB score of the indi-
vidual ASVs, applying a log-ratio transformation and establish-
ing a significance threshold of 0.01. We specified several factors
(n = 15) to be evaluated, from which the detailed summaries of
the PhyloFactor analysis were extracted, selecting for significant
taxa.

For data visualization, isometric log-ratio (ILR) boxplots, incor-
porating the ILR results into the phyloseq object through a cus-
tom function (see Code availability), were generated. This allowed
for ILR stratification by high- or low-SNB scores, with separation
based on median average weighted SNB scores. A phylogenetic
tree was constructed to visualize the relationships between taxa
and the SNB category, highlighting the significant taxa identified
in the analysis (see Code availability).

Data analysis and figures

R (v4.1) was used for data analysis and figure generation using
the ggplot2 package. The mgcv package was used for the regres-
sion analyses, while any differential analysis was performed using
functions in base R.
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Results

pH and OM together shape the microbial
community composition

Agricultural fields have been shown to support the functioning
of varied microbial communities. To understand how these inten-
sively utilized soils vary in microbial composition, diversity, and
abundance, we analysed 245 soil samples collected from arable,
mixed arable-grass, and permanent grass fields across southern
England (Fig. 2a).

The average pH of these soil samples was 7.6 (range 5.6-8.7),
and the average OM content (determined by LOI) was 7.7% (range
3.1%-16.1%). A weak but significantly positive relationship be-
tween pH and OM (r? = 0.08, P < .001) was observed (Fig. 2b). An
ordination analysis (Fig. 3) revealed that the soil bacterial commu-
nities were primarily structured by pH. Furthermore, we observed
a significant relationship between archaea: bacteria ratios within
the samples and pH (Supplementary Fig. 4a and b).

Broad taxonomic variability across arable and
permanent grass fields

In-depth classification and analysis of the taxonomic compo-
nents of the soils led to the observation of Actinobacteria, Pro-
teobacteria, Chloroflexi, Verrucomicrobiota, Acidobacteria, Firmi-
cutes, Bacteroidota, Crenarchaeota, Planctomycetota, and Myx-
ococcota phyla being within the 10 most abundant and cos-
mopolitan phyla within the soils (Fig. 4a). Among these, the abun-
dant phyla Entotheonellaeota, Crenarchaeota, Acidobacteria, Pro-
teobacteria, Nitrospirota, NB1-j, Methylomirabilota, RCP2-54, and
Bacteroidota were found to be positively correlated/associated
with pH (Fig. 4b). A selection of the same taxa also positively
correlated with OM. Conversely, taxa, such as Firmicutes, Ver-
rucomicrobiota, and WPS-2, were negatively correlated with pH.
Prokaryotic diversity (Simpson’s) was found to increase with soil
pH (Fig. 4c).

Soil properties influence genomic traits of
bacteria

Given the observed variability in community composition and
abundance, it is important to understand the effect of inher-
ent soil properties on bacterial communities within these agri-
cultural soils. To achieve this, we assessed the relationship be-
tween the dominant soil properties (pH and OM-LOI) and the ge-
nomic traits of bacteria found in these soils. Importantly, we fo-
cused on genome size and rRNA copy number which are indica-
tive of life history, ecological strategies, and evolutionary adapta-
tion. Genomic traits of the observed taxa were determined using
genome representatives obtained from the publicly available IMG-
ER database (see the 'Methods’ section). We found a positive cor-
relation between the weighted mean genome size and weighted
mean rRNA copy number per genome (Fig. 5). Interestingly, we
found that several samples with larger mean genome sizes and in-
creased rRNA copy numbers were observed at decreasing pH lev-
els. Generalized additive model analysis (Table 1) confirmed mean
average rRNA copy number (ave.rrna) and mean average genome
size (ave.gs) are significantly associated with soil pH (adj. P < .05;
Table 2).

Bacterial niche breadth is influenced by soil
properties

Since microbial composition and genomic traits were influenced
by soil properties, we used the SNB of the individual taxa to cal-

culate each sample’s weighted mean SNB score. We found a clear
distinction between the weighted mean SNB values, driven pri-
marily by pH (Fig. 6). For example, at low pH levels, samples ex-
hibited a higher SNB score, whereas the score was reduced at
higher pH. The genome sizes within these communities varied
and were diverse, with average genome sizes ranging from 3263
535 bp to 4840 393 bp (3805 988 bp average). To rule out phylo-
genetic and abundance biases, we applied phylofactorization to
assess phylogenetic signals linked to SNB scores. Of the 15 fac-
tors tested, 46% (7/15) were associated with high SNB, whereas the
remainder were associated with low SNB (Supplementary Fig. 2).
Notably, these SNB scores were independent of phylogenetic clas-
sification (Supplementary Fig. 3), suggesting that environmental
factors primarily shape community composition. Factor 6 was
representative of all factors where taxa across the bacterial tree
were included in the low and high SNB clades along the tree
(Supplementary Fig. 2). Additionally, phylogenetic and abundance
factors did not bias SNB, as both dominant and rare taxa were rep-
resented in the low and high SNB groups (Supplementary Fig. 2).
To further investigate the drivers of SNB, i.e., soil properties, we
used generalized additive models to establish their importance
and significance. Generalized additive model analysis confirmed
that alongside pH and OM, both average GC content (ave.gc;
Supplementary Fig. 1) and average rRNA copy number (ave.rrna)
were significant drivers of SNB within the observed microbial
community (adj. P < .05; Table 2).

Discussion

Our study underscores the significant influence of pH and OM
(measured as LOI) on shaping microbial community composition
in soils from rotational arable (Aciego and Brookes 2008) and per-
manent grass fields, and demonstrates that the primary structur-
ing factor for these microbial communities is pH. The association
between soil pH and OM at the national scale and across all habi-
tat types shows a clear relationship between acidity and increas-
ing OM (LOI) (Emmett et al. 2010), demonstrating that this sam-
ple set does not conform to the broadly typical trend of high LOI
at low pH (Kupka and Gruba 2022). This non-conformity can be
explained due to the limited land use range, and because of the
prevalence of samples with basic parent material where this trend
breaks down (Armbruster et al. 2021). By focusing on highly man-
aged soil systems situated on more basic parent material, we have
constrained our study to soils that are under the most intensive
forms of land use, where the conventional pH-LOI relationship is
not consistently observed (Armbruster et al. 2021). This study ex-
amined the underlying microbial mechanisms and niche dynam-
ics in these soils, which may differ significantly from soils under
less intensive land use or management strategies, such as wood-
lands, heaths, and bogs.

Our taxonomic analysis of the soils revealed a broad diver-
sity, spanning several phyla, including abundant soil bacteria
(Delgado-Baquerizo et al. 2018, Bickel and Or 2021) such as Acti-
nobacteria, Proteobacteria, Planctomycetota, Chloroflexota, and
Verrucomicrobiota. A positive correlation between pH and OM
with Entotheonellaeota, Acidobacteria and the archaea Crenar-
chaeota, suggests that these taxa may play critical roles in adapt-
ing to and mediating the effects of these environmental factors,
providing further insight into the ecological strategies employed
by these microbial communities. Indeed archaeal taxa have previ-
ously been identified as good indicators of soil OM content (Arm-
bruster et al. 2021). Adaptions to low-pH environments or high
OM levels may be due to specialized metabolic pathways or eco-
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Table 1. Summary of generalized additive model—significant relationships of weighted mean rRNA copies (ave.rrna), weighted mean GC
content (ave.gc), and weighted mean genome size (ave.gs), with soil pH.

Formula: pH ~ s(Organic_Matter_LOI) + s(ave.gs) + s(ave.rrna) + s(ave.gc)
Parametric coefficients:

Estimate Std. Error t-value Pr(>|t|)
(Intercept) 7.56244 0.03526 214.5 <2e-16 %
Approximate significance of smooth terms:

Edf Ref.df F P-value Signif
s(ave.rrna) 1.906 2.399 52.175 < 2e-16 ook
s(ave.gc) 2.994 3.815 5.033 0.000924 Hokok
s(ave.gs) 7.533 8.462 4.760 2.52e-05 Hokok
s(Organic_Matter_LOI) 8.155 8.785 1.331 0.162284

Signif. codes: 0 %" 0.001; “xx’ 0.01; ¥’ 0.05; " 0.1; * " 1.
R-sq.(adj) = 0.459; deviance explained = 50.5%.
GCV = 0.3303; scale est. = 0.30083; n = 242.

logical interactions that are adventitious. Malik et al. (2017) pre-
viously reported taxa associated with low and high pH gradients
with specific functional adaptations such as increased respiration
and metabolism of aromatic compounds. Alternatively, microbial
interactions, both mutual and antagonistic, may shape the com-
position and responses of the microbial community (Ratzke and
Gore 2018). The role of soil carbon fluxes as a key function of mi-
crobial interactions (Wu et al. 2024) is further supported by Gar-

cia et al. (2023) who reported that soil carbon levels are influ-
enced by microbial interactions. Furthermore, Cole et al. (2024)
recently reported that in low-pH soils, land use intensification
increases microbial physiological constraints and decreases car-
bon use efficiency. These findings contribute to a growing body
of knowledge on the complex interactions between soil proper-
ties and microbial community structure, particularly in managed
ecosystems.

G20z AInr g0 uo Jasn ABojoipAH % AB0j0oT Jo) aniuad MN Aq 6842/ 1 8/8001BIX/OWISWSY/SE0 | "0 /I0P/a[0IB/S8q0oIWLSWa)/woo dno olwapede//:sdiy woll papeojumo(



Goodalletal. | 7

g
:
:
:
i
3

(c)

¥=0.978+0.00206 X, R, =0.24, Fy 53 =80.0, P<0.001, n =245 °
(3 '. *
e

W - ‘. S ® 2 3

0.995- ] e @ ® .

s @ e e P L * ®

& 'rn" ® ‘
e v & J
e F s ®
@ . .." o
£ " o8 . "
ew . Lot
§ . ® e .4
* ; &
12
gum L ._ . @
™ s00
o . [ ] 500
400
300
® L 200
-
0.985 ]
®
&)
O 7 pH ]
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Figure 5. Scatter plot illustrating the significant positive relationship between the weighted mean genome size and weighted mean rRNA copy number,
R? =0.19, P < .001, linear regression; OM (LOI) as point size and sample pH as colour gradient.

Table 2. Summary of generalized additive model—significant relationships of pH, OM (Organic_Matter_LOI), and weighted mean rRNA
copy number (ave.rrna), with weighted mean SNB (ave.snb) score.

Formula: ave.snb ~ s(Organic_Matter_LOI) + s(pH) + s(ave.gs) + s(ave.rrna) + s(ave.gc)

Parametric coefficients:

Estimate Std. Error t-value Pr(>|t|)
(Intercept) 0.566 325 0.0005 157 1018 <2e-16 #xx
Approximate significance of smooth terms:

edf Ref.df F P-value Signif

s(pH) 7.869 8.663 74.332 < 2e-16 ook
s(Organic_Matter_LOI) 1 1 11.912 0.000668 ook
s(ave.rrna) 6.771 7.866 5.98 1.53E-06 sk
s(ave.gc) 2.884 3.682 2.937 0.032546 *
s(ave.gs) 1 1 2.212 0.138335

Signif. codes: 0 “x+x’ 0.001; “x+" 0.01; +* 0.05; . 0.1; * " 1.
R-sq.(adj) = 0.865; deviance explained = 87.6%.
GCV = 7.0331e-05; scale est. = 6.4367e-05; n = 242.

The observed variability in microbial community composi-
tion and abundance across different soil types further led us
to hypothesise that microbial genomic traits may reflect adap-
tive strategies. The positive correlation between genome size and
rRNA copy number across these soils suggests that these genomic
traits may be key indicators of microbial life history strategies,
ecological adaptability, and evolutionary processes. Interestingly,
we found that larger genomes and increased rRNA copies were as-
sociated with lower pH (see Table 1), suggesting soil-specific adap-
tations. Our observations are in agreement with the recent report
by Wang et al. (2023), where genome sizes across soils from pH
3.7 to 7.2 decreased with higher pH, and also align with the find-
ings of Malik et al. (2017), where at higher pH, a higher GC con-
tent is observed, leading to reduced genome size (Almpanis et al.

2018). Our results suggest that non-acidophilic bacteria, typically
observed in soil, do not follow the genome streamlining trends re-
ported by Cortez et al. (2022). Larger genomes and higher TRNA
copy numbers may provide a competitive advantage in nutrient-
poor, complex or lower pH environments by enabling more effi-
cient resource utilization and rapid responses to environmental
changes and opportunities. A study by Wang et al. showed that
soil pH is the key driver of microbial community composition in
farmland soils compared to nutrients (Wang et al. 2019). However,
given the effect of pH, on nutrient availability, it is conceivable
that low pH soils may have higher nutrient availability, and there-
fore nutrient complexity, compared to higher pH soils (Neina 2019,
Barrow and Hartemink 2023). Collectively, we hypothesise that
this is likely because of lower pH soils being more environmen-
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Figure 6. Scatter plot showing the positive relationship between the weighted mean genome size and weighted mean SNB, R? = 0.08, P < .001, linear
regression. The pH colour gradients showed an increasing mean SNB and mean genome size with acidity.

tally and spatially variable. Although specific gene types are not
associated with bacterial pH preferences (Ramoneda et al. 2023),
anion/cation transporters, phosphatases, and efflux pumps have
been identified in taxa that share pH associations (Ramoneda et
al. 2023).

These results emphasize the importance of considering ge-
nomic traits when assessing microbial community dynamics in
response to soil properties, as they offer valuable insights into the
adaptive strategies of microbial taxa in different ecological con-
texts. Furthermore, mean sample SNB estimates revealed that pH
was a major determinant of niche differentiation within the mi-
crobial community. It is likely that taxa in low (pH 5.5) to neutral
pH soils are diverse (Luan et al. 2023) and may possess broader
ecological niches, potentially due to the need to exploit a wider
range of resources or tolerate more variable conditions. This find-
ing supports the idea that metabolic versatility, which is closely
correlated with genome size, is higher in communities inhabiting
low pH soils. As previously stated, Wilhelm et al. (2023) demon-
strated a positive relationship between genome size and rRNA
copy number in soil bacteria; however, Wilhelm et al. (2023), our
findings indicate that pH, rather than carbon content, is the domi-
nant factor influencing genome size in the soils we examined. This
suggests that care must be taken when using the average genome
size as a proxy for carbon content or soil health, as pH may play
a more significant role in shaping microbial genomic traits than
previously thought. Additionally, Malik et al. (2018) identified a pH
threshold of 6.2, above which significant shifts in carbon use ef-

ficiency occur, leading to smaller, more specialized genomes with
narrower SNB at higher pH levels. The diversity in genome sizes
coupled with SNB indicates that microbial taxa may employ dif-
ferent strategies to cope with the challenges posed by varying pH
levels and significant additional drivers, such as genome size and
rRNA copy number. Our results are in line with the hypothesis that
larger genomes are associated with increased metabolic capaci-
ties (Piton et al. 2023), potentially explaining the increased niche
breadth. Collectively, our findings emphasize the need to under-
stand how soil properties influence microbial ecology, particularly
in managed ecosystems, where soil conditions may deviate from
broader, natural trends.

Overall, this study provides new insights into the relation-
ships among soil physicochemical properties, microbial commu-
nity composition, and genomic traits in arable and permanent
grass soils. These findings challenge existing paradigms and high-
light the need for further research on the specific mechanisms by
which microbial communities adapt to and thrive in soils with
atypical pH and OM relationships. By integrating taxonomic, ge-
nomic, and ecological analyses, this study offers a comprehensive
understanding of the factors that drive microbial diversity and
function in these important agricultural ecosystems.
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