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Abstract

Seafloor surveys often gather multiple modes of remote sensed mapping and sampling data to infer kilo- to mega-hectare
scale seafloor habitat distributions. However, efforts to extract information from multimodal data are complicated by
inconsistencies between measurement modes (e.g., resolution, positional offsets, geometric distortions) and different
acquisition periods for dynamically changing environments. In this study, we investigate the use of location information
during multimodal feature learning and its impact on habitat classification. Experiments on multimodal datasets gathered
from three Marine Protected Areas (MPAs) showed improved robustness and performance when using location-based
regularisation terms compared to equivalent autoencoder-based and contrastive self-supervised feature learners.
Location-guiding improved F1 scores by 7.7% for autoencoder-based and 28.8% for contrastive feature learners averaged
across 78 experiments on datasets spanning three distinct sites and 18 data modes. Location-guiding enhances per-
Jformance when combining multimodal data, increasing F1 scores by an average of 8.8% and 37.8% compared to the best-
performing individual mode being combined for autoencoder-based and contrastive self-supervised models, respectively.
Performance gains are maintained over a large range of location-guiding distance hyperparameters, where improvements
of 5.3% and 29.4% are achieved on average over an order-of-magnitude range of hyperparameters for the autoencoder
and contrastive learners, respectively, both comparing favourably with optimally tuned conditions. Location-guiding also
exhibits robustness to position inconsistencies between combined data modes, still achieving an average of 3.0% and
30.4% increase in performance compared to equivalent feature learners without location regularisation when position
offsets of up to 10 m are artificially introduced to the remote sensed data. Our results show that the classifier used to
delineate the learned feature spaces has less impact on performance than the feature learner, with probabilistic classifiers
averaging 3.4% higher F1 scores than non-probabilistic classifiers.
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Figure 1. Overview of kilo-hectare scale seafloor mapping methods (left) and the proposed multimodal inference scheme (right).
Satellite and airborne cameras can obtain visual images of benthic habitats in clear shallow water (<30 m) and shipboard side scan sonar
(SSS) can gather wide area acoustic backscatter intensity data for seafloor depths of up to 200 m. Shipboard multibeam echo sounders
(MBES) can gather bathymetry information in both shallow and deep water, but with resolution decreasing with depth. Higher resolutions
can be achieved for deep seafloors using SSS and MBES equipped Autonomous Underwater Vehicles (AUVs). The data gathered using
these methods provide some information about habitats but require overlapping sampling to identify specific habitat types, and so can be
considered as priors. AUVs equipped with cameras can efficiently gather visual images in which some habitat types can be identified. As
shown in the bottom right figure, various types of habitats are depicted in distinct colours. The class of these habitat patches can be
ascertained by employing a voting mechanism based on AUVs’ observations. The multimodal inference concept illustrated to the right
shows multiple prior map layers being fused, using location metadata to regularise self-supervised feature learning. AUV visual images
provide habitat observations that can be used to train and validate habitat inference onto multimodal features extracted from the priors.

that helps to determine seafloor substrate, where hard
substrates like rock or coarse sand have higher acoustic
reflectivity than softer sediments like silt and clay. Side scan
sonar (SSS) also measures seafloor acoustic backscatter,
achieving a large swath and higher resolution than MBES
backscatter measurements when made from the same range.
For shallow seafloors (<200 m), acoustic instruments can be
used directly from ships to achieve the metre-order reso-
lution needed to identify habitat characterising features. In
deeper water, these instruments need to be mounted on ship-
towed submersibles or Autonomous Underwater Vehicles
(AUV) to achieve sufficient resolution (Brown et al., 2011).
In very shallow, clear water (<30 m), satellite images (SI)
and aerial images (A47) can also provide valuable information
about seafloor appearance over wide areas (Ohlendorf et al.,
2011; Price et al.,, 2022). The direct parametrisation of
habitats from metre-resolution data is non-trivial, and
typically multiple layers of remote sensed mapping data are
correlated with habitat information derived from higher-
resolution surveys conducted in some portion of the mapped
region. Both physical samples recovered from the seafloor
and millimetre-resolution visual imagery (Yamada et al.,
2021b) provide information from which habitat classes can

be directly derived. Inferred relationships between the re-
mote sensed priors and observation-derived classes can then
be used to predict habitat distributions in unobserved parts
of the remote sensed data.

Utilising multimodal data is common in habitat classi-
fication. For example, Zelada Leon et al. (2020) considered
multiple remote sensed priors for automated habitat classes
inference, where feature extraction was performed on in-
dividual data modes and then later combined. In Rao et al.
(2017), features were simultaneously extracted from a prior
map and overlapping in situ observations. Besides, Shields
et al. (2020) extended this approach and investigated how to
address the different footprints of remote sensed priors and
in situ data. However, methods to combine multiple priors
during feature extraction and the impact of inconsistencies
between data modes, such as positional offsets, shape
discrepancies and for dynamic environments different ac-
quisition times, are not well understood. Other barriers, for
example, data imbalance due to the uneven distribution and
extent of different types of habitats, also need to be con-
sidered. To address these challenges, this paper investigates
the impact of using location metadata during feature
learning for improved prediction of habitat distributions in
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remote sensed mapping data. We compare the performance
of two approaches of incorporating location metadata to
equivalent methods. The first approach is the location
guided autoencoder, which is an AlexNet-based au-
toencoder that incorporates a soft-location constraint to
regularise learning (Yamada et al., 2021b). We compare this
to an equivalent AlexNet-based autoencoder that does not
use location metadata. The second approach is a geore-
ferenced contrastive learner, implemented using ResNet-18
that incorporates a hard-location metadata based constraint
to regularise learning (Yamada et al., 2022). We compare
this to an equivalent ResNet-18 trained using a contrastive
learning method that does not use location metadata.
Specifically, the following contributions are made:

® Developing a method for wide area substrate and habitat
classes (facies) predictions by learning features from
multiple remote sensing data modes and inferring re-
lationships to classes derived from overlapping in situ
imagery.

¢ Investigating the use of location metadata to improve
feature learning for both single mode and multimodal
remote sensing data, and maintain the robustness to
combinations with data modes that have poor infor-
mation content.

¢ Investigating the robustness to practical issues of posi-
tion offsets between data modalities and the sensitivity of
the method to hyperparameter tuning during location-
based regularisation.

The method advances marine perception by enabling
machines to interpret multiple layers of prior information
about their environment together with their observations.
This can inform robotic action by improving their ability to
make intelligent decisions, for example, in informative path
planning for more targeted or evenly distributed observation
of various seafloor habitat types.

The remainder of the paper is arranged as follows: Section
IT provides a review of related works in data acquisition,
feature learning and multimodal inference, identifying cur-
rent limitations. Section III presents our multimodal inference
workflow, which uses self-supervised learning with location-
based regularisation when extracting combined features from
multiple input modalities. Section IV presents experiment
results and analyses conducted on three field survey datasets.
Section V presents our conclusions.

2. Literature review

2.1. Seafloor data acquisition

Data from multiple sources can be used for benthic habitat
classification (see Figure 1). These can be broadly split as
follows:

® Remote sensed mapping priors
e Sampling and in situ camera observations

Remote sensing mapping methods can seamlessly cover
spatial extents of several kilo-hectares to kilometres
squared. Examples include acoustic bathymetry from MBES
providing depth information, and the backscatter intensity
from SSS and MBES illustrating the hardness of substrate.
Satellite images (S/) and aerial images (4/) taken by sat-
ellites and airborne cameras can also show the visual ap-
pearance of the seafloor in shallow water. The resolution of
such data modes varies between tens of centimetres to tens
of metres depending on acquisition conditions but is typ-
ically insufficient to directly determine substrate and habitat
types without some separate form of observation.

Substrate and habitat classes can be directly identified
through recovery of physical samples or high-resolution
images. Sampling is an inherently destructive process and is
also time-consuming where typically gathering tens to just
over a hundred samples to characterise a region (Neettiyath
et al., 2021; Usui et al., 2017). Seafloor visual imaging is a
non-destructive process. But due to the strong attenuation of
light in water, seafloor visual imaging requires the use of
artificial lighting and cameras that are operated within a few
metres above the seabed (Bodenmann et al., 2017). Even
with high-altitude imaging setups, observational footprints
are limited to <100 hectares per 24 h of observation
(Thornton et al., 2021). However, the high resolution of
imaging surveys (<l cm) makes them suitable for identi-
fying different types of seafloor habitats, substrata and
species. Several prior works have demonstrated semi-
supervised classification of seafloor imagery achieving
high F1 accuracy scores (Ojala et al., 2002; Yamada et al.,
2022).

A major challenge for large-scale seafloor habitat
characterisation is the large gap between the extent covered
by remote sensing and sampling or in situ camera obser-
vations. Remote sensing datasets cover vast regions at high-
resolution, they can have measurements across many
channels and the same geo-location can be described using
multiple sensing modalities. Managing the resulting high-
dimensionality is challenging for direct use of classifiers,
and various approaches have been investigated to reduce
dimensionality while retaining information that is useful
for habitat interpretation. To efficiently identify boundaries
between the different classes in a mapped region, automated
interpretation methods often first project remote sensed
data to a lower-dimensional feature space that aims to
retain sufficient information while reducing information
redundancy.

2.2. Feature extraction

Methods for feature extraction fall into two categories
(Yamada et al., 2021b):

¢ Feature engineering, where features designed by humans
are manually selected and combined

e Feature learning, where features are algorithmically
identified through an optimisation process
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In feature engineering, Grey Level Co-occurrence Ma-
trices (GLCMs) were first proposed in Haralick et al. (1973)
as an effective and generalisable method for textural feature
extraction. GLCMs combine image-derived features such as
contrast and correlation to provide compact representations
of grey-scale images. Zelada Leon et al. (2020) used 64
GLCM features and investigated the accuracy and repeat-
ability of various methods for seafloor habitat classification.
Fanlin et al. (2021) combined five GCLM features and
angular response curves to represent acoustic images for
seafloor classification. Scale-Invariant Feature Transform
(SIFT) (Lowe, 1999) is an alternative to GLCMs that is
extensively used to extract features from images. SIFT
identifies points within an image where the intensity stands
out from the local neighbourhood over different spatial
scales. The distribution of these points forms a set of fea-
tures that can be used to describe the image. Speeded-Up
Robust Features (SURF) were developed to improve the
SIFT by using optimised integral operations (Bay et al.,
2006). Other forms of textural features include Local Binary
Patterns (LBPs), which encode local relationships between
the central pixel and its neighbouring pixels (Ojala et al.,
2002). While engineered features have proven to be highly
effective across a wide range of tasks, their performance
may degrade under challenging conditions, such as in low-
contrast or non-rigid scenes. Additionally, some methods,
such as GLCMs, still require feature optimisation through
combinations, which can be inconvenient to process mul-
tiple datasets.

Feature learning eliminates the need for manual opti-
misation and selection of predefined features. Instead, it
leverages learning techniques to automatically extract
features that efficiently describe a training dataset. Con-
volutional neural networks (CNNs) are widely used to
flexibly learn representations of features directly from
images, without the need for explicit feature engineering.
The principle of deep CNNs has been analysed theoretically
in Wiatowski and Bolcskei (2017) and many CNN archi-
tectures and training methods have been developed and
applied to feature extraction and image classification tasks.
AlexNet, proposed by Hinton et al. (2012), demonstrated
that an increased number of layers in the network archi-
tecture enabled more complex feature representations,
outperforming shallow networks in benchmarking studies.
Later, deeper network architectures such as VGGnet
(Simonyan and Zisserman, 2014) and Residual Network
(ResNet) (He et al., 2016) were proposed and showed
further improvements for classification tasks. A drawback
of larger networks is the increased computational cost for
network training, and CNNs such as MobileNet have at-
tempted to reduce the number of parameters within the CNN
architecture (Howard et al., 2017), for use in applications
where computing resources are limited, for example, mobile
robotic and sensing applications. Similar efforts have in-
vestigated the structure of CNNss to achieve efficient scaling
of architectures (EfficientNet) for optimised performance
under different computational constraints (Tan and Le, 2019).

Recently, CNNs have been applied for automated inter-
pretation of seafloor data. Mahmood et al. (2018) classified
images of coral into nine classes, demonstrating the po-
tential of CNNs to model habitats according to taxonomic
class boundaries used in conservation ecology. However, a
drawback of using CNNs is that traditional supervised
learning approaches require large volumes of human-
labelled training data to achieve accurate results. This is
because the supervised classifiers simultaneously learn
image descriptors (i.e., latent representation spaces) and
delineate class boundaries in a single training process. The
former requires hundreds to thousands of labelled instances
for effective training, which is limiting since generating
human-labelled data is time-consuming. Transfer-learning
attempts to limit the number of domain-specific human-
labelled training instances by first training CNNs on large,
generic image datasets (Deng et al., 2009; Everingham
et al.,, 2010; Lin et al., 2014), and then fine-tuning net-
works based on a smaller number domain-specific training
data (Weiss et al., 2016). However, the performance of this
approach is limited when the appearance of data in the target
domain differs from the training repositories (Yamada et al.,
2023).

Self-supervised learning has achieved state-of-the-art
performance by separating the processes of feature learn-
ing and delineation of the learned feature space through
semi-supervised classification (Chen et al., 2020a). Self-
supervision trains CNNs to learn the features that best
describe a dataset without the need for human-labelled
datasets, which is an advantage because unlabelled data-
sets are more numerous and accessible. Instead, these ap-
proaches optimise CNNs parameters based on intrinsic
structures that exist within unlabelled datasets (Chen et al.,
2020a, 2020). Self-supervised learners attempt to map
similar instances of data to the same region of a latent
representation, or feature space, making them robust to
small input or network weight perturbations (Samuli and
Timo, 2017). Typically, artificially perturbed instances of
the same sample are provided as pairs to the CNNs, where
model weights are tuned so that the predictions (i.e., latent
representation) are similar across the perturbations
(Preciado-Grijalva et al., 2022). Self-supervised training
methods have also been developed to pair different samples
that are likely to have similar appearances based on certain
rules. Yamada et al. (2022, 2021b) introduced a distance
parameter when processing seafloor visual image datasets,
where seafloor images that were taken close to each other
were assumed to share similar properties since the footprint
of an image is relatively small to the broader changes in
seafloor substrates and habitats. Although this assumption
will not always be satisfied, for example, near habitat
transition areas, previous studies (Grant et al., 2024;
Yamada et al., 2021b) showed that the approach is robust as
long as the visual characteristics generally change over
spatial scales larger than the distance parameter used.

Semi-supervised classifiers use intrinsic structures in the
learned latent-representation space (Yamada et al., 2022,
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2023) to reduce the number of labelled instances needed to
delineate human class boundaries. In addition, this also
reduces the susceptibility to human bias during training. For
instance, Bijjahalli et al. (2023) developed a self-supervised
learning framework based on variational autoencoders
(VAE) to detect artificial objects in underwater imagery. The
method applies clustering to the latent representation space
and identifies samples that are distant from cluster centres.
These images were considered anomalous and potentially
showing artificial objects. Semi-supervision through human
confirmation of artificial objects further improved learning
performance. In order to avoid overfitting a small set of
human-labelled data, several studies have investigated
machine-guiding to identify samples for human-labelling
based on the distribution of data in the latent representation
space. For instance, Yamada et al. (2023) achieved 85% of
the classification accuracy of an equivalent supervised CNN
trained with 10,000 expert labels, using just 40 machine-
guided labels. The approach used hierarchical K-means
sampling to identify cluster representative images in the
latent representation space, where algorithmically selected
representative images improved the performance of clas-
sifiers compared to an equivalent number of randomly
selected images. This approach was also found to improve
performance under class imbalance by selecting the same
number of images from each cluster found in the data.

2.3. Multimodal data interpretation

Combining different sensing modalities that capture diverse
aspects of a measurement target has the potential to improve
classification performance, and has been investigated in
many applications, including seafloor habitat mapping (Rao
et al.,, 2017), agriculture (Kang et al., 2023) and facial
recognition (Nandi et al., 2022). Various approaches have
been demonstrated, where these can be broadly grouped as
early fusion, late fusion and middle fusion (Boulahia et al.,
2021; Hong et al., 2020).

Early fusion merges raw or pre-processed sensor data
before feature extraction. This ensures that joint features can
be captured from multiple modalities at the onset of training,
maximising the information derived from multimodal da-
tasets (Cui et al., 2021; Gadzicki et al., 2020). A limitation
of early fusion is an inherent sensitivity to spatial or tem-
poral misalignment, which can arise from sensor resolution
mismatches, geometric distortions, or changes in the en-
vironment between the acquisition of the different data
modes. Boulahia et al. (2021) proposed early fusion to
combine RGB images, depth maps and skeletal sequences
for recognition of human actions. To address resolution
mismatches between data modes, depth maps were resized
to match RGB image sizes prior to feature extraction for
downstream classification. Early fusion was also used to
combine visual and thermal images for improved weed
detection in agricultural applications (Zamani and Baleghi,
2023), where pre-processed visual images and thermal
images were directly stacked ahead of feature extraction.

In Jain et al. (2022), the authors demonstrated early fusion
with contrastive self-supervised learning to interpret dif-
ferent satellite imaging modalities as similar pairs from the
same geographic location. The results showed improved
performance compared to a single mode when using
multiple modalities. However, positional and geometric
inconsistencies in satellite images are relatively limited
compared to the remote sensing modes used in the marine
domain, where different measurement physics and obser-
vation ranges are used, with inherent limitations in subsea
positioning accuracy (Paull et al., 2014). Another factor is
the longer time intervals between data acquisition due to
mobilisation and survey logistics of marine operations,
where even well-studied regions of the seafloor may only be
visited once a year or less. The impact of these intermodal
inconsistencies on multimodal learning is not understood.

Late fusion approaches combine the outputs from
classifiers that are tailored to each sensing modality using a
decision tree (Maki et al., 2011) or combine features derived
from individual modalities by concatenating, or down-
selecting a mixture of informative features as inputs for a
classifier (Neettiyath et al., 2021; Takahashi et al., 2023).
Advantages are that this approach is modular, where the
introduction of new sensing modalities and corresponding
mode-specific feature extractors does not impact other
sensing modes, and there is flexibility as both feature en-
gineering (Maki et al., 2011; Neettiyath et al., 2021) and
feature learning (Takahashi et al., 2023) can be used. This
approach can address issues of resolution mismatch that are
common in remote sensing data as the feature extraction
process can be coordinated between data modes. However,
this also limits scalability as each data mode increases the
computation cost and memory requirements. In addition,
intermediate features that are potentially beneficial for
classification may be missed, and conversely features from
data modes that do not provide useful information can
introduce noise into the final classification result. In Gunes
and Piccardi (2005), the authors studied visual emotion
recognition from facial expressions and body gestures,
fusing the modalities at the decision level. Although the
comparison experiments revealed that the early fusion
method achieved higher classification accuracy, the late
fusion made the feature extraction more flexible, where
models for one modality can also be directly used in future
tasks or recombined with other modes without re-training.

Middle fusion takes features that are individually
extracted from each sensing modality and uses mathe-
matical operations to derive a new set of features that ex-
press multimodal information. The distinction from late
fusion is that the features used for classification are not a
subset or combination of features extracted from each data
mode, but instead features that individually contain infor-
mation from multiple sensing modes. This approach
maintains the flexibility of late fusion while allowing re-
dundant information to be removed before classification.
The method to fuse features from different modes is an
actively researched area, where studies have demonstrated
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Bayesian optimisation (Ramachandram et al., 2017), ge-
netic algorithms (Whitley et al., 1990), principal component
analysis (Zelada Leon et al., 2020) and t-distributed Sto-
chastic Neighbor Embedding (t-SNE) (Takahashi et al.,
2023). In the study of Rao et al. (2017), features from
visual images and bathymetry were extracted separately in a
gated deep-learning architecture and then an intermediate
shared layer was constructed to perform data fusion. The
intermediate shared layer contains features of both the vi-
sual image dataset and bathymetry so that it is capable of
predicting visual image and bathymetric features. In
Takahashi et al. (2023), features derived from chemical
signatures and holographic images of marine particles were
combined using t-SNE. A comparison with late fusion,
where the features derived from chemical signatures and
imagery were concatenated, showed improved classification
accuracy with t-SNE-based middle fusion, demonstrating
the advantage of being able to recompute features based on
multimodal inputs. Karpathy et al. (2014) compared early,
late and middle fusion in the study of large-scale video
classification, where a low-resolution context stream and a
high-resolution fovea stream (i.e., images with non-uniform
resolution, optimised based on some image region criteria)
were fused in different ways. The result revealed that the
middle fusion performed better than early and late fusion for
this application (Feng et al., 2020). However, studies have
found that the performance of these approaches is sensitive
to data modalities, classification targets and network ar-
chitectures (Feng et al., 2020), with no consensus being
reached that any one approach consistently outperforms the
others.

For benthic habitat classification, early fusion has the
advantage that it can fully consider the information given by
multiple modalities while remaining computationally effi-
cient since only a single feature extractor and classifier are
needed. However, early fusion is potentially more sensitive
to data inconsistencies than late and middle fusion. Al-
though methods such as resampling can be used to address
the resolution mismatch, inconsistencies such as geometric
distortion, positional offsets, and changes in the environ-
ment between the acquisition of different modes still exist.
Although approaches to improve consistency across data
layers exist, we argue that such spatial and temporal in-
consistencies are inherent between seafloor mapping mo-
dalities, and so it is valuable to understand their impacts and
develop robust approaches that minimise performance
degradation.

2.4. Classification

In order to evaluate the feature learning performance, it is
imperative to train a classifier to derive the ultimate pre-
dictive class labels. A significant challenge encountered
during this process is data imbalance, a prevalent issue due
to the heterogeneous distribution of habitats on the seafloor,
resulting in imbalanced observations of AUVs. To address
this, recent methodologies have been developed, focusing

on rectifying data imbalance. These include strategies such
as under-sampling and over-sampling (He and Garcia,
2009), along with algorithmic approaches like boosting
(Singh and Purohit, 2015) and bagging (Hasib et al., 2020).
Resampling techniques aim to equalise the representation of
data classes by either augmenting or diminishing the
number of samples. Conversely, boosting and bagging
enhance training effectiveness through methods such as the
utilisation of sub-datasets for repeated training and the
aggregation of multiple weak classifiers to fortify the overall
strength of the model. In this study, we deploy the SMOTE
(synthetic minority over-sampling technique) (Fernandez
et al., 2018), a specific method in resampling techniques, to
deal with the data imbalance problem owning to its easier
implementation and low computation load compared to
other strategies (Chawla et al., 2002).

Labelled visual image datasets are utilised to establish
the ground truth through geo-registration processes.
However, the footprint of these visual images, denoted as A,
is approximately only 1 m? which is significantly smaller
than the areas covered by patches of environmental priors,
substantially exceeding .A. Consequently, an individual
patch in the training data can have multiple habitat classes in
various proportions. This constitutes a probabilistic multi-
class classification problem (Guo and Wang, 2015). Pre-
vious studies have applied both probabilistic and non-
probabilistic classifiers to address this issue. For exam-
ple, Qian et al. (2010) deployed a Support Vector Machine
(SVM) to perform the multi-classes classification on human
activities where several SVM classifiers were separately
trained for each class, with final decisions made through a
voting mechanism. Probabilistic classifiers, such as
Gaussian Process Classifiers (GPC) (Huang, 2011),
Gaussian Process Regression (GPR) (El-Mahallawy and
Hashim, 2013) and Bayesian Neural Network (BNN)
(Chaudhari and Tiwari, 2004), are also widely applied in
real-scenarios because of their capability to give the pos-
sibilities of predictions. The probabilistic and non-
probabilistic classifiers were extensively studied but the
performances highly relied on the classification tasks (Chen
et al, 2009). Therefore, both probabilistic and non-
probabilistic classifiers are deployed in this study to thor-
oughly evaluate the self-supervised feature learning
framework, aiming to eliminate the classifier-induced bias.

Deep learning techniques are also often used for direct
classification. Both CNNs (Chaganti et al., 2020; Lee and
Kwon, 2017) and transformers (Bhojanapalli et al., 2021)
can be used to encode images into a feature space, where a
MLP (multi-layer perceptron) can be added after these to
predict class labels. Recently, transformers have demon-
strated state-of-the-art performance in classification tasks
(Han et al., 2022). Typically such approaches are trained
directly through supervised learning. However, this requires
large and well curated datasets (Zhou et al., 2021). Given
the challenges of creating such a dataset for diverse marine
habitats, supervised CNNs and transformer-based classifiers
are not explored in this paper.
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3. Method

Multimodal data has the potential to improve the accuracy
and robustness of habitat classification as diverse sensing
modalities can probe different aspects that characterise an
environment. The key stages of our approach include:

¢ Fusing multiple prior layers: Combine multiple remote
sensing data layers to generate a rich representation of
the seafloor.

¢ Feature learning with location metadata: Enhance feature
extraction by leveraging location metadata to regularise
learning.

® Geo-registration for correlating visual class information:
Addressing the different spatial extents of image derived
visual habitat classes and the seafloor representations
generated from remote sensed priors.

¢ Visual habitat class inference: Training machine learning
models to predict visual habitat class distributions and
their prediction uncertainty over large spatial extents.

The proposed multimodal inference pipeline is illustrated in
Figure 2. We investigate the impact of location based regu-
larisation of the latent representation space, and the impact of
combining multiple remote sensed priors. We also investigate
the robustness of performance to data inconsistencies.

Mapping seafloor substrate and habitat class distributions
requires spatial patterns larger than the resolutions of remote
sensed mapping data (typically in the order of tens of cen-
timetres to several metres) to be captured. Although local-
isation uncertainties exist in seafloor mapping applications,
these are of a similar order of magnitude to the resolution of
remote sensed mapping data, ranging from metres to tens of
metres with standard navigational suites (Paull et al., 2014).
Since substrates and habitats usually cover spatial extents that
are several orders of magnitude larger than the resolution of
remote sensed prior maps, it is possible to make the following
assumption (Koenig, 1999; Tobler, 1970):

Proximity assumption: Locations that are physically
close to each other are more likely to have similar seafloor
characteristics than those that are far apart.

Although patchy features and transitions between hab-
itats can cause the assumption to be locally unsatisfied,
previous studies have shown that the assumption improves
results compared to methods that do not use location in-
formation (Yamada et al., 2021b; Grant et al., 2024). In
addition, disturbance events and gradual changes in the
environment may also affect the distribution of habitats, in
most practical situations the above assumption can still be
made without loss of generality. The proximity assumption
can be applied across data modes because different sensing
modes capture diverse aspects of the underlying substrates
and habitats at each location. For feature extraction, we take
two self-supervised learning frameworks that have been
adapted to take advantage of location metadata and have
been shown to be effective for the classification of seafloor
imagery. The Location-Guided Autoencoder (LGA) applies

a soft location constraint to regularise feature learning
through modification of the autoencoder cost function and
was shown to improve the quality of features extracted from
seafloor images compared to a regular autoencoder (Yamada
et al., 2023). Georeferenced Contrastive Learning of Visual
Representations (GeoCLR), on the other hand, applies a
hard location constraint by selecting nearby images as
similar pairs in contrastive learning. We extend these
methods to perform multimodal feature learning using early
fusion by integrating raw data from multiple remote sensed
priors. The feature space is then correlated against classes
derived from in situ seafloor imagery in spatially over-
lapping regions. We compare probabilistic and non-
probabilistic approaches to delineate the visually derived
class boundaries in the feature space of the remote sensed
priors, in order to fully evaluate the performance of the
proposed self-supervised learning frame. The method al-
lows the visually derived class distribution to be predicted
over the entire remote sensed region, covering significantly
larger areas than what is feasible to image directly. Our
investigation compares results with feature learners that do
not use location metadata and investigates the effects of
positional inconsistencies between data modes.

3.1. Convolutional early fusion

We leverage the proximity assumption to perform early data
fusion using convolutional windows. Let /; denote different
data modes, for example, bathymetry and SSS. In our ap-
proach, the surveyed region is divided into geo-referenced
patches of equal size, which we call y. The patch size
determines the resolution of the habitat maps generated, and
must be chosen to satisfy the following constraints:

¢ Contain multiple pixels to allow spatial patterns in the
remote sensed data modes to be analysed

¢ Be sufficiently large to absorb the impact of positional
offsets that exist between data modes

® Be smaller than the size of the habitats that are being
characterised

For the first point, although methods such as super-
resolution can potentially be applied, we argue that this
does not increase the basic information content. To fuse
priors with different resolutions and channel depths, we first
determine an appropriate patch size using the criteria below.
The patch edge length r, (in metres) must lie in the range:

Va Zapos (1)
Nint’

> 10’7 min res—‘ 2

Ta T 2

Vq < Vhab (3)

where 0, is the relative position uncertainty between data
modes, 7, is the lowest resolution of the data modes being
combined, and 7y, is the minimum characteristic length
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Figure 2. Overview of the seafloor habitat classification method. The grey blocks indicate processes. Self-supervised learning is applied
to overlapping patches of the multimodal priors to obtain a latent representation space, or feature space, of the fused remote sensing
data. In training, location metadata is used to regulate feature space distances, where geographically closer pairs are placed closer in the
feature space compared to equivalent training methods that don’t use location metadata, and geographically distant pairs are left far apart.
This constraint prioritises patterns that are found to recur in nearby patches, which can help capture habitat relevant characteristics.
Features extracted from multimodal remote sensing data can be correlated with visual habitat classes generated from AUV camera
observations in the same region, where we address the mismatch between remote sensing patch size and the footprint of visual images by
determining class proportions. The correlation between visual class proportion and patch extracted features is used to infer habitat

distributions over a large extent.

scale of the habitats being characterised. Scenarios where
rnap determines the patch size correspond to where the
resolution of input data is poor relative to the smallest
habitat being characterised. Using r;,;, as an upper bound on
the patch size in these situations makes characterisation
possible in theory, though the relatively low resolution of
priors may degrade the overall performance. In such cases, a
better overall result might be achieved by limiting the target
habitats to those that have a larger extent relative to the data
resolution. Based on our studies, this ratio should be greater
than 10:1 for robust performance. The first two constraints
determine the lower bound patch size, where o, is the
localisation uncertainty of the map data being fused, which
is a function of both platform and sensor uncertainty (Paull
et al.,, 2014; Povey and Grainger, 2015; Schmidt et al.,
2018). The resolution limit determines length scales in steps
of 10 m, where n,,;, determines the minimum number of
pixels needed for spatial analysis. This is lower bounded to
>2 pixels to ensure that the feature learner can leverage
spatial textures in the data. The upper bound is determined
by the minimum continuous length scale of the habitats of
interest, which can be calculated through autocorrelation
(Koenig, 1999; Tobler, 1970) of the mapping data, or de-
termined based on prior knowledge of the habitats of in-
terest (Purkis et al., 2019; Zelada Leon et al., 2020).
Each patch is discretised to match the feature learning
network’s input layer, where we use zero-order sampling to

match the resolution of each prior. This ensures the same
geo-locations are indexed uniformly across each prior. A
learnable 3 x 3 kernel, Ky, is passed over each patch to fuse
the different priors, where for priors with multiple channels
(e.g., satellite imagery with RGB layers), each channel is
weighted equally. To populate each patch, data from each
mode s is fused as follows (Gunes and Piccardi, 2005):
ra/2

YN,E)=> " > L(N+mE+n)«K(mn) (4)

s=1 myn=—ry/2

where N, E indicate the northing and easting geo-location. /;
is the intensity of each remote sensed data mode being
sampled, where S is the number of modes being combined.
The integers m, n correspond to the kernel location, which in
turn maps onto a geospatial offset from which intensity
values of each layer are sampled. y forms the early fused
multimodal input for feature learning. Since parameters of
the kernels are optimised together with feature extractor
parameters during the training process, the relative im-
portance of each prior is automatically determined to best
capture relevant spatial patterns across all the inputs.

3.2. Self-supervised feature learning

3.2.1. Location-guided autoencoder (LGA). The LGA is a
self-supervised method that extends the autoencoder (AE)
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to consider location information during feature learning.
The AE is a learning architecture that consists of two neural
networks, an encoder and a decoder. The former maps the
input, y, to a latent representation space h = f{y). The latter
reconstructs the input from the latent representation as y, =
g(h). The AE aims to minimise the reconstruction error
between y and y,. The AE loss function is:

. _ . — 2
min Ly = min Dolly—vil ©)

where ¢ and 6 represent the weight and bias parameters of
the encoder and decoder networks, respectively.

The LGA implements the proximity assumption by
modifying the autoencoder loss function to consider loca-
tion information (Yamada et al., 2021a). We first define p;;,
which relates the distance between two inputs y; and y;, for

i#jas:
exp(—|lr I /27%.)
Pji = 2 o\’ (6)
Zk#iexp(*H%‘ = %l /2rloc)
ili + il
Pi :PﬂziNfb (7

where p;; = 0 when i =}. y is the location of the fused remote
sensing patch. The distance parameter 7y, is a normalising
factor for y that defines the range over which location
proximity, and therefore feature similarity is assumed. N, is
the minibatch size used for parameter optimisation in each
training epoch.

The affinity g;; is derived from h and is optimised based
on p;;. For g; when i # j, it is defined by the Student’s #-
distribution as:

~1
(1+ m =)
(14 e =2 "

where g;; = 0 for i = j, and h; and h; are features extracted
from the early fused multimodal patches y; and y;. By de-
fining the affinity matrices P and Q with p;; and g;; as their
elements, the location loss L, is defined as the Kullback—
Leibler (KL) divergence of P from Q:

i ®)

p .
Lloc = KL(PHQ) = E pl/ log—

” ©)
7 qij
Minimising L,,. forces Q to approach P, which embeds the
correlation between the early-fused data representations and
the location metadata. The LGA loss function is modified as
follows:

L= (l - A)Lrec + ALje (10)

where A weighs the location-based loss relative to the
reconstruction loss. This can be considered a soft con-
straint since the #-distribution is heavy-tailed compared to
Gaussian distributions, so when pairs of early fused data

are initially far apart in the latent representation space,
(i.e., their appearance is dissimilar), they are less strongly
constrained by the regularisation term and can be flexibly
embedded in different regions of the representation space.
Since the loss function only loosely constrains au-
toencoder training based on probabilistic distributions, it
is inherently robust to over-fitting location data. The
distance over which similarity is assumed is a hyper-
parameter that can be tuned, where setting this to zero
produces outputs that are identical to a standard au-
toencoder. Once the networks are trained, location in-
formation is no longer needed to extract features from the
multimodal data.

The LGA in this study uses the AlexNet (Hinton et al.,
2012) as the encoder architecture, and its inverted coun-
terpart is used as the decoder. Convolutional layers are
transformed into transconvolutional layers, and max
pooling layers are converted to max unpooling layers. The
workflow of the LGA is illustrated in Figure 3(a).

3.2.2. GeoCLR. GeoCLR implements a hard location
constraint through contrastive feature learning. It extends
SimCLR, which learns feature representations by max-
imising agreement in the feature space between differ-
ently augmented views generated from the same input y
(Chen et al., 2020a). In SimCLR, augmentations are
randomly applied, where random crop followed by re-
sizing back to the original size, random colour distortion
and random Gaussian blur are commonly applied to
generate positive pairs (y;, y;), and a randomly selected
input y;, which is also randomly augmented and used as
the negative pairing.

Features are extracted using a CNN encoder, h =f(y) and
a projection head g(-) is used to map h to a smaller feature
space, z = g(h), where the following contrastive loss
function is applied:

exp (sim(z;,z;) /)
Zzﬁ”lﬂ ki exp(sim(z;,2;) /1)

where sim() represents cosine similarity, Ty € {0, 1} is
the indicator function which is 1 if k£ # i, and 7 is the
temperature parameter. The total loss of the minibatch
samples is subsequently obtained as:

4,; = —log

(11)

1 &
=5 > 02k — 1,2k) + (2K, 2k — 1))]
b

k=1

L (12)

where N, is the minibatch size. In SimCLR (Chen et al.,
2020a), the projection head is a small multi-layer perceptron
with one hidden layer, and the feature encoding CNN is
based on ResNet (He et al., 2016).

GeoCLR extends SimCLR and implements the prox-
imity assumption by taking location information into ac-
count. Positive pairs are generated from distinct inputs [y;,
y;l, where these are sampled from physically nearby lo-
cations subject to the following constraint:



10 The International Journal of Robotics Research 0(0)
|| Loss Lye. ', l
s [Ty
ed - “IRHE ) -
H - il =N
Multi-modal Data Fusion Fused Encoder Decoder Reconstructed
priors augmentation layer data data
s Q0 "E s B
: 9 i - :
@ . H| .
@ : 9 : H | i
,t:;:;‘:.‘;’;; "";;;:;:.;;;;;;;;.;" i
affinity matrix affinity matrix
(a)
Similar pair [ @ o) ASlmlIar paix
Distance < Fioe Q0

Dissimilar pair
Distance > rioc

Multi-modal remote
sensing priors

Fusion
layer

Data
augmentation

(b)

v 33

CsEEEEEEEEEEEEEEEEEES

Extracted
feature space

Feature
learner

Fused
data

Figure 3. Self-supervised feature learning methods. Grey blocks indicate where parameters are optimised through the learning process.
(a) The LGA introduces a geo-location-based loss term L., to the standard autoencoder. The geo-location loss term prioritises patterns
found between multimodal patches that are geographically close to each other by minimising the KL divergence between location and
feature affinity matrices. This imposes a soft location constraint that prioritises features that recur in nearby location. The distance over
which similarity is assumed is a parameter that can be tuned, where setting this to zero produces outputs that are identical to a standard
autoencoder. (b) GeoCLR modifies SimCLR by selecting positive (i.e., similar) pairs from nearby locations <ry,.), and a negative
pairing from a random location (>7,). The contrastive loss function is used to learn feature embeddings from the multimodal inputs,
which imposes a hard location constraint as inputs sampled from within the assumed similarity distance are forced to nearby regions of
the feature space. When the similarity distance is set to zero, the positive pair is sampled from the same fused data input, and so the

feature embeddings become identical to SImCLR.

V=N + (B~ E) < (13)
where (N, E) are the northing and easting positions of the
input data. The negative patch is selected from a random
location outside the radius 7., and all the inputs are ran-
domly augmented (Yamada et al., 2022). Once trained,
location information is no longer needed to extract features
from multimodal data. The GeoCLR workflow is shown in
Figure 3(b). When the similarity distance is set to zero, the
positive pair is sampled from the same fused data input, and
so the feature embeddings become identical to SimCLR.
Since the contrastive loss embeds positive pairs to nearby
regions of the feature space, GeoCLR can be considered as a
hard location constraint. As 7y, increases, the positive pair

y; and y; can be sampled from increasingly distant locations,
which decreases the likelihood of them showing similar
scenes. This can degrade the performance of the feature
embedding, making GeoCLR inherently more sensitive to
the choice of r,,. than the LGA. The GeoCLR in this study
uses the ResNet18 CNN (He et al., 2016) as the encoder
architecture.

3.3. Visual class sampling

We use semi-supervised learning to train classifiers to
predict visual classes over the remote sensed region. The
training and test labels used for benchmarking are gen-
erated from visual images (Massot-Campos et al., 2023;
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Yamada et al., 2022) or by human experts. Since patches
generated to discretise the remote sensed priors are
typically larger than the footprint of AUV gathered im-
agery, those that have overlapping imagery are likely to
contain multiple visual class labels for training and
testing, where these are not guaranteed to be from a single
class (Figure 1). Previous studies have used the most
frequent label (He and Garcia, 2009; Leevy et al., 2018),
or the most central label (Rao et al., 2017) as a definitive
single label to use for training and testing purposes.
However, this neglects the mixing of different habitat
classes near boundaries. To address this, we assign
multiple labels to each patch, accompanied by their re-
spective proportions determined based on their fre-
quencies within each patch (Shields et al., 2020), which
actually becomes a probabilistic multi-class classification
problem.

3.4. Habitat classification and prediction

Classifiers are trained to correlate patterns between learned
feature spaces and class labels derived from a random subset
of the visual images at each site. Their performance is
determined based on the F1 scores against reference class
labels derived from the remaining visual images that were
not used for classifier training. We note the use of location-
based regularisation does not affect the validity of the results
since location information is only used during training, and
not during testing and inference.

We investigate four well-established probabilistic and
non-probabilistic classifiers to delineate the visual class
boundaries in the feature space. Compared to non-
probabilistic classifiers, probabilistic classifiers provide
uncertainty estimates that indicate confidence in their
predictions. Regions with high uncertainty may benefit
from additional observations to improve correlation be-
tween patch features and their corresponding visual
habitat classes, but it is also possible that the remote
sensing priors do not contain the information required to
characterise the environment.

The Support Vector Machine (SVM) is chosen to rep-
resent a non-probabilistic classifier due to its proven ro-
bustness and performance over a variety of geospatial
classification tasks (Ojala et al., 2002). For probabilistic
classifiers, we compare the performance of the Gaussian
Process Classifier (GPC), Gaussian Process Regression
(GPR) and a Bayesian Neural Network (BNN). Based on a
preliminary optimisation study using the grid search method
(Syarif et al., 2016), we deploy the radial basis function
kernel in the SVM, the rational quadratic kernel in GPC and
the Matern kernel in GPR, respectively, as these were found
to provide the best performance for each classifier. The
BNN classifier uses a fully connected neural network using
three layers with 64, 32 and 8 nodes, respectively. Clas-
sification accuracy scores are determined using the visual
image-derived class proportions in each test patch for all
classifiers.

4. Experiments and analysis

4.1. Dataset description

Experiments are carried out on multimodal datasets from
three marine protected areas (MPAs) in the UK: Darwin
Mounds (DM), Studland Bay (SB) and Greater Haig Fras
(HF), as shown in Figure 4. The MPAs have different
substrate and habitat types, and the datasets consist of
various remote sensed mapping data and seafloor imagery
taken by different AUVs (see Table 1). Further information
about the data modes used in our comparative experiments
can be found in the supplemental material.

4.1.1. Darwin Mounds. Darwin Mounds is a Special Area
of Conservation (SAC) located 160 km northwest of Cape
Wrath, Scotland. The area is characterised by sandy
mounds that support cold-water coral colonies at a depth
of approximately 1000 m (Huvenne et al., 2016). A visual
imaging survey was conducted in 2019, using the Na-
tional Oceanography Centre’s Autosub6000 which was
equipped with the University of Southampton’s BioCam
high altitude 3D imaging system to survey the region
from 5 m altitude. Four visual classes exist in the image
dataset: Sediment (81%), (Mound) Tail (16%), Mound
Edge (2%) and Mound Top (1%), where Figure 4 shows
class exemplary images and relative proportions ob-
served by the AUV. Classification of visual images was
performed using semi-supervised learning following the
method described in Yamada et al. (2023). Validation
against 100 expert human-labelled reference images from
each class gave an F1 score of 84%, showing strong
performance despite the significant class imbalance. The
predicted visual class labels are used as the reference for
training and testing in this paper. SSS (Huvenne et al.,
2016) and MBES (Wynn et al., 2014) survey data from
2011 were used as remote sensed priors, where physical
changes in the environment can be considered negligible
relative to the remote sensing resolution (0.2 m) con-
sidering the slow growth rate of the Mounds (<3 mm/year
(Victorero et al., 2016)) and protected status preventing
any trawl activity in this region.

4.1.2. Studland Bay. Studland Bay is a Marine Conser-
vation Zone (MCZ) located on the Dorset coast. The water
depth is <4 m and extensive seagrass meadows are visible in
satellite and aerial images (Massot-Campos et al., 2023).
The seagrass meadows provide a habitat and breeding
ground for various fish species including seahorses. A
survey was carried out in September 2022 using the Uni-
versity of Southampton’s Smarty200 AUV, with images
taken from a low altitude of 1 m. The AUV took 5634
images that were classified following the method described
in Yamada et al. (2023) into seven classes, five of which are
different percentage covers of seagrass: Rock/algae (29%),
Sediment (22%), Seagrass 0%—20% (13%), Seagrass
20%—-40% (12%), Seagrass 40%—60%, (19%) Seagrass
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Figure 4. Locations of the three study sites are sketched as red boxes. Darwin Mounds (DM) is located 160 km northwest of Scotland, at
seafloor depths between 710 and 1129 m. The site is characterised by cold-water-coral populated sediment Mounds and
xenophyophores densely populated along mound tails (Huvenne et al., 2016). Studland Bay (SB) is located off the coast of Dorset,
England, with depths up to 4 m. It is characterised by seagrass beds and long-snouted seahorses (Collins et al., 2010). Greater Haig Fras
(HF) is located 95 km northwest of the Isles of Scilly at depths between 38 and 118 m. It is a mosaic habitat alternating between exposed
bedrock, or rocky reef, and sediments (Benoist et al., 2019). The images show examples of each visual class, and the pie charts indicate
the relative class proportions observed during AUV camera surveys.

60%—80% (3%), and Seagrass 80%—100% (2%), respec-
tively. Figure 4 shows imagery and class proportions,
which are significantly imbalanced. Validation against 100
expert human-labelled reference images from each class
gave an F1 score of 60%, where most confusion occurred
between adjacent seagrass cover percentages. The exemplary
images illustrate the visual similarity across class boundaries,
where discretizing naturally continuous variations is chal-
lenging for both human experts and algorithms. This paper
uses the predicted visual class labels as the reference for
training and testing. S/ data was taken from Sentinal-2 on the
same date as the AUV survey, and A/ was obtained from
Google (2021) with a data collection date in July 2021. The
depth data was obtained from the United Kingdom Hydro-
graphic Office, with a data collection date of 2012. Although
robust evidence for temporal trends in seagrass meadow
cover at Studland Bay does not exist, reported changes are
<15% cover for reports published 7 years apart, where this is

considered the lower limit of change detection according to
Dogget and Northen (2023).

4.1.3. Greater Haig Fras. The Greater Haig Fras (HF)
region is a SAC mosaic habitat (depth from 38 to 100 m),
characterised by rocky reefs alternating with sediments. The
AUV camera survey was done in July 2022 using the
National Oceanography Centre’s Autosub Long Range
(ALR), which was equipped with the University of
Southampton’s BioCam camera system. The image dataset
used here consists of 7289 images that were classified by
human experts into four classes: Sediment (31%), Bedrock
(30%), Ripple (21%) and Boulder (18%), showing relative
balanced between classes. SSS data was taken by the Au-
tosub6000 AUVs of NOC (Zelada Leon et al., 2020) in
2015 using Edgetech sidescan sonar and the bathymetry
data was collected in 2014 by the United Kingdom Hy-
drographic Office. Considering the substrate types in the
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Table 1. Dataset Description. Multimodal Datasets Were Compiled From Three Different MPAs in the UK, Each With a Unique Habitat

Type.

Site description

Name Darwin mounds Studland bay Greater Haig Fras
Location 59.82°N, 7.36°W 50.65°N, 1.94°W 50.36°N, 7.72°W
Average depth 970 m 4 m 108 m

Habitat type Cold-water coral Seagrass Mix rock, coarse and find sediments
Remote sensed mapping data, (resolution, m/pixel)

SSS 0.2 — 0.2

MBES backscatter 0.5 — —

Bathymetry 2.0 2.0 4.0

Satellite images — 3.0

Aerial images — 0.34 —

AUV camera survey

Platform (camera system) Autosub6000 (BioCam) Smarty200 ALR(BioCam)
Imaging altitude, m 5 1 5

Resolution, mm 2.3 0.3 1.9

Trajectory, km 43 2.0 15.8

Observed area, h 15.3 0.2 7.9

Visual class labels (training: test) 12290:2252 4507:687 5831:1458
Number classes 4 7 4

surveyed region, temporal variations can be considered
negligible in this region.

4.2. Experimental setup

The patch size used in this study has ;= 10 m, which is the
smallest patch size that satisfies the criteria in equations (1)—
(3) for our datasets. The patch window was shifted by an
interval of 5 m and all patches were used for feature
learning. Two sets of experiments were carried out to in-
vestigate the following aspects of performance:

e Effectiveness of multimodal feature learning with lo-
cation regularisation for habitat classification

® Robustness to distance hyperparameter tuning

® Sensitivity to data inconsistencies when combining
multimodal priors

For the LGA and AE, AlexNet was used as the encoder
network where the latent representation dimension was set
to 16. The network was trained for 100 epochs with a
learning rate of 1.0 x 1075, 2 = 1.0 x 10® and the weight
decay was set to 1.0 x 107>, with a minibatch size of N, =
128 following the recommendations of Yamada et al.
(2023). For the LGA, the distance parameter was set to
Toe = 8 m to apply the soft proximity assumption to all
neighbouring patches.

Experiments with GeoCLR and SimCLR used ResNet18
as the underlying architecture. The latent representation
h and z dimensions were set to 512 and 16, respectively.
The training epoch was set to 800, with a learning rate of

5.0 x 107, a weight decay of 1.0 x 10~*, temperature 7 =
0.07 and minibatch size of N, = 128, following the rec-
ommendation of Yamada et al. (2022). For GeoCLR the
distance parameter was set to 7y, = 8 m to apply the hard
proximity assumption to all neighbouring patches. The size
of the latent representation space and distance parameter
were set to the same value to ensure that results are com-
parable between the methods.

AE-LGA and SimCLR-GeoCLR network training ep-
ochs were fixed to 100 and 800, respectively. Network
training took 7 h and 30 h, respectively, on a NVIDIA
TITAN RTX 24 GB GPU. Computing the distance metrics
from location metadata for LGA and GeoCLR took less than
a minute, which is negligible compared to the total network
training time.

Experiments were performed using both single mode and
multimodal priors, where multimodal experiments combine
remote sensed backscatter (SSS or MBES) or imagery (S or
AI), with bathymetric data (depth or relative depth (RD)).
RD was calculated using equation (14):

D(N,E) — minD(N, E)
d

where D(N, E) is the depth of a patch centred at location (¥,
E), and d is a constant that regulates the relative depth scale.
This is set as d = 10 m, which is the same as the patch width.
For the DM dataset, the survey site is on a gentle slope
where the habitat class of interest is relates to protruding
mounds within the site, rather than the absolute seafloor
depth. Therefore, only RD was used for the bathymetry
maps at this site. Experiments are carried out for both single

RD(N,E) =

(14)
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and multimodal feature spaces using four different classi-
fiers. To prevent the classifier from overfitting and improve
the generalisation capabilities (Pawluszek-Filipiak and
Borkowski, 2020), visual image datasets are split randomly
as depicted in Table 1. The training and testing datasets in
the proposed multimodal inference frame could be gener-
ated via geo-registration of visual images, employing the
voting strategy elucidated in Figure 2.

To investigate the sensitivity of each method to the
distance hyperparameter, we selected the remote sensed
priors that give the best multimodal inference results and
investigated the sensitivity of the results to tuning of the
location regularisation (i.e., distance parameter r,.). The
value of r;,. was varied between 0, 8, 15, 22, 44, 66, 100 m
for both the LGA and GeoCLR, where 7, = 0 corresponds
to the AE and SimCLR, respectively. The final set of ex-
periments investigates the robustness of the method to data
inconsistencies between the remote sensed priors by in-
troducing 2.5, 5, 7.5 and 10 m positional offsets between
each mode being combined.

The macro F1 score, averaging precision for each pre-
dicted class and recall for each labelled class (Grandini
et al., 2020), is used to evaluate multi-class prediction
performance. Specifically, we compute the average class
proportion error as the differences between the predicted
and labelled class proportions for each pair of classes over
the testing dataset. Based on this, a confusion matrix of
accuracy can be constructed, enabling the calculation of the
macro F1 score for probabilistic multi-class classification.
For visualisation purposes, the habitat maps in Figures 7—
9(e) and (f) assign the class with the highest predicted
proportion per patch. Figures 7-9(g)—(j) show the propor-
tion of an individual class within each patch.

4.3. Multimodal feature learning and
classifier performance

Results comparing the performance of the different feature
learning and classification methods are summarised in
Figure 5, while full tables of results can be found in the
supplemental material. The results show that early fused
multimodal data consistently outperforms the use of a single
mode, and that location regularisation improves the per-
formance of both the AE based and contrastive feature
learning models. The hard location constraint of GeoCLR
outperforms the soft location constraint in LGA, with
GeoCLR achieving 16.7% higher average F1 score overall
conditions. The best results for each dataset are achieved by
GeoCLR using multimodal data, reaching 79.0%, 56.8%
and 83.0% for DM, SB and HF, respectively. The lower F1
score for the SB dataset is attributed to this being a harder
classification problem, with a large number of visual classes
that have a similar appearance (i.e., seagrass with varying
percentage cover).

For the DM dataset, combining SSS + RD achieves an
F1 score of 79.0%, improving performance over the
best-performing single mode SSS by 3.4%. Similar

improvements are seen for SB, with Al + Depth achieving
56.8%, improving the best-performing single mode A/ by
6.4%, and for HF SSS + Depth achieved 83.0%, out-
performing the best single mode SSS by 6%. In general,
GeoCLR improves F1 scores when combining modes, in-
creasing the F1 score by an average of 5.27% over the best-
performing individual mode it combines, demonstrating its
ability to take advantage of multimodal patterns in early
fused data. However, improvement is not guaranteed in
cases where there is a large discrepancy in the information
content of the layers being combined. For example,
RD performs poorly for the SB and HF datasets (F1
scores <30% across all conditions), and when combined
with higher-performing single modes, the combined F1
score falls short of the single mode score in some of the
cases. However, even in these scenarios, the F1 score is
significantly higher than the average of the modes being
combined (on average 11.9% higher), indicating that rather
than just naively merging information, feature learning
actively rejects poor information content. This property is
also demonstrated by LGA, which improves over the av-
erage of combined modes by 4.7%. An interesting results
for the DM dataset is that although combining MBES + RD
improves performance (65.6%) over each individual mode
(58.5% and 62.0%), the overall performance is still sig-
nificantly below SSS + RD (79.0%). The backscatter
measurements of MBES originate from the same acoustic
pulses used to determine RD (i.e., same sensor and signal,
but using different processing). Therefore, these datasets
have perfect alignment. On the other hand SSS backscatter
data has an average positional offset of 12.0 m relative to
RD due to localisation uncertainty and different measure-
ment physics causing geometric distortions between the
dataset (discussed in the supplemental material). Despite
this the higher quality of acoustic backscatter information in
the SSS outweighs any negative impacts of these spatial
inconsistencies when combining the layers. A more detailed
investigation into the effects of spatial inconsistencies will
be discussed in the robustness analysis section.

Figure 6 summarises the performance of each classifier
across all feature learners. Probabilistic classifiers (GPC,
GPR, BNN) marginally outperform the non-probabilistic
classifier (SVM) by 3.4% for equivalent feature and dataset
conditions. The overall performance is less dependent on
classifier choice than feature learners. However, probabi-
listic classifiers can provide uncertainty estimates for pre-
dictions, which may be advantageous in scenarios such as
path planning where a larger proportion of observations
could be gathered from such areas to improve the prediction
certainty.

4.4. Importance of location metadata

Figure 5 and Table 2 show LGA and GeoCLR improve
performance compared to the equivalent AE and SimCLR,
indicating a benefit from implementing the proximity as-
sumption in feature learning. When using a single data
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Figure 5. F1 scores of habitat classification using AE, LGA, SImCLR and GeoCLR as feature extraction methods. The results reveal that
LGA and GeoCLR are generally better than AE and SimCLR, respectively. In addition, multimodalities also enhance the classification

performance.

mode, the average F1 scores using the LGA are 7.7% higher
than AE, and 28.8% higher for GeoCLR than SimCLR
under equivalent conditions, indicating significant im-
provements are achieved by incorporating location

metadata, especially for the hard constraint implemented
through contrastive learning. When using multimodal data,
the relative improvements further increase to 8.8% and
37.8% for LGA and GeoCLR compared to AE and
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SimCLR, respectively. The latter result reflects that the AE
and SimCLR feature learning are unable to take advantage
of the multimodal data, where the AE only improves per-
formance by 2.1% and SimCLR performance decreases by
2.0%. In contrast, LGA improves its performance by 3.2%
and GeoCLR by 6.8% over the best-performing single
mode. The effectiveness of LGA varies with dataset char-
acteristics, exceeding AE F1 scores by 2.91%, 3.56% and
13.4% on the DM, SB and HF datasets on average, re-
spectively. Notably, for the HF dataset the AE performance
degrades with the use of multimodal inputs, whereas LGA
improves significantly, demonstrating a fundamental dif-
ference in feature-learning behaviours. The results indicate
that the proximity assumption and use of location metadata
are critical to the enhancement of habitat classification
performance when using multimodal data in feature
learning. A more detailed assessment of the impact of lo-
cation metadata on multimodal feature learning can be
found in the supplemental material.

4.5. Habitat class prediction and

class uncertainty

Figures 7-9 show the best performing single and mul-
timodal remote sensing priors, visual class training inputs
and classification results for the DM, SB and HF datasets,

respectively. The predicted visual class distribution for
single and multimodal scenarios corresponds to the

100
9 |
80 |
70t
60 |
50 [
40 |
30+
20 |
10 F

F1 score (%)

Figure 6. Average performance of classifiers in studied cases for
each dataset regardless feature learners. There is no significant
difference between classifiers in terms of F1 score.

best-performing feature learner and classifier pairing
(see Table 3). In Figures 7 and 9 for the DM and HF
datasets, panels () and (f) show the class with the highest
predicted proportion within each patch, and panels (k)
and (1) present uncertainty maps given by the classifier,
which reflect the confidence of the classifier to predic-
tions. Figure 8 also shows the same information for the
SB dataset.

In the DM dataset, Figure 7(f), corresponding to mul-
timodal inputs (SSS + RD), diagonal strips exist in clas-
sification maps, which are caused by the offsets seen
between adjacent passes of the AUV when gathering ba-
thymetry data. Although these are artefacts, the overall F1
achieved using multimodal data is higher than the best
performing single mode input SSS (see Figure 7(e)),
showing robustness to common practical issues relating to
input data quality. The predicted proportion and distribution
of Mound Top, where the majority of cold-water corals are
found are relatively similar between the single and multi-
mode scenarios in Figure 7(e) and (f), respectively.

The SB dataset results show a similar overall distribution
pattern between Figure 8(f) for multimodal (4 + Depth)
classification and Figure 8(e) for the best single mode (47).
The Al image has a boat visible in the data, where this region
was masked during training and testing and adopted the most
frequent predicted class of its nearest neighbours. Although
the overall distribution patterns are similar, the Rock/algae in
the bottom left predicted by the single mode Figure 8(e) is not
predicted in the multimodal case in Figure 8(f), where the
predictive uncertainty is also higher in this region compared
to the single mode case. The multimodal individual class
proportions show a transition from the Rock/algae class and
the Seagrass 80%—-100% class in this region.

For the HF dataset, we also see similar overall distri-
bution patterns between the single mode (SSS) and multi-
modal (SSS + RD) inputs. However, Figure 9(1) shows less
uncertainties in the Sediment class for the multimodal input
compared to the single mode classification shown in
Figure 9(k).

Overall, inconsistencies among multiple priors tend to
increase predicted class and uncertainty. This is reflected
by reduced F1 scores in these areas which is the expected
behaviour and illustrates that the classifiers demonstrated
in this work provide useful predictions of uncertainty
in their class predictions. A detailed discussion of pro-
portion maps for other classes is provided in the
supplemental material.

Table 2. Average F1 Scores of Single Mode and Multi-Mode Priors Using AE, LGA, SimCLR and GeoCLR.

Single mode

Multi modes

Dataset AE LGA SimCLR GeoCLR AE LGA SimCLR GeoCLR

DM 40.5+1.6 437 £ 1.8 37.1 £2.1 59.7+£1.6 47614 49.6 £ 14 389 £2.0 67.6 £1.6
SB 18.7 £ 1.1 229+26 16.7 £ 1.8 404 +£23 233+14 26.1 £2.2 218+ 14 479+ 3.0
HF 37.0+ 1.3 422+ 1.5 28.6 £2.0 51.9+28 320+14 57.8 + 1.1 238 +1.8 759 £22
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Figure 7. Habitat classification results for the DM dataset, showing (a) the figure legend; (b) the reference class distribution derived from
visual images; (c) SSS; (d) Depth; (e) and (f) are habitat classification results using a single mode data SSS and multimodal data SSS +
RD; (g) and (h) are example class proportion maps of Mound edge inferred by GPR classifiers using single mode and multimodal data,
respectively; (i) and (j) are example class proportion maps of Mound top. It can be seen that class boundaries are clearer when using
multimodal priors (see boxes in red); (k) and (1) show uncertainties given by GPR classifier.

4.6. Sensitivity to distance parameters

The parameter r;,. in both LGA and GeoCLR determines the
distance over which the proximity assumption is applied during
self-supervised feature learning. In order to understand its
impact, a sensitivity analysis is conducted using the best priors
and classifiers for each dataset (i.e., conditions in Table 3).

The results across the three datasets over an order of
magnitude difference in the value of ;. are shown in Figure 10.
Compared to LGA, GeoCLR is more sensitive to the distance
parameter, which is an expected outcome given the hard
constraint implemented by contrastive learning. GeoCLR
achieves the best results when location metadata is set so that
only neighbouring patches are used as positive pairings, where
the improvement deteriorates with the increasing ry,., which
can be explained as positive pairings being forced from regions
of the data that are apart and so more likely to be of different
visual classes. The results for single and multimodal inputs
follow a similar trend with increasing 7, from 8 to 100 m.
However, even with over an order of magnitude of the 7/,
value, GeoCLR outperforms the equivalent SimCLR that does
not implement the location regularisation.

The LGA is less sensitivity to variations in ry,. over the
same range. This is expected since the soft constraint

implemented via the modified loss function prioritises
features of patches in geographically closer regions in a
smooth manner, where the reconstruction loss term means
that patches that do not have similar appearances in the first
place can remain far apart in the feature space, minimising
the risk of overfitting the proximity constraint. The results
for single and multimodal inputs show a less obvious trend
with increasing r;,., where the performance gains over AE
are generally smaller, and are maintained over the entire
range of distance parameters tested.

4.7. Robustness analysis

Multimodal data has inherent positional offsets between
individual data modes. Information about the actual posi-
tional offset magnitude and direction for multimodal data
used in this study is given in the supplemental material
(Table A1). Manually co-registered points between the data
layers have large variability in their offset magnitude and
direction, which can be explained as due to geometric
distortions that are known to occur in some measurements
modes, for examples, SSS. To investigate the robustness of
our models to these practical aspects, we introduced arti-
ficial offsets in various directions (45°, 135°, 225° and
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Figure 8. Habitat classification results for the SB dataset, showing (a) the figure legend; (b) the reference class distribution derived from visual
images; (c) and (d) are the aerial images (4/) and Depth priors; (e) and (f) are classification maps inferred from A7 and A + Depth; (g) and (h) are
example class proportion maps of class Rock/algae inferred from single mode and multimodal priors; (i) and (j) are example class proportion
maps of Sediment inferred from single model and multimodal priors. (k) and (1) present the uncertainties given by the BNN classifier.

315°), with magnitudes of 2.5 m, 5 m, 7.5 m and 10 m,
respectively, based on representative positional errors of
10 m in subsea mapping (Paull et al., 2014). No significant
correlation was found between the directions of the true and
artificial offset directions, and so here we present only bulk
statistics for the different offset distance magnitudes.

The choice of patch size can influence the training
and robustness of the model. Large patches can degrade
performance, in particular around habitat transition areas
where seafloor characteristics can change over small spatial
scales causing nearby patches to have different characteristics.
Conversely, smaller patches risk omitting significant patterns
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Figure 9. Habitat classification results for the Greater Haig Fras, showing (a) the figure legend; (b) the used reference class distribution

derived from visual images (full visual image dataset class distribution could be seen in supplemental materials); (c) and (d) are SSS

and Depth data; (e) and (f) depict the habitat classification results derived from the single mode data SSS and multimodal data SSS +
Depth, respectively; (g) and (h) are example class proportion maps of Bedrock inferred from single mode and multimodal priors; (i) and
(j) are example class proportion maps of Sediment inferred from single mode and multimodal priors; (k) and (1) present the uncertainty

in given by GPR classifiers.

Table 3. Best-Performing Single and Multimodal Priors in Habitat

Classification and the Corresponding Classifiers.

Dataset DM SB GF

Single mode SSS Al SSS
Multi-mode SSS + RD AI + Depth SSS + Depth
Classifier GPR BNN GPR

critical to classification. Therefore, determining an appropriate
patch size requires careful consideration of prior resolution and
the scale of habitats, as guided by equations (1)—(3).

The impact of introducing different artificial positional
offsets on the performance of multimodal feature learning
varies across the three datasets. As a reference, the results
in Figure 11 include conditions that do not implement lo-

cation regularisation during feature learning (i.e., 7, =

0
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Figure 10. The performance of habitat classification varying with the distance hyperparameter 7. for the best performing multimodal
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optimal performance, though the overall gain in performance from using distance with the soft constraint is less than for GeoCLR.
GeoCLR is more sensitive, with 14.6% deviation in F1 from its optimal performance. The different behaviours highlight the inherent
properties of the soft and hard location constraints implementation by the LGA and GeoCLR, respectively.
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Figure 11. Habitat classification performance with different positional offsets for 7, values of 0, 8 and 100 m. LGA and GeoCLR with
710 = 0 correspond to AE and SimCLR, respectively. Based on the sensitivity research of 7, as shown in Figure 10, the best-tuned 7,

is around 8 m. The conditions where r,,. = 100 are taken as comparative experiments. All methods show reduced performance as
positional offsets are introduced, but the benefit of using location metadata during feature learning are maintained for both optimised and
unoptimised hyperparameter values.
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corresponding to AE and SimCLR), and compare optimally
tuned conditions r,. = 8 m to r;,. = 100 m. Larger positional
offsets gradually reduce the performance of multimodal
inference but the overall reduction in performance remains
<5% across all conditions. For all conditions where dif-
ferent positional offsets were introduced, LGA and Ge-
oCLR continuously performed better than AE and SimCLR,
which demonstrates the robustness of the method. As po-
sitional offsets increase from 2.5 m to 10 m, the perfor-
mance of AE, LGA (r4,. = 8) and LGA (r,,. = 100) across
three datasets decreases by an average of 5.0%, 3.8% and
3.4%, respectively, which shows that LGA leveraging lo-
cation metadata could mitigate negative impacts induced by
positional offsets, with slightly lower degradation seen
when leveraging location regularisation over a large dis-
tance. However, the performance of SimCLR, GeoCLR
(710 = 8) and GeoCLR (7. = 100) across three datasets
decreases by 3.5%, 5.0% and 4.1%, where the location-
guiding increases the sensitivity to positional offsets.
However, we note that although the relative results are
reduced, GeoCLR still achieved 30.4% higher F1 score than
SimCLR, indicating overall benefits of considering location
regularisation during feature learning.

Based on the results, we can conclude that LGA is less
sensitive to the distance parameter r,. and more robust to
positional offsets compared to GeoCLR, which implements
a harder distance constraint in contrastive learning. How-
ever, it is important to note that GeoCLR remains the most
effective feature learning method, outperforming AE, LGA
and SimCLR in all the investigated scenarios.

5. Conclusion

The method proposed in this study enhances marine per-
ception by integrating multiple layers of prior data and
observations. This can potentially be used to develop in-
formative or adaptive path planning strategies during AUV
surveys. Our investigation shows that incorporating loca-
tion metadata improves the ability of self-supervised feature
learners to take advantage of early fused multimodal
mapping data, robustness to hyperparameter tuning and
positional offsets in the remote sensed data. Experiments
carried out on datasets from three different MPAs show that:

¢ Incorporating location metadata enhances the quality of
extracted features, where an average improvement of
18.3% across three datasets was achieved compared to
features extracted with no location metadata when using
a single modality. We demonstrate that a hard location
constraint, that is, GeoCLR, results in a larger im-
provement (28.8%) compared to a softer location con-
straint, that is, LGA, (improvement of 7.7%) when the
distance parameter is optimally tuned. LGA is less
sensitive to distance parameter tuning than GeoCLR,
where the use of location metadata improves perfor-
mance over equivalent feature learners and conditions
that do not use location metadata for all distance

parameters (r;,. = 8, 15, 22, 44, 66 and 100 m) inves-
tigated in this study. Although LGA is less sensitive to
the distance parameter, GeoCLR exhibits a higher
overall performance across the experiments in this work,
with a 16.8% improvement in the F1 score compared to
the LGA under equivalent conditions.

e Early fused multiple remote sensed modalities increase
classification performance over the best single mode
when using self-supervised feature learners that incor-
porate location information and further boost habitat
classification performance, showing an average increase
of up to 5.1% across three datasets compared to using a
single modality. Improvement of 3.3% and 6.8% were
achieved for GeoCLR and LGA, respectively. The
method also demonstrates robustness when combining
data modes with poor information content, achieving
improvements of 11.9% and 4.7% over the average F1 of
the individual mode being combined when using Ge-
oCLR and the LGA, respectively. The improved per-
formance can be attributed to the use of location metadata
during feature learning as equivalent autoencoders and
contrastive learning with SImCLR did not achieve con-
sistent improvement when using multimodal inputs. The
use of location metadata also showed robustness of
multimodal performance to positional inconsistencies
between multimodal inputs, with performance decrease
remaining <5 % as positional offsets of up to 10 m were
artificially introduced between the data modes being
combined, and maintaining an advantage over feature
learners that do not use location metadata.

¢ Investigations of different classifiers to delineate feature
spaces according to visual class boundaries showed that
probabilistic classifiers performed marginally better than
the non-probabilistic classifier for the patch size chosen
in this work, resulting in an improved predicted visual
class F1 score of 3.4%. This is because multiple visual
class labels exist for each patch due to the lower reso-
lution of remote sensed priors compared to the in situ
observations. However, no single classifier performed
best across all datasets and feature learners, highlighting
the importance of empirical optimisation. The GPR and
BNN probabilistic classifiers that achieved the highest
F1 scores in this study have the advantage of being able
to predict class proportions and indicate inter-class
confusion, which can be useful for interpretation or
path planning.

Our experiments found that GeoCLR consistently out-
performed SimCLR and LGA for feature extraction.
Combining multimodal priors generally improved perfor-
mance. Although the choice of classifier does not signifi-
cantly impact F1-scores, using probabilistic approaches like
GPC, GPR and BNN can predict class proportions and their
associated uncertainties. This is valuable for addressing the
varying extents of camera observations and the size of
remote sensing patches. The uncertainty estimates provide
valuable information for downstream applications.
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Other key considerations include the patch size and the
distance metric over which to apply the proximity as-
sumption during feature learning. Patch sizes need to be
large enough to contain a sufficient number of remote
sensing pixels to capture characteristic patterns, while re-
maining smaller than the minimum size of the habitat being
characterised. Within these constraints, although larger
patch sizes contain more information, this does not nec-
essarily improve performance as they have a higher chance
of violating the proximity assumption used during feature
learning. The distance metric should be smaller than the
minimum size of the habitat being characterised, with
GeoCLR showing gradual degradation in performance
when the distance metric exceeds the length scale of hab-
itats. However, it is more important to ensure that the
distance metric is large enough for neighbouring patches to
be available as similar in order to taking advantage of
location-based regularisation during feature learning.
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