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 A B S T R A C T

Cross-assignment of directional wave spectra is a critical task in wave data assimilation. Traditionally, most 
methods rely on two-parameter spectral distances or energy ranking approaches, which often fail to account 
for the complexities of the wave field, leading to inaccuracies. To address these limitations, we propose the 
Controlled Four-Parameter Method (C4PM), which independently considers four integrated wave parameters. 
This method enhances the accuracy and robustness of cross-assignment by offering flexibility in assigning 
weights and controls to each wave parameter. We compare C4PM with a two-parameter spectral distance 
method using data from two buoys moored 13 km apart in deep water. Although both methods produce 
negligible bias and high correlation, C4PM demonstrates superior performance by preventing the occurrence 
of outliers and achieving a lower root mean square error across all parameters. The negligible computational 
cost and customization position C4PM as a potential alternative for wave data assimilation, possibly improving 
the reliability of forecasts and model validations.
1. Introduction

The wave directional spectrum is the fundamental representation of 
a sea state, providing a detailed description of the energy distribution as 
a function of both frequency and direction — hence crucial for under-
standing the complexities of wave dynamics and interactions. Accurate 
analysis of the spectrum is vital for various applications, including 
climate studies, coastal management and maritime safety (Cavaleri 
et al., 2007; Ardhuin et al., 2019). One of the key challenges is the 
cross-assignment of spectral partitions, which involves identifying and 
matching collocated wave systems from different datasets or mod-
els — see a discussion about spectral partitioning in Gerling (1992), 
Violante-Carvalho et al. (2005), Portilla-Yandún et al. (2015) and 
Portilla-Yandún et al. (2019). Cross-assignment is essential for data 
assimilation, where observational data are integrated into numerical 
models (Aouf et al., 2006; Hauser et al., 2021), and for assessing 
measurements, enabling comparison of results from various sources.

Currently, most (if not all) methods for cross-assignment are based 
either on two-parameter spectral distance or on ranking the energy con-
tent of each system — the most energetic partitions in one spectrum are 
paired to the correspondingly ranked partitions in the other spectrum 
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(Jiang et al. 2022, Hauser et al. 2021). Energy ranking methods are 
more prone to inaccuracies, mainly when the number of partitions of 
each spectra differ. Cross-assigning only the most energetic partition 
might overcome this limitation but significantly reduce the possible 
number of matches. Conversely, methods based on a two-parameter 
spectral distance rely exclusively on frequency and direction (see, 
among many others, Hasselmann et al., 1996; Hanson and Phillips, 
2001; Li and Saulter, 2012; Wang et al., 2020; Smit et al., 2021; Aouf 
et al., 2021; Santos et al., 2021; Jiang et al., 2022; Ricondo et al., 
2023; Wu et al., 2024). However, this approach has drawbacks. The 
main limitation is that it can result in errors, mainly because partitions 
close in frequency but significantly apart in direction (or vice versa) are 
mismatched — leading to potential discrepancies caused by outliers. 
These inaccuracies can propagate through data assimilation processes, 
resulting in suboptimal model performance and potentially misleading 
data interpretations.

To overcome these limitations, we propose a novel methodology 
for cross-assigning partitions, termed the Controlled Four-Parameter 
Method (C4PM). This approach incorporates four bulk wave spectral 
parameters: significant wave height, peak wave period, peak wave 
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direction, and peak wave spreading. In the comparative analysis con-
ducted, in which more than 30,000 partition match-ups were inde-
pendently obtained by the C4PM and 2PM algorithms, our technique 
consistently resulted in lower 𝑅𝑀𝑆𝐸 values across all cross-assigned 
wave parameters. These findings demonstrate the robustness and su-
perior accuracy of the proposed method, highlighting its potential to 
enhance the assimilation of observational data into numerical models 
and, consequently, to improve forecast accuracy. C4PM has proven 
to be an effective and versatile tool for cross-assignment, offering 
control over each primary wave parameter and enabling their priori-
tization through a customizable weighting vector used in the distance 
calculation between partitions.

The structure of the current analysis is organized as follows: Sec-
tion 2 presents the theoretical framework of C4PM, which includes the 
definition of the semimetric on which the method is based, as well as a 
detailed presentation of the cross-assignment scheme used. Section 3 
outlines the buoy data and the processing methodologies employed. 
Section 4 discusses the results, while the conclusions are summarized in 
Section 5. Finally, the error metrics and wave parameter formulations 
are described in Appendix.

2. The cross-assignment problem

This section addresses the cross-assignment problem, beginning 
with a basic concept, followed by a brief description of a classic tech-
nique and its limitations, and concluding with a detailed explanation 
of the C4PM method.

2.1. Matching: a fundamental concept

Assuming that 𝐴(𝐤) and 𝐵(𝐤) are two measurements of the
wavenumber spectrum associated with a certain sea state. After a parti-
tioning process of 𝐴(𝐤) and 𝐵(𝐤), consider the additive decomposition: 

{

𝐴(𝐤) = 𝐴1(𝐤) + 𝐴2(𝐤) +⋯ + 𝐴𝑝(𝐤)
𝐵(𝐤) = 𝐵1(𝐤) + 𝐵2(𝐤) +⋯ + 𝐵𝑚(𝐤)

, (1)

where 𝐴1(𝐤), 𝐴2(𝐤),… , 𝐴𝑝(𝐤) and 𝐵1(𝐤), 𝐵2(𝐤),… , 𝐵𝑚(𝐤) are, respec-
tively, the partitions1 of 𝐴(𝐤) and 𝐵(𝐤). It is supposed from now on 
that 𝑝 ⩽ 𝑚 and that the explicit dependence on the wavenumber vector 
𝐤 will be omitted.

We call 𝑛-matching between 𝐴 and 𝐵 a set 

 =
{{

𝐴𝑖1 , 𝐵𝑗1

}

;
{

𝐴𝑖2 , 𝐵𝑗2

}

;… ;
{

𝐴𝑖𝑛 , 𝐵𝑗𝑛

}}

, (2)

formed by 𝑛 ⩽ 𝑝 of pairs2 of partitions of 𝐴 and 𝐵 with the property 
that no partition of 𝐴 is associated with more than one partition of 𝐵
and vice versa, where 1 ≤ 𝑖𝑘 ≤ 𝑝, 1 ≤ 𝑗𝑘 ≤ 𝑚, and 𝑘 ≤ 𝑛. Ideally, 
a cross-assignment is a matching between 𝐴 and 𝐵 such that coupled 
partitions exhibit the highest possible concordance in their oceanic 
characteristics. Therefore, it is crucial to employ a technique capable 
of accurately identifying compatible wave systems.

2.2. A two-parameter method (2PM)

Typically, the cross-assignment of spectral partitions heavily re-
lies on evaluating a two-parameter spectral distance. In this context, 
the fundamental concept behind the technique proposed in Hassel-
mann et al. (1996) is the association of a partition with its so-called 

1 We use the term ‘‘partition’’ to refer to an independent wave system that 
is a constituent of the wave spectrum

2 unordered
2 
(two-parameter) characteristic wavenumber vector. In that study, the 
expression 

𝛥(𝐴𝑖, 𝐵𝑗 ) =
‖𝐤𝑐 (𝐴𝑖) − 𝐤𝑐 (𝐵𝑗 )‖

√

‖𝐤𝑐 (𝐴𝑖)‖2 + ‖𝐤𝑐 (𝐵𝑗 )‖2
, (3)

where 𝐤𝑐 (𝐴𝑖) and 𝐤𝑐 (𝐵𝑗 ) are the characteristic wavenumber vectors 
of 𝐴𝑖 and 𝐵𝑗 , respectively, was proposed for the distance3 between 
partitions of 𝐴 and 𝐵. For the definition of characteristic wavenumber 
vector (𝐶𝑊 𝑉 ), see Appendix, Table  A.2. Thus, the 𝑛-matching given by 
(2) is the cross-assignment between 𝐴 and 𝐵, in the Hasselmann sense, 
if the following conditions are met:

(i) 𝑛 ⩽ 𝑝 is the largest possible
(ii) 𝛥(𝐴𝑖1 , 𝐵𝑗1 ) ⩽ 𝛥(𝐴𝑖2 , 𝐵𝑗2 ) ⩽ ⋯𝛥(𝐴𝑖𝑛 , 𝐵𝑗𝑛 ) ⩽ 𝑅
(iii) 𝛥(𝐴𝑖𝑘 , 𝐵𝑗𝑘 ) = min{𝛥(𝐴𝑖𝑘 , 𝐵𝑗 ) ∶ 𝑗 = 1, 2,… , 𝑚} for each 𝑘 =

1, 2,… , 𝑛.

Here, 𝑅 is a specified critical value, which acts as a cutoff line defining 
which pairs will be in the cross-assignment. Hereafter, we will refer to 
this technique as 2PM, and its algorithm is illustrated in Fig.  1. The 
method calculates all possible distances between the partitions of 𝐴
and 𝐵, eliminates pairs with distances exceeding the threshold value 𝑅, 
and finally establishes partition matchups by prioritizing the smallest 
distances.

One of the main shortcomings of this approach is that even if 
the spectral distance between two partitions is considered small — 
below a given threshold — it does not guarantee a strong agreement 
between the wave systems they represent. Figs.  2 and 3 show pairs 
of corresponding partitions obtained using the 2PM algorithm, ini-
tialized with 𝑅 = 0.75, a reference value suggested by Hasselmann 
et al. (1996), known to produce fairly reasonable results. Although the 
partition pairs exhibit distances significantly below this threshold, they 
display substantial discrepancies in certain wave parameters. Indeed, 
in Fig.  2, the distance between the partitions is equal to 0.59, but the 
partitioned significant wave height is approximately nine times larger 
than its assigned counterpart, meaning that unrelated wave systems 
were associated in the cross-assignment process. A more subtle case 
of mismatch with distance equal to 0.32 is depicted in Fig.  3. Despite 
similar values of partitioned peak wave periods, partitioned significant 
wave heights and partitioned peak directional spreadings, the wave 
systems propagating towards the southern quadrant are separated by 
120◦.

2.3. The controlled four-parameter method — C4PM

As shown in 2.2, 2PM methods for cross-assignment have sig-
nificant limitations, thereby leaving margin for mismatches in the 
cross-assignment process. In this context, the Controlled Four-Parameter 
Method (C4PM) is introduced as a more robust and efficient tool, 
providing comprehensive control over wave parameter deviation and 
their hierarchical importance.

2.3.1. The weighted semimetric
A semimetric defined on the partitions of 𝐴 and 𝐵 is a function 𝑑

such that for any 1 ⩽ 𝑖 ⩽ 𝑝 and 1 ⩽ 𝑗 ⩽ 𝑚, the following conditions 
hold: 𝑑 (

𝐴𝑖, 𝐵𝑗
)

⩾ 0, 𝑑 (

𝐴𝑖, 𝐵𝑗
)

= 𝑑
(

𝐵𝑗 , 𝐴𝑖
)

, and 𝑑 (

𝐴𝑖, 𝐵𝑗
)

= 0 if, 
and only if, 𝐴𝑖 = 𝐵𝑗 . To define our spectral distance, each partition is 
associated with a four-dimensional vector whose components represent 
the partitioned integrated wave parameter values that characterize it: 
partitioned significant wave height (𝑃𝑆𝑊𝐻), partitioned peak wave 
period (𝑃𝑃𝑊 𝑃 ), partitioned peak wave direction (𝑃𝑃𝑊𝐷), and par-
titioned peak wave spreading (𝑃𝑃𝑊 𝑆), precisely in that order. This 

3 the double-bar symbol designates the Euclidean norm
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Fig. 1. 2PM algorithm diagram.

Fig. 2. Directional wave spectra from NDBC buoys: (a) 51001 and (b) 51101 on 12 Jan 2023 at 18:40:00. The boxes indicate the values of the partitioned integrated wave 
parameters — partitioned significant wave height (𝑃𝑆𝑊𝐻), partitioned peak wave period (𝑃𝑃𝑊 𝑃 ), partitioned peak wave direction (𝑃𝑃𝑊𝐷) and partitioned peak directional 
spreading (𝑃𝑃𝑊 𝑆). The 𝛥-distance between partitions is 0.59.

Fig. 3. Directional wave spectra from NDBC buoys: (a) 51001 and (b) 51101 on 02 Aug 2023 at 01:10:00. The boxes indicate the values of the partitioned integrated wave 
parameters. The 𝛥-distance between partitions is 0.32.
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approach incorporates more information about each partition com-
pared to the distance defined in Eq.  (3). Thus, for each, 1 ⩽ 𝑖 ⩽ 𝑝 and 
1 ⩽ 𝑗 ⩽ 𝑚, we consider the associations: 𝐴𝑖 ↔

(

ℎ(𝐴𝑖), 𝑡(𝐴𝑖), 𝜃(𝐴𝑖), 𝜎(𝐴𝑖)
) 

and 𝐵𝑗 ↔
(

ℎ(𝐵𝑗 ), 𝑡(𝐵𝑗 ), 𝜃(𝐵𝑗 ), 𝜎(𝐵𝑗 )
)

, where the symbols ℎ, 𝑡, 𝜃 and 𝜎
represent, respectively, the significant wave height, peak period, peak 
direction, and directional spread of the partitions they accompany. To 
set our spectral distance (which is a weighted semimetric) 𝑑 between 
the partitions 𝐴𝑖 and 𝐵𝑗 as 

𝑑
(

𝐴𝑖, 𝐵𝑗
)

= 𝐯
(

𝐴𝑖, 𝐵𝑗
)

⋅ 𝐰, (4)

a dot product, where 𝐯 (𝐴𝑖, 𝐵𝑗
) represents the variation vector, encap-

sulating the deviations of the partitioned integrated wave parameters 
between 𝐴𝑖 and 𝐵𝑗 , and 𝐰 is the weighting vector, whose components 
assign weights to each partitioned integrated wave parameter. These 
vectors are defined as: 
𝐯
(

𝐴𝑖, 𝐵𝑗
)

=
(

𝑣ℎ(𝐴𝑖, 𝐵𝑗 ); 𝑣𝑡(𝐴𝑖, 𝐵𝑗 ); 𝑣𝜃(𝐴𝑖, 𝐵𝑗 ); 𝑣𝜎 (𝐴𝑖, 𝐵𝑗 )
)

, (5)

where 

𝑣𝑧[𝐴𝑖, 𝐵𝑗 ] =
|𝑧(𝐴𝑖) − 𝑧(𝐵𝑗 )|

max{𝑧(𝐴𝑖), 𝑧(𝐵𝑗 )}
for 𝑧 = ℎ, 𝑡, 𝜎 (6)

and 
𝑣𝜃[𝐴𝑖, 𝐵𝑗 ] =

1
180◦

min{|𝜃(𝐴𝑖) − 𝜃(𝐵𝑗 )|, 360◦ − |𝜃(𝐴𝑖) − 𝜃(𝐵𝑗 )|} (7)

are the variation functions, both bounded above by 1 (by construction). 
The weighting vector 𝐰 = (𝑤ℎ, 𝑤𝑡, 𝑤𝜃 , 𝑤𝜎 ) consists of positive scalars 
𝑤ℎ, 𝑤𝑡, 𝑤𝜃 and 𝑤𝜎 , which satisfy the normalization condition 𝑤ℎ +
𝑤𝑡 + 𝑤𝜃 + 𝑤𝜎 = 1,4 and reflect the relative significance of each wave 
parameter in the computation of the distance between two partitions. 
It is important to emphasize that the weighting vector offers endless 
possibilities; for instance, the reliability of the analyzed data serves as 
a rational criterion for assigning weights to each partitioned integrated 
wave parameter. For illustrative purposes, the choice of weights 𝑤ℎ =
0.04, 𝑤𝑡 = 0.32, 𝑤𝜃 = 0.32 and 𝑤𝜎 = 0.32 indicates that significant height 
has reduced importance in the distance calculation and, consequently, 
will not be decisive in the formation of match-ups.

Eq. (4) explicitly represents the normalized weighted arithmetic 
mean of the partitioned wave parameter deviation between 𝐴𝑖 and 𝐵𝑗 , 
and is rewritten as:
𝑑
(

𝐴𝑖, 𝐵𝑗
)

= 𝑣ℎ
(

𝐴𝑖, 𝐵𝑗
)

𝑤ℎ + 𝑣𝑡
(

𝐴𝑖, 𝐵𝑗
)

𝑤𝑡

+ 𝑣𝜃
(

𝐴𝑖, 𝐵𝑗
)

𝑤𝜃 + 𝑣𝜎
(

𝐴𝑖, 𝐵𝑗
)

𝑤𝜎 . (8)

If the weighting vector 𝐰 is balanced, meaning 𝑤ℎ = 𝑤𝑡 = 𝑤𝜃 = 𝑤𝜎 , the 
distance in Eq.  (8) simplifies to the arithmetic mean of the deviation of 
the partitioned wave parameters. Notably, in contrast to the distance 
defined by Eq.  (3), if 𝑑 (

𝐴𝑖, 𝐵𝑗
)

= 0, then 𝐴𝑖 and 𝐵𝑗 fully agree in all 
their corresponding wave parameters, as 𝑑 is a semimetric. Conversely, 
if 𝑑 (

𝐴𝑖, 𝐵𝑗
)

≈ 1, it indicates that at least one corresponding wave 
parameter between 𝐴𝑖 e 𝐵𝑗 exhibits a high degree of discrepancy.

2.3.2. A new cross-assignment formulation
This section introduces a new cross-assignment framework and 

demonstrates how the algebraic structure of the proposed semimetric, 
defined as the normalized weighted arithmetic mean of the wave 
parameter variations between a pair of counterpart partitions, can ef-
fectively improve cross-assignment accuracy. To achieve this, consider 
a control vector 𝐜 = (𝑐ℎ, 𝑐𝑡, 𝑐𝜃 , 𝑐𝜎 ), where each coordinate satisfies 0 ⩽
𝑐ℎ, 𝑐𝑡, 𝑐𝜃 , 𝑐𝜎 ⩽ 1. The 𝑛-matching defined by (2) is referred to as the
controlled four-parameter cross-assignment between 𝐴 and 𝐵, relative to 
the weighted semimetric 𝑑 and governed by the control vector 𝐜, if the 
following conditions are satisfied:

(i’) 𝑛 ⩽ 𝑝 is the largest possible

4 purely algebraic fact
4 
(ii’) 𝐯(𝐴𝑖𝑘 , 𝐵𝑗𝑘 ) ⪯ 𝐜5 for each 𝑘 = 1, 2,… , 𝑛

(iii’)
𝑛
∑

𝑘=1
𝑑
(

𝐴𝑖𝑘 , 𝐵𝑗𝑘

)

= min

{ 𝑛
∑

𝑘=1
𝑑
(

𝐴𝜌(𝑘), 𝐵𝜏(𝜌(𝑘))
)

∶ 𝜌 ∈ 𝐼𝑛,𝑝, 𝜏 ∈ 𝐼𝑝,𝑚

}

are valid.6
Condition (ii’) provides control over the deviation of the cross-

assigned partitioned wave parameters of the matchups; the previously 
chosen constraining scalars 𝑐ℎ, 𝑐𝑡, 𝑐𝜃 , and 𝑐𝜎 ultimately control the dis-
tance between the matched partitions. If the partitions 𝐴𝑖𝑘  and 𝐵𝑗𝑘  are 
𝐜-controlled — i.e., condition (ii’) is valid — then the distance between 
these partitions is 

𝑑
(

𝐴𝑖𝑘 , 𝐵𝑗𝑘

)

⩽ 𝑤ℎ𝑐ℎ +𝑤𝑡𝑐𝑡 +𝑤𝜃𝑐𝜃 +𝑤𝜎𝑐𝜎 (9)

The optimality condition (iii’) characterizes controlled cross-assignment 
as the matching between 𝐴 and 𝐵 with the shortest possible length. 
The quantity calculated in (iii’) represents the length of the cross-
assignment; among all the 𝑛-matchings of 𝐜-controlled partitions of 𝐴
and 𝐵, this is the one with the smallest length.

If 𝑐ℎ = 𝑐𝑡 = 𝑐𝜃 = 𝑐𝜎 = 1, the cross-assignment problem is 
unconstrained, and in this case, there is always a solution. Conversely, 
for instance, if 𝑐ℎ = 𝑐𝜃 = 𝑐𝜎 = 1 and 𝑐𝑡 = 0.3, there are no constraints 
on the values of significant wave heights, peak wave directions, or peak 
directional spreading for the matched partitions. However, a significant 
constraint is imposed on the values of peak wave periods for the 
matched partitions. In each matchup, the smallest period is at least 
(1 − 0.3) = 0.7 of its cross-assigned counterpart. The largest period of 
that matchup — or in other words, the smallest period is at least 70% 
of the largest period. In this case, the existence of a constrained cross-
assignment depends on the dataset being analyzed, as it is possible 
that no pair of wave spectra partitions considered satisfies the specific 
constraint of the control vector on the variation vector.

In summary, this section introduced a framework for cross-
assignment, which consists of the following: given two partitioned wave 
spectra (measured) of a specific sea state, the objective is to find the best
matching between their spectral partitions, ensuring that the discrepan-
cies in all four partitioned integrated wave parameters are controlled a 
priori. To address this problem, we developed a computational routine 
called the Controlled Four-Parameter Method (C4PM), whose diagram is 
presented in Fig.  4. Specifically, we denote the method as u-C4PM when 
it operates in uniform mode, meaning the control vector is uniform, 
with 𝑐ℎ = 𝑐𝑡 = 𝑐𝜃 = 𝑐𝜎 = 𝑟. In this sense, the conditions

(i’’) for 𝑧 = ℎ, 𝑡 and 𝜎, 𝑧(𝐵𝑗 ) ≥ (1 − 𝑟) 𝑧(𝐴𝑖) if 𝑧(𝐴𝑖) ≥ 𝑧(𝐵𝑗 ) (otherwise, 
swap 𝐴𝑖 with 𝐵𝑗) and

(ii’’) for 𝑧 = 𝜃, the (lower) angle between the peak directions 𝜃(𝐴𝑖) and 
𝜃(𝐵𝑗 ) does not exceed 180◦ ⋅ 𝑟

are necessary and sufficient for the partitions 𝐴𝑖 and 𝐵𝑗 to be 𝑟-
uniformly controlled, that is, 𝐯(𝐴𝑖, 𝐵𝑗 ) ⪯ 𝐜 with 𝐜 = 𝑟(1, 1, 1, 1).

3. Data and methods

3.1. NDBC buoy data

We selected two buoys, operated by the National Data Buoy Center 
(NDBC), with IDs 51001 and 51101, for the period from January 
2023 to December 2023 — details available at https://www.ndbc.noaa.
gov/. These buoys are situated approximately 13 km apart in deep 
water off the coast of Hawaii (Fig.  5). Their proximity, location in 

5 the symbol ⪯ indicates that the components of the variation vector do not 
exceed the corresponding components of the control vector.

6 the symbols 𝐼𝑛,𝑝 and 𝐼𝑝,𝑚 represent, respectively, the sets of all injec-
tive functions from {1, 2,… , 𝑛} into {1, 2,… , 𝑝} and from {1, 2,… , 𝑝} into 
{1, 2,… , 𝑚}.

https://www.ndbc.noaa.gov/
https://www.ndbc.noaa.gov/
https://www.ndbc.noaa.gov/
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Fig. 4. C4PM algorithm diagram.
Fig. 5. Location of the NDBC buoys 51001 (24.451 N, 162.008 W, and 4906 m depth) 
and 51101 (24.359 N, 162.081 W, and 4860 m depth), which are 13 km apart, in deep 
water off Hawaii.

similar deep-water conditions and payload specifications (both carry 
the NDBC Self-Contained Ocean Observing Payload — SCOOP) indicate 
that both buoys provide relatively comparable measurements. This 
implies a reasonable number of high-quality pairs can be identified 
between them, while also reducing challenges associated with applying 
cross-assignment methodologies, as will be discussed in the following 
sections. Both buoys collect meteorological and oceanographic data, 
including the directional wave spectra necessary for cross-assignment 
techniques. Wave data from these buoys are available at 30 minute 
intervals, yielding a total of 17,100 pairs of wave spectra. 

Fig.  6 shows, over the selected time period of 2023, the scatter plots 
of wave parameters: significant wave height (𝑆𝑊𝐻), peak wave period 
(𝑃𝑊 𝑃 ), peak wave direction (𝑃𝑊𝐷) and peak wave spreading (𝑃𝑊 𝑆). 
The wave parameters were downloaded directly from the NDBC page — 
with exception of 𝑃𝑊 𝑆 which was computed as outlined in Table  A.2 
— therefore the spectra were not partitioned. The statistical parameters 
are listed in Table  A.1.

As expected, the biases across the four parameters are minimal. 
However, low-frequency occurrences representing significant differ-
ences among the spectral peak pairs are evident, as indicated by the 
light blue shades, particularly in relation to direction and period (Fig. 
6b and c). For 𝑆𝑊𝐻 , the 𝑅𝑀𝑆𝐸 is 0.20 m with a correlation coef-
ficient equal to 0.98, indicating a strong level of similarity. Although 
5 
the agreement for 𝑃𝑊 𝑃  is generally good, numerous outliers in Fig.  6b 
contribute to an increased 𝑅𝑀𝑆𝐸 and lower correlation coefficient. 
A similar pattern is seen in Fig.  6c, where the outliers introduce 
substantial discrepancies. The lower correlation coefficient among the 
four wave parameters is associated with 𝑃𝑊 𝑆, a parameter that is 
challenging to estimate accurately from single point measurements 
such as directional buoys (Kuik et al., 1988).

3.2. Data processing

The NDBC provides wave spectral data in the form of five parame-
ters concerning the Fourier series expansion of the buoy’s directional 
wave spectrum: the non-directional spectral density, the first nor-
malized directional Fourier coefficient, the mean wave direction, the 
second normalized directional Fourier coefficient and the main wave 
direction. The time series for each buoy were downloaded for the 
year 2023. The data are then time-synchronized and consolidated into a 
database, removing any incomplete entries (i.e. missing data) to ensure 
that each record has complete information for all five wave parameters 
from both buoys, at the same date and time. Each row of this database is 
then processed according to NDBC’s recommendations in order to gen-
erate the directional wave spectra for both buoys, which includes the 
use of the weighted directional spreading function, presented in Earle 
et al. (1999), to handle eventual negative values. More than being 
physically meaningless, negative values in a directional wave spectrum 
would raise issues during the partitioning and parameter calculations 
phases.

Once the directional wave spectra are obtained, they are partitioned 
according to the methodology proposed by Hasselmann et al. (1996), 
and their partitioned integrated wave parameters are calculated as out-
lined in Table  A.2. Finally, all noisy partitions are removed according 
to the following criteria:

(a) 𝑃𝑆𝑊𝐻 ⩽ 0.25m;
(b) 𝑃𝑃𝑊 𝑃 ⩽ 5 s and 𝑃𝑆𝑊𝐻 ⩽ 10%𝑆𝑊𝐻 .

These values are consistent with prior studies employing partition-
based noise filtering (Violante-Carvalho et al., 2004; Hanson et al., 
2009; Devaliere et al., 2009). While slight variations exist across stud-
ies, the physical rationale remains comparable. The selected thresholds 
effectively separate noise from physically meaningful wave systems in 
our dataset. A full sensitivity analysis, while useful, would exceed our 
scope.

At this stage, the partition database is consolidated, with the great-
est possible amount of matches being 30,956. Both cross-assignment 
techniques, 2PM and C4PM, were applied to the same dataset, each 
generating its respective output databases, as illustrated in the process-
ing workflow shown in Fig.  7.
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Fig. 6. Scatter plots between buoys 51001 and 51101 over the year 2023. (a) 𝑆𝑊𝐻 , (b) 𝑃𝑊 𝑃 , (c) 𝑃𝑊𝐷 and (d) 𝑃𝑊 𝑆. The boxes indicate Pearson correlation coefficient (𝑐𝑐), 
Bias, Root Mean Square Error (𝑅𝑀𝑆𝐸), Scatter Index (𝑆𝐼) and total number of points (𝑁). The red dotted line indicates the best fit from a linear regression using the least-squares 
method.
Fig. 7. Data processing diagram.
4. Results

In general, cross-assignment tasks employ spectra from different 
sources, such as numerical models, in situ measurements, or remote 
sensing, which naturally have some degree of discrepancy between 
them. In many cases, the number of partitions in each paired spectrum 
differs, with some partitions missing and others being spurious. In these 
6 
common cases, cross-assignment has to rely heavily on the ability of the 
employed method to distinguish good matchups. In this sense, some 
experiments are proposed and analyzed to demonstrate the abilities of 
C4PM, taking 2PM as a reference.

It is important to note that all C4PM experiments described in this 
section rely on a balanced weight vector to establish a general approach 
for comparison with the reference method.
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Table 1
2PM and u-C4PM progression of the number of matchups against 
equidistant control values.
 2PM u-C4PM

 𝑙 𝑅𝑙 𝑄𝑙 𝑟𝑙 𝑞𝑙
 1 0.2 26213 0.1 7338  
 2 0.4 28321 0.2 18430  
 3 0.6 29192 0.3 24112  
 4 0.8 29654 0.4 27236  
 5 1.0 30103 0.5 29177  
 6 1.2 30454 0.6 29915  
 7 1.4 30649 0.7 30463  
 8 1.6 30744 0.8 30799  
 9 1.8 30850 0.9 30919  
 10 2.0 30956 1.0 30956  
4.1. Sensitivity test

Validating C4PM and assessing its performance is a central issue. To 
this end, we highlight the parallelism between the roles of the critical 
value (𝑅) in 2PM and the control vector (𝐜) in C4PM. Ultimately, both 
act as cutoff parameters and, albeit through fundamentally different 
mechanisms, regulate the distance between partitions matched in each 
cross-assignment process. 

We define the progressive arithmetic sequence of cutoff values as 
follows: 
{

𝑅𝑙 = 𝑙
10 𝑅max (critical value)

𝑟𝑙 = 𝑙
10 𝑟max (control value)

, (10)

for 𝑙 = 1, 2,… , 10. The 𝑙th experiment in this test involves determining 
the number of matchups 𝑄𝑙 and 𝑞𝑙 generated by the 2PM and u-
C4PM7 runs, respectively, when initialized with input data 𝑅𝑙 and 
𝑟𝑙. It can be verified that 𝑅max = 2 and 𝑟max = 1 (for the selected 
dataset) correspond, in this order, to the maximum possible number 
of matchups 𝑄max and 𝑞max, both of which are equal to 𝑁max = 30,956
(reached for 𝑙 = 10).

The results are presented in Table  1, which highlight a key distinc-
tion in the spectral distance behaviors of C4PM and 2PM. Specifically, 
the distribution of matchups performed by C4PM exhibits a progressive 
and scaled increase from the 1st to the 5th metric deciles, followed by 
a stabilization trend up to the 10th metric decile. In contrast, the dis-
tribution of matchups performed by 2PM begins with a very high value 
in the 1st metric decile, with only a relatively small increase observed 
up to the 10th metric decile. However, the most significant observation 
is that 𝑄1, the number of match-ups in the first metric decile of 2PM, 
is remarkably close to 𝑞4, the number of match-ups in the fourth metric 
decile of C4PM. This demonstrates that, while the 2PM algorithm fails 
to distinguish matches based on discrepancies in their wave parameter 
partitions, the C4PM algorithm, with a nearly equivalent number of 
matches, is capable of distinguishing four metrically distinct groups of 
match-ups, namely: the match-ups whose 𝑑-distances are at least equal 
to 𝑟𝑖, but less than 𝑟𝑖+1, where 𝑖 = 0, 1, 2 and 3.8 This will become even 
more apparent in the subsequent sections.

4.2. Accuracy test

As a step toward evaluating the performance of C4PM, this test ana-
lyzes the results obtained by running the 2PM and u-C4PM algorithms, 
each initialized with input values that yield the top 0.3% (equivalent 
to 99 pairs) of the best matchups generated by each technique (Table 
2). The input cutoff values were determined and, as expected, are very 
small: 𝑅 = 4.7 × 10−5 (the critical value for 2PM) and 𝑟 = 1.0 × 10−2

7 In uniform mode, the control vector is of the form 𝐜 = 𝑟(1, 1, 1, 1).
8 Adopt 𝑟 = 0 for convenience.
0

7 
Table 2
Contrasting u-C4PM and 2PM in refined settings.
 𝑅𝑀𝑆𝐸: a strict range
 Method 𝑃𝑆𝑊𝐻 (m) 𝑃𝑃𝑊 𝑃 (s) 𝑃𝑃𝑊𝐷 (◦) 𝑃𝑃𝑊 𝑆 (◦) 
 2PM 0.18 0.69 13.57 4.91  
 u-C4PM 0.01 0.00 0.00 0.31  

(the control value for u-C4PM). Because the matchups generated by u-
C4PM are 𝑟-uniformly controlled, it follows that, for all cross-assigned 
partitioned integrated wave parameters (except for partitioned wave 
peak directions), the smaller parameter is at least 99% of the larger one. 
Additionally, the partitioned and cross-assigned wave peak directions 
differ by no more than 1.8◦. In contrast, among the 99 matchups 
produced by 2PM, 51 pairs exhibit at least one cross-assigned parti-
tioned integrated wave parameter (excluding partitioned wave peak 
directions) where the smaller parameter is less than 90% of the larger 
one. For partitioned wave peak directions, the difference in these cases 
is no less than 18◦. These discrepancies are evidently reflected in the 
RMSEs of the partitioned integrated wave parameters, as summarized 
in Table  2, and serve to justify the results presented therein. Although 
the contrasted matchup groups lie within a particularly narrow range, 
this result highlights a key distinction in the performance of the meth-
ods: C4PM successfully prevented the formation of poorly matched 
partitions, whereas 2PM, even when operating at an extremely low 
critical value, did not. 

4.3. A broader comparison

In this test, the largest set of all possible matchups obtained from 
the u-C4PM and 2PM runs will be divided into quintiles, and their 
corresponding 𝑅𝑀𝑆𝐸𝑠 will be presented and analyzed.

To formalize this, let 𝑄∗
𝑙  and 𝑞∗𝑙  represent the number of matchups 

produced by the 2PM and C4PM algorithms, respectively, when ini-
tialized with the highest possible corresponding input data 𝑅∗

𝑙  and 𝑟∗𝑙 . 
These cutoff values are uniquely defined so that the equations 

𝑄∗
𝑙 = 𝑞∗𝑙 = 𝑙

5
𝑁max, (11)

for 𝑙 = 1,… , 5 are valid. This scheme enables a fair and equitable 
comparison between the techniques, as the cutoff values are established 
to compare groups with an equal number of match-ups and increasing 
flexibility in their formation.

Table  3 summarizes the performances of 2PM and C4PM across 
all quintiles. For both methods, the 𝑅𝑀𝑆𝐸 values of all integrated 
wave parameters do not consistently decrease with each advancing 
quintile as the cutoff values progress. Notably, these tables partially 
reflect the results discussed in 4.2. Consider the first quintile of each 
method. The 6191 matchups generated by C4PM are 𝑟∗1-uniformly 
controlled with 𝑟∗1 = 0.0851. Therefore, for all pairs of cross-assigned 
integrated wave parameters, the smaller value is at least 91% of the 
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Table 3
2PM and u-C4PM performance for quintilian critical values.
 2PM u-C4PM

 
𝑙 𝑄∗

𝑙 = 𝑞∗𝑙 𝑅∗
𝑙

RMSE per quintile
𝑟∗𝑙

RMSE per quintile
 𝑃𝑆𝑊𝐻 (m) 𝑃𝑃𝑊 𝑃 (s) 𝑃𝑃𝑊𝐷 (◦) 𝑃𝑃𝑊 𝑆 (◦) 𝑃𝑆𝑊𝐻 (m) 𝑃𝑃𝑊 𝑃 (s) 𝑃𝑃𝑊𝐷 (◦) 𝑃𝑃𝑊 𝑆 (◦)  
 1 20% 0.0044 0.22 0.72 13.17 4.59 0.0851 0.11 0.00 9.48 2.23  
 2 40% 0.0142 0.23 0.76 14.81 5.00 0.1266 0.15 0.72 9.70 2.92  
 3 60% 0.0415 0.26 0.81 17.11 5.63 0.2050 0.20 0.74 13.28 4.05  
 4 80% 0.1420 0.29 0.92 20.24 6.81 0.3258 0.26 0.90 17.08 5.78  
 5 100% 2.0000 0.32 1.80 34.74 9.22 1.0000 0.31 1.65 34.71 8.50  
Fig. 8. 𝑅𝑀𝑆𝐸𝑠: (a) 𝑃𝑆𝑊𝐻 , (b) 𝑃𝑃𝑊 𝑃 , (c) 𝑃𝑃𝑊𝐷 and (d) 𝑃𝑃𝑊 𝑆.
larger one, except for cross-assigned partitioned peak wave directions, 
whose differences do not exceed 15.4◦. In contrast, these conditions 
do not hold for the 6191 matchups corresponding to the first quintile 
under 2PM, as evidenced by their higher 𝑅𝑀𝑆𝐸 values. Specifically, 
3647 matches include at least one cross-assigned partitioned integrated 
wave parameter where the smaller value is less than 91% of the larger 
one, excluding wave peak directions, which differ by at least 15.4◦. This 
discrepancy accounts for the higher 𝑅𝑀𝑆𝐸 values observed for 2PM 
compared to C4PM within this quintile. 

An analogous analysis can be performed for subsequent quintiles, 
yielding similar conclusions, while noting that the 𝑅𝑀𝑆𝐸 values be-
come increasingly similar as the quintiles progress. The additional, 
more visual representation of the evolution of 𝑅𝑀𝑆𝐸 values against 
the percentage of matchups for each experiment — shown in Fig.  8 — 
further corroborates this observation. In particular, the figure demon-
strates that C4PM outperformed 2PM in forming matches, regardless 
of the percentage of total matches considered. In other words, C4PM 
consistently produced more accurate matchups.

Fig.  9 illustrates the 𝑃𝑃𝑊 𝑃  evolution for C4PM and 2PM across the 
first and second quintiles. In the first quintile, C4PM exhibits a concen-
trated distribution along the diagonal, indicative of accurate matches 
and the absence of outliers. Conversely, 2PM demonstrates a more 
dispersed distribution, with significant outliers reflecting lower match 
quality. In the second quintile, this trend persists. C4PM continues 
to maintain a narrow distribution along the diagonal, highlighting its 
ability to generate reliable matches. In contrast, 2PM displays a broader 
distribution accompanied by many outliers, further emphasizing its 
inferior match quality. These observations align with the 𝑅𝑀𝑆𝐸 values 
8 
reported in Table  3. A lower global 𝑅𝑀𝑆𝐸 generally corresponds to 
improved match quality and fewer outliers, particularly under stricter 
matching conditions. The consistent superior performance of C4PM in 
both quintiles underscores its robustness and reliability in producing 
accurate matches, even under challenging scenarios.

4.4. Two settings confronted

The results obtained from running the 2PM and C4PM algorithms 
on relatively broad input data are compared. This test does not aim to 
identify equivalent configurations between the two methods — if such 
equivalence is even possible — but rather to analyze the behavior of 
C4PM and the results it produces. Notably, this comparison underscores 
one of C4PM’s key capabilities: its ability to independently control 
discrepancies between cross-assigned partitioned integrated wave pa-
rameters of different natures, depending on the application, type of 
measurement, or desired level of accuracy.

Following Hasselmann et al. (1996), 𝑅 = 0.75 is used as the 
critical input value for the 2PM algorithm, while the control vector 
𝐜 = (0.2, 0.3, 0.2, 0.6) is applied as input to the C4PM algorithm. This 
control vector imposes the following limits on parameter discrepancies 
within a matchup: the smallest significant wave height must be at 
least (1 − 0.2) = 0.8 of the largest significant wave height in the 
same matchup; similar limitations apply to discrepancies in peak wave 
periods and peak directional spreads. Additionally, cross-assigned peak 
wave directions cannot differ by more than 0.2 × 180◦ = 36◦. Fig.  10 il-
lustrates the results of this comparison. Both methods exhibit negligible 
bias, high correlation coefficients, and low 𝑅𝑀𝑆𝐸 for all partitioned 
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Fig. 9. PPWP scatter plot for the first two quintiles. Left column, 2PM [ac]; right column C4PM [bd]. First line is the first quintile [ab]; second line is the second quintile [cd]. 
The red dotted line indicates the best fit from a linear regression using the least-squares method.
integrated wave parameters. However, closer examination of Fig.  10[a, 
c, e, g], which displays the 2PM results, reveals the presence of outliers, 
indicating the occurrence of unlikely matchups. Such outliers, while 
rare, may pose challenges in applications such as data assimilation. 
Notably, these outliers persist even when the critical value for 2PM is 
significantly reduced (plots not shown). In contrast, Fig.  10[b, d, f, h], 
presenting the C4PM results, shows matchups tightly clustered around 
the 1:1 line, indicating the absence of outliers. This result highlights 
the effectiveness of C4PM in controlled matchup formation, further 
demonstrating its superiority in avoiding spurious matches.

5. Summary and conclusions

Cross-assignment of wave spectra represents a combinatorial opti-
mization challenge in physical oceanography. The core question is how 
to determine the best matching between partitions of wave spectra from 
different sources, specifically those whose oceanic characteristics ex-
hibit the highest level of concordance. Addressing this problem requires 
a reliable method for measuring the similarity between partitions and a 
robust criterion to determine when pairs of partitions should form the 
cross-assignment.

This work proposes a novel cross-assignment methodology based on 
a spectral distance that incorporates four integrated wave parameters, 
termed the Controlled Four-Parameter Method (C4PM), which offers 
a high degree of customizability, enabling the assignment of distinct 
weights to the integrated wave parameters during the distance calcula-
tion while also allowing for a priori control of discrepancies among the 
corresponding parameters throughout the cross-assignment process.
9 
To evaluate the proposed method, we compared C4PM with an 
existing approach based on a two-parameter spectral distance (denoted 
as 2PM). Thousands of data points from two buoys located 13 km 
apart were analyzed. The experiments explored the progression of 
cutoff values for each technique and their qualitative impact on the 
resulting groups of matchups. The results consistently demonstrated the 
superiority of C4PM over 2PM in nearly all aspects.

The weighted semimetric underlying C4PM proved to be well-
scaled, providing superior capability in identifying matches with highly 
concordant oceanic features. In contrast, the spectral distance em-
ployed in 2PM exhibited limitations, allowing for the formation of 
mismatched pairs in numerous cases. When operating with very strict 
cutoff values, C4PM identified only perfect matches, i.e., measurements 
from nearly identical pairs of partitions, while 2PM produced a signifi-
cant proportion of relatively poor matches even within the same cutoff 
range.

Further analysis, which divided the total set of possible matches 
into quintiles based on cutoff values, revealed that C4PM consistently 
outperformed 2PM across all groups, particularly in the first three 
quintiles. The 𝑅𝑀𝑆𝐸 values achieved by C4PM for each partitioned 
integrated wave parameter were consistently lower than those of 2PM, 
highlighting the accuracy of its matchups. This distinction was further 
underscored by the presence of outliers in the 2PM results, which 
persisted even when stricter cutoff values were applied. These outliers, 
indicative of poorer match quality, were absent in the C4PM results, 
demonstrating the robustness of its controlled matchup formation.
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Fig. 10. Scatter plots between buoys 51001 and 51101 for 𝑃𝑆𝑊𝐻 , 𝑃𝑃𝑊 𝑃 , 𝑃𝑃𝑊𝐷
and 𝑃𝑃𝑊 𝑆, respectively from top to bottom. Left column: 2PM; right column: C4PM. 
The red dotted line indicates the best fit from a linear regression using the least-squares 
method.

C4PM’s ability to assign specific weights and deviation limits to 
each parameter provides a level of flexibility that enables tailored cross-
assignments to suit the requirements of different datasets and applica-
tions. Furthermore, its negligible computational overhead and planned 
release as an open-source Python package enhance its accessibility 
and practicality for broader use. In summary, the results presented 
here demonstrate significant improvements over traditional spectral 
distance methods for the cross-assignment of directional wave spectra. 
C4PM is a highly effective tool for wave data assimilation, where 
precise cross-assignments are critical for improving the reliability and 
accuracy of forecast models.
10 
Table A.1
Statistical parameters.
 Parameter Expression  
 Mean 𝑋 = 1

𝑛

𝑛
∑

𝑖=1
𝑥𝑖, 𝑌 = 1

𝑛

𝑛
∑

𝑖=1
𝑦𝑖  

 Bias 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑥𝑖)  

 Root mean square error (𝑅𝑀𝑆𝐸)

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑥𝑖)2  

 Scatter index (SI) (RMSE)
𝑋

 

 Pearson correlation coefficient (𝑐𝑐)
∑𝑛

𝑖=1(𝑥𝑖 −𝑋)(𝑦𝑖 − 𝑌 )
√

∑𝑛
𝑖=1(𝑥𝑖 −𝑋)2

√

∑𝑛
𝑖=1(𝑦𝑖 − 𝑌 )2

 

Table A.2
Wave parameters. 𝑆(𝑓, 𝜃) represents the directional wave spectrum.
 Parameter Expression  

 𝑆𝑊𝐻 4

√

∫

2𝜋

0 ∫

∞

0
𝑆(𝑓, 𝜃) 𝑑𝑓 𝑑𝜃  

 𝑃𝑊 𝑃 1
argmax(𝑆(𝑓 ))  

 𝑃𝑊𝐷 atan2
(

∫ 2𝜋
0 𝑆(𝑓𝑝 , 𝜃) sin(𝜃) 𝑑𝜃

∫ 2𝜋
0 𝑆(𝑓𝑝 , 𝜃) cos(𝜃) 𝑑𝜃

)

 

 𝑃𝑊 𝑆

√

√

√

√

√

√

√

2

⎛

⎜

⎜

⎜

⎝

1 −

√

√

√

√

√

(

∫ 2𝜋
0 𝑆(𝑓𝑝 , 𝜃) cos(𝜃) 𝑑𝜃

∫ 2𝜋
0 𝑆(𝑓𝑝 , 𝜃) 𝑑𝜃

)2

+

(

∫ 2𝜋
0 𝑆(𝑓𝑝 , 𝜃) sin(𝜃) 𝑑𝜃

∫ 2𝜋
0 𝑆(𝑓𝑝 , 𝜃) 𝑑𝜃

)2⎞
⎟

⎟

⎟

⎠

 

 𝐶𝑊 𝑉 4𝜋2

𝑔

(

∫

∞

0 ∫

2𝜋

0
𝑓 𝑆(𝑓, 𝜃) cos 𝜃 𝑑𝜃 𝑑𝑓 , ∫

∞

0 ∫

2𝜋

0
𝑓 𝑆(𝑓, 𝜃) sin 𝜃 𝑑𝜃 𝑑𝑓

)

 

CRediT authorship contribution statement

Andre Luiz Cordeiro dos Santos: Writing – review & editing, 
Writing – original draft, Visualization, Validation, Software, Project 
administration, Methodology, Investigation, Formal analysis, Data cu-
ration, Conceptualization. Felipe Marques dos Santos: Writing – re-
view & editing, Writing – original draft, Visualization, Validation, 
Software, Methodology, Investigation, Formal analysis, Data curation, 
Conceptualization. Nelson Violante-Carvalho: Writing – review & 
editing, Writing – original draft, Visualization, Validation, Software, 
Methodology, Investigation, Formal analysis, Conceptualization. Luiz 
Mariano Carvalho: Writing – review & editing, Visualization, Val-
idation, Software, Methodology, Investigation, Formal analysis, Data 
curation, Conceptualization. Helder Manoel Venceslau: Writing – re-
view & editing, Software, Methodology, Investigation, Formal analysis, 
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Appendix A. Statistics and wave parameters

Tables  A.1 and A.2 provide the formulas for the statistical parame-
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