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Abstract Understanding mesoscale eddies and their interaction with the basin scale mean flow remains an
important problem in physical oceanography. Several different approaches to parameterization of the effects of
mesoscale eddies have been examined in the literature. In quasi‐geostrophic potential vorticity (PV) transfer
theory, mesoscale eddies are assumed on average to transfer PV downgradient and the main free parameter is the
PV diffusivity coefficient, which is assumed to depend on the mean flow. Here, we adopt a new, complementary
approach, which aims to develop strong constraints on the possible magnitude of the PV diffusivity due to
parameters independent of the flow such as the wind stress and bottom topography. Combining results from an
eddy resolving quasi‐geostrophic model and a corresponding analytic model with parameterized eddies in a
barotropic channel configuration, it is demonstrated that the PV diffusivity strongly varies for different types of
bottom topography and for different wind stress with important consequences for the strength of the mean
circulation. For monoscale (sinusoidal) topography, an algebraic equation is developed linking the PV
diffusivity coefficient with the transport, wind stress, bottom topography, and geophysical and geometrical
parameters. We present the result of statistical analysis of solutions of this equation with prescribed zonal
transport obtained from a number of the eddy resolving model simulations and propose a new equation linking
the PV diffusivity coefficient with wind stress and a parameter related to topographic roughness. We anticipate
that similar relationships will hold for more realistic flow configurations and other types of mesoscale eddy
closures.

Plain Language Summary The ocean is filled with eddies of quite small size (order 100 km)
compared to the ocean basins. These so‐called “mesoscale eddies” substantially influence the strength of the
global ocean circulation including major currents such as the Atlantic Circumpolar Current in the Southern
Ocean which in turn play a major role in maintaining Earth's climate. Here, we develop a mathematical approach
which allows us to model the statistical effect of the eddies on the mean circulation without having to model
every single eddy. Using this approach, we relate the impact of the mesoscale eddies on the circulation to the
presence of bottom topography and the strength of the wind stress blowing over the ocean surface. The
relationships we find can be used to better include the effects of mesoscale eddies in ocean and climate models.

1. Introduction
Numerical models of the oceanic circulation fall into two major classes, depending on size of the horizontal grid:
fine resolution (FR) models and coarse resolution (CR) models. The former class includes models with a small
enough horizontal grid to describe individual mesoscale eddies, and the latter class includes models with too
coarse a grid to describe such eddies. The CR models require an eddy parameterization, which instead of
modeling fields on the coarse grid approximates eddy effects in terms of mean properties of the model. Hence,
new coefficients appear in the basic equations, which are generally speaking free parameters. Physical laws often
impose limitations on these coefficients, but they cannot be specified as exact values/functions. As a result,
numerical simulations with CR models depend on these coefficients. It is not obvious how to choose appropriate
values of the coefficients and if there is a strong dependence of the circulation (i.e., values of the transport, energy,
and geographical location of the main jets and gyres) on these coefficients an inappropriate choice could lead to
unrealistic results. Developing a physically correct parameterization has both theoretical and practical value,
leading to better understanding of the eddy‐eddy, eddy‐mean flow and eddy‐topography interactions, and
reducing computational expense. The latter reason is especially important in paleoceanography studies, where
models are an indispensable tool due to a paucity of data (Wunsch (2003); Munday et al. (2013)) and because it is
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too expensive for models simulating long periods of time to have a grid resolution fine enough to represent in-
dividual eddies.

Parameterizing the effect of mesoscale eddies using a diffusive parameterization of potential vorticity (PV) has a
good physical basis. This parameterization was introduced by Green (1970) and Welander (1973) and developed
in many studies, for example, Eden (2010), Eden and Greatbatch (2008), Ivchenko (1984), Ivchenko et al. (1997),
Ivchenko et al. (2013), Killworth (1997), Marshall (1981), Marshall and Adcroft (2010), Marshall et al. (2012),
Olbers et al. (2000), Ringler and Gent (2011), Treguier et al. (1997), Wardle and Marshall (2000), Ivchenko,
Danilov, and Schroeter (2014), Ivchenko, Danilov, Sinha, and Schroeder (2014). A diffusive parameterization,
that is, proportionality of eddy fluxes of any property to its mean gradient is applicable only for conserved
properties, which excludes using this scheme for momentum but allows its use for PV.

The zonal channel could be seen as a simplified analog to the Antarctic Circumpolar Current (ACC). This
simplification allows easy understanding of the dynamics of the zonal flow, which could be similar to the dy-
namics of the ACC. There is a well known strong dependence of the zonal transport of the ACC on the wind stress
(Johnson and Bryden (1989); McWilliams et al. (1978); Munk and Palmen (1951); Wolff et al. (1991)). The
response of the oceanic circulation to wind forcing is substantially different for models with high or low space
resolution (Munday et al. (2013)). In a number of models, the zonal transport is much less sensitive to increasing
wind stress using FR models than CR models (Constantinou and Hogg (2019); Hallberg and Gnanade-
sikan (2001); Munday et al. (2013); Tansley and Marshall (2001)). Because of the decisive role of mesoscale
eddies, this reduced sensitivity is termed “eddy saturation.” Constantinou and Young (2017) studied the effect of
random monoscale topography on forced β‐plane turbulence using a one‐layer quasi‐geostrophic model. Special
attention was paid to the regime of saturation. They find that baroclinic instability is not necessary for eddy
saturation. One of the goals of the present paper is to revisit the problem of eddy saturation and investigate how it
is affected by the presence of different types of topography.

Mesoscale eddies play a crucial role in the ACC not only for eddy saturation but in setting the ACC transport.
Eddies participate in vertical transfer of the zonal momentum, which is imparted from the prevailing eastward
wind stress at the surface down to the bottom (Ivchenko et al. (1996); Johnson and Bryden (1989); Marshall
et al. (1993); Stevens and Ivchenko (1997)). Eddies also participate in reorganizing the zonal momentum, for
example, increasing/decreasing momentum in the cores of zonal jets (Ivchenko (1984); Ivchenko et al. (1997),
Ivchenko, Danilov, and Schroeter (2014); McWilliams et al. (1978); Treguier and McWilliams (1990); Wolff
et al. (1991)) and sharpening of zonal flows by PV diffusion (Dritschel and McIntyre (2008); Wood and
McIntyre (2010)).

In a number of studies with eddy parameterization, the coefficients are not physically motivated. Ivchenko
et al. (2018) (hereinafter IZS) demonstrated a link between total zonal transport and the eddy PV diffusion co-
efficient (k0) . They showed that there is a huge range of zonal transport, corresponding to the smallest (i.e.,
k0 = 0) and largest values of k0. Choosing an incorrect value of this coefficient leads to unrealistic ACC transport
and the whole dynamics of the zonal channel. In the literature, the PV diffusivity coefficient has been assumed to
depend on the mean flow (Green (1970); Held (1975); Killworth (1997); Marshall (1981)).

Here, we adopt a new, complementary approach, which aims to develop strong constraints on the possible
magnitude of the PV diffusivity due to parameters independent of the flow such as the wind stress and bottom
topography (and clearly this does not preclude additional flow‐dependent variation). In view of the difficulty of
diagnosing k0 directly from eddy resolving models in the presence of bottom topography, we propose a novel way
of choosing the coefficient of eddy potential diffusivity by matching values of the transport from numerical
experiments with a FR finite difference model with those from a CR spectral‐analytic model. The CR model
employs a mesoscale eddy parameterization based on PV diffusion with truncated meridional wavenumbers but
retains all the zonal wave numbers similar to Charney et al. (1981) and IZS. We develop a new equation, which
links the coefficient k0 with other parameters, both external (windstress) and internal (geometrical and
geophysical). This is an algebraic cubic equation in k0. As a result of statistical analysis of the FR experiments, a
new equation for k0 as a function of wind stress and topographic roughness is presented.

The remainder of this paper is organized as follows. In Section 2, the basic equations of quasi‐geostrophic
barotropic zonal channel flow including eddy parameterization are introduced. The FR model and the CR
model are formulated. A novel analytical expression for the coefficient of PV diffusivity is introduced. Section 3
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presents the results of numerical experiments with the FR and the CR models. Section 4 compares the results of
experiments with the Fine and the CR models. Section 4 also demonstrates the links between coefficient of PV
diffusivity and the zonal transport. As a result of statistical analysis, a new equation for the coefficient of PV
diffusivity as a function of wind stress and topographic roughness is presented. Section 5 consists of discussion
and conclusions.

2. Basic Equations
2.1. Quasi‐Geostrophic Equations for Barotropic Flow

The equation for barotropic quasi‐geostrophic potential vorticity (QGPV) can be written as

∂q
∂t
+ J(Ψ,q) = T + FB + FH , (1)

where q and Ψ are QGPV and streamfunction, respectively. Horizontal velocity v = (u,v) is related to the
streamfunction by u = − ∂

∂ y Ψ and v = ∂
∂ x Ψ, where u and v are the velocity components in the zonal (x) and

meridional (y) directions. J(A,C) is the Jacobian operator: J(A,C) = − ∂ A
∂ y

∂ C
∂ x + ∂ A

∂ x
∂ C
∂ y . T, FB and FH are the

external forcing (wind stress), bottom, and horizontal friction, respectively.

The QGPV, q in barotropic flow represents the sum of relative vorticity, planetary vorticity, and the topographic
term given by

q = ∇2Ψ + f +
f0
H
B, (2)

where Coriolis parameter f = f0 + β y. f0 and β denote its value at a reference latitude and its meridional
gradient, respectively. B is the deviation of bottom topography from a constant depth H.

2.2. The Fine Resolution (FR) Model

The FR model used herein is based on the quasi‐geostrophic channel model described by Sinha and
Richards (1999) run in barotropic mode and is an eddy‐resolving model. It solves the barotropic quasi‐geostrophic
Equations 1 and 2 presented in Section 2.1 above in a zonally oriented reentrant (periodic) channel of length Lx,
width L with rigid boundaries, that is, no normal flow boundary conditions to the north and south. The model is
forced by a zonal wind stress in the traditional manner:

T =
1

Hρ0
curlzτ, (3)

where τ represents tangential wind stress, and ρ0 is the water reference density,

τx = τ0 sin(πy/L), (4)

τy = 0. (5)

Bottom friction has a linear friction law with coefficient ϵ

FB = − ϵ curlzv, (6)

both identical to the CR model (Section 3.1 below). Unlike the CR model, lateral friction must be included for
numerical stability and we specify a biharmonic lateral friction operator

FH = A6∇6Ψ, (7)

where A6 is the friction coefficient.
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A6 is set to 1 ⋅ 1010m4/ s and all other parameters of the model are made identical to those chosen for the CRmodel
(Section 3 below). The FR model Equations 1–7 were discretized for numerical solution using standard second‐
order centered differences in space on an Arakawa‐C‐type grid (Arakawa (1966)). Nonlinear terms were
formulated using an energy and enstrophy conserving Jacobian (Arakawa and Lamb (1977)). In time, a leapfrog
scheme was employed with an occasional forward time step to avoid development of a computational mode
(Richtmyer andMorton (1967)). The time step was 1.5 hr and the horizontal resolution was chosen to be 10 km. In
each of the experiments, the model was initialized from a state of rest. The bottom topography B(x,y) is prescribed
as depending sinusoidally on the y‐coordinate with zero values on the walls (y = 0 and y = L)

B(x,y) = h(x)sin (
πy
L
). (8)

The zonal variation of the bottom topography is prescribed as a Fourier expansion

h(x) =∑
n

cn cos (
2nπx
Lx

) +∑
n

dn sin (
2nπx
Lx

), (9)

where cn and dn are the amplitudes of the prescribed topography. n is the index of each mode used in the Fourier
expansion.

2.3. The Coarse Resolution (CR) Model

In the CR models, individual mesoscale eddies are excluded, and since their influence on the mean flow is
substantial, they (eddies) must be parameterized. The traditional diffusive parameterization of QGPV can be
written as

vʹqʹ = − k∇q, (10)

where k is the coefficient of eddy diffusivity of QGPV, and the overbar denotes an average. We use a combined
time and partial zonal average (see IZS). Note, that the partial zonal and time average is a more appropriate type of
average for the zonal channel domain with a variable topography than a time‐only average, since bottom
topography being time independent cannot contribute to the eddy topographic form stress in the case of time
average. Note, that the zonal transport in case of partial zonal and time average is equal to the zonal transport in
case of time‐only average in reentrant channel. The CR model used in this study is a spectral‐analytic model with
parameterized eddies, according to (10) but otherwise having the same wind forcing, bottom topography, domain
geometry, and geophysical parameters as the FR model. The diffusive parameterization can be applied only for
conserved quantities, such as QGPV, but not for momentum, which is not conserved because of the pressure
gradient force (Killworth (1997); Marshall (1981); Welander (1973)).

The coefficient k to be determined from 10 consists of divergent and rotational (dynamically nonactive) com-
ponents. The decomposition of an eddy flux of PV into a divergent flux component and a rotational flux
component is not unique in a bounded or periodic zonal channel domain (Fox‐Kemper et al. (2003)). Therefore,
we cannot specify k for the CR model simply by diagnosing it directly from the FR model. Instead, we use an
alternative approach set out below.

We specify QGPV input due to surface wind stress and bottom friction exactly the same as it is for the FR model
(3–5). Horizontal friction is disregarded.

The averaged Equation 1, using 10, becomes:

u
∂q
∂x
+ v

∂q
∂y
−

∂
∂ x

k
∂q
∂x
−

∂
∂ y

k
∂q
∂y
=

1
Hρ0

curlzτ − ϵ curlzv. (11)

We specify the coefficient k to be constant and equal to the mean coefficient k0 in most of the channel away from
very thin boundary layers near the solid walls, where k exponentially reduces to zero. This distribution allows us
to satisfy boundary conditions of no flux of QGPV through the solid walls (see IZS and Appendix A).
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Charney et al., 1981 used zero boundary conditions for the mean zonal velocityU (i.e., U = 0 if y = 0,L) for the
atmospheric zonal channel. For an oceanic zonal channel, where the main forcing is a wind stress Marshall (1981)
demonstrated that mean zonally averaged velocity on the boundaries vanishes, if wind stress vanishes and if this
velocity is zero initially. IZS used this boundary condition. However note, there is a jump in U if a zero boundary
condition is imposed. This causes a problem because in order to solve Equation 11 we must integrate U and
∂U/∂y with respect to y, which is not possible if U is not smooth and differentiable (see Appendix B). To avoid
this complication, we suggest the following way to use continuous and differentiable U⋆, that is,

U⋆ = U{1 + e(− L/Δ) − e(− y/Δ) − e( y− L)/Δ}, (12)

where Δ is the width of thin boundary layers, Δ≪ L, and U is a constant. U⋆ is almost constant in the domain but
quickly drops to zero on the side walls. The difference betweenU⋆ andU at any point of the domain will be small
by choosing Δ to be small enough except on the solid boundaries, where U⋆ = 0. (see details on Appendix B).

We now assume that the solution for Equation 11 consists of a zonal flow with (unknown) velocity U⋆ and
additional velocity linked with streamfunction Φ multiplied by the first meridional Fourier mode:

Ψ(x,y) = − U(1 + e− L/Δ) y − UΔe− y/Δ + UΔe( y− L)/Δ +Φ(x)sin (
πy
L
). (13)

We follow Charney et al. (1981) who used a similar technique for an atmospheric flow in a zonal channel. We
represent the topographic term B in the form 8. The net zonal transport across the channel depends only on U⋆

(with high accuracy on U), because Φ(x)sin ( πyL ) does not affect the net transport, although it does affect the zonal
velocity locally because of topography and diffusion of the QGPV.We specify the surface wind stress τ = (τx, τy)
the same as in the FR model, that is, by Equations 4 and 5.

To obtain an analytical solution let us write Φ as Fourier series:

Φ(x) =∑
n

an cos (
2nπx
Lx

) +∑
n

bn sin (
2nπx
Lx

), (14)

where an and bn are unknown constants. (Recall n is the index of each mode used in the Fourier expansion.) The
topographic term is written as in 9.

Using the technique developed by Charney et al. (1981) and applied by IZS (see Appendix B), after trans-
formation one can write down 2n+1 equations for 2n+1 variables, that is, Fourier coefficients an,bn and mean
zonal velocity U.

− {
k0(2nπ)2

L2
x

+
k0π2

L2 + ϵ +
ϵL2

x

L24n2
} an + {

βLx

2nπ
−

2nπU
Lx

} bn +
f0dnLxU
H2nπ

+
k0 f0cn

H
= 0, (15)

{
βLx

2nπ
−

2nπU
Lx

} an + {
k0(2nπ)2

L2
x

+
k0π2

L2 + ϵ +
ϵL2

x

L24n2} bn +
f0cnLxU
H2nπ

−
k0 f0dn

H
= 0, (16)

π
4Hρ0

τ0 −
2f0π
3LxH

∑
n

n(dnan − cnbn) − ϵU −
3π2k0
4L2 U − k0β = 0. (17)

If the topographic modes cn and dn are zero, then Equations 15 and 16 are homogeneous linear equations with
respect to variables an and bn and the solution of this system is an = bn = 0. Only the Fourier modes represented
in the bottom topography contribute.

For a prescribed zonal velocity U, Equations 15 and 16 can be reformulated to

an(k0A
(n)
2 + A(n)3 ) + bnA

(n)
1 = cnk0A

(n)
5 + dnA

(n)
4 , (18)
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anA
(n)
1 + bn(− k0A

(n)
2 − A(n)3 ) = − k0dnA

(n)
5 + cnA

(n)
4 , (19)

where

A(n)1 =
U2nπ
Lx

−
βLx

2nπ
, (20)

A(n)2 =
4n2π2

L2
x
+

π2

L2 , (21)

A(n)3 = ϵ +
ϵL2

x

L24n2 , (22)

A(n)4 =
Uf0Lx

H2nπ
, (23)

A(n)5 =
f0
H
. (24)

These coefficients depend on the geometry of the channel (i.e., Lx,L and H), geophysical parameters f0,β,ϵ, and
zonal transport (velocity U) but are independent of k0 and wind stress τ0. Since we are looking only for eastward
wind stress (τ0 > 0) , the value of U must be positive.

The mean streamfunction is calculated using the CR model for all types of topography and for different am-
plitudes of the wind stress and for different values of k0. For any prescribed topography and wind stress, the zonal
transport is a function of k0.

The zonal momentum contribution by wind is balanced by topographic form stress, bottom friction, friction due to
PV diffusivity and by topographic form stress exerted by parameterized eddies (IZS). Therefore, the 5‐th term on
the R.H.S. of 17 should be less than or equal to the 1‐st term on the R.H.S. (i.e., the wind stress), which yields the
limitation of k0:

k0 ≤ kM =
πτ0

4βHρ0
. (25)

Note, that the actual maximum value of k0 = kmax which corresponds to the zero value of transport is less than kM,
indeed:

kmax < kM . (26)

The values of the transport occupy a range between the highest possible value, which corresponds to the zero
value of the coefficient k0 and zero‐transport, which corresponds to the highest value of k0 = kmax. kmax depends
not only on wind stress, geometrical and geophysical parameters but also on the amplitude and spatial variability
of topographic obstacles, that is, on zonal topographic Fourier number n. The spatial variability of topography
may cause a stronger effect of the drag of the mean flow by the topographic form stress, bottom friction, friction
due to PV diffusivity and by topographic form stress exerted by parameterized eddies. This reduces the transport,
diminishing kmax.

We require that only one value of k0 is correct and the others are not correct. To specify this correct value of k0, we
diagnose the transport from the FR model simulation for the same channel and for the same external forcing.
Then, we find the steady‐state zonal transport and choose the value of k0 using the diffusivity‐transport rela-
tionship from the CR model. The method is similar to the use of emergent constraints in climate model
projections.

It is straightforward to find the solution, an and bn, of the system of 2n equations (Equations 18 and 19). In the case
of a zonal channel with monoscale topography, we can develop an analytical solution. If these solutions are
substituted into Equation 17 after some transformations, we can find an expression linking k0 with τ0 and U:
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M3 k30 +M2 k20 +M1 k0 +M0 = 0, (27)

where

M3 = 12HLxβA
(n)
2

2
+ 9A(n)2

2
HLxπ2U/L2, (28)

M2 = 24HLxβA
(n)
2 A(n)3 − 3τ0ρ− 10 πLxA

(n)
2

2
+ 12HLxϵUA(n)2

2
+ 18HLxπ2UA(n)2 A(n)3 /L2, (29)

M1 = 8f0πn( c2n + d2
n) (A

(n)
2 A(n)4 − A(n)1 A(n)5 ) + 12HLxβ(A

(n)
1

2
+ A(n)3

2
) − 6τ0ρ− 10 πLxA

(n)
2 A(n)3

+24HLxϵUA(n)2 A(n)3 + (A(n)1
2
+ A(n)3

(n)
) 9π2UHLx/L2, (30)

M0 = 8f0πn( c2n + d2
n)A

(n)
3 A(n)4 − 3τ0ρ− 10 πLx(A

(n)
1

2
+ A(n)3

2
) + 12HLxϵU(A

(n)
1

2
+ A(n)3

2
). (31)

Equation 27 is a 3‐rd order algebraic equation in k0 and includes U. This equation allows us to calculate k0 based
on a prescribed value of transport, which is known from FR experiments, or to calculate transport using a pre-
scribed value of the coefficient k0.

3. Numerical Experiments With the FR and CR Models
Numerical experiments were run using both the FR model and the CR model. Standard geometrical and
geophysical parameters relevant to the Southern Ocean were used in all the experiments: channel length
Lx = 4 ⋅ 106m, width L = 106m; reference depth 5 ⋅ 103m; Coriolis parameter f0 = − 10− 4s− 1,
β = 1.4 ⋅ 10− 11m− 1s− 1, ρ0 = 103 kg/m3, ϵ = 10− 7 s− 1.

We studied a number of cases with different bottom topography (i.e., amplitudes of topography cn, dn and Fourier
mode n). In our study, we concentrate on the monoscale type of topography with an amplitude between 100 and
300 m and Fourier modes between 1 and 7. The wind stress in these experiments is in the realistic range, varying
between 0.1 N/m2 and 0.3 N/m2.

We used 100, 200, and 400 years of integration of the FR model and found that the time‐averaged transport was
not sensitive to the increasing time average. The experiments have demonstrated that equilibrium is achieved not
later than 20 model years. Therefore, we used integration between 20 and 100 years as the standard integration
time, and subsequent references to “transport” refer to the average transport over 80 model years.

Figure 1 (top and the 3‐rd panels) displays time‐mean streamfunctions calculated by the FR model for channels
with topography represented by c2 = 300 m for τ0 = 0.1 N/m2, and τ0 = 0.3 N/m2. The topography is pre-
sented in the bottom panel.

The flow strongly correlates with the topography and transport increases with increasing wind stress.

Equation 17 has a clear physical interpretation: the external and the only source term‐the wind stress (the 1‐st
term) is balanced by four terms: by bottom form stress (the 2‐nd term), by classic viscous bottom friction (the
3‐rd term), by friction due to PV diffusivity (the 4‐th term) and by the topographic form stress exerted by
parameterized eddies (IZS) (the 5‐th term). In most cases, the main balance takes place due to topographic form
stress. This contribution reaches 93% of the wind forcing at c7 = 300 m, τ0 = 0.3 N/m2. The exceptions are the
channels with small amplitude, smooth topography, when bottom friction ϵU or/and βk0 terms becomes
important. The contribution of a bottom friction can reach up to 70% (c1 = 100 m), and contribution of βk0 can
reach up to 38% − 39% (c2 = 100 m, c3 = 100 m, c2 = 200 m). The contribution by PV‐diffusivity
(3π2k0U/ (4L2)) is negligible (no more than 4% at c1 = 200 m, τ0 = 0.3 N/m2), in most cases nor more
than 1% − 2%.

The transport reduces if topographic Fourier mode n increases (when the amplitudes of the wind stress τ0 and of
the bottom topography are unchanged) (Figure 2).
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This can be explained by increasing topographic form stress. Increasing wind stress results in an increase of the
transport (Figure 2). For example, the zonal transport for topography c1 = 100 m reaches 544.5 Sv. and
1,654.9 Sv. for wind stress τ0 = 0.1 N/m2 and τ0 = 0.3 N/m2, respectively. For topography c7 = 100 m the
transport is reduced to 186.6 Sv. and 274.2 Sv. for wind stress τ0 = 0.1 N/m2 and τ0 = 0.3 N/m2, respectively.
The transports for topography c1 = 300 m are 338.5 and 668.5 Sv. for wind stress τ0 = 0.1 and 0.3 N/m2,
respectively. For topography c7 = 300 m the transports drop to 70.3 Sv. and 119.4 Sv, for wind stress τ0 = 0.1
and 0.3 N/m2, respectively (Figure 2).

Because we have a large number of numerical experiments with different wind stress applied to the FR model it is
straightforward to see whether eddy saturation takes place. For high topographic Fourier number (n> 4) there is
definitely an eddy saturation regime (see Figure 2). For example, for c6 = 300 m transport increases from
141.2 Sv. to 156.1 Sv. for τ0 = 0.2 N/m2 and τ0 = 0.3 N/m2, respectively. In contrast, in the case of topog-
raphy c1 = 200 m there is no saturation: transport increases from 430.8 Sv. ( τ0 = 0.1 N/m2) to 657.2 Sv.
( τ0 = 0.2 N/m2) and to 1,064.3 Sv. ( τ0 = 0.3 N/m2) . Similarly for c1 = 100 m transport increases from
1,036.2 Sv. (when τ0 = 0.2 N/m2). to 1,654.9 Sv.( τ0 = 0.3 N/m2) and for c3 = 100 m transport increases
from 575.5 Sv. ( τ0 = 0.2 N/m2) to 906.5 Sv. ( τ0 = 0.3 N/m2). We suggest that the lack of saturation in
channels with small amplitude, smooth topography is due to fact that in this case an important role in the mo-
mentum balance is played by bottom friction (term ϵU in 17). The increase in windstress should lead to an in-
crease in the mean zonal velocity U for balance, and accordingly, to the lack of saturation. There are a few
intermediate cases with topography with amplitude of 200 m and topographic Fourier numbers 2–4 where

Figure 1. The averaged streamfunction times reference depth (Sv.) from the Fine Resolution (FR) model (top and 3‐rd panels) and the averaged streamfunction times
reference depth (Sv.) from the Coarse Resolution (CR) model (2‐nd and 4‐th panels). Topography represented by c2 = 300m (5‐th panel). The wind stress is
τ0 = 0.1 N/m2 (1‐st and 2‐nd panels) and τ0 = 0.3 N/m2 (3‐rd and 4‐th panels).
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saturation seems to occur at the higher end of the windstress range ( τ0 = 0.2 − 0.3 N/m2) seen in the middle
panel of Figure 2.

4. Comparison of Results From CR and FR Models and Developing Equations for k0
Both the FR and the CR models simulate eastward flows (for eastward wind stress) strongly influenced by bottom
topography (see Figure 1). The figure compares streamfunctions for channel flow with topography represented by
c2 = 300 m from the FR model (the top and the 3‐d panel) and the CR model (the 2‐nd and the 4‐th panels) for
τ0 = 0.1 N/m2, τ0 = 0.3 N/m2. The topography is presented in the bottom panel. Diffusivity coefficient
k0 = 165.1 m2/ s is used for the CR experiment with τ0 = 0.1 N/m2 and k0 = 572.9 m2/ s for τ0 = 0.3 N/m2.
These choices of k0 give zonal transports in the CR model equal to the transports obtained from the FR exper-
iments, that is, 257.6 Sv. and 662.4 Sv. for τ0 = 0.1 N/m2 and τ0 = 0.3 N/m2, respectively. The flow strongly
correlates with the topography and transport increases when wind stress increased. The structure (i.e., direction)
of the mean flow looks similar for different values of wind stress, increasing wind stress results in increasing
transport (Figure 2). Experiments with the FR model for a channel with the same topography and wind stress
looks generally similar in direction and in the amplitude of velocity to experiments with the CR model (see
Figure 1). The kinetic energy and the zonal transport in the FR model reach a steady‐state value after a few years
of integration from the rest and have temporal variability linked with eddies. For some types of topography and for
not too high wind stress, the amplitude of the temporal variability is rather small. However, increasing wind stress
for similar topography leads to much higher variability of energy and transport.

Figure 2. Zonal transport (Sv.) from FR model as a function of topographic Fourier modes for different wind stress.
Topographic amplitude is 100 m (top panel), 200 m (middle panel), 300 m (lower panel).
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We can see a linear decrease of the transport with increasing value of k0 (see Figure 3). Increase of the number of
the Fourier modes n leads to decreasing transport if τ0 is fixed (see Figure 2), because of increasing of the bottom
form stress.

4.1. Establishing a Relationship Between k0 and Zonal Transport

For the range of the parameters expected, the cubic and quadratic terms of k0 that is, |M3k30| and |M2k20| are several
orders (at least two orders) of magnitude smaller than the terms of |M1k0| and |M0| and can be neglected. For most
parameter values, the 3‐rd, 4‐th, and 5‐th components of M1 30, that is, |6τ0ρ− 10 πLxA

(n)
2 A(n)3 |, |24HLxϵUA(n)2 A(n)3 |,

and |(A(n)1
2
+ A(n)3

2
) 9π2UHLx/L2| are usually much smaller than the 1‐st and the 2‐nd components of 30 that is,

|8f0πn( c2n + d2
n) (A

(n)
2 A(n)4 − A(n)1 A(n)5 ) + 12HLxβ(A

(n)
1

2
+ A(n)3

2
)
⃒
⃒. These components account for only a few

percent of the 1‐st and 2‐nd components of M1. However, for the small and smooth topographic amplitudes (i.e.,
c1 = 100 m) and for strong wind ( τ0ρ− 1 = 0.3 N/m2) , these three terms reach 18%. For explanation of the
linear dependence between U (or transport) and k0, this accuracy is good enough to drop them out. Note that for
our calculations of k0, we use a cubic Equation 27 without neglecting of any terms.

If we substitute (20–24) in Equation 27, we get Equation D1 (see Appendix D). The terms proportional to cubic
and quadratic orders of U are also much smaller than the other terms and can be neglected (see Appendix D).
Equation 27 after simplification can be rewritten in the form:

Figure 3. Zonal transport (Sv.) as a function of k0 (as a solution of Equations 27 and 37) for three different topographic
lengthscales. τ0 = 0.1 N/m2 (upper panel) and τ0 = 0.3 N/m2 (lower panel). Transports, which match the transport in the
FR model and Equation 27, are marked by open circles.
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U =
τ0ρ− 10 T2

2 − k0T2
4

T2
1 − k0T2

3
, (32)

where

T2
1 =

3HL3
xϵβ

2

n2π2 + 12Hϵ3Lx +
6HL3

xϵ3

L2n2 +
3HL5

xϵ3

4L4n4 + 6τ0ρ− 1Lxπβ + ( c2n + d2
n)

4f 20 ϵLx

H

+( c2n + d2
n)

f 20 ϵL
3
x

Hn2L2 , (33)

T2
2 =

3L3
xβ

2

4n2π
− 3πϵ2Lx +

3πL3
xϵ2

2L2n2
+

3πL5
xϵ2

16L4n4 , (34)

T2
3 = − ( c

2
n + d2

n) Lx
4f 20 π2

HL2 + 24HLxβ2, (35)

T2
4 = ( c

2
n + d2

n) Lx
4f 20 β
H

+
3HL3

xβ
3

n2π2 + 12HLxβϵ2 +
6Hβϵ2L3

x

L2n2 +
3HL5

xβϵ2

4L4n4
. (36)

The only negative term in T2
2 (see 34) is the 2nd term, that is, − 3πϵ2Lx. The absolute value of this term is smaller

then the value of the 1st term, that is, 3L3
xβ

2

4n2π if n< 89, which confirms a positiveness of T2
2. The positiveness for the

term T2
3 is satisfied for topography lower than 545.8 m. The higher values of amplitude of the topographic obstacle

cannot be applied because of the quasi‐geostrophic limitations. In the range of parameters considered the second
term in the denominator of 32 is much smaller than first one: usually it is a few percent of the 1st term; however in
case of a strong windstress (τoρ− 10 = 0.25 N/m2 and with small topographic amplitude of 100 m) it rose to 0.18.
With the goal to simplify the expression (32) and to justify a linear relationship between U (transport) and k0, we
can neglect the 2nd term in the denominator of this expression.

Equation 32 can be rewritten as

U = τ0ρ− 10
T2
2

T2
1
− k0

T2
4

T2
1
. (37)

There is a linear dependence of zonal velocityU (or zonal transport) on k0 and this explains the linear relationship
between U and k0 in Figure 3, which was calculated from the basic equations. The maximum value of U cor-
responds to the zero value of k0 and is a function of wind stress:

Umax = τ0ρ− 10
T2

2
T2

1
. (38)

The maximum value of the k0 is

kmax = τ0ρ− 10
T2
2

T2
4
. (39)

It is interesting to compare kmax from 39 with 25: in Figure 3 kmax is indeed much smaller than kM from 25. The
difference in transports between FR experiments and CR experiments with k0 = 0 (no parameterization) is
substantial (see Figure 3). The difference could be between a few percent and more than 100%. For example,
for topography c2 = 200 m and wind stress of 0.3 N/m2, the FR model gives transport of 649.9 Sv., and CR
model with k0 = 0 gives 1,305.8 Sv. Figures 4 and 5 demonstrate the dependence of k0 on wind stress τ0 and zonal
Fourier mode in two different ways. For amplitude of topographic obstacle between 200 m and 300 m, Figure 4
plots k0 as a function of Fourier mode for a number of different wind stress values, while Figure 5 plots k0 as a
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function of wind stress τ0 for a single amplitude of topographic obstacle of 200 m for a number of different Fourier
modes.

Generally, the coefficient k0 increases with increasing τ0. The values of k0
reduce with increasing wave number with fixed wind stress.

In most cases, k0 decreases for the same topography and wind stress when
Fourier modes grow (see Figure 4). However, in the case of small amplitude
topography (cn = 100 m) and small Fourier modes (n = 1–3), the value of k0
increases, when n increases. With small amplitudes and smooth (small n)
topography, the main balance of windstress is viscous bottom friction (ϵU)
together with the topographic form stress exerted by parameterized eddies
(βk0): τ0π/ (4Hρ0) ≈ ϵU + βk0. For example, at c1 = 100 m, the contribu-
tion of bottom friction is 70%, and the contribution of βk0 is 23%
( τ0/ρ0 = 0.1 N/m2) . Approximately the same balance remains even when
the windstress increases to 0.2 N/m2 (66% and 25%, respectively), and when
the windstress increases to 0.3 N/m2 (70% and 19%, respectively). We know
that mean zonal velocity (transport) decreases with the growth of topographic
Fourier mode n. Consequently, with the growth of n at a given windstress, the
coefficient k0 should increase for balance of windstress. Also, in the case of a
large topographic amplitude (cn = 300 m) and larger Fourier wavenumber,
k0 for n = 6 is more than k0 for n = 5. k0 more or less monotonically in-
creases when wind stress increases for cn = 200 m and cn = 300 m, if

Figure 4. Dependence of k0 on topographic Fourier modes. Topographic amplitudes 100 m (upper panel), 200 m (the second
panel), and 300 m (lower panel). Colored lines show how the relationships vary with wind stress.

Figure 5. Coefficient k0 for topographic amplitude of 200 m as a function of
wind stress τ0.
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n = 1,2 (Figure 4). However, there are some instances of nonmonotonic dependence of k0 on the wind stress for
c2 = 100 m; for cn = 100 m for n = 5,6; for cn = 200 m, n = 1). Equation 27 applies for monoscale
topography. For multiscale topography, mathematical complications arise in deriving the equation, which links k0
and τ0. However, it is straightforward to find the dependence numerically.

4.2. Derivation of an Equation for k0 as a Function of Topographic Roughness and Wind Stress

Our results demonstrated a strong dependence of k0 on topography, both on the amplitude of topography and the
horizontal variability (topographic Fourier number). It would be interesting to introduce a topographic parameter
combining both the amplitude and the horizontal variability with the aim of linking the coefficient k0 with such a
parameter. Recall that the important momentum sink of the external forcing (wind stress) in a zonal channel is the
topographic form stress, which strongly depends on the zonal gradient of the topographic height. To quantify this
dependence, an integral measure D of the roughness of the topography was introduced in IZS. The dimensionless
number D is:

D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

LLx
∫

L

0
∫

Lx

0
(∂B/∂x)2dx dy

√

. (40)

This parameterD is the R.M.S. of the zonal gradient of B (recall that B is the deviation of bottom topography from
a constant depth H). Substituting Equations 8 and 9 to 40 with an appropriate Fourier transformation, we obtain:

D =
π
Lx

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
n

n2 ( c2n + d2
n)

√
. (41)

The dependence of k0 on D was calculated for wind stress τ0 between τ0 = 0.1 and 0.3 N/m2 and is shown in
Figure 6.

For each value of τ0 one can see the link between k0 and D. The value of k0 decreases when D increases. There is
some nonmonotonic dependence of k0 onD, such as the increase of k0 in the interval ofD= 0.7 ⋅ 10− 3– 0.8 ⋅ 10− 3

for wind stress between τ0 = 0.2 N/m2 and τ0 = 0.3 N/m2. This indicates the need for statistical analysis of the
results. We fit these curves using linear regression. Figure 7 displays the linear fit for 5 values of the wind stress
together with the 95% significance intervals. The absolute magnitudes of the correlation coefficients in Figure 7
are all >0.8 and significant with >99% confidence. These results confirm the possibility of representing k0 as a
linearly decreasing function of D as a first approximation.

To study the relationship between k0 and τ0, we averaged k0 over all values of D for each τ0 (see Figure 8). The
relationship k0‐τ0 is linear on the interval of τ0 between 0.1 N/m2 and 0.3 N/m2.

We introduce a coefficient k00 (τ0) representing a linear interpolation of k0 corresponding to the minimum value of
D (called D0) between τ0 = 0.1 N/m2 and τ0 = 0.3 N/m2. D0 = 7.85 ⋅ 10− 5 corresponds to topography
c1 = 100 m. The equation linking k0 with τ0 and D can be written as follows:

Figure 6. Coefficient k0 as a function of D, which provides transport in the Coarse Resolution model equal to transport in the
Fine Resolution model.
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k0 (τ0,D) = k00 (τ0) + α(D − D0), (42)

where α is the average value of linear regression for k0 (τ0,D) (see Figure 7).
Parameter α generally depends on τ0, which can be seen from Figure 7: the
slope of linear regression changes. To test this formula, 14 additional Control
experiments with the FR model were performed. For our Control experi-
ments, we have taken the α average. In these Control experiments, the wind
stress and topography parameters were chosen randomly and differed from
the parameters in the 90 experiments on which Figure 8 is based. The list of
parameters for these 14 additional experiments is given in Appendix C.
Figure 9 (upper panel) shows the comparison of diffusivity PV coefficients
calculated using Equation 27 (i.e., based on the FR experiments and our
theory) and Equation 42. The former coefficient we will call kFR0 and the latter
call kCR

0 . The parameters used for the calculation are shown in the lower panel
of Figure 9.

The results confirm the validity of the proposed formula 42. kFR0 and kCR
0 are

significantly correlated with a correlation coefficient of 0.9 significant with
>99% confidence. The distribution of kCR

0 is smoother than the distribution of
kFR0 . The values of kCR

0 in almost all control experiments are slightly less than
that kFR0 . The difference between the coefficients could be reduced by

Figure 7. Linear fit of coefficient k0 with 95% confidence interval; wind stress τ0 = 0.1 N/m2 (1‐st panel), wind stress
τ0 = 0.15 N/m2 (2‐nd panel), wind stress τ0 = 0.2 N/m2 (3‐rd panel), wind stress τ0 = 0.25 N/m2 (4‐th panel), wind
stress τ0 = 0.3 N/m2 (5‐th panel). Correlation coefficients are − 0.93, − 0.90, − 0.85, − 0.83, and − 0.81, respectively, all
significant with >99% confidence.

Figure 8. Dependence of mean k0 on wind stress and linear fit with 95%
confidence interval. Each data point is the result of average over 18
members. The correlation coefficient is 0.99, significant with
confidence >99%.
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allowing the parameter α to be a function of wind stress. There is a linear dependence kFR0 onD, but the regression
coefficient generally depends on the wind stress (see Figure 7).

5. Discussion and Conclusions
All schemes of eddy parameterization contain coefficients, which are the “free parameters”, that is, parameters
that cannot easily be specified from observations, theory, or eddy experiments. Any results providing us more
information about the magnitude of these coefficients (e.g., k0 in the diffusive PV parameterization), their space
and time variability, or their dependence on windstress and on bottom topography are valuable. There are a few
approaches that allow one to estimate or limit possible values of these coefficients. For example, integral con-
straints required the averaged coefficient k0 to be positive (see IZS). Marshall (1981) demonstrated that in a two
layer quasi‐geostrophic zonal channel with a flat bottom, the coefficient of diffusivity of PVmust be greater in the
lower layer than in the upper layer. Contrary to the flat bottom case, the coefficient of diffusivity of PV in the
upper layer must be greater than in lower layer, if the bottom topography deviation is high enough (Ivchenko
et al. (2013)). Integral constraints required dependence of the coefficient of PV diffusivity on topography
(Cummins (2000)).

The standard range of wind stress amplitude τ0 between 0.1 N/m2 and 0.3 N/m2 was applied to all types of
discussed topography. The contribution of wind stress in the zonal momentum equation is balanced by four terms
(Equation 17): topographic (bottom) form stress, viscous bottom friction, friction due to PV diffusivity, and by the
topographic form stress exerted by parameterized eddies βk0 (IZS). In most cases, the main balance takes place
due to topographic form stress, which is in agreement with the pioneering result of Munk and Palmen (1951) for
the ACC and modeling results by Ivchenko et al. (1996) and Stevens and Ivchenko (1997). The exceptions are the

Figure 9. Coefficients kCR
0 and kFR0 calculated for 14 additional Control experiments with random windstress and topography

parameters (upper panel); scatter plot of the coefficients kFR0 versus kCR
0 (middle panel); parameters, used in Control

experiments to calculate kCR
0 (lower panel). The correlation coefficient between kCR

0 and kFR0 is 0.9, significant with >99%
confidence.
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channels with small amplitude, smooth topography, when bottom friction ϵU or/and βk0 terms becomes
important. The contribution by PV‐diffusivity (3π2k0U/ (4L2)) is negligible. The relative importance of the four
balancing mechanisms depends on topography and wind stress amplitude.

Although many studies have assumed that the PV diffusion coefficient is a function of the mean flow, our study
adopts a complementary approach and investigates whether factors which are independent of the mean flow such
as the wind stress or the bottom topography can be used to constrain the diffusion coefficient.

We propose a new method for estimating the coefficient of diffusivity of PV based on a simplified model (CR)
and using a number of the eddy resolving experiments (FR). The main results of this study are the derivation of
two Equations 27 and 42. The former equation represents an analytical algebraic cubic equation, linking k0 with
the prescribed mean zonal velocity U (zonal transport) and wind stress τ0 as well as geometric and geophysical
parameters. This equation is developed for monoscale topography. Note, that this equation can be simplified to
the linear Equation 37 by neglecting many relatively small terms. This equation demonstrates the range of values
of k0 (for each topography, and wind stress): the smallest k0 = 0 which provides the highest value of the
transport, and the maximum kmax (expression 39) which provides zero zonal transport. The zonal transport
strongly depends on the value of k0. Choosing an incorrect value of k0 will lead to incorrect transport in a CR run.

Equation 42 is based on Equation 27, and on statistical analysis of ninety 100‐model year eddy‐resolving ex-
periments (5 values of the wind stress applied to 3 values of the topographic amplitudes and 6 values of the
Fourier modes). This analysis allows us to propose a linear relationship between k0 and wind stress τ0 and also a
linear relationship between k0 and a measure of topographic roughness,D (the R.M.S. of the zonal gradient of B).

To check the proposed parameterization, that is, Equation 42, a series of 14 additional experiments was performed
using the FRmodel. In these experiments, wind stress and topography differed from the parameters of the original
90 experiments. The results showed a good match of parameterized kCR

0 and kFR0 , that is, calculated using 27. Note
that there are limitations for use of Equation 42, since the parameters of k00 and α depend on the wind stress and
they need initial experiments to determine them. Equation 42 is an empirical relationship between the diffusion
and bottom roughness and wind stress.

Neglecting parameterization in the CR model, (k0 = 0) yields substantial deviations from FR experiments: the
difference is between a few percent and more than 100% (if c2 = 200 m, and wind stress is 0.3 N/m2). There are
no truncation errors in the horizontal expansion, since only Fourier modes represented in the bottom topography
contribute.

In this study, we revisited the problem of the eddy saturation. Many experiments with the FR model were
conducted for various types of bottom topography. For most types of bottom topography, there is an eddy
saturation regime. However, in channels with small amplitude and smooth topography, eddy saturation is not
observed (see Figure 2). We suggest this lack of saturation is due to fact that in this case an important role in
momentum balance is played by viscous bottom friction. The increase in windstress should lead to an increase in
the mean zonal velocity for balance, and accordingly, to the lack of saturation.

A new important problem will be addressed in a future study: a generalization of this study to baroclinic zonal
flows. The method proposed in this study can be generalized to the baroclinic two/three layer case. Mathematical
complications will probably not allow us to develop an analytical equation similar to 27. However, numerical
calculations will allow us to determine the vertical variability of coefficient of PV diffusivity as well as the
thickness diffusion coefficient in the Gent‐McWilliams scheme (Gent and McWilliams (1990)) based on the
statistical analysis of the eddy‐resolving models. Elucidating the dependence of these coefficients on wind stress
and bottom topography would be a significant step in oceanic modeling.

Appendix A: Special Form of the Coefficient k0
We assume no mass flux through the solid walls:

v| y=0,L = 0. (A1)

We also assume no QGPV flux through the walls:

Journal of Geophysical Research: Oceans 10.1029/2024JC021912

IVCHENKO AND SINHA 16 of 21

 21699291, 2025, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JC

021912 by T
est, W

iley O
nline L

ibrary on [30/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



vʹqʹ | y=0,L = − (k ∂q
∂y
)| y=0,L = 0. (A2)

Condition A2 can only be satisfied if k is zero on the solid walls, because of the presence of the planetary vorticity
gradient β in the expression for the meridional gradient of QGPV, that is, on the boundaries ∂q

∂y cannot be zero;
therefore, k must be zero. Hence, we specify the following form of the coefficient k:

k = k0 {1 + e(− L/Δ) − e(− y/Δ) − e( y− L)/Δ}, (A3)

where Δ is the width of thin boundary layers, Δ≪ L, and k0 is a constant.

k is almost constant in the domain but quickly drops to zero on the side walls. The difference between k and k0 at
any point of the domain will be small by choosing Δ to be small enough except on the solid boundaries,
where k = 0.

Appendix B: The Boundary Conditions for the Mean Zonal Velocity
The mean zonal velocity U⋆, required boundary conditions on the walls, that is, y = 0,L. Charney et al. (1981)
for an atmospheric zonal channel justified the mean zonal velocityU being constant over the channel but vanish at
its boundaries. For an oceanic zonal channel, where the main forcing is a wind stress Marshall (1981) demon-
strated that mean zonal velocity on their boundaries vanishes, if wind stress vanishes and if this velocity is zero
initially.

Charney et al. (1981) and IZS used this condition, and in their mathematic treatment, they integrated the
meridional gradient of U multiplied by the cosine of the meridional coordinate:

∫

L

0

∂U
∂y

cos(πy/L) dy. (B1)

However, U is not a continuous and differentiable variable over y because it jumps to zero at y = 0,L
and cos(πy/L) = ±1.

If it is assumed (as the previous authors did) that ∂U
∂y = 0 in B1 there is an inconsistency, since

∫

L

0

∂U
∂y

cos(πy/L) dy =∫
L

0

∂
∂y
{cos(πy/L)U}dy + π/L∫

L

0
U sin(πy/L)dy. (B2)

The first integral on the R.H.S. of B2 equals zero, since U is zero on the walls, but the second integral is not zero.
To solve this problem, we suggest to use the following form of U⋆:

U⋆ = U{1 + e(− L/Δ) − e(− y/Δ) − e( y− L)/Δ}, (B3)

where Δ≪ L and U is a constant. U⋆ is differentiable on this interval. U⋆ is almost constant in the domain but
quickly drops to zero on the side walls. The difference betweenU andU⋆ at any point of the domain will be small
by choosing Δ to be small enough, except on the solid boundaries, where U⋆ = 0.

Appendix C: Coefficients k0 (m2/ s) Averaged over Windstress
1. k0 for topography C1 = 100m: 505.9
2. k0 for topography C2 = 100m: 636.4
3. k0 for topography C3 = 100m: 755.2
4. k0 for topography C5 = 100m: 460.9
5. k0 for topography C6 = 100m: 411.7
6. k0 for topography C7 = 100m: 317.5
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7. k0 for topography C1 = 200m: 777.2
8. k0 for topography C2 = 200m: 704.7
9. k0 for topography C3 = 200m: 357.2

10. k0 for topography C5 = 200m: 267.2
11. k0 for topography C6 = 200m: 160.9
12. k0 for topography C7 = 200m: 84.1
13. k0 for topography C1 = 300m: 722.7
14. k0 for topography C2 = 300m: 306.1
15. k0 for topography C3 = 300m: 123.5
16. k0 for topography C5 = 300m: 50.6
17. k0 for topography C6 = 300m: 46.6
18. k0 for topography C7 = 300m: 27.2

Appendix D: Developing a Linear Expression Linking k0 and U
Equation 27 after neglecting of the cubic and the quadratic terms of k0 and also after neglecting of the 3‐rd–5‐th
terms in (30) can be rewritten as

U3E1 + U2Σ4
i=2Ei + UΣ13

i=5Ei + Σ22
i=14Ei = 0, (D1)

where

E1 = 48Hϵn2π2
/Lx, (D2)

E2 = − 24HLxϵβ, (D3)

E3 = − 12τ0ρ− 10 π3n2
/Lx, (D4)

E4 = 48k0Hβn2π2
/Lx, (D5)

E5 = 3HL3
xϵβ

2
/ (n2π2), (D6)

E6 = 12HLxϵ3, (D7)

E7 = 6HL3
xϵ

3
/ (L2n2), (D8)

E8 = 3HL5
xϵ

3
/ (4L4n4), (D9)

E9 = 6τ0ρ− 10 πLxβ, (D10)

E10 = 4f 20 ( c
2
n + d2

n)ϵLx/H, (D11)

E11 = f 20 ( c
2
n + d2

n)ϵL
3
x/(Hn2L2), (D12)

E12 = 4k0 f 20 π
2 ( c2n + d2

n) Lx/(HL2), (D13)

E13 = − 24k0HLxβ2, (D14)

E14 = − 3τ0ρ− 10 L3
xβ

2
/ (4n2π), (D15)

E15 = 3τ0ρ− 10 πLxϵ2, (D16)

E16 = − 3τ0ρ− 10 πϵ2L3
x/(2L

2n2), (D17)

E17 = − 3τ0ρ− 10 πLx
5ϵ2/ (16L4n4), (D18)
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E18 = 4k0 f 20 ( c
2
n + d2

n)βLx/H, (D19)

E19 = 3k0HL3
xβ

3
/ (n2π2), (D20)

E20 = 12k0HLxβϵ2, (D21)

E21 = 6k0HL3
xβϵ

2
/(L2n2), (D22)

E22 = 3k0HL5
xβϵ

2
/ (4L4n4). (D23)

The member |U3E1| is much smaller compared with the modulus of all the other terms: usually 3 or 4 orders of
magnitude less than the biggest and not higher than 0.03. The term |U2Σ4

i=2Ei| is also smaller than the other terms.
Usually, this term is a few percent of the biggest terms. Its contribution is highest for the small amplitude
topography (cn = 100 m) but no more than 0.24. For highest accuracy, one can use all the terms without
neglecting the smallest or even use the basic cubic equation relative to k0 (i.e., 27). However for our purposes
(linear link between U and k0) neglecting of terms proportional to U3 and U2 is reasonable and Equation D1 can
be rewritten as Equation 37.

Appendix E: Additional (Control) Experiments With Random Windstress and
Topography

Exp.1: topography c3 = 150 m,τ0 = 0.22 N/m2..

Exp.2: topography c5 = 250 m,τ0 = 0.18 N/m2.

Exp.3: topography c2 = 275 m,τ0 = 0.27 N/m2.

Exp.4: topography c1 = 225 m,τ0 = 0.13 N/m2.

Exp.5: topography c6 = 180 m,τ0 = 0.17 N/m2.

Exp.6: topography c4 = 240 m,τ0 = 0.12 N/m2.

Exp.7: topography c7 = 120 m,τ0 = 0.27 N/m2.

Exp.8: topography c2 = 160 m,τ0 = 0.18 N/m2.

Exp.9: topography c3 = 230 m,τ0 = 0.17 N/m2.

Exp.10: topography c1 = 180 m,τ0 = 0.22 N/m2.

Exp.11: topography c2 = 120 m,τ0 = 0.16 N/m2.

Exp.12: topography c4 = 190 m,τ0 = 0.17 N/m2.

Exp.13: topography c5 = 210 m,τ0 = 0.21 N/m2.

Exp.14: topography c1 = 120 m,τ0 = 0.18 N/m2.

Data Availability Statement
The code and input files required to enable the reader to reproduce the results we present are available online
(Sinha and Ivchenko (2022)).
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