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Onset of strong Iceland-Scotland overflow
water 3.6 million years ago
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North Atlantic DeepWater (NADW), the return flow component of the Atlantic
Meridional Overturning Circulation (AMOC), is a major inter-hemispheric
ocean water mass with strong climate effects but the evolution of its source
components on million-year timescales is poorly known. Today, two major
NADW components that flow southward over volcanic ridges to the east and
west of Iceland are associated with distinct contourite drift systems that are
forming off the coast of Greenland and on the eastern flank of the Reykjanes
(mid-Atlantic) Ridge. Herewe provide direct records of the early history of this
drift sedimentation based on cores collected during International Ocean Dis-
covery Programme (IODP) Expeditions 395C and 395. We find rapid accel-
eration of drift deposition linked to the eastern component of NADW, known
as Iceland–Scotland OverflowWater at 3.6 million years ago (Ma). In contrast,
the Denmark Strait Overflow Water feeding the western Eirik Drift has been
persistent since the LateMiocene. These observations constrain the long-term
evolution of the two NADW components, revealing their contrasting inde-
pendent histories and allowing their links with climatic events such as North-
ern Hemisphere cooling at 3.6Ma, to be assessed.

The North Atlantic Current (NAC) carries warm high-salinity waters
from theGulf Stream to the European continentalmargin. Someof this
watermass penetrates as far north as theNorwegian Sea,where it loses
residual heat, densifies and facilitates down-welling to form a cold,
deep return flow across the Iceland-Scotland Ridge known as
Iceland–Scotland Overflow Water (ISOW) (Fig. 1a). Bottom-water
contour currents, so-called because they roughly flow along seafloor

contours based on their density, are directed by bathymetry and
deflected by the Coriolis effect. Consequently, ISOW initially flows
south along the eastern flank of the Reykjanes Ridge, then crosses the
ridge in deep fracture zones to turn north into the western North
Atlantic. Here it meets the Denmark Strait Overflow Water (DSOW), a
cold deep-water current that flows south from the Arctic and through
the Denmark Strait between Greenland and Iceland (Fig. 1a). The two
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currents combine and flow into the Labrador Sea to produce North
Atlantic Deep Water (NADW). Taken together, the system of warm
saline surface waters that flow northward, cool and sink, before
returning southward as NADW is known as the Atlantic Meridional
Overturning Circulation (AMOC).

The dynamics of the AMOC are highly sensitive to changes in
temperature, salinity, sea ice cover, and seafloor topography1,2. Past
changes in AMOC have been linked to both long- and short-term cli-
matic oscillations, with NADW transport thought to have been stron-
ger during interglacial periods as well as in the warm Early Pliocene3,4,
although several lines of evidence predict a weakening of the AMOC
under current and future global warming5,6. This apparent contra-
diction demonstrates the need to study past archives of NADW for-
mation and dynamics, especially those with warmer-than-modern
climate boundary conditions.

The configuration of bottom water currents in the North Atlantic
accounts for the highly asymmetric nature of sediment accumulation
across major sub-basins, which is particularly evident south of Iceland

at ~60oN (Fig. 1b). Contourite drifts are rapidly accumulating sediment
bodies formed under the influence of bottom currents, deposited in a
semi-continuous process7 (Fig. 1). The largest such deposits in the
North Atlantic are the Eirik Drift, deposited byDSOWalong the eastern
continental margin and southern tip of Greenland, and the Björn and
Gardar Drifts, deposited by branches of ISOW on the eastern flank of
the Reykjanes Ridge (Fig. 1). The rapidly accumulating drifts preserve
high resolution sedimentary archives of current strength, ice rafting,
and climate throughmuch of the Pleistocene (last 2.6million years), as
cored on previous Ocean Drilling Program (ODP) expeditions8–10.
However, the most deeply buried drift sediments were not previously
recovered by ocean drilling, leading to uncertainty as to the pre-
Pleistocene development of this component of the NADW system.

This knowledge gap has now been filled by the recovery of sec-
tions through all of the major North Atlantic ISOW and DSOW con-
tourite drifts to the south of Iceland. These successions were
recovered in five drill sites along a latitudinal transect at ~60°N during
International Ocean Discovery Programme (IODP) Expeditions 395C

Fig. 1 | Ocean circulation, bathymetry, and boreholes in the North Atlantic
Ocean and Nordic Seas. Coloured shaded circles = Expeditions 395C and 395
sites; black dots = Ocean Drilling Program sites. a Map: Grey shading = areas
< 500m below sea level; pink/blue arrows = near-surface / deep-water overflow
paths, respectively (ref. 57); brown polygons = selected contourite drifts

(ref. 12); DS = Denmark Strait; DSOW= Denmark Strait Overflow Water; ISOW =
Iceland–Scotland Overflow Water (dark blue arrows); ISR = Iceland–Scotland
Ridge; NAC = North Atlantic Current; NADW = North Atlantic Deep Water.
b Plate spreading flowline transect intersecting 395/395C sites, based on seismic
reflection profile (ref. 41); grey shading = sediment.
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and 39511. Fromwest to east, these sites are U1602 (Eirik Drift; ~2710m
water depth), U1563 (a western extension of Björn Drift; ~1417m),
U1554 (centre of Björn Drift; ~1870 m), U1562 (eastern flank of Björn
Drift; ~2003 m), and U1564 (centre of Gardar Drift; ~2208m). The full
thickness of the sedimentary packages at these sites was cored to
basaltic basement (or, in the case of Site U1602, very close to it)
(Fig. 1b). Site U1602 on Eirik Drift records the history of sedimentation
from DSOW. The four eastern sites record sedimentation related to
branches of ISOW, with Sites U1554, U1562 and U1564 being situated
well within the modern depth range of ISOW for the Björn ( ≥ 1400m)
and Gardar drifts (~2000–2700 m), respectively12,13. Other sites pre-
viously drilled in the North Atlantic region provide important context
for the transect (Supplementary Fig. S1; and Table S1). Specifically,
ODP Site 982 (~1134m) on the Rockall Plateau, a bathymetric high to
the east of the study sites and above the influence of deep bottom
currents provides a long-term non-drift control on regional pelagic
sedimentation driven by biologic productivity (Fig. 1a). The Expedi-
tions 395C and 395 drill cores provide a wealth of information relating
to both the ‘onset’ and ‘intensification’ of Northern Hemisphere Gla-
ciation which are dated to ~3.6 and ~2.7Ma, respectively (see ref. 14 for
discussion and definition of these terms).

Results
The cored records from Expedition 395C and 395 indicate a variety of
changes in sedimentation at ~3.6Ma (Fig. 2; and Supplementary
Figs. S2–S5). At Eirik Drift (Site U1602), a shift in sedimentation is seen
as a reduction in carbonate content and an increase in biosilica in the
rapidly accumulating drift deposit. In contrast, all investigated sites to
the east of the Reykjanes Ridge transitioned from carbonate-rich
sediment ranging from nannofossil ooze to silty clay with carbonate
into darker, siliciclastic-dominated silty clays (Fig. 2a). Sediment
accumulation rates increased from ~20–40m/Myr before 3.6Ma to
~100–200m/Myr (Fig. 2b) in concert with the lithological transition.
The Björn drift sites (Sites U1563, U1554, and U1562) have one or more
discordances at this stratigraphic level that are evidenced in the cores
by broken-up hardgrounds, glauconite pellets, grains coated in authi-
genic minerals, as well as reworked and oxide-stained microfossils
(Supplementary Fig.S7 and Supplementary information). These
reworked microfossils have been linked to resuspended lithic grain
transport related to strong ISOW currents both in the Icelandic slope
and the deeper parts of the Iceland Basin12,15. Furthermore, our age
models for these sites reveal hiatuses of varying duration, which we
interpret to have been caused by erosive down-cutting and a dia-
chronous resumption of sedimentation (Fig. 2 and Supplementary
Fig. S8). Such hiatuses in the northeastern Atlantic have been pre-
viously attributed to the erosional activity of Norwegian-Greenland
Sea-sourced deep currents16. At the Gardar Drift Site U1564 the sedi-
ment record is apparently continuous, but is marked by a sharp
increase in sedimentation rate and a change from sedimentary cycles
that are thinner (~1m), lighter in colour and more carbonate-rich
(~20–60wt%) to ones which are thicker (~4m), darker and more clay-
rich (~10–20wt%) (Fig. 3; and Supplementary Figs. S7, and S9).

Cyclic changes inmagnetic susceptibility of the sedimentary record
at Site U1564 primarily reflect relative variations in carbonate versus
detrital composition of the sediments. The biomagnetostratigraphic age
control of the continuous sedimentation record (Supplementary
Fig. S10) reveals that this cyclicity is pacedpredominantlybyvariations in
obliquity. This cyclicity allowed us to develop a highly-resolved astro-
nomical age model for the site (Fig. 3; and Supplementary Figs. S11–14)
whichdates thebeginningof themajor increase in sedimentation rates at
3.6Ma, in good agreement with the available records of sedimentation
rate and age of hiatuses from the Björn Drift sites which span between
~3.8–2.8Ma. (Fig. 3, and Supplementary Figs. S13–14).

The complete stratigraphic record through the base of the Gardar
Drift at Site U1564makes it especially valuable for investigating details

of the sedimentary transition, forwhichweuse 5-cm resolution (~0.5 to
1 kyr temporal resolution) elemental ratios obtained from X-Ray
Fluorescence (XRF) core scanning. Widely used proxies are (i) Ca/Fe,
which reflects the relative contributions of biogenic carbonate to ter-
rigenous sediment17,18 (Fig. 3a); (ii) Zr/Rb, which reflects the silt com-
ponent and relates to bottom current speed because Zr is enriched in
the coarser grained sediment and Rb occurs mainly in clays17,19

(Fig. 3b); and (iii) Ti/K, which reflects the southward transport of
Iceland-sourced grains in this area. Sediments with high Ti con-
centrations are commonly linked to basaltic compositions eroded
from Iceland and the Iceland-Scotland Ridge, whereas high K con-
centrations are mostly present in grains frommore widely distributed
continental (felsic) sources (Fig. 3c)20–23. These three ratios are shown
in Fig. 3 through the time window 5–2Ma alongside the magnetic
inclination, the magnetic susceptibility record used for the construc-
tion of the astronomical age model and the obliquity tuning target.

The elemental ratios indicate a consistent pronounced transition
in lithology that initiated at 3.6Ma. While this was contemporaneous
with the increase in sedimentation rate, the full change in sediment
character took ~300 ky to complete. The decrease in Ca/Fe during this
transition reflects the increasing dominance of terrigenous (drift) over
carbonate (pelagic) sediment (Fig. 3a). The Zr/Rb proxy shows both a
general increase in ratio and reduced amplitude variability suggesting
an important change in the size and/or source of the eroded lithogenic
grains, and therefore possibly reflecting the arrival of a new con-
tinuously strong bottom current regime (Fig. 3b). The Ti/K proxy has a
similar character to Zr/Rb, mainly indicating a change in sediment
source towards more basaltic grains at times of strengthened bottom
currents (Fig. 3c). We note also that a second regime change in the
sedimentary characteristics and cyclicity occurs at 2.7Ma (Fig. 3),
related to the well-known Northern Hemisphere glacial
intensification14. At Eirik Drift Site U1602 the Zr/Rb shows no sustained
trend or change in amplitude at 3.6Ma, in good agreement with the
lithological observations (Fig. 2a).

In summary, evidence from erosion / deposition, sedimentation
rate changes and lithology all suggest that a profound change in the
configuration of sediment accumulation patterns occurred across the
eastern flank of the Reykjanes Ridge at 3.6Ma. The change can be
characterised as a transition from slow pelagic sedimentation to rapid
contourite deposition. The contrast is more marked at the Björn Drift
sites (U1563, U1554 and U1562) where widespread erosion and non-
deposition defines the base of the drift. In contrast, Gardar Drift does
not have a strongly erosive base at Site U1564, but pronounced
increases in terrigenous-dominated sediment accumulation (exceed-
ing 100m/Myr) mark the onset of drift formation. This sedimentary
evidence indicates a sustained increase in both southward flowing
bottom current speeds and north-to-south transport, bringing more
Icelandic material to the study sites at ~60 °N.

Discussion
The combined evidence from the Expedition 395C and 395 drill cores
can be explained if ISOW, currently a significant deep-water mass that
dominates sedimentation patterns in the eastern North Atlantic,
effectively switched on, or at least drastically intensified, at 3.6Ma,
with its influence likely growing for the following ~300 kyr. Such an
interpretation assumes the entire ISOW current intensifies, and that
theobserved change indrift sedimentation is not related to a change in
depth of ISOW13. The observation that the sedimentary change occurs
in several sites spanning different palaeodepths over a large distance
strengthens our interpretation that our observations are related to a
large-scale palaeoceanographic change, and not a subtle change in the
depth of ISOW. Although deep-water currents presumably flowed
along similar routes formillions of years prior to the transition24,25, they
were insufficiently high or sediment laden to achieve for the accu-
mulation rates observed after 3.6Ma (Fig. 2b). The switch was not

Article https://doi.org/10.1038/s41467-025-59265-5

Nature Communications |         (2025) 16:4323 3

www.nature.com/naturecommunications


a Eirik
Drift

Björn
Drift

Gardar
Drift

Rockall
Plateau

Björn Drift flank (U1562)
Björn Drift centre (U1554) 
Gardar Drift (U1564)
Rockall Plateau (982)

Hiatus

Glauconite

Onset ice 
rafted debris

Siliceous
microfossils

Silty clay

Nannofossil
ooze

Nannofossil
silty clay

Silty clay 
+ carbonates

U1602 U1563 U1554 U1562 U1564 982

5.0 Ma

3.6 Ma

2.7 Ma

2.0 Ma

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

50

100

150

200

250

Se
di

m
en

ta
tio

n 
ra

te
s

(m
/M

yr
)

b

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time (Ma)

0

50

100

150

200

250

Se
di

m
en

ta
tio

n 
ra

te
s

(m
/M

yr
)

c

Eirik Drift (U1602) 

Fig. 2 | Lithology and sedimentation rates. a Simplified lithological columns
spanning 5–2Ma from sedimentological descriptions (Supplementary informa-
tion) and physical properties (Supplementary Fig. S15). Depth-to-age conversion
based on age models (from magnetostratigraphic datums) generated during
Expeditions 395 and 395C, and smoothed astronomically-tuned age model for
Ocean Drilling Program (ODP) Site 982 (Supplementary information and ref. 54).
Indicated are dominant lithology (colour and pattern fill), main sedimentological
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recorded at ODP Site 982 because it is situated on a bathymetric high
(~1134m water depth) above the influence of ISOW. In contrast, our
record of constantly rapid siliciclastic sedimentation at Site U1602 on
Eirik Drift indicates that DSOW operated constantly throughout the
Pliocene. The decrease in biogenic carbonate and increase in siliceous
microfossil abundance at Site U1602 (Fig. 2a) are similar to the record
previously obtained at ODP Site 6469 located near the southern end of
Eirik Drift (Fig. 1a). These lithological changes may denote a coeval

change in plankton ecology from carbonate producers (coccolitho-
phorids and foraminifera) to silica producers (diatoms and radiolaria),
and/or an increase in silica preservation.

An intensified ISOW at 3.6Ma is consistent with earlier sugges-
tions that the strongest Pliocene NADW formation occurred between
~3.6–2.7 Ma26. This suggestion is based on the reduced benthic δ13C
gradient (Δδ13C) between the North and South Atlantic Oceans. Addi-
tionally, a period of intense deep-ocean ventilation related to
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strengthened Pliocene thermohaline circulation has been proposed to
reach a maximum at 3.6Ma, based on equatorial Atlantic δ13C
records27. However, that study shows a weakening in NADW immedi-
ately after 3.6Ma lasting until ~3.4Ma, in contrast with the period of
increasing ISOW influence we propose. Another study suggests a
broad-scale AMOC weakening between ~3.8–3.0Ma based on a
reduced δ18Oseawater gradient between the North and South Atlantic
Oceans28. Regarding the upper water column, sea surface temperature
(SST) proxy records and temperature gradients from several high-
latitude North Atlantic sites do show the expected signature of
strengthened northwards heat transport during the Late Pliocene,
while others show the opposite trend, and no sustained, unidirectional
change is observed across the transition to a stronger ISOW state. High
northern latitude sites such as ODP 982 (~58°N) and ODP 907 (~69°N),
both record an increase in North Atlantic SST between ~3.6–3.4Ma
(ref. 29 and references therein). Similarly, a decrease in North Atlantic
SST latitudinal gradient (41–58°N) is observed between 3.7–3.4 Ma29

and could suggest stronger NAC activity. On the other hand, pro-
nounced SST cooling between 3.65 and 3.50Ma has been reported at
ODP Site 642 on the elevated Vøring Plateau29,30 (~67°N), and at ODP
Site 61031 (~53°N) with the latter being suggested to reflect an AMOC
weakening.

The classic Panama hypothesis links the closure of the Central
America Seaway (CAS) starting at ~4.6Ma to an AMOC strengthening,
and associated increase in humidity transport towards the Arctic,
acting as a precondition for the growth of continental ice sheets at
2.7Ma27,32. Our ISOWrecords shows that at least one of themainNADW
components intensified within this 4.6 to 2.7 Ma time interval, indi-
cating that crossing a climatic threshold linked to this mechanistic
chain could support AMOC strengthening and the onset of Arctic
glaciation at 3.6Ma.However, issues remainwith the timing of the CAS
closure, which has been described to involve a broad spectrum of
definitions (underwater collision to surface water exchange), as well as
highly variable age estimates for its various stages ranging from
~10–2.8 Ma27,33–37. Additionally, modelling studies suggest that CAS
closure would have led to the warming of the high Northern latitudes
due to increased AMOC strength38 which would counteract Arctic
glaciation instead of promoting it. With DSOW showing no intensifi-
cation and lack of Pliocene data from the Labrador Sea, extrapolating
ISOW results to larger scale changes of the AMOC activity should be
done with caution and integrated with basin-wide changes in surface
circulation and deep-water ventilation.

Other potential forcingmechanisms for the ISOW initiation include
gradual changes in ocean basin topography and gateways caused by
plate boundary reorganisation. Among relevant gateway changes, it has
been suggested that the Iceland mantle plume transitioned to a lower
buoyancy flux mode between ~6–2.5Ma, reducing regional dynamic
(i.e., sub-plate) support and lowering sill depth across both theDenmark
Strait and Iceland–Scotland Ridge39–41. This proposed reduction in
mantle plumebuoyancy flux began too early to explain the abrupt ISOW
intensification at ~3.6Ma, although it could perhaps have been a pre-
condition for ISOW formation. Similarly, both the Bering42 and Fram43

straits were already open long before 3.6Ma, with the latter allowing
deep outflow from the Arctic to the Nordic Seas.

A possible climatic driver of the ISOW intensification is Arctic
cooling itself, which could have been independent of the CAS closure
and perhaps driven by a broad-scale greenhouse gas decline44. This
CO2 decline may have cooled the Norwegian Sea towards a tipping
point that accelerated down-welling and ISOW, which then reinforced
cooling. Conclusive testing of such hypotheses requires modelling of
Atlantic palaeobathymetry combined with more detailed and wide-
spread proxy records, especially SST and salinity records from the
North Atlantic, aswell as reconstruction of the Labrador SeaWater as a
remaining major contributing component of NADW. Future multi-
proxy work across the newly recovered Expedition 395C and 395

transect will add geographic and temporal coverage to help resolve
these issues.

In summary, thefirst sedimentary records topenetrate through all
themajor North Atlantic contourite drifts firmly establish the initiation
of a strong ISOW at ~3.6Ma against the sustained long-term operation
of DSOW. In addition, we note a close coincidence in timing of ISOW
intensification with the onset of Northern Hemisphere Glaciation.
More generally, we demonstrate that the western (DSOW) and eastern
(ISOW) components of NADW have contrasting histories, underlining
the need to regard them as potentially independent actors in driving
and responding to climate change.

Methods
Sedimentology
Lithologic descriptions were based on visual core inspection and
smear slide analysis. The principal lithologic namewas assigned on the
basis of the relative abundance of terrigenous clastic and biogenic
grains. Sediments with > 50 percent terrigenous grains were classified
basedon thedominant terrigenous grain size, indicatedby thename. A
preceding modifying name was used if a different grain size compo-
nent contributes at least thirty percent of the terrigenous sediment. A
component with 10 to 29 percent is indicated by addition of the
modifier ‘with …’, e.g., silty clay with carbonate. Minor sedimentary
components ( < 10 percent) were not included in the name. Sediments
with > 50 percent biogenic material were classified as oozes, modified
by the most abundant specific biogenic component or carbonate/
biosilica if they were both present. Additional components comprising
30 to 49 percent of the sediment preceded the primary ooze name. As
with the terrigenous sediment,’with‘ was used for a minor (10 to 29
percent) component. For example, silty clay with carbonate contains
70 percent silty clay and 10–29 percent carbonate tests, which could
be as low as eight percent nannofossils and two percent foraminifera.

Physical properties
Magnetic susceptibility (MS) was measured point-wise on split core
sections using a Bartington Instruments MS2E point sensor (2.0 or
2.5 cm resolution). MS measurements are reported as Instrumental
Units (IU) as the core mass is not measured prior to data acquisition
and the internal volume cannot be determined until core is split. The
correction for the volume does not change the order of magnitude of
the measured susceptibility values, so the results are comparable with
the susceptibilitymeasuredby the palaeomagnetismequipmentwhich
reports data using SI units.

XRF scanning
X-Ray fluorescence (XRF) derived elemental ratios were calculated
from elemental intensities, which were measured in core-section half
using the Avaatech XRF Core Scanners of the IODP Gulf Coast Repo-
sitory for Site U1564 and the Institute of Geophysics and Planetary
Physics at Scripps Institution of Oceanography for Site U1602. For each
core-section, three energies (10, 30, and 50 keV) weremeasured for the
spliced interval of Holes U1564C-D-E and U1602D at a resolution of
5 cm. All samples that had positive Ar counts as measured in the 10 keV
run were removed as Ar counts larger than zero were interpreted as an
indication for bad contact between the core surface and XRF sensor.
The Ar correction was not applied for the Site U1602 record as the
detector used has a different sensitivity compared to the instruments
used for scanning the other sites. The natural logarithm (ln) of three
elemental ratios, namely Ca/Ti, Zr/Rb and Ti/K, are used as indicators
of the relative contribution of carbonate to terrigenous material, bot-
tom current strength andmineral grain sources, respectively. The ratio
of Ti/Ca has been widely used to infer the relative dominance of ter-
restrial processes over carbonate production in the water column17,18.
In cases where sediment is current sorted, as in drift and glaciomarine
deposits, Zr/Rb and Zr/Al have been shown to reflect bottom current
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strength and grain size (e.g., refs. 17,19). In our study area, the ele-
mental ratios between Ti and K have been shown to reflect the grain
source of basaltic, Iceland-derived sediment grains, and to infer
stronger ISOWduring interstadials (e.g., ref. 23 and references therein).

Downhole logging
Downhole magnetic susceptibility (MSS-B) and natural gamma radia-
tion (HNGS tool) were collectedwith the triple combination tool string
in open hole after coring operations had concluded. The MSS-B tool
incorporates a single-coil electric inductor sensor that when posi-
tioned against the boreholewall is capable ofmeasuring inductance as
affected by the volume susceptibility of the formation over the volume
of investigation. The MSS-B tool provided ~40 cm vertical resolution
measurements with a ~20 cm depth of horizontal investigation. The
magnetic susceptibility is recorded in Instrument Units (IU) every
2.5 cm. TheMSS-B tool is designed to have a similar response function
as the Barington Instruments whole round sensor used on the whole
round multisensor core logger to allow meaningful comparison
between the two measurements as well as with the susceptibility
measured by the palaeomagnetism equipment. The HNGS tool uses
two bismuth-germanate (BGO) scintillation detectors to measure the
natural gamma radiationof a formation (HSGR),measured inAmerican
Petroleum Institute units (gAPI). The HNGS tool provides data at a
vertical resolution of 30.48 cm and has a depth of investigation of
61 cm. The data were collected at a 15 cm sampling rate.

Palaeomagnetism
Shipboard palaeomagnetic investigations were used to determine
directions of natural remanent magnetisation components and to
identify downhole variation of magnetic polarities. Palaeomagnetic
measurements were carried out on archive half-core sections at a
resolution of 2.5 cm with in-line stepwise alternating field (AF)
demagnetisation generally up to 25 or 30 mT on a 2G Enterprises
Model-760R-4K superconducting rock magnetometer equipped with
direct-current SQUIDs and an in-line, automated AF demagnetiser.
Additionally, oriented discrete samples (7 cm3 Natsuhara-Giken cubes;
8 cm3 cut cubes) were collected fromworking-half sections to confirm
thepolarity changes. StepwiseAFdemagnetisationwas imparted using
a DTECH (model D-2000) AF demagnetiser up to 45 mT for the low-
coercivity samples, and up to 100mT for high-coercivity samples. The
remaining magnetisation was measured on a spinner magnetometer
(AGICO, model JR-6A) after each step. In most cases, after the removal
of a drilling overprint up to 10mT, a stable and primarymagnetisation
was successfully isolated. For determining the magnetic polarities in
eachhole, inclination data at themaximumdemagnetisation stepwere
used from archive-half sections, while discrete sample data were ana-
lysed by principal component analysis using a Fisherian statistic45 to
isolate the characteristic remanent magnetisation46 using the Puffin-
Plot software47. The magnetostratigraphy was inferred by correlating
the magnetic polarities with the reference geomagnetic polarity time
scale using Table 5.3 (p. 166) of ref. 48.

Biostratigraphy
The biostratigraphy was based on calcareous nannofossils and plank-
tonic foraminifer assemblages taken from core catcher and in-section
samples. Analyses focused on the identification of biostratigraphic
horizons (biohorizons) that have been previously assigned absolute
ages based on calibrations from other sites, referenced to the
palaeomagnetic reversal sequence or astronomical timescales. Tables
of biohorizon depths and calibrated biohorizon ages are given in the
Supplementary Information. Calcareous nannofossil biohorizons were
determined using standard smear slide preparations, which were
examined with transmitted light microscopy. Biohorizon age assign-
ments follow the latest compilation of ref. 49. Planktonic foraminifers
were extracted from sample volumes of 10 or 20 cm3, using standard

disaggregation techniques and then washing over 63 μm sieves. Dried
residues of the > 63 μm were examined using a binocular stereo-
microscope. Planktonic foraminifera biohorizons, based principally on
previous high latitude biozonations of refs. 50,51 with elements of the
standard (sub)tropical biozonation of ref. 52 as updated by ref. 49).
Where necessary, planktonic foraminifera biohorizon ages were re-
calibrated to the GPTS using Table 5.3 (p. 166) of ref. 48 and ref. 53
taking into account the errors produced by the sampling resolution of
the biostratigraphy and palaeomagnetics of the original data.

Age models
For each site, the palaeomagnetic and biostratigraphic data were col-
lated on the common geological time scale using Table 5.3 (p. 166) of
ref. 48modified to include palaeomagnetic reversal ages of ref. 53. Age
models (Supplementary information) for the sedimentary successions
of at least one hole at each site were constructed using shipboard
palaeomagnetic and biostratigraphic age constraints, which were
interpreted alongside information from sedimentology, physical
properties and seismic lines. Age–depth plots were used to determine
a series of age model ‘tie points’ between which linear interpolations
were made, as well as identifying the depth levels of possible hiatuses
or zones of mixed sedimentation and/or slumping. Where the
palaeomagnetic records are relatively clear and unambiguous, and
consistent with the biostratigraphic data, each well-defined palaeo-
magnetic reversal was used as a tie point.

Cyclostratigraphy
Constructionof an astronomical agemodelwasbasedon the correlation
of the relative variability of the magnetic susceptibility signal with the
LR04 stack (ref. 54) and astronomical solutions of precession and obli-
quity from ref. 55. The relative phase relationships were determined
based on the stratigraphic correlation of the MS profile of the Site
U1564 splicewith theoverlapping stratigraphyof thewell-studied lowest
hole of ODP Hole 983C (ref. 56), further supported by palaeomagnetic
data. The phase relationships are as follows: high values in MS corre-
spondingwithmorepositivebenthic foraminiferaoxygen isotopevalues
(glacial periods) and relative minima in obliquity. See Supplementary
information for a detailed description of the tuning process, tuning
figures (Supplementary Figs. S11–S14) and Site U1564 astronomically
tuned age-depth table (Supplementary information).

Data availability
The shipboard core and wireline logging data have been deposited in
the International Ocean Discovery Programme, JOIDES Resolutions
Science Operator LIMS database under public accession code https://
web.iodp.tamu.edu/LORE/. The XRF elemental data for Site U1602
have been deposited in the public Zenodo database under accession
code https://doi.org/10.5281/zenodo.15065343. The IRD and glauco-
nite grain estimates based on palaeontological residues, and U1564
astronomical tuning tie points generated in this study are provided as
Supplementary data.
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