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Andrej Stroj 1 , Jasmina Lukač Reberski 1,* , Louise D. Maurice 2 and Ben P. Marchant 2

1 Croatian Geological Survey, Milana Sachsa 2, 10000 Zagreb, Croatia; astroj@hgi-cgs.hr
2 British Geological Survey, Nicker Hill Road, Keyworth, Nottingham NG12 5GG, UK;

loma@bgs.ac.uk (L.D.M.); benmarch@bgs.ac.uk (B.P.M.)
* Correspondence: jlukac@hgi-cgs.hr

Abstract: This study assesses the functioning of the karst aquifer system located on the
Croatian coast of the Adriatic Sea, where saltwater intrusion often presents a major problem
for freshwater supply. We use two years of sensor data collected from two coastal springs
to conduct a range of time-invariant and time-variant statistical analyses over various
timescales. We perform separate analyses of the within-day and longer-term variation in
the data as well as the interactions between the spring levels, salinity, rainfall, and sea levels.
Such comprehensive analyses provide a greater understanding into the inner functioning
of the intricate, heavily karstified aquifers. Time-invariant time-series analyses of the
hourly data indicate that the spring levels and salinity are strongly controlled by sea levels.
Furthermore, time-variant wavelet analyses demonstrate that the variation in spring levels
in both springs has two modes defined by flow regime. Increases in the delay of the spring
response to sea level indicate that aquifer diffusivity decreases in low flow conditions.
Analyses facilitated the development of a conceptual model of the karst subsurface in
the discharge zone. Using daily data, we constructed a linear mixed model of the spring
levels. This model identified long-term sea level changes, rainfall from previous weeks, and
seasonal recharge patterns as the primary factors influencing longer-term spring dynamics.

Keywords: karst; coastal spring; salinity; time-series analyses; wavelet; linear mixed models

1. Introduction
Autonomous sensors and data loggers are increasingly used to monitor hydrogeolog-

ical processes and properties, such as the fluctuation of groundwater levels and various
physico-chemical properties. These sensors can provide detailed high-frequency informa-
tion regarding the recent variation in the hydrogeological system. They support assess-
ments of the short-term (e.g., within a day) variations and oscillations of these time series.
They also support an assessment of the timescales over which aquifer or spring levels
interact with, or are driven by, other temporally varying parameters or variables such as,
in the case of coastal aquifers, rainfall or sea levels. Sensor data can be used to determine
which hydrogeological processes tend to lead or drive short-term variation in other proper-
ties and the magnitude of the time lags in these relationships, providing insight into the
hydrogeological properties of the aquifer. However, suitable data loggers have only been
available in recent decades, and they require regular maintenance to record reliable data, so
the duration of the observed series of measurements is often limited (e.g., to the duration of
a research project). Therefore, they are often less suitable for assessing the longer-term (e.g.,
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between years) variation in hydrogeological properties or for understanding multi-year
trends and interactions between different properties. The study of coastal karst aquifers is
a good example of using high-frequency logger data, which are necessary to characterise
the typically rapid response of karst springs to precipitation and sea tides.

Karst aquifers are widespread in many countries across the Mediterranean coast.
These aquifers are valuable freshwater sources [1]. However, seawater intrusion into the
aquifers presents a major problem for freshwater supply in the area. Seawater intrusion is
density-driven as seawater has a higher density than freshwater. Consequently, seawater
tends to create a wedge beneath freshwater in the aquifer [2]. Highly conductive karst
conduits positioned below sea level create routes for concentrated seawater intrusion into
the aquifer [3–5]. Even coastal springs situated above sea level can discharge brackish water
if they receive seawater from conduits positioned below sea level. Generally, seawater
intrusion into the karst springs is controlled by two main factors: the dynamic difference
between sea level and groundwater head in the aquifer and characteristics (especially
depths) of the conduits that connect the spring to the sea. Submarine springs (vruljas) that
are common along the eastern Adriatic Sea coast, together with brackish coastal springs,
are indicators of aquifers karstified deep below the present sea level. Vruljas often function
as submarine springs during the wet periods of the year and as openings for sea intrusion
into the aquifer during dry periods. Karstification of many coastal aquifers deep below
the present sea level occurred during periods of geological history when global sea levels
were considerably lower than today (e.g., up to 120 m lower sea level during the last glacial
maximum approximately 20,000 years ago) [6].

We explore the functioning of the coastal aquifer system from hourly spring level
and salinity measurements over almost two years. The investigated springs are part of
the abundant Jurjevska Žrnovnica discharge zone, which is located at the northern part
of the Croatian Adriatic Sea coast within the broader Dinaric Karst region. Dinaric Karst,
the largest continuous karst area of Europe, spreads across several countries (from Italy to
Slovenia, Croatia, Bosnia and Herzegovina, Montenegro, and northern Albania) parallel to
the eastern Adriatic Sea coast (Figure 1).

Karst rocks, mostly limestone and limestone breccia of Mesozoic and Cenozoic age,
underlie the entire catchment area of the Jurjevska Žrnovnica. Both limestone and limestone
breccia are compact and well-cemented, with negligible intergranular porosity. However,
groundwater tracer tests in the broader area have demonstrated that the limestone subsur-
face is extensively karstified. Groundwater flow is primarily concentrated in karst conduits,
surrounded by a generally low-permeability rock mass. Therefore, the geometry of the
conduit network is the dominant control of flow directions and velocities [7]. Local conduit
geometry also influences the characteristics and dynamics of the freshwater–seawater
interface in the subsurface at the coastal discharge zones.

The tracer tests have also demonstrated that the studied springs historically received
water from an extensive catchment, which includes the coastal mountains in their immedi-
ate hinterland (North Velebit mountain, up to 1700 m elevation) and the sinkholes of the
sinking rivers that flow across two extensive karst poljes in the mountain hinterland (Lika
and Gacka rivers, more than 20 km away from the springs). The tracer tests revealed a very
complex network of groundwater paths from the sinkholes through the karstic massif to
an approximately 70 km wide discharge area along the Adriatic Sea coast [7–9]. It should
be noted that today the Lika and Gacka rivers are used for energy production within the
hydroelectric power plant system and no longer sink into natural sinkholes. Consequently,
the Northern Velebit mountain now represents the main recharge area for the Jurjevska
Žrnovnica springs.
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Figure 1. Studied springs (Spring 1 and Spring 2) are located within one of the most abundant coastal
groundwater discharge zones on the Adriatic coast of Croatia, called Jurjevska Žrnovnica, which con-
sists of a few coastal and several submarine springs (vruljas). (Orthophoto copyright: Croatian State
Geodetic Administration (http://www.geoportal.dgu.hr, accessed on 12 February 2025); European
elevation map copyright: European Environment Agency (http://www.eea.europa.eu, accessed on
12 February 2025).

The two studied springs are the most abundant coastal discharge locations within
the Jurjevska Žrnovnica discharge zone, which also includes many perennial and intermit-
tent submarine springs (i.e., vruljas, Figure 1). However, it is estimated that submarine
groundwater discharge largely surpasses the discharge of the coastal springs [10]. To
date, this has not been determined in detail due to the inability to precisely measure and
monitor submarine discharges. Therefore, we analysed only the dynamics of the coastal
springs in relation to sea tides and rainfall dynamics. However, due to the high degree
of karstification in this aquifer the springs within the zone are presumably hydraulically
connected below the surface, meaning that the dynamics of the coastal springs likely reflect
the dynamics of the entire discharge zone. Spring 1 is located only 30 m from the sea coast
at an elevation of slightly less than 1 m above mean sea level (AMSL). Discharge in the
spring ranges between 0 and 150 L/s. Spring 2 is approximately 90 m away from the sea at
1.5 m AMSL, and it is part of a group of several springs situated very close to each other.
Their total discharge ranges from 0 to almost 1000 L/s. However, total discharge of all
coastal and submarine springs in the area of Jurjevska Žrnovnica is estimated to be an order
of magnitude larger, ranging from several hundred to several thousand L/s. The distance
between Springs 1 and 2 is 600 m (Figure 1), and they both discharge fresh water for most
of the year but become brackish during low-flow periods. Both springs discharge from
spring pools, which are formed by man-made overflows. Generally, water from the springs

http://www.geoportal.dgu.hr
http://www.eea.europa.eu


Hydrology 2025, 12, 118 4 of 29

is not utilised and flows naturally, but there is occasional low-intensity pumping for local
irrigation from Spring 1.

While the exact positions of the karst conduits in the subsurface cannot be directly
determined, spring and sea level dynamics can be directly measured and monitored.
Tidal changes produce fluctuations in spring flow and salinity, as well as in groundwater
level in the coastal aquifers. Comparison and analysis of groundwater and seawater
dynamics can give valuable information about aquifer structure in the discharge area, i.e.,
conduit depth, volume, and openness to the sea. For instance, occasional increases in
salinisation of Spring 2 imply, according to the Ghyben–Herzberg ratio for hydrostatic
conditions [11,12], that conduits drained at the spring must be at least 60 m below sea level
(in hydrodynamic conditions they must be even more to account for a loss of pressure along
the conduits). Such information is crucial for evaluating measures to prevent seawater
intrusion at the spring.

The primary objective of this study is to apply various statistical methods to analyse
time-series data on the dynamics of the springs. This analysis aims to provide a detailed
understanding of the karst underground structure and to develop a conceptual model of the
Jurjevska Žrnovnica discharge area. Previous research primarily focused on hydrogeologi-
cal mapping, tracer tests, and measuring the outflow and salinity of the spring water [13]
without conducting an in-depth analysis of the spring dynamics. We consider different
statistical techniques that can be used to interpret the spring level data over different
temporal scales. We perform separate analyses of the within-day and longer-term variation
in the data and the interactions between the spring levels, salinity, rainfall, and sea levels.
Our analyses focus on understanding the temporal scales over which these parameters
interact, the nature of their relationships, and the temporal lags between perturbations in
one property leading to responses in others.

Other authors have previously used various similar techniques to characterise karstic
systems. For instance, Padilla and Pulido-Bosch [14] and Larocque et al. [15] used time-
invariant time-series and spectral methodologies to characterise French and Spanish karstic
aquifers. These time-invariant approaches treat the relationships between variables as
if they remain fixed across the study period. Jukić and Denić-Jukić [16] used partial
spectral analysis and higher-order partial correlation functions [17] to solve ambiguities
in the correlation functions related to various space–time-variant processes in the study
of Jadro karst spring in Croatia. Charlier et al. [18] used time-variant wavelet analyses
to observe the time-varying responses caused by pumping from a Mediterranean karstic
system and Massei et al. [19] also used wavelet analyses to identify strong relationships
between turbidity and rainfall that were not apparent from time-invariant analyses of
a French karstic system. More recently, Razaei and Saatsaz [20], Wu et al. [21], Zhang
et al. [22], and Çeliker et al. [23] employed wavelet analysis to identify multiscale impacts of
climatic or anthropogenic factors on karstic watersheds. Meanwhile, Lovrinović et al. [24],
Trevino et al. [25], and Yang and McCoy [26] used wavelet analysis to identify major
factors influencing groundwater and groundwater-related surface water in porous coastal
aquifers. To the best of our knowledge, no previous studies have employed wavelet analysis
specifically to investigate karstic coastal systems.

In the within-day analyses, we initially assume that, after the removal of long term
trends, behaviour is time-invariant with the same oscillations and interactions being evident
for the entire duration of the sensor data. Rainfall data are only available on a daily time
scale, and, therefore, we only consider interactions between spring levels, salinity, and sea
levels. We use time-domain and frequency-domain time-series techniques to quantify the
period or frequency of the oscillations within these measured properties and to determine
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the lags between oscillations occurring in the time series. We then consider whether further
insights into this variation can be obtained from time-variant wavelet analyses.

Analyses of daily data are designed to quantify more persistent trends in spring levels
and how they can be explained by parameters such as sea levels and rainfall. Exploratory
temporal-domain analyses are used to understand the timescales over which the spring
levels are related to rainfall and sea levels. The results of these analyses inform the
development of a linear mixed model for the variation in the levels of each spring. We
highlight the information that can be gleaned from different time-series analysis methods
and develop a conceptual model based on the hydrogeological implications of the time-
series results.

2. Methods
2.1. Data Collection

The continuous monitoring of two coastal springs of Jurjevska Žrnovnica (Figure 1)
started in August 2006 and ended in July 2008 (17,448 hourly measurements in total).
Monitoring was discontinued after that period and has not resumed to date. However,
the discharge zone remains predominantly in its natural condition and the hydrodynamic
characteristics of the springs have remained unchanged since the monitoring period.

The monitoring of spring water levels was achieved by using automatic measuring de-
vices with internal memory, i.e., data loggers. The loggers were placed within spring pools
formed by weirs placed immediately downstream from the locations of water emergence.
Onset HOBO water level loggers were used to measure the water level and temperature
with a temporal frequency of 1 h. The specified accuracy of the loggers is ±1 cm pressure
of H2O. The water level measurement data were subsequently compensated for changes
in atmospheric pressure. Atmospheric pressure was measured by a separate device of the
same type as the water level.

To determine the stage–discharge consumption curve, i.e., the functional dependence
of discharge on changes in the pool water level, several flow measurements were performed
under different hydrological conditions. The flow was measured with a mechanical current
meter in the stream channel downstream of the spring pools. The calibrated stage–discharge
curve was used to convert the water level to the rate of discharge from the spring. However,
during portions of the monitoring period, the water level was below the weir of the spring
pool, resulting in an absence of discharge despite variations in the water level still occurring.
Such periods were more frequent on Spring 2.

During the second year of monitoring, specific electrical conductivity (EC) of Spring 2
was also measured with 1 h frequency using an Eijkelkamp CTD-Diver (accuracy 1% of the
measured value).

The nearest sea-tide gauges with available hourly sea level data are located in Bakar
(maintained by the Faculty of Science in Zagreb) and Zadar (maintained by the Hydro-
graphic Institute of the Republic of Croatia). Sea level data for the spring location were
obtained by a weighted average of data from these two stations according to their dis-
tance from the study area (the Bakar gauge is located approximately 50 km to the NW,
and the Zadar gauge 90 km to the SSE). It should be noted that the tidal dynamics of
these two stations was generally in phase with slightly different amplitudes (correlation
coefficient between the two data series is 0.96).

Daily rainfall data were measured at the Zavižan measuring station (maintained by
the Croatian Meteorological and Hydrological Service) located on the ridge of the Velebit
Mountain, in the near hinterland approximately 10 km away from the springs and within
their watershed.
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2.2. Analyses of Complete Hourly Time Series

Since rainfall data were only available at a daily sampling frequency, hourly analyses
were limited to spring and sea level data (and EC data for Spring 2 during the second
year of monitoring). Due to the continuous character of the water level data series, in
contrast to the discharge data which are interrupted by no-flow periods, the level was
the primary variable considered in the analyses. Application of standard temporal- and
frequency-domain time-series methodologies require the assumption that the time series
are time-invariant or have time-invariant spectra. The long term trend was removed from
the spring and sea level data by subtracting the daily mean of these quantities from the
hourly data. The daily mean was assumed equal to a moving average of the hourly data
with a window length of 24.

The de-trended spring and sea level data were then visually inspected for any evidence
of time-variance. Note that long term trends represent one type of non-stationarity. The
de-trended time series might also be time-variant in the sense that their degree of variability
or the relationships between different series varies with time.

Auto-correlation functions (ACFs) were calculated for each de-trended time series, and
then the cross-correlation function (CCF) between the sea level and each spring level were
calculated. From plots of these ACFs and CCFs, the dominant timescales of oscillations in
these de-trended time series and the temporal lag between the spring and sea level data
were determined.

Analogous analyses were then performed in the frequency domain using Fourier
techniques. Spectra of each individual de-trended time series were calculated along with
the coherence and cross-spectra between the sea level and each spring level. The coherence
plot was used to identify frequencies where both series have substantial power, and the
cross-spectra were used to identify the phase lag between the series.

Wavelet analyses were then applied to the raw (i.e., not de-trended) sea and spring
level time series to explore the impacts of time-variance upon the results of the temporal-
and frequency-domain analyses. These analyses were based on the analytic Morlet wavelet.
Continuous wavelet transforms of each spring and sea level time series were calculated
along with wavelet coherences between sea level and each spring level series. Where
coherence between the two signals was evident, the (potentially temporally varying) phase
lag was determined from the wavelet cross spectrum.

Where the wavelet analyses had identified time-variant behaviour (beyond the long
term trends) in the time series, the series were split into portions that were approximately
time-invariant. The temporal and frequency domain analyses were then applied to these
seemingly time-invariant de-trended series to test whether these methods identified the
same oscillatory behaviour and lags between signals as the wavelet analyses.

2.3. Analysis of Daily Data

The ACF and partial auto-correlation function (PACF) of each time series of daily
spring level data were calculated to investigate the degree of temporal auto-correlation
amongst these response variables and the type of model that might be used to represent it.
The CCF between the potential drivers (sea level and rainfall) and the daily spring levels
were calculated to investigate the strength of any relationship between these variables and
the relevant timescales of the driving variables.

The results of these descriptive analyses were used to inform the development of
linear mixed models of the variation in the daily level of each spring. The choice of
auto-covariance function for the random effects of this model were informed by the ACF
and PACF, and the different CCF informed the driving variables that were included in
the fixed effects and whether it was necessary to adjust the timescale over which these
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driving variables were accumulated. The driving variables were added to each linear
mixed model iteratively, starting from a model with constant fixed effects, and the Akaike
information criterion (AIC) [27] was used to determine whether each driving variable led
to an improved model. The final models underwent leave-one-out cross-validation and
the bias and mean squared prediction errors were calculated. The proportion of variance
explained by the model (i.e., one minus the variance of the errors divided by the variance
of the response variable) and the proportion of variance explained by the fixed effects term
in isolation were also calculated. Finally, the hydrogeological implications of the terms
included in the model were discussed.

A concise theoretical overview of all applied statistical methods is given in Appendix A.

3. Results
3.1. Data Summary

The water level of Spring 1 (Figure 2, top) generally ranges between 0.8 and 0.9 m
AMSL, with two significant decreases down to 0.4 m AMSL. One occurs for an extended
period in the second half of 2006 and the other is shorter and occurs at the start of August
2007. The level of Spring 2 (Figure 2, second row) varies between 1.2 and 2.0 m AMSL.
Several sharp dips in the time series are evident, but these do not dominate the pattern of
variation to the degree seen for Spring 1. However, sharp decreases in Spring 2 are more
frequent and are distributed across the monitoring period. The levels of both springs are
more variable during these periods of decreased levels. Sharp decreases in the observed
level reflect periods of no-flow at the spring (i.e., when the spring level is below the weir of
the spring-pool). Generally, days where flow is partly absent are more frequent in Spring 2
(Figure 3), although, in contrast to Spring 1, there are no days with permanent absence of
flow in that spring.

The Spring 2 EC was only measured in the second year of the monitoring (Figure 2,
third row). There are substantial periods where the EC levels are low and stable, char-
acterised by oscillations within a narrow range of 0.4–0.5 mS/cm. These correspond to
periods of mostly continuous flow from the spring (Figure 3) when the spring discharges
fresh water only. In periods of discontinuous flow EC variation is much more pronounced
with daily peaks of over ten mS/cm, indicating seawater intrusion into karst conduits
where it mixes with fresh water before emerging. Within-day oscillations are evident in the
sea level data (Figure 2, fourth row) in addition to some longer-term trends such as dips in
sea levels at the start of 2007 and in February 2008. Longer-term trends of the sea level can
be caused by atmospheric pressure changes and/or strong winds, such as a strong offshore
directed wind called Bora, which is typical for the area.

The relationships between the different measured quantities can be better visualised by
focussing on data from week-long periods (Figures 4–7). During the August 2007 period of
low flow from Spring 1 (Figure 4), the relationship between sea level and the Spring 1 level
is not completely clear. The spring dynamics are dominated by a few high-intensity drops
of an order of magnitude greater than the usual amplitude of the spring level oscillations.
These drops appear to occur 5–6 h after drops in sea levels. In contrast, the Spring 2 levels
have a within-day pattern of variation that is consistent and approximately in phase with
the sea level variation. The pattern of sea level variation appears to have a dominant
oscillatory component of approximately 24 h period and a weaker component of 12 h
period. Flow from Spring 1 becomes continuous after rainfall occurs on 2 August.
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From 8 to 12 August 2007 (Figure 5), the Spring 1 level has the same broad pattern
of within-day variation as the sea level (note the small scale of the spring level variation).
However, this pattern is distorted by short-lived and sharp dips in the Spring 1 level,
probably caused by irregular pumping from the spring pool. Local people occasionally
pump water from the spring pool for irrigation, unfortunately, without making notes on
pumping periods. The pumping mostly happens during dry periods and it only affects
the spring level considerably during periods of discontinuous or very-low flow from the
spring. From 13 August onwards, the within-day Spring 1 level variation is considerably
more aligned to the sea level variation. This follows a large amount of rainfall on 10 August,
after which pumping probably stopped. The within-day variation in Spring 2 remains
approximately aligned to the sea levels through the 8–14 August period.

In December 2007 (Figure 6), there is almost continuous flow from each spring. Both
spring levels are broadly aligned with the within-day sea level pattern, but the Spring 1
levels are less smooth than those of Spring 2 and include high-frequency fluctuations, again
probably influenced by irregular pumping.

For the two periods with discontinuous flow, the EC at Spring 2 is very much aligned
with the sea level, whereas for the period with continuous flow from each spring the EC is
low and almost constant (Figure 7).
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Figure 7. Week-long time series of electrical conductivity (EC) of Spring 2 water for the time periods
shown in Figures 4–6. Notice that EC is very close to zero (0.4–0.5 mS/cm) in the graph in the third
row, indicating exclusively freshwater flow.

3.2. Analysis of Within-Day Spring and Sea Level Variation

The ACF, spectrum, and wavelet spectrum of the Spring 1 levels (de-trended for the
ACF and spectrum) all emphasise the strong oscillations of periods of approximately 12 and
24 h (Figure 8). Note that oscillations of period 24 h have a frequency of 0.042 cycles per
hour. Spectral power is also evident in the Fourier and wavelet spectrums for approximately
12 h. In the ACF, there is strong negative auto-correlation at a lag of 12 h. In addition to
the two horizontal bands corresponding to oscillations of periods 12 and 24 h, the wavelet
spectrum for periods of no or discontinuous flow includes substantial power across all
scales at times (e.g., in October 2006 and June 2007), reflecting the rapid changes in the
spring levels (see Figure 8, right).
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Figure 8. Auto-correlation of hourly and de-trended Spring 1 level (left); Fourier spectrum of hourly
and de-trended Spring 1 level (centre); continuous wavelet transform of Spring 1 level (right).

The ACF, Fourier spectrum, and wavelet spectrum of the sea level data (Figure 9) are
very similar to the corresponding plots for the Spring 1 level data, although the power
across all scales in times of no or little flow is not evident in the wavelet spectrum. The
Fourier coherence plot (Figure 10, right) between these two series confirms shared power at
the frequency corresponding to 24 h. The phase of this component of the Fourier spectrum
indicates that the sea level leads the spring level by 3.4 h. The peak in the corresponding
CCF (Figure 10, left) indicates that the sea levels lead the spring levels by four hours.
The wavelet power spectrum indicates that this phase lag is not constant for the duration
of the time series (Figure 11, right). At times when there is flow for fewer than 12 h of
the day, the phase lag averages 5.6 h whereas for time with more than 12 h of flow a
day, the average phase lag is 1.1 h. Wavelet coherence analysis enables determination of
relationship and phase lag between the sea and Spring 1 in low-water periods despite
significant disturbances of the spring level due to irregular pumping (Figures 4 and 5).
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These phase lags are consistent with the results of temporal- and frequency-domain
analyses limited to two seemingly time-invariant portions of the Spring 1 level time series
(Figure 12). During one of these periods there is almost constant flow from the spring,
whereas during substantial portions of the other period there is no flow. The CCFs indicate
that the largest correlation between sea level and Spring 1 level occur for a lag of −6 h in
the low-flow period, whereas the corresponding maximum correlation occurs for a lag of
−1 h during the period with almost constant flow. The phases of the corresponding Fourier
cross-spectrums suggest that in the low-flow period the sea level leads the Spring 1 level
by 7.0 h, whereas in the period with flow this lag is reduced to 1.1 h.
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There are similarities in the results of wavelet analyses for Spring 2 using hourly data
(Figure 13). The dominant oscillations within the time series have periods of 24 and 12 h
and continue for the duration of the time series. These frequencies also dominate the
wavelet coherence plot relating sea levels to Spring 2 levels, and generally, the phase in the
sea level/Spring 2 wavelet 24 h period component is close to zero. However, the phase
does become negative during discontinuous periods of the time series. On average, during
continuous flow periods the spring level lags behind the sea level by 0.2 h, whereas for
periods with discontinuous flow the lag is −0.9 h. These periods of negative phase are
counter-intuitive since they indicate that the spring level is leading the sea level. In Figure 4,
the daily rising limb of Spring 2 level does occur slightly ahead of the corresponding
increase in sea level, while falling limbs are mostly aligned. It, therefore, appears that the
negative phases are a feature of the data and not artefacts of the wavelet analysis. The
process causing the negative phases is unclear, although it is likely to reflect the complex
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hydraulics with several coastal springs connected by fractures and conduits within the
subsurface and could be connected to transition from a flow to a non-flow regime on
Spring 2.
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Figure 13. Logarithm of continuous wavelet transform spectrum of Spring 2 level (left); wavelet
coherence between sea level and Spring 2 level (centre); relative phase between sea level and Spring
2 level for continuous wavelet transform (CWT) [28] component with period 24 h (right).

The EC for Spring 2 is low and relatively constant (within 0.4–0.5 mS/cm range) for
periods with continuous flow. When there is discontinuous flow, and hence seawater
intrusion, the EC increases, becomes more variable, and exhibits substantial with-day
variation. The wavelet coherence between sea level and EC exhibits substantial power
at 12 and 24 h for the discontinuous flow periods (Figure 14). The phase for the period
24 h component during these periods is noisy, perhaps reflecting the transition between
flow and no-flow states. It is generally small and positive, indicating that, on average, the
fluctuations in EC lag behind sea level fluctuations by 1.5 h. EC lag reflects the actual delay
of seawater reaching the spring in relation to the change in tides.
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3.3. Auto-Correlation and Cross-Correlation Functions of Daily Data

The moving averaged daily spring-level data are shown in Figure 15. As with the
hourly data, the sharp dip in Spring 1 levels in the second half of 2006 is evident, although
the smoothing of the time series has largely removed the shorter dip in 2007. Our analyses
of these daily data are limited to the periods marked in black on Figure 15 which correspond
to periods of continuous flow from the springs. The ACFs for the smoothed data from
both springs indicate that observations are significantly correlated beyond a lag of 30 days
(Figure 16). However, the PACF for Spring 1 is dominated by a positive and significant
value at lag 1. Negative auto-correlations at lag 2, which just exceed the 95% confident
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interval, are also evident, but the dominance of the lag 1 value indicates that an auto-
regressive (AR) model of order 1 might be sufficient to represent the auto-correlation in this
time series. The daily data from Spring 2 has a more complex auto-correlation structure
and highly significant PACF values are evident for a number of positive lags.
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Figure 16. Auto-correlation (top left) and partial auto-correlation functions (top right) for daily
observed Spring 1 level. Auto-correlation (lower left) and partial auto-correlation functions
(lower right) for daily observed Spring 2 level. The 95% confidence limits for time series with
no auto-correlation are marked in red.
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The CCF between the sea level and daily Spring 1 level data indicate a significant
correlation between lags of −8 and 3 days (Figure 17). The correlation is largest for lag
−1 day. Similarly, the corresponding CCF for Spring 2 is significant between −3 and
2 days, with the largest correlation again occurring for a lag of −1 days. There is a second
significant peak in this CCF at 15 days. This is likely caused by the peak in the Spring 2
ACF at around 12 days. The CCFs with rainfall are much less symmetrical and indicate
that past rainfall over a number of days appear to influence spring levels. For Spring 1,
the cross-correlations remain positive for lags beyond −20 days, although none of these
cross-correlations are significant. For Spring 2, the cross-correlations are positive for lags of
up to −11 days and are significant for lags between −2 and −5 days.
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3.4. Linear Mixed Model for Daily Variation in Levels 

The correlation functions for Spring 1 are consistent with variation being driven by 
concurrent sea levels and rainfall over the previous two-or-three weeks and with the auto-
correlation in spring levels being derived from low-order auto-regressive terms (Figures 
17 and 18). For Spring 2, the auto-correlation structure appears to be more complex. The 
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an exponential (equivalent to auto-regressive order 1) covariance function, are shown in 
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Table 1. Validation statistics of the estimated linear mixed models for each spring. Fixed effects are 
constant (C), rainfall IRF (R), sea level (Sea), and seasonal term (Seas). 

Spring Fixed Effects AIC Bias m Variance 
Explained % 

Mean SSE Variance Explained by 
Fixed Effects % 

1 C 218.54 0.00 95 0.86 0 
1 C+R 157.06 0.00 96 0.96 49 
1 C+R+Sea 110.71 0.00 96 1.00 59 
1 C+R+Sea+Seas 104.52 0.00 96 1.00 70 
2 C 292.05 0.00 96 0.75 0 
2 C+R 257.72 0.00 96 0.81 17 
2 C+R+Sea 243.82 0.00 96 0.81 17 
2 C+R+Sea+Seas 219.51 0.00 96 0.78 69 

Figure 17. Cross-correlation functions between daily rainfall and Spring 1 level (top left); daily
observed sea level and Spring 1 level (top right); daily rainfall and Spring 2 level (lower left); daily
observed sea level and Spring 2 level (lower right). The upper limit of 95% confidence interval for
uncorrelated time series is marked in red.

3.4. Linear Mixed Model for Daily Variation in Levels

The correlation functions for Spring 1 are consistent with variation being driven
by concurrent sea levels and rainfall over the previous two-or-three weeks and with
the auto-correlation in spring levels being derived from low-order auto-regressive terms
(Figures 17 and 18). For Spring 2, the auto-correlation structure appears to be more complex.
The validation statistics for linear mixed models, including these drivers as fixed effects
and an exponential (equivalent to auto-regressive order 1) covariance function, are shown
in Table 1. The rainfall fixed effect utilised an impulse response function (IRF) with
contributions up to 30 days. These models were estimated upon the daily data marked in
black in Figure 15 and correspond to days when there was flow from the springs.
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Table 1. Validation statistics of the estimated linear mixed models for each spring. Fixed effects are
constant (C), rainfall IRF (R), sea level (Sea), and seasonal term (Seas).

Spring Fixed Effects AIC Bias m Variance
Explained % Mean SSE Variance Explained

by Fixed Effects %

1 C 218.54 0.00 95 0.86 0
1 C+R 157.06 0.00 96 0.96 49
1 C+R+Sea 110.71 0.00 96 1.00 59
1 C+R+Sea+Seas 104.52 0.00 96 1.00 70
2 C 292.05 0.00 96 0.75 0
2 C+R 257.72 0.00 96 0.81 17
2 C+R+Sea 243.82 0.00 96 0.81 17
2 C+R+Sea+Seas 219.51 0.00 96 0.78 69

All of the fixed effect terms lead to an improvement (i.e., decrease) in the AIC, justifying
their inclusion in the models for both springs. In particular, the rainfall IRF led to a
significant increase in the likelihood, despite the rainfall at all individual lags being non-
significant predictors of the level of Spring 1. Upon leave-one-out cross-validation, all of
the models are unbiased. The mean squared standardised error is 0.86 for the Spring 1
model with constant fixed effects but increases to the required value of 1.0 when other
terms are included in the fixed effects. In each case, the linear mixed model explains
95–96% of the variation in the level of Spring 1. It should be noted that in this validation
exercise the predictors use observations of spring levels from the day before and day after
the prediction date and that the auto-correlation within the random effects is sufficient
to produce accurate predictions. When fixed effects are added to the model they explain
variation, which over these small lags was previously explained by the random effects. The
variation explained by the fixed effects is more useful when there are larger gaps in the data
which cannot be infilled by the random effects. The inclusion of the rainfall IRF term led to
49% of variation being explained by the fixed effects and this increased to 59% when the
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sea level term was included. Visual inspection of the residuals from the model including
constant rainfall and sea level in the fixed effects indicated that they contained a strong
seasonal component. Therefore, a seasonal term (a sinusoid with a period of 365 days) was
also added to the model. The resultant validation statistics indicated that this model was
accurate and quantified uncertainty appropriately and that the fixed effects explained 70%
of variation. The estimated covariance function and rainfall IRF for this model are shown
in Figure 18.

When a similar model was estimated for Spring 2, each potential fixed effect term again
improved the AIC (Table 1) and upon cross-validation all of the models were unbiased.
The proportion of variation explained by the linear mixed model was almost identical to
that of Spring 1 (96%). However, the mean squared standardised errors were between
0.75 and 0.81 (rather than 1.0), indicating that the uncertainty in model predictions was
quantified less accurately. This possibly reflects the complex auto-correlation structure
observed in Figure 17. In isolation, the rainfall fixed effects explained 17% of variation.
Although the AIC improved, the addition of the sea level term led to a marginal decrease
in the proportion of variation explained by the fixed effects. This illustrates how, for these
relatively short time series, it can be challenging to discriminate between the effectiveness of
models with explanatory fixed effects and those where variation is explained by the random
effects. Again, addition of the seasonal term led to the largest increase in the variance
explained by the fixed effects as it reached 69%. In agreement with the corresponding CCFs,
the rainfall IRF for Spring 2 averaged rainfall over fewer days than that for Spring 1.

4. Discussion
4.1. Statistical Methodologies to Interpret Spring Level Time Series

Several time-series analysis techniques were employed in this paper to interpret
the variation in spring levels. Each method highlighted different features of this varia-
tion. We now summarise the type of helpful information which could be inferred from
each methodology.

Visual Inspection (Figures 2–7): The broad patterns of variation in the spring levels
were apparent from visual inspection of the time series. These patterns included the
absence of long term trends but clear differences in the patterns of variation during high-
and low-flow conditions. By focussing on relatively short duration portions of the time
series, it was possible to identify the short-term interactions between sea level and spring
level time series and the time lag separating changes in these two series. However, it was
not immediately apparent to what extent these short-term behaviours generalised across
the entire time series.

Auto-correlation functions and Fourier spectra (Figures 8 and 9): These methodologies
highlighted the dominant 12 and 24 h periods of oscillation in the spring and sea level
time series.

Wavelet spectra (Figures 13 and 14): The wavelet spectra confirmed that the dominant
periods of oscillation in the time series persisted for the entire observation period.

Fourier cross-spectra (Figure 10, right): These emphasised that the spring and sea level
time series shared power in the oscillations of periods 12 and 24 h. The average lag between
these dominant oscillatory components in each time series could be determined, although it
was not apparent whether this lag varied in time. It was possible to localise these analyses
to specific sections of the time series, but then it was not immediately apparent whether the
observed behaviours generalised.

Cross-correlation functions (Figure 10, left): These also emphasised the average time
lag between variation in the spring level and sea level time series, which differed for each
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spring. When examining the relationship between daily rainfall and spring level, it was
possible to see the temporal scale over which rainfall influenced spring level.

Wavelet coherence analyses (Figure 12): These also highlighted the shared power of
the 12 and 24 h oscillations in the sea level and spring level time series. It was possible
to see that the relationship persisted throughout the observation period, although the
delay between these two signals varied depending on hydrological conditions, differing at
each spring.

Linear mixed models (Figure 18): The linear mixed models were used to summarise
the pertinent behaviour and drivers of spring level variation on a daily timescale. The
relationship between daily rainfall over weeks and months and the spring levels could be
expressed by simple impulse response functions. The model framework permitted tests of
whether different covariates or processes were influencing spring level dynamics. However,
some subjective decisions were required to decide which processes should be included in
these tests.

4.2. Hydrogeological Implications of the Time-Series Analysis Results

The results confirm that sea level variations are the main driver of the spring level
dynamics on a within-day timescale. However, the temporal dynamics of the spring
level data clearly differ during periods of continuous and discontinuous flow, with much
more variability occurring during the discontinuous flow periods. During continuous
flow conditions, fluctuations in spring flow reflect groundwater head fluctuations in the
draining aquifer. When flow on the higher spring (i.e., Spring 2) decreases, flow at the
nearby lower (non-monitored) springs increases, keeping the total flow of the coastal spring
zone unchanged (excluding multi-day trends). In this way, groundwater head fluctuations,
induced by the sea level fluctuations, cause fluctuations in the flow ratio at individual
springs within the zone. However, when the water level drops below the overflow (weir)
height of Spring 2 its outflow stops, while the water level within the spring pool continues
to fluctuate, directly reflecting aquifer head fluctuations. In contrast, when Spring 2 water
level rises above the overflow, oscillations of the hydraulic head in the aquifer produce
flow oscillations, while level variability is greatly reduced. In such conditions, overflow
height dominantly controls the spring water level, with just a small-scale oscillation above
the overflow reflecting flow oscillations. This results in substantially different intensities of
water level fluctuation in flow and no-flow conditions. Differences in dynamics, particularly
the different phase lags between the 24 h oscillations in sea level and spring level, are only
apparent when a time-variant wavelet analysis is applied to the data (Figures 11 and 12).
Differing phase lags are not apparent from time- or frequency-domain analyses which
assume time-invariant variation.

The magnitude of the delays between the spring responses to sea level dynamics are
important indicators of aquifer characteristics. Tidal fluctuations in the coastal aquifers
can be used for calculating aquifer diffusivity under the assumption of homogenous
and isotropic aquifer with horizontal flow [29,30]. Aquifer diffusivity is defined as the
ratio of aquifer transmissivity and storativity so that both higher transmissivity and lower
storativity result in higher diffusivity. Diffusivity of a coastal aquifer is negatively correlated
to time delay between sea level and aquifer variations, and positively correlated to tidal
efficiency, i.e., the ratio of aquifer to sea level variations. Although this rule does not strictly
apply in extremely heterogeneous karst aquifers (both laterally and vertically), it can still be
used to indicate the lumped system properties. In previous studies, karst aquifer diffusivity
was mostly calculated by direct observations of delay between sea level and borehole
hydrographs [31] or based on time-invariant time-series analysis [32]. Here, time-variant
wavelet analysis allowed identification of diffusivity changes related to the water level in
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the aquifer. Diffusivity variations connected to water level variations in a karst aquifer are
likely to be caused by heterogeneity in the vertical distribution of high-permeability zones
(e.g., karst conduits and intensely fractured zones) within the system.

Generally, the delay of Spring 1 level response to sea level variations is significantly
longer than that of Spring 2, where response is almost instant and even seems to slightly
precede sea levels during discontinuous flow periods. This is contrary to expectation as
Spring 1 is situated much closer to the coast than Spring 2 and illustrates the extreme
heterogeneity of the studied karst aquifer. In the case of a homogenous aquifer, delays in
the spring response to sea level variations increase with distance from the sea. However,
the absence of delay at Spring 2 indicates a direct connection with nearby submarine
springs (Figure 1) through highly permeable conduits situated below the water table,
while the connection between sea level and Spring 1 is less direct. According to the
Ghyben–Herzberg principle of fresh to saltwater interface position in the subsurface of
coastal aquifer [33,34] and considering the vertical position of Spring 2 (approx. 1.5 m
AMSL), occasional salinisation of that spring demonstrates the existence of conduits at least
60 m below the sea level, and they are probably even deeper due to the loss of pressure
along conduits in hydrodynamic conditions.

The counter-intuitive negative delay, i.e., the slightly earlier increase in Spring 2 level
compared to the increase in sea level during discontinuous flow conditions, probably
reflects the complex hydraulics during the transition from a flow to a non-flow regime.
Specifically, Spring 2 is the highest among a group of several coastal springs located close
to each other at slightly different elevations and connected by fractures and conduits within
the subsurface. The Spring 2 water level was monitored in the spring pool, which is
separated from the lower downstream springs. During the transition from high to low
sea level stands, flow gradually moves from higher to lower discharge locations and vice
versa. The negative shift at Spring 2, which is mostly observed on the rising limbs of the
water level curve, could be connected to hydraulic functioning during the transition from a
non-flow to a flowing regime in relation to flow changes at the lower surrounding springs
in the surroundings. However, a more reliable determination of the mechanism causing the
negative shift requires more detailed monitoring data of the individual discharge locations.
During much of the monitoring period, when Spring 2 was overflowing for most of the
day, the delay was slightly positive (approx. 0.2 h).

Occasional and irregular pumping from the Spring 1 pool during dry periods causes
a significant distortion of its signal. This results in substantial power across all scales
in the wavelet spectrum for such periods (Figures 11 and 12), while during the rest of
the time periods approximately 12 and 24 h are dominant. Despite these occasional
distortions during low-flow periods, the applied analysis enables determination of the
time-variant relation between sea level variations and Spring 1 dynamics. Namely, the
Spring 1 level delay compared to the sea level dynamics increases from approximately 1 h
in continuous flow periods up to 5–6 h in discontinuous flow conditions (Figure 11). This
implies a significant reduction in system diffusivity, i.e., decreased conduit transmissivity
and/or increased storativity when there are low water levels in the aquifer. This, in
turn, implies that Spring 1 is connected with the sea indirectly, probably via the central
group of springs (Spring 2) by relatively shallow-positioned conduits, which are partly
above groundwater level in low-flow periods. Loss of function of the uppermost conduits
decreases transmissivity, while periodic filling and emptying of partly submerged voids
increases system storativity, both of which can result in increased system inertia. In any
case, it can be concluded that there is no direct connection between Spring 1 and the sea,
while Spring 2 is directly connected to the sea through a highly transmissive conduit system
which spreads at least 60 m below sea level. This is further supported by the general absence
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of significant submarine springs in the vicinity of Spring 1 (Figure 1). Occasional slight
salinisation of Spring 1 in dry periods (according to field observations) could originate
through a connection with the Spring 2 conduit system rather than directly from the sea.
Also, according to the available measurements, salinization of Spring 1 is less intensive than
that of Spring 2. All this identifies Spring 1 as less vulnerable to salinization increases due
to water pumping, i.e., it is more suitable for water supply despite its lower flow quantity
and lower elevation compared to Spring 2. Figure 19 shows the conceptual model of the
Jurjevska Žrnovnica discharge zone based on all the obtained findings.
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Figure 19. Schematic conceptual model of the karst subsurface at the Jurjevska Žrnovnica discharge
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Linear mixed models enable the identification of the main drivers that influence the
flow of the springs on a multi-day timescale, as well as the significance and characteristics of
their influence. On the daily timescale, sea level variations influence spring level instantly,
while rainfall over the preceding period of 20–30 days affects it cumulatively. The models
of the daily variation in spring levels were limited to periods of continuous flow at Spring
1 and largely continuous flow at Spring 2. Sea level variations and rainfall explained a
substantially larger proportion of variation in Spring 1 levels relative to Spring 2. This is
likely to have been because it was not possible to separate substantial periods of completely
continuous flow for Spring 2 and so some non-flow periods were included in the model.
However, the daily model of variation should be treated with some caution since it has
been estimated using data covering less than two years. More time-variant behaviour could
potentially be apparent in time series of longer duration.

The analysis also identifies a third important driver, which is the seasonality of the
flow on a yearly timescale (Table 1). Effective infiltration, i.e., recharge of the karst aquifer,
is mediated by surficial soil and the epikarst reservoir [35–37], which is filled by precipi-
tation and drained both by evapotranspiration and percolation to the deeper parts of the
hydrological system. Seasonality of the flow is a direct reflection of the strong seasonality
of potential evapotranspiration, which is controlled by air temperature and vegetation
cycles during the year. During the warmer part of the year, emptying by evapotranspira-
tion is much more efficient, resulting in a usually emptier soil/epikarst reservoir prior to
rainfall. Rainfall water firstly replenishes this reservoir, and only after its replenishment
does effective recharge of the aquifer occur. This implies lower effective infiltration to
the karst aquifer and consequently attenuation or absence of spring response to rainfall
during the warm season. This explains why the inclusion of a seasonal component, in
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addition to rainfall and sea level variations, largely increases model efficiency for both
monitored springs.

5. Conclusions
A range of time-series methods were used to gain insight into the structure and

functioning of the karst system of the Jurjevska Žrnovnica coastal and submarine discharge
zone. Time-series data of the two coastal springs within the discharge zone were analysed.
The analysis focused on variations in spring levels in relation to external drivers on different
timescales (within-day and multi-day). Time-invariant analysis (e.g., auto-correlation,
cross-correlation, Fourier spectra) provided average characteristics of spring dynamics
throughout the monitoring period, while time-variant analysis (e.g., wavelets) revealed
differences in dynamics related to changing hydrological conditions. On a multi-day time
scale, the linear mixed models enabled the identification of the main drivers of the long-
term spring level variations. The joint interpretation of these results led to the creation of a
conceptual model for the discharge zone.

Sea level changes were identified as the primary driver of spring level variations on
a within-day timescale. However, in variable hydrological conditions, non-stationarity
in-spring level dynamics were observed, particularly in Spring 1 where phase lags between
sea and spring levels were attributed to the vertical heterogeneity of the aquifer. Spring
2, identified as a central coastal spring, is directly connected to the sea via a submarine
spring, while Spring 1 is connected to the sea indirectly via the conduits feeding the central
spring. Occasional salinization of Spring 2 suggests deep-seated karst conduits linking it to
the sea, estimated to be at least 60 m below sea level. In contrast, Spring 1 appears to be
connected with the main system by shallower conduits, making it less vulnerable to large-
scale salinization and more suitable for freshwater supply. Deep and highly permeable
conduits connecting Spring 2 to the sea reduce the possibility of mitigating sea intrusion
through engineering interventions.

On daily and longer timescales, flows from both springs are primarily governed by
cumulative rainfall over the preceding 20–30 days, in conjunction with sea level fluctua-
tions and the seasonality of potential evapotranspiration, which significantly influences
effective rainfall infiltration. While the coastal springs exhibit dynamics typical of other
karst systems, they are further modified by both short- and long-term sea level variations.
Salinization is prevented only by maintaining a sufficient groundwater gradient toward
the sea, underscoring the system’s vulnerability to reduced recharge under future climate
change scenarios. Our results demonstrated the importance and usability of time-series
analysis in the study of complex coastal karst systems. The analysis of hourly data on a
within-day timescale has proven to be particularly useful for determining the local charac-
teristics of the system. In contrast, the analysis of daily data is more suitable for recognising
and characterising the main drivers of system dynamics on a multi-day timescale.
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Abbreviations
The following abbreviations are used in this manuscript:

AMSL above mean sea level
EC electrical conductivity
CCF cross-correlation function
ACFs auto-correlation functions
PACF partial auto-correlation function
CWT continuous wavelet transform
AIC Akaike information criterion
IRFs impulse response functions
AR auto-regressive
XWT cross-wavelet transform
BLUP best linear unbiased predictor

Appendix A. Theory
Appendix A.1. Time-Series Descriptive Statistics

Two critical aims of time-series analyses are to understand and interpret the relation-
ships between measurements of a temporally varying response variable and (i) measure-
ments of the same variable made at different times and (ii) measurements of other variables
which potentially drive variation in the response. An understanding of how measurements
of the response at different times are related provides insights into the timescale over which
a perturbation of the response might continue to be evident. The relationships with other
variables provide insights into the processes driving variation in the response and the
timescales over which these processes are relevant.

For a time-invariant time series the degree of correlation between measurements of
a temporally varying response and other temporally lagged measurements of the same
variable can be quantified by the ACF. For a time-series of n measurements, y_t, made
at equally spaced times t = 1,. . .n, then the auto-covariance for lag k is estimated by the
following [38]:

ck =
1
n

n−k

∑
t=1

(yt − y)(yt+k − y) (A1)

where y is the mean of the yt and the ACF for lag k is estimated by the following:

rk =
ck
c0

= Corr(yt, yt+k) (A2)

The ACF is only calculated for non-negative k since rk = r−k. The upper and lower
bounds of the 95% confidence interval of the ACF for a white noise time series (i.e., a
sequence of mutually independent random variables with zero mean and finite variance)
are as follows [38]:

±1.96√
n

(A3)

Therefore, time series are considered to have significant auto-correlation for lags
where rk lies outside these bounds. If some data are missing from the time series then the
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summation in Equation (A1) should be limited to cases where both yt and yt+k are available
and the denominator n should be adjusted.

If there is significant auto-correlation between a response variable and lagged copies of
itself up to a lag of m times, the time-step between measurements, the value of m provides
an indication of the timescale of fluctuations in the response. However, the process causing
the auto-correlation could act over a much shorter timescale. For example, if there is a
direct relationship between successive measurements of the response this could lead to
an indirect relationship and significant auto-correlation overs lags of two, three, or more
time-steps. In contrast to the ACF, PACF quantifies the correlation between time-series and
replicates lagged by k time-steps once the effects of auto-correlation over shorter lags have
been removed.

The PACF can be calculated from the ACF using the Durbin–Levinson algorithm [39].
If the PACF is only significantly different to zero for k = 1 then this indicates that an AR
model of order 1 (i.e., a model where the value of the time series at time t depends linearly
on the value at time t − 1 and a noise term) is sufficient to approximate the temporal
correlation within the time series.

The CCF quantifies the relationship between time-series measurements of a property
and lagged versions of another property. The cross-covariance between properties x and y
at lag k is estimated by the following [38]:

gxy
k =

1
n

n−k

∑
t=1

(yt − y)(xt+k − x) (A4)

and the corresponding CCF is as follows:

rxy
k =

gxy
k

σxσy
(A5)

where σx and σy are the standard deviations of x and y. Similarly to the ACF, properties
x and y are thought to be significantly related when x is displaced by lag k if the rxy

k lies
outside the 95% confidence interval (Equation (A3)). The CCF is plotted for both positive
and negative k since, in general, rxy

k ̸= rxy
−k. If rxy

k indicates significant correlation over a
negative lag k then y is responding to past values of driving variable x.

Appendix A.2. Time-Series Analyses in Frequency Domain

The methods described in the previous section can be used to analyse time series in
the temporal domain. They interpret temporal variation by looking at the relationships
between measurements made at different times. Time series can also be analysed in the
frequency domain. Here, the time series is decomposed into the sum of sinusoids of a
range of frequencies and the variation is interpreted in terms of the weight or power that is
associated with each frequency.

Fourier’s theorem [40] states that any reasonably continuous and periodic time series
can be approximately decomposed into a finite sum of sinusoids, and it is as follows:

yt = a0 +
⌊ n

2 ⌋

∑
m=1

{amcos(2π fmt) + bmsin(2π fmt)} (A6)

where the ⌊x⌋ indicates the integer part of x, the am and bm are coefficients or weights,
and the fm = m

n are frequencies that take values between 0 and 0.5. For a given length n
time series, yt, the coefficients am and bm can be determined by the fast Fourier transform
(FFT) [41]. Thus, the signal can be decomposed into a sum of sinusoids of frequency fm
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and amplitude cm =
√

a2
m + b2

m. It can be shown that the variance of component m is equal
to c2

m/2. A plot of this variance against fm is referred to as the spectrum of the time series.
Peaks in the spectrum are indicative of the frequencies of dominant oscillations within the
series. When the spectrum is calculated using the FFT, resolution in the spectral peaks
can be lost because of effective discontinuities (jumps to zero) beyond the start and end of
the time series. These artefacts can be minimised by multiplying the signal by a length n
window function that decays to zero at its start and end.

Analogous to the cross-covariance and cross-correlation functions, relationships be-
tween two time series can also be studied in the frequency domain. The cross-spectrum is
defined as the Fourier transform of the cross-covariance function. The squared magnitude
of the cross-spectrum describes the product of the power of the two time series for each
frequency. The phase of the cross-spectrum can indicate whether oscillations in one of
the time series tend to lead or follow oscillations in the other time series. The phase is
generally quoted as being between −π and π radians and indicates the degree to which
the oscillations are aligned, with a phase of zero indicating alignment.

A large cross-spectrum power for a particular frequency does not necessarily indicate
that the two time series are related. Such a cross-spectral peak could occur if just one of the
time series has substantial oscillations at this frequency. The coherence function scales the
cross-spectrum by the product of the square root of each of the spectra of each series. Thus,
peaks in the coherence function indicate that both time series have substantial power at the
corresponding frequencies.

Appendix A.3. Wavelet Analyses for Time-Variant Time Series

Time series measured in the environment often have time-variant spectra. For example,
the mean of the time series might vary in time or according to a temporally varying covariate
such as the amount of rainfall that has fallen at a location. Also, the oscillations within the
time series or the delay between changes to a covariate leading to a response in the time
series can vary according to the state of the system. The oscillations of the sinusoids in a
Fourier series continue for the entire length of the time series and therefore the FFT cannot
be used to identify oscillations that are localised in time. In contrast, wavelet functions are
localised in time (i.e., they are only non-zero with a specified time window) and can be
used to explore variation in the oscillations contained in a time series.

When the CWT is applied, the width or scale of the wavelet is varied and the wavelet
is shifted across the signal before its convolution (i.e., similarity) with the time series is
calculated. This leads to an indication of how the timescale of oscillations within the signal
vary in time. The CWT of signal y is written as follows:

Wy
t (s) =

√
δt
s

n

∑
t′=1

yt
′ψ0

[(
t′ − t

) δt
s

]
(A7)

where s is the scale, δt is the time-step, and ψ0 is the mother wavelet function. The quantities
in square brackets after the mother wavelet describe the shifting and scaling of this function.

The power of the CWT is defined as
∣∣∣Wy

t (s)
∣∣∣2. Many different wavelet functions exist. They

differ in terms of their shape, which in turn influences the temporal and scale resolution of
the resultant spectra. Generally, a wavelet achieves good time resolution at the expense of
scale resolution and vice versa. The Morlet wavelet provides a good compromise in this
regard [42].

The cross-wavelet transform (XWT) between two signals xt and yt is defined as
Wxy = Wx ∗ Wy∗ where the * denotes complex conjugation. The power of this transform is
defined as the magnitude of the CWT and the complex argument of Wxy is the local relative
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phase between the two signals. If, for a particular time and scale, this complex argument is
zero then the oscillations are exactly aligned. If this argument is π then the oscillations at
this time and scale are exactly out of phase, with the peaks in one signal corresponding to
the troughs in the other.

Analogously to a covariance function, the power of XWT increases according to the
power in each time series. The XWT can be rescaled in line with a correlation function to
become a wavelet coherence, such as the following:

R2
t (s) =

∣∣∣S(s−1Wxy
t (s)

)∣∣∣2
S
(

s−1|Wx
t (s)|

2
)
·S
(

s−1
∣∣∣Wy

t (s)
∣∣∣2) (A8)

where S is a smoothing function in time and scale [18]. The smoothing functions reflects
that each of the wavelet transform terms in Equation (A8) corresponds to the expected
value of that transform rather than the observed value. Without the window, all values
of R2

t (s) would equal 1, but the smoothing function leads to the expected values being
estimated by a weighted average of the observed values in the vicinity of t and s.

Appendix A.4. Time-Series Modelling

Mathematical models can combine relationships between driving variables and the
response variable (e.g., spring levels), and temporal auto-correlation amongst the model
residuals to predict the value of the response variable at times when it was not measured.
Models of regularly spaced time series often approximate the auto-correlation by an AR or
moving average process [43]. However, in this paper we utilise linear mixed models which
include auto-correlated residuals [44]. These linear mixed models are more frequently used
to model spatial variation and can accommodate missing data. The linear mixed model is
written as follows:

y = Mβ+ ε (A9)

where y is a vector of n (possibly transformed) measurements of the response variable yt;
M is an n × q design matrix containing q temporally driving variables recorded at each
of the n observation times; β =

(
β1, β2, . . . , βq

)T is a vector of q regression coefficients;
and ε is a vector containing n residuals. The Mβ term, which is referred to as the fixed
effects, relates the driving variables to the response variable. The ε term contains the
residuals or difference between the measured yt and the fixed effects are referred to as
the random effects. The random effects are assumed to have been realised from a normal
distribution and have zero mean and covariance matrix C. Auto-correlation amongst the
random effects is accommodated by permitting non-diagonal elements of C to be non-zero.
These non-zero values are determined by a parametric authorised function which relates
the auto-correlation to the time lag separating two measurements. One commonly applied
authorised function [45] is the nested nugget and exponential model, which is as follows:

C(τ) =

{
c0 + c1 if τ = 0

c1 exp
(
− τ

a
)

for τ > 0
(A10)

where c0 is the nugget variance, c1 the partial sill variance, and a a temporal parameter
which indicates the time-period over which the random effects are auto-correlated. The
exponential function is equivalent to an order 1 AR auto-correlation model.

The parameters of the model (i.e., the elements of β, c0, c1 and a) must be calibrated to
ensure consistency between the model predictions and the observed data. This calibration
can be achieved using the maximum likelihood estimator [46] which uses a numerical
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optimising procedure to find the parameter values which leads to the largest likelihood
that the data would have arisen from the parameterised model. The maximised likelihood
value can also be used to compare the effectiveness of different driving variables within
the fixed effects and to decide whether specific driving variables should be included in the
model. The set of fixed effects that lead to the lowest value of the AIC are considered to be
the best balance between model fit and complexity. The AIC is written:

AIC = 2p − 2L (A11)

where p is the number of model parameters to be estimated and L the log-likelihood.
A response variable could potentially be controlled by the variation in a driving

variable over an extended period of time. For example, the level of a spring could be the
result of rainfall over the previous few weeks or months. Therefore, rather than one column
of M containing the observations of the driving variable made at the same times as the
response, the column contains a weighted average of the driving variable over the relevant
time-period. Marchant et al. [44] demonstrated how IRFs could be incorporated into the
linear mixed model to automatically determine the optimal weighting of such an averaged
term. They wrote the averaged IRF term at time t as follows:

nw−1

∑
τ=0

w(τ)xt−τ (A12)

where w(τ) is the weight associated with the driving variable τ time-steps prior to the
observation, p(mi) is the average value of that driving variable for month mi from the
start of the study period, and nw is the number of time-steps included in the average. The
weights are selected according to the following parameterised IRF:

w(τ) =
ααsτs−1exp(−aτ)

Γ(s)
, (A13)

where α, a, and s are the IRF parameters and Γ(s) is the gamma function of order s. The IRF
parameters are optimised as part of the maximum likelihood model estimation procedure.

Once a linear model has been estimated it can be used to predict values of the re-
sponse variable at times when they were not measured and to determine the variance
(i.e., uncertainty) of these predictions via the best linear unbiased predictor (BLUP) [46].
Validation of the model can be performed by predicting the value of the response variable
at times when it was observed and by comparing the prediction with the observed value.
For example, leave-one-out cross-validation removes a single observation and predicts the
response variable at the corresponding time. If this process is repeated for all times then
the average difference between the predicted and observed values and the average squared
standardised errors can be calculated and used to assess the effectiveness of the model. The
bias (i.e., mean difference between observed and predicted values) should be close to zero
to indicate that on average the response is correctly predicted. The squared standardised
error is the squared difference between the observed and predicted values divided by the
prediction variance. If the mean squared standardised prediction error is close to 1 then
this is an indication that the uncertainty of the predictions is accurately quantified.
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