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Indicators of biodiversity change across large extents of geographic, temporal and taxo-
nomic space are frequent products of various types of ecological monitoring and other 
data collection efforts. Unfortunately, many such indicators are based on data that are 
highly unlikely to be representative of the intended statistical populations. Where there is 
full control over sampling processes, individual spatial units within a geographical popu-
lation have known inclusion probabilities, but these are unknown in the absence of any 
statistical design. This could be due to the voluntary nature of surveys and/or because of 
dataset aggregation. In these cases some degree of sampling bias is inevitable and, depend-
ing on error tolerance relative to some real-world goal, we may need to ameliorate it. 
One option is poststratification to adjust for uneven surveying of strata assumed to be 
important for unbiased estimation. We propose that a similar strategy can be used for 
the prioritisation of future data collection: that is, an adaptive sampling process focused 
on increasing representativeness defined in terms of inclusion probabilities. This is easily 
achieved by monitoring the proportional allocation of sampled units in strata relative to 
that expected under simple random sampling. The allocation of new units is thus that 
which reduces the departure from randomness (or, equivalently, that equalising unit inclu-
sion probabilities), allowing an estimator to approach that level of error expected under 
random sampling. We describe the theory supporting this, and demonstrate its applica-
tion using sample locations from the UK National Plant Monitoring Scheme, a citizen 
science monitoring programme with uneven uptake, and data on the true distribution of 
the plant Calluna vulgaris. This in silico example demonstrates how the successful applica-
tion of the method depends on the extent to which proposed strata capture correlations 
between inclusion probabilities and the response of interest.

Keywords: poststratification, response propensity, R-indicators, survey error, survey 
quality, time-trends, weighting

Introduction

Ecologists are increasingly concerned with monitoring biodiversity change at a 
variety of spatial scales. Whilst this has long been an active area of research within 
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conservation and related fields (Spellerberg 2005), in recent 
years its importance has increased, with numerous species’ 
time trends and associated multi-species indicators now 
based on a wide variety of data types (Dornelas et al. 2018, 
Outhwaite et al. 2019, Ledger et al. 2023). One consequence 
of this trend has been the increasing focus on the use of data-
sets for monitoring that lack any explicit survey design rela-
tive to the scientific question of interest. That is, the data used 
to estimate species’ abundances or occupancies are frequently 
not a probability sample of the statistical target population. 
Unfortunately, inference using such nonprobability samples 
is considerably more difficult than has often been recognised 
in ecology (Boyd et al. 2023). The absence of sampling design 
typically means that model-based adjustments must be made 
to approach the answer that would have been obtained had 
sampling actually been probabilistic, and such adjustments 
can rarely, if ever, be shown to be absolutely reliable (Elliott 
and Valliant 2017, Meng 2018, Wu 2022, Aubry  et  al. 
2024, Boyd  et  al. 2024b). As a result, efforts to character-
ise biodiversity change from nonprobability samples have 
often received criticism for not being representative of their 
inferential target populations (Gonzalez et al. 2016), leading 
to a number of high-profile disagreements in the literature 
(Boyd et al. 2023).

The technical elements of sampling design underlying these 
issues have been well-known in the statistical subdiscipline 
of survey sampling for decades (Meng 2018, Valliant  et  al. 
2018, Lohr 2019, Bailey 2023a), yet many of these insights 
are frequently overlooked or misunderstood by ecologists 
(although by no means all, e.g. see many chapters within ref. 
Gitzen et al. 2012). One stumbling block may be the numer-
ous definitions and types of ‘bias’ available in the literature 
(Sackett 1979, Gitzen et al. 2012, Pescott et al. 2023); the 
lack of any well-known (to ecologists) unified mathematical 
definition of sampling bias may also have hindered commu-
nication and progress.

Within survey sampling focused on descriptive inference 
(i.e. characterising some directly measurable property of a 
population from a sample, Hodges 1996), statistical error 
has long been known to be driven in large part by correla-
tions between the probability that any unit is in the sample 
π, the inclusion probability, and the property of interest y 
(Bethlehem 2002, Groves 2006). Note that in survey sam-
pling π is also sometimes designated as the ‘response propen-
sity’, because there the key challenge is unknown probabilistic 
variation in subject responses to designed surveys, rather than 
the absence of design itself (Lohr 2019). In ecology, this has 
also sometimes been discussed under the heading of prefer-
ential sampling (Aubry et al. 2024), although that label tends 
to imply a positive association, whereas the issue applies to 
correlations of either sign. Probability sampling ensures that 
this correlation is zero in expectation (i.e. across repeated, 
normally imaginary, realisations of the sampling mechanism; 
Meng 2018). A conceptual complication here is that finite 
probability samples also have non-zero correlations between 
sample inclusion and the response variable, and that there is 
variation in the survey sampling literature relative to whether 

people refer to realised error in a sample as bias (when it 
may actually be a combination of sampling variance and a 
biased sampling mechanism), or whether the term sampling 
bias is reserved for situations where it is known (or strongly 
expected due to a lack of design) that E[ρ(π,y)] ≠ 0; that 
is, that the sampling mechanism that produced the data 
had variable sampling unit inclusion probabilities, which, 
by definition, were not designed and so cannot be directly 
accounted for when estimating parameters like means from 
the data. This means that the expected value (E [·]) of the cor-
relation (ρ) between the sample inclusion probabilities πi and 
the values of the response variable yi is guaranteed to be non-
zero, something that is only assured by probability sampling 
(Meng 2018).

Regardless of these terminological issues, Meng (2018) 
demonstrated how a standard formula for statistical error 
( y yn N− , the difference between the mean of the response 
variable in the sample and that of the variable in the full 
population) can be re-written as the product of three terms. 
One characterising the aforementioned correlation ρ(π,y), 
given the name ‘data quality’ by Meng, and two others rep-
resenting the population fraction sampled (‘data quantity’) 
and the amount of variation in the response variable in the 
population (‘problem difficulty’). (Note, however, that Meng 
approaches the correlation ρ(π,y) from a finite population 
viewpoint, replacing the latent sampling unit inclusion prob-
abilities πi with the realised, binary sample inclusion indica-
tors Ri). The implications of this algebraic identity have been 
hailed in some areas as a ‘new paradigm’ (Bailey 2023b), and, 
in our opinion, the formula clarifies many issues that have 
previously sometimes only been intuitively understood in 
ecology (Boyd et al. 2023, 2024b, 2024c).

The adjustment of nonprobability samples for approach-
ing unbiased inference is one area that has been clarified by 
Meng’s approach: in a subsequent paper, Meng (2022) dem-
onstrated how all such techniques (inverse probability weight-
ing and poststratification, imputation or superpopulation 
modelling, and doubly-robust approaches) can be viewed as 
ways to minimise the correlation ρ(π,y). This insight allows us 
to understand the assumptions of our methods, and therefore 
to justify our approaches and assess their limitations more 
clearly (Boyd et al. 2022). Here we apply these insights to the 
use of stratification in ecology, particularly its post hoc use 
to adjust unrepresentative sampling, demonstrating its use as 
an intelligent driver of adaptive sampling for many situations 
involving data that are biased for the estimation of some ‘esti-
mand’ (i.e. the real-world quantity of interest Lundberg et al. 
2021).

A priori stratification is often used in survey design to 
achieve one or more of the following: good representation 
of a population relative to target variables of interest; to 
guarantee certain sample sizes within strata (which may be 
of intrinsic interest); for the convenience of survey admin-
istration, potentially including cost reduction via regional 
administration; and to increase the statistical efficiency of 
estimators (Valliant  et  al. 2018, Lohr 2019). For the last 
point, error can be reduced by randomly sampling within 
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strata of homogeneous units, i.e. those where subpopulation 
means and variances are expected to be similar (Lohr 2019).

Post hoc stratification, or, as it is more commonly known, 
‘poststratification’, can also be used to achieve this latter goal. 
That is, it can be used to increase the precision of estima-
tors under known sampling schemes (Smith 1991). However, 
it can also be used as a way to remove potential biases aris-
ing from the use of nonprobability samples. In this sense, it 
is part of the family of reweighting techniques intended to 
adjust a sample to better represent some population of inter-
est (Smith 1991, Wu 2022, Boyd et al. 2024b).

The poststratification estimator y ps  (Bethlehem 2002), or 
‘basic poststratification identity’ (Gelman and Carlin 2002), 
used to achieve this can be defined as:

y
N

N yps h h
h

H

�
�
�1

1

	  (1)

where N is the population size (here the total number of spa-
tial units), H is the full set of strata into which the popula-
tion is divided, Nh is the overall size of stratum h, and yh  is 
the mean within stratum h. The implication of Eq. 1 is that 
within-stratum means substitute for individual unit values, 
and it is these that are averaged across the entire popula-
tion once relative stratum sizes in the population have been 
accounted for (see Boyd et al. 2024b for a worked ecological 
example). This formulation implies that all i units within a 
given poststratum receive the same weight (Bethlehem 2002, 
Wu 2022), equal to

w
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h

h
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/
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= 	  (2)

where n is the total sample size, and nh is the size of the 
sample within stratum h. Equation 2 can be understood as 
upweighting units that are under-represented in the sample 
relative to the population and vice versa. These weights imply 
an individual unit inclusion probability of πi(h) = nh/Nh. And 
so it can be shown that
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(Wu 2022). Thus poststratification is a special case of inverse 
probability weighting (a.k.a. quasirandomization or propen-
sity score weighting) where πi(h) is assumed to be constant 
within strata but to (potentially) vary between strata (Wu 
2022). In the situation where a set of randomly sampled 
population units are surveyed with full response (i.e. no ‘loss’ 
of design-based survey units), then this estimator, whether 
construed as y ps  or the inverse probability weighted estima-
tor yipw, is unbiased in expectation (Smith 1991, Bethlehem 
2002). However, as noted above, it is well known that in 
actual samples error will tend to increase as a function of the 

correlation between between inclusion probabilities π and 
the outcome variable y (Groves 2006, Bethlehem 2002).

In the case of uncontrolled (i.e. nonprobability) sam-
ples, whether based on a single survey such as a designed 
citizen science scheme with some nonresponse, or an aggre-
gated sample such as one might retrieve from the Global 
Biodiversity Information Facility (GBIF) or other meta-data-
base, the lack of statistical design control essentially guaran-
tees that this correlation will be appreciably different from 
zero (Boyd et al. 2023). This will not merely be the bad luck 
of an unrepresentative random sample, but the expectation 
of a biased sampling mechanism; that is, E[ρ(π,y)] ≠ 0. Here, 
increases in sample size will not help; in fact, they have been 
shown to make things worse in realistic scenarios, i.e. when n 
<< N and the standard deviation of y, σy, does not equal zero, 
as will generally be the case for most environmental moni-
toring at small scales (Meng 2018, Bailey 2023b, Boyd et al. 
2024b).

With regards to poststratification, two situations will 
reduce this undesirable correlation (Bethlehem 2002). These 
rely on the fact that if either of a pair of variables is fixed then 
they cannot be correlated. These are:

i.	 The response of interest yi is invariable within poststrata 
(i.e. � y h h( ) � �0 ).

ii.	 The inclusion probabilities πi are invariable within post-
strata (i.e. � �i h h i h( ) � � � ), achieved by simple ran-
dom sampling (SRS) within strata.

In the first of these situations, the poststratification esti-
mator (1) will be more efficient (lower variance) than the 
arithmetic mean, and will reduce error wherever a random 
sampling design has yielded an unbalanced sample by chance 
(Holt and Smith 1979). In the second of these situations, 
the poststratification estimator reduces the bias, but not 
the variance (Little 1986, 2009). This is linked to the asser-
tion of Gelman and Carlin (2002) that poststratification is 
most important when correcting for differential nonresponse 
between poststrata. Assuming that inclusion probabilities are 
uniform within poststrata, but correlated with y within the 
overall population, then adjusting for poststratum member-
ship renders ρ(π,y) equal to zero (Meng 2022, Wu 2022): 
that is, π and y are independent conditional on some X, 
where here X is the vector of unit poststratum memberships 
(Smith 1991).

Whilst poststratification and its variants (Gelman 2007) 
can be useful tools for adjusting existing samples (Boyd et al. 
2024b), where monitoring is ongoing and survey organisers 
have some power to alter data collection, combining adap-
tive sampling with poststratification may be a more efficient 
way to reduce error compared to relying on poststratifica-
tion of unrepresentative samples alone (Schouten et al. 2014, 
Schouten and Shlomo 2017). Larger samples may be also 
desired for other reasons irrespective of the potential for 
using the poststratification estimator on a sample in hand 
(increases in power for example). The situations in which 
poststratification is likely to assist the sampler given above 
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suggest a simple approach to adaptive sampling for research-
ers seeking to characterise a population parameter such as a 
mean. As noted above, such descriptive targets are increas-
ingly important for ecological monitoring and conservation, 
especially where nonprobability samples are used (Boyd et al. 
2023). Straightforward approaches to adaptive sampling, 
with few assumptions, are therefore likely to be of wide util-
ity (Henrys et al. 2024).

Here we propose an approach to the problem based on 
assessments of poststratum sampling coverage. We show how 
this can be implemented easily with standard binomial for-
mulae within an adaptive framework using data collected 
between 2015–2023 for the UK National Plant Monitoring 
Scheme, a designed citizen science programme with uneven 
site uptake (Pescott et al. 2019b). Our approach has a direct 
link to the literature on the monitoring of survey quality via 
assessments of potential nonresponse bias (Wagner 2012, 
Nishimura et al. 2016), and we use one such indicator (the 
R-indicator of Schouten; Schouten et al. 2012) of variation 
in response propensities (or, as we have styled them here, 
inclusion probabilities) across strata to explore the poten-
tial improvements in survey representativeness (a measure of 
survey quality; Schouten  et  al. 2009) achievable using our 
approach. Finally, we investigate the performance of the 
approach through simulation and when confronted with a 
real dataset. Specifically, we examine how well stratum-based 
adaptive sampling performs in estimating the true 1 km2 
occupancy of the subshrub Calluna vulgaris in Great Britain. 
We use both simulated locations and actual sampled sites 
from the NPMS to explore the potential strengths and weak-
nesses of the method relative to its key assumptions.

Material and methods

A stratum-based adaptive survey strategy
The approach proceeds as follows: for the population of inter-
est (e.g. some geographic area over which the mean of some 
attribute of a population of units is desired), select a set of 
strata H considered to have some differential relationship with 
sample inclusion and/or the response variable(s) of interest. 
Each stratum need not be a single spatially contiguous unit, 
but each population unit should be assignable to a single stra-
tum (geographical units may often require assigning to the 
stratum with the largest overlapping area). Many such strata 
will likely already exist, although the approach is not limited 
to existing strata, as any set of geographically indexed variables 
could be discretised and crossed to create strata (Boyd et al. 
2024b). For example, in the UK ‘land classes’ have previously 
been erected based on covariation in numerous geographical 
and environmental variables (Bunce  et  al. 1996) and then 
amalgamated into broader zones (UKCEH Countryside 
Survey 2013); for Europe, biogeographic zones based on pat-
terns of terrestrial and marine biodiversity exist (EEA 2002). 
Note that the strata do not have to be absolutely believed 
to have an invariable one-to-one relationship between stra-
tum unit membership and inclusion probabilitiy, only that 

there is some nontrivial relationship, such that adjusting for 
its contribution to the correlation ρ(π,y) will be better than 
assuming that the sample is equivalent to one selected at ran-
dom (Meng 2022).

For the existing sample for which future adaptive selec-
tions are required, compare the current distribution of units 
across strata to that expected for the same sample size under 
simple random sampling; this is known as proportional allo-
cation in the survey sampling literature (Valliant et al. 2018). 
That is, a given set of strata H partitioning N will be sampled 
in proportion to n/N, such that, for stratum h, nh = (n/N) 
× Nh; if achieved, all response propensities would be equal, 
both within and between strata. The stratum for which the 
next unit should be collected will then be the one with the 
current largest negative departure from random expectation, 
quantified using z-statistics.

Monitoring representativeness
The link between inclusion probabilities and indicators of 
representativeness noted above was formalised by Schouten 
and colleagues (Schouten et al. 2009). They provide the fol-
lowing operational definition of ‘representative’ in the survey 
sampling context:

� � �h
h

i h
i

N

N
h

h

� � �
�
�1

1
( ) 	  (4)

Equation 4 is a weaker version of statement (ii) given in the 
Introduction, as it does not state that all unit inclusion prob-
abilities within a stratum are identical, only that the means 
across strata are equal. Based on this, the Schouten  et  al. 
(2009) R-indicator is R S

h
( )� �� �1 2 , where S

hπ
 is the 

weighted standard deviation (SD) of the mean inclusion 
probabilities across strata (Schouten  et  al. 2009). R(π) = 1 
denotes maximum representativeness when the variance in 
inclusion probabilities across strata is zero.

Adaptive sampling algorithm
This proceeds as follows (also see the R code in the Supporting 
information):

Step 1. Assign all population units Ni to a unique corre-
sponding stratum hi.

Step 2. Calculate each stratum’s current z-statis-
tic, zh, by comparing the current empirical count 
(x N n N nh h h h h� � �( / ) , the current sample size) and 

binomial count SD (S N n N n Nh h h h h h� � � �( / ) ( / )1 )  
to the expected count (µ̂h) based on proportional allocation 

(i.e. (n/N ) × Nh). Then, z x Sh h h h� �( ˆ )/� , the difference 
between the empirical and expected counts in SD units.

Step 3. Across the H strata, select that h with the small-
est zh as the stratum most in need of additional sampling to 
reach the simple random sample benchmark. Call this the 
focal stratum hf.
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Step 4. Given the addition of a new site to stratum hf, 
calculate the new values of xh and Sh directly from the stan-
dard binomial formulae. The new target stratum site count 
expected under simple random sampling is also updated as 
ˆ (( )/ )� � � �n a N Nh. In the following examples a = 1, but 
it could be any positive integer as there is no requirement 
to evaluate the switch after the addition of every single new 
sampling unit.

Step 5. After updating the current focal stratum hf with the 
newly added site(s), recalculate the z-statistics for all strata, 
including hf. Compare the updated zh(f) with the minimum 
zh across all strata. If zh(f) is no longer the smallest, switch the 
focus to the stratum with the new smallest zh(f) denoted hf  *. 
Begin sampling hf  * if required, otherwise continue with hf.

Step 6. Repeat step 2 to 5 K times until the desired new 
sample size allowed by current resourcing, n + aK, is reached, 
or until all strata are at their expected simple random sam-
pling counts ((n + aK )/N ) × Nh.

We can monitor the progress of this algorithm by follow-
ing the empirical stratum sampling proportions (nh/Nh), and 
by calculating the corresponding R-indicator at each step.

Investigating performance

Empirical data and initial proof-of-concept
The UK National Plant Monitoring Scheme (NPMS) asks 
volunteers to record plant abundances in small plots located 
in particular habitats (Walker et al. 2015). Plots are located 
within 1-km2 squares (hereafter ‘sites’) of the relevant coun-
try grid (the scheme currently covers Great Britain, Northern 
Ireland, the Isle of Man and the Channel Islands). The 
available sites within the scheme (www.n​pms.o​rg.uk​/squa​
re-ne​ar-me​-publ​ic) are originally a weighted-random selec-
tion, stratified by 100 × 100 km cells of the larger relevant 
grid; see Pescott et al. (2019b) for more detail. Due to vari-
able population density and other factors across the region, 
uptake of these sites is uneven, and some areas have far fewer 
survey returns than others (Pescott et al. 2019b). A primary 
aim of the NPMS is the production of nationally representa-
tive indicators of habitat quality (Pescott et al. 2019a), and 
so, ideally, coverage of the area would be relatively even. We 
know that inclusion probability (i.e. site uptake) is related 
to such factors as human population density and correlated 
environmental variables such as altitude and land cover type, 
and that these variables are also correlated with the local 
abundances and occupancies of plant indicator species and 
their habitats (Pescott  et  al. 2019b). North-west to south-
east gradients of all these variables are well-known for Britain 
and Ireland (Hill 1991, Preston  et  al. 2002, 2023, Pescott 
and Preston 2014, Stroh et al. 2023). We therefore assume 
that representation of broad environmental strata, in tan-
dem with poststratification of results, is likely to be a positive 
step towards reducing potential bias in monitoring scheme 
outputs. One widely-used set of strata for Great Britain is 
the UK Countryside Survey (UKCS) Environmental Zones 
(UKCEH Countryside Survey 2013), based on a larger set of 
‘land classes’ created originally for the a priori stratification of 

national ecological and biogeographical surveys (Bunce et al. 
1996). To these we add Northern Ireland as an additional 
stratum to better cover our area (Fig. 1). Surveyed NPMS 
sites (NPMS 2024) are overlaid on these zones in Fig. 1 to 
show their current overall (2015–2023) coverage. We use 
these data to demonstrate an initial proof-of-concept, namely 
that the algorithm equalises stratum sampled proportions 
and maximises the R-indicator as proposed.

Reducing bias in a response variable of interest
Investigating the likely benefits of our strategy for a response 
variable of interest, such as a species’ occupancy or average 
abundance, is more challenging, as it requires access to a spe-
cies’ true underlying state to evaluate (or a good estimate of 
this via a probability-based survey). Whilst pure simulation 
approaches could be used, we consider that these would be 
less illuminating than investigations more closely aligned to 
real-world datasets, because the theoretical principles under-
lying the approach are already well characterised. We use an 
approximation of the true 1 km2 distribution (for 2000–
2019) of the heathland subshrub Calluna vulgaris (‘heather’), 
originally created for Boyd  et  al. (2024b). This ‘true’ dis-
tribution is based on the 2018 UKCEH Land Cover Map 
(Morton et al. 2022) (where ‘heather’ and ‘heather grassland’ 
are land covers derived from satellite images and other infor-
mation) and occurrence data from the distribution mapping 
project Plant Atlas 2020 (Stroh et al. 2023). See Boyd et al. 
(2024c) for more information on the construction of the 
Calluna map.

Adaptive sampling based on simulated locations
First, we demonstrate the performance of the method when 
the key assumption regarding random sampling within strata 
is met. Here we only use empirical data from the NPMS 
(2024) dataset to initialise stratum sample sizes for the adap-
tive algorithm (specifically we use data from 2019 for these 
investigations). The initial samples themselves are new ran-
dom selections within strata; the adaptive addition of sites 
uses our suggested algorithm. We refer to this approach as 
‘Stratum SRS [simple random sampling] + adaptive’. The 
iterative estimates of the mean occupancy of Calluna for this 
scenario use the poststratification estimator from the R pack-
age ‘survey’ (Lumley 2010; www.r-project.org).

Adaptive sampling based on empirical locations
Second, we investigate the performance of the method using 
the actual sampled sites from 2019 in the NPMS (2024) 
dataset. This approach provides insight into how the method 
might perform when the key assumption of random sam-
pling within strata is unlikely to be fully met. We refer to this 
approach as ‘NPMS + adaptive’. Again, iterative estimates of 
Calluna occupancy use the poststratification estimator from 
the R ‘survey’ package (Lumley 2010). We also include a sce-
nario where our proposed strata are ignored, and new sites 
added to the existing NPMS 2019 sample are chosen ran-
domly from the total site population of Great Britain. We call 
this approach ‘NPMS + SRS’. Calluna occupancy estimates 
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from this procedure are the simple (i.e. unadjusted) mean 
rather than the poststratified mean. For all three scenarios 
new sites added to the sample are labelled as unavailable for 
future iterations of the algorithm.

Results

Table 1 gives the current distribution of NPMS 1 km2 sites 
by UKCS Environmental Zone stratum. These are given in 
order of their discrepancy from proportional allocation (i.e. 

simple random sampling) of the 2015–2023 sample of 1204 
sites that could be assigned to strata, from under- to over-
sampled (NPMS 2024).

Figure 2 demonstrates the progress of the stratum-based 
adaptive sampling algorithm in terms of stratum sampled 
proportions and R-indicator. The example here uses 600 iter-
ations (i.e. the final target sample size was n + 600 = 1804). 
This amount of adaptive sampling may be unrealistic in most 
real world situations where there is existing nonresponse, 
but we use this number to demonstrate the point at which 
all strata become proportionally allocated, and to show the 
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 6°W  4°W  2°W  0°

NPMS sites (2015–2023)

UKCS Environmental Zones
Easterly Lowlands,
 England (27.2%)
Intermediate Uplands and Islands,
 Scotland (−62.6%)
Lowlands,
 Scotland (−30.6%)
Lowlands,
 Wales (8.7%)

Northern Ireland (12.8%)

True Uplands,
 Scotland (−57.2%)
Uplands,
 England (41.9%)
Uplands,
 Wales (11.8%)
Westerly Lowlands,
 England (30.5%)

Figure 1. UK Countyside Survey (UKCS) Environmental Zones plus Northern Ireland. The numbers following the UKCS zone names give 
the difference between the empirical National Plant Monitoring Scheme (NPMS) square count and that expected under simple random 
sampling (SRS), expressed as a percentage difference (±) relative to the expected count. Percentages closer to zero therefore approach SRS 
counts. Grey circles are surveyed NPMS sites, 2015–2023.

Table 1. The current distribution of NPMS sites by UKCS Environmental Zone strata, ordered from under- to over-sampled relative to simple 
random sampling (SRS). Exp. count is the expected number of squares under SRS. Pct sampled is the current percentage of the stratum area 
sampled; Count discrepancy is the difference between the actual square count and the expected count expressed as a percentage difference 
(±) relative to the expected count.

Stratum no. Stratum No. sites Exp. count
Stratum  

area (km2)
Pct  

sampled (%)
Count discrepancy  

(% of expected)

5 Intermediate Uplands and 
Islands, Scotland

  53 142.2 29  866 0.18 −62.7

6 True Uplands, Scotland   65 152.5 32  034 0.20 −57.4
4 Lowlands, Scotland   76 109.9 23  084 0.33 −30.9
7 Northern Ireland   73   67.4 14  156 0.52 8.3
8 Lowlands, Wales   60   53.8 11  309 0.53 11.4
9 Uplands, Wales   55   48.9 10  272 0.54 12.5
1 Easterly Lowlands, England 395 311.6 65  441 0.60 26.8
2 Westerly Lowlands, England 321 246.7 51  815 0.62 30.1
3 Uplands, England 106   74.9 15  739 0.67 41.5
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evolution of the R-indicator towards its maximum possible 
value of 1 (Fig. 2). As per Table 1, Fig. 2a shows how, initially, 
only the Intermediate Uplands and Islands and True Uplands 
of Scotland are underallocated. These have the lowest stra-
tum proportions sampled initially: up to around the 100th 
iteration it is only these sites that are being selected for new 
sampling locations. The other strata ‘flatline’ up to this point, 
indicating that they are over-sampled relative to the number 
of samples they would expect if the total sample had actually 
been proportionally allocated. The most over-sampled stra-
tum is the Uplands of England, as this does not see its sample 
size increased until around the 500th iteration. This is also 
the point at which the R-indicator (Fig. 2b) approaches its 
maximum value of 1 and itself flatlines; this indicates that 
all strata are now being sampled relative to the proportions 
expected under proportional allocation.

Table 2 gives abridged output of the adaptive sampling 
algorithm underlying Fig. 2. The top of the table shows how, 
initially, stratum number 5, the ‘Intermediate Uplands and 
Islands’ zone of Scotland is targeted in isolation (as expected 
from its position at the top of Table 1). The bottom of Table 
2 shows how, once all strata are undersampled relative to the 
addition of new sites, the target stratum switches with every 
iteration of the algorithm. The total population size of UK 
1 km2 sites assigned to UKCS Environmental Zone strata is 
257 502; 1804/257  502 = 0.0070, hence the stratum sam-
pled proportions achieved for the final six iterations at the 
bottom of Table 2 (‘Mean prop.’ column).

Figure 3 shows the results of applying our algorithm to 
the case of estimating our ‘true’ 1 km2 occupancy of Calluna 
vulgaris (0.27). The simple (i.e. unadjusted) mean occu-
pancy of the existing 2019 NPMS data for Calluna is 0.33. 
Taken together, the four elements of Fig. 3 reveal both the 
potential strengths and weaknesses of the proposed method 
in improving on the unadjusted sample mean through the 
adaptive sampling algorithm. Figure 3a demonstrates how 
three different data/model scenarios can lead to better esti-
mates of the true mean with increasing sample size. Given 
that both simple random sampling and stratified random 
sampling are standard methods in survey sampling, this is not 

surprising; it is the differences between the strategies investi-
gated that provide useful insights into the likely performance 
of our approach when applied to real-world datasets. Figure 
3a also shows that the initial poststratified estimate (itera-
tion 1) of Calluna occupancy using the 2019 NPMS loca-
tions (‘NPMS + adaptive’; see also Table 3) leads to the most 
biased estimate (0.41). In addition, the ‘NPMS + adaptive’ 
estimates are worse than those estimated using the sample 
mean with new sites added through simple random sampling 
(‘NPMS + SRS’). However, the ‘NPMS + adaptive’ poststrati-
fied estimates approach the true value more quickly than 
‘NPMS + SRS’, presumably due to the important variation in 
Calluna occupancy across the strata used (Fig. 3d).

The third scenario, ‘Stratum SRS + adaptive’, indicates the 
reason for the initially poor poststratified estimates under 
‘NPMS + adaptive’: the 2019 NPMS locations are biased 
towards the presence of C. vulgaris within all strata. Evidence 
for this can be seen within Fig. 3c; for example, the estimated 
occupancy within the Uplands of England is very strongly 
overestimated before it is incorporated into the adaptive 
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Figure 2. Evolution of UKCS Environmental Zone (a) stratum mean sampled proportions and (b) their R-indicator by iteration.

Table 2. Abridged adaptive sampling output for the first and last six 
added sites across 600 iterations. Stratum no. = stratum number of 
focal stratum (Table 1 for stratum name); Mean prop. = sampled pro-
portion for target stratum; SD = binomial SD for site count within 
stratum.

Iteration
Stratum  

no. z-value Mean prop.
Site 

count SD

1 5 −1.2 × 101 1.8 × 10−3 54 7.3
2 5 −1.2 × 101 1.8 × 10−3 55 7.4
3 5 −1.2 × 101 1.8 × 10−3 56 7.5
4 5 −1.2 × 101 1.9 × 10−3 57 7.5
5 5 −1.1 × 101 1.9 × 10−3 58 7.6
6 5 −1.1 × 101 1.9 × 10−3 59 7.7
... ... ... ... ... ...
595 3 1.1 × 10−1 7.1 × 10−3 111 10.5
596 1 1.0 × 10−1 7.0 × 10−3 460 21.4
597 5 9.9 × 10−2 7.0 × 10−3 214 14.6
598 4 9.1 × 10−2 7.0 × 10−3 164 12.8
599 2 8.7 × 10−2 7.0 × 10−3 368 19.1
600 7 8.5 × 10−2 7.1 × 10−3 102 10.1
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sampling algorithm. Other strata show weaker patterns, but 
the pattern of initial overestimation is clear (Fig. 3d provides 
the ‘true’ values for comparison). This means that some stra-
tum occupancy estimates require the addition of many new 
sampling locations before their estimates increase in accuracy: 

before this point the poststratification estimator simply 
weights the biased stratum estimates according to their areas, 
resulting in important residual bias in the overall estimate. 
The ‘Stratum SRS + adaptive’ scenario shows that rejecting 
the existing locations within the 2019 NPMS dataset and 
selecting new random sets of sites within strata results in more 
accurate poststratified estimates that rapidly improve (Fig. 3a, 
‘Stratum SRS + adaptive’). This highlights that if the assump-
tions of the poststratification model are approximately correct 
(i.e. sampling is random conditional on the strata), then our 
approach can perform well: the estimates also show slightly 
decreased SEs over the iterative series relative to the simple 
random sampling site-addition approach (Table 3). Finally, 
the R-indicators shown in Fig. 3b demonstrate how these 
metrics are only as useful as the accuracy of the underlying 
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(d) Calluna stratum 1 km “true” occupancies

Figure 3. Adaptive sampling of Calluna vulgaris occupancy within the National Plant Monitoring Scheme 2019. (a) Overall Great Britain 
occupancy estimates for different adaptive sampling scenarios, with binomial proportion SE ribbons, compared to the ‘true’ mean (0.27). 
The simple (i.e. unadjusted) mean of the initial 2019 NPMS data is 0.33 (the starting point of the NPMS + SRS curve plotted in green). 
The estimates shown by the orange (NPMS + adaptive) and blue (Stratum SRS + adaptive) curves use our adaptive algorithm coupled with 
poststratified estimates of the mean; (b) R-indicators for stratum unit inclusion probabilities, NPMS + adaptive and + SRS scenarios; (c) 
Stratum occupancies for the NPMS + adaptive method by iteration, colour-coding follows (d); (d) Estimated ‘true’ mean occupancies of 
Calluna by UKCS Environmental Zone stratum (these are displayed at, or near, stratum centroids on the map).

Table 3. Initial and final mean occupancies (with SEs) of Calluna 
vulgaris for different adaptive sampling methods and starting data.

Iteration Mean SE Method Estimator

1 0.33 0.024 NPMS + SRS Unadjusted
600 0.28 0.014 NPMS + SRS Unadjusted
1 0.41 0.021 NPMS + adaptive Poststratified
600 0.31 0.012 NPMS + adaptive Poststratified
1 0.25 0.021 Stratum SRS + adaptive Poststratified
600 0.27 0.011 Stratum SRS + adaptive Poststratified
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assumptions (Schouten et al. 2017): the R-indicator for the 
‘NPMS + adaptive’ scenario shows the expected pattern of 
decreasing variation in the mean sample inclusion probability 
across strata (note that ‘Stratum SRS + adaptive’ is not shown 
as it is identical to ‘NPMS + adaptive’), whereas the simple 
random sampling additions to the original NPMS sample do 
not aim to harmonise stratum sampling proportions on this 
basis.

Discussion

Nonprobability samples of different types are now routinely 
used within ecology and conservation for various monitor-
ing aims, often with minimal critical assessment (Boyd et al. 
2022, 2023). Not infrequently such projects relate to the 
desire to produce large-scale indicators of biodiversity change, 
with representativeness of large geographical areas implied 
as a consequence. Whilst estimates based on such data can 
potentially be partially adjusted for sampling bias using a 
family of reweighting techniques including poststratification 
(Meng 2022, Boyd et al. 2024b), targeting new effort in order 
to reduce such biases is likely to be a useful complementary 
strategy (Schouten et al. 2014, Schouten and Shlomo 2017). 
We suggest that the use of strata, hypothesized to capture 
important relationships between inclusion probabilities and 
the response variable(s) of interest, is a useful and simple 
theoretical starting point for adaptive sampling for projects 
with descriptive goals (i.e. where the aim is to estimate some 
directly measurable property of a population from a sample; 
Hodges 1996).

If the strata are well-chosen relative to their potential to 
reduce correlations representing sampling bias, our adaptive 
approach aimed at a random sample stratified using propor-
tional allocation can improve matters. An example would be 
where a common plant has near 100% occupancy at some 
broad scale (e.g. a 10 × 10 km grid), but its average local 
cover (e.g. at the square-metre scale) varies with an environ-
mental gradient. If sampling co-varies along the same gradi-
ent (e.g. due to population density, as in the UK National 
Plant Monitoring Scheme; Pescott  et  al. 2019b) then esti-
mates of average abundance are likely to exhibit important 
bias. However, if some set of strata partition the environment 
into areas where sampling is close to random with respect to 
regional variation in the species’ abundance, then this bias will 
be significantly reduced: the national correlation is removed 
by estimating means within smaller areas and then combin-
ing these in relation to their expected national proportions 
to better represent the total population (Boyd et al. 2024b). 
Whilst it is true that in such a case the poststratification 
estimator will theoretically reduce bias anyway (Bethlehem 
2002, Gelman and Carlin 2002, Schouten  et  al. 2017, 
Caughey et al. 2020), the combination of adaptive sampling 
and reweighting has been shown to be superior to relying 
on reweighting alone, both in theory and in empirical inves-
tigations in the survey sampling literature (Schouten  et  al. 
2014, 2017). Adding new sites to the sample in this way 

can reduce variance, as well as keeping bias low (Zhang and 
Wagner 2024). Regardless of this, monitoring programs will 
often have a focus on increasing uptake for other reasons (e.g. 
engagement, increasing power; Henrys et al. 2024), and so 
targeted approaches to selecting new sites are likely to be 
required irrespective of existing analytical options for poten-
tial bias reduction of the sample in hand (Boyd et al. 2024b). 
In theory, such approaches could also be applied to sampling 
in other dimensions, e.g. to prioritise the digitisation of liter-
ature or museum records to improve spatial and/or temporal 
representativeness in historic time periods.

Researcher domain knowledge is crucial to the success-
ful application of the strategy explored here and elsewhere 
(Schouten et al. 2017). Reweighting nonprobability samples 
via any analytical technique requires a substantive under-
standing of plausible relationships between variables driv-
ing the sampling process and those driving the response 
(Mercer et al. 2017, Caughey et al. 2020, Boyd et al. 2024b). 
If strata are in fact random with respect to both y and π, 
that is they have no relationship with the correlation between 
sample inclusion and variable of interest, then new loca-
tions based on them should not contribute to estimator bias, 
although variance may be increased. It is also possible that 
selected strata increase bias. As our Calluna example demon-
strates, this may be due to the poststratification step amplify-
ing poor within-stratum estimates (i.e. those with substantial 
remaining biases). Theoretically the adaptive sampling step 
itself should not increase bias if it is a probability-based selec-
tion. In reality, constraints on the sampling of new locations 
within strata could increase or maintain bias for the same rea-
sons that the sample in-hand was initially biased, for example 
due to land access issues.

A similar situation might occur if an adaptive sampling 
strategy was applied to a finite pool of interested surveyors, 
and the strategy ended up merely shifting attention from one 
area to another, introducing a bias that might change over time 
if left unadjusted. Whilst poststratification could continue 
to reduce such biases if the underlying strata were effective, 
survey organisers would presumably want to monitor such 
situations given that they may represent no net gain in accu-
racy. There would be little point in attempting to manipulate 
data collection if it merely led to a new sample configuration 
with biases of a similar size unless other inferential aims were 
in play: the desire to cover some environmental gradient to 
better estimate predictive or causal regression coefficients for 
use in species distribution modelling or similar across broader 
time-slices, for example (Mondain-Monval  et  al. 2024). A 
related issue is that our algorithm only considers the addition 
of new sampling units, not their removal. In theory, remov-
ing existing sites could also reduce bias: for example, in our 
Calluna example, even if we did not have access to the ‘true’ 
distribution, a coarser map of habitat types might clearly indi-
cate oversampling of heathland and other relevant habitats 
within strata. Whether or not reducing survey effort in this 
way is a sensible option will of course be survey specific.

Other practical issues also need considering. Spatial bias in 
citizen science surveys is not unexpected given the vounteer 
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effort underpinning them (Pescott  et  al. 2015), and so it 
may not be realistic to recruit surveyors for locations selected 
according to theories of statistical optimisation. Some 
schemes may be able to avoid this issue through the combi-
nation of volunteer and professional effort; for example, the 
UK Pollinator Monitoring Scheme currently relies on both 
(UK Pollinator Monitoring Scheme 2024). In other cases low 
uptake in some areas can be very challenging, and substantial 
effort may be required to understand the reasons for nonre-
sponse. An example is the ‘Upland Rovers’ scheme of the UK 
Breeding Bird Survey, where substantial effort has gone into 
trialling different approaches to increasing surveyor uptake of 
upland squares (Border et al. 2019).

Even if practical implementation is difficult, our approach 
can have value as a conceptual tool for the investigation of 
existing biases via simulation exercises in a similar way to 
the Calluna example given here. Discretised species distribu-
tion models, or simply habitat or land cover maps, could still 
provide insight into likely biases affecting the sampling of a 
species’ abundance or occupancy, and this type of informa-
tion could be used to better construct adjustment poststrata 
and/or adjust uncertainty intervals for estimates (Pescott 
2023, Boyd  et  al. 2024b). If large biases are suspected to 
remain, even after the exploration of adaptive sampling or 
poststratification, then other bias reducton strategies should 
be explored, the simplest being to adjust the estimand to a 
population that one has more confidence of being sampled 
representatively. That is, do not make inferential claims that 
are significantly larger than the evidence (Boyd et al. 2022). 
An example would be claiming that a time series of a but-
terfly’s local abundance was actually indicative of that across 
the whole of a country in the face of strong evidence for 
geographic bias and temporal shifts in such over time (cf 
Boyd et al. 2025).

Adaptive sampling in environmental monitoring is not 
new (Seber and Thompson 1994), however, a majority of 
previous investigations in this area have primarily aimed 
at taking ‘advantage of population characteristics to obtain 
more precise estimates of population abundance or density, 
for a given size or cost, than is possible with conventional 
designs’ (Thompson 2012). Indeed, work in this area of ecol-
ogy has tended to focus on the reduction of variance condi-
tional on controlled design, and seems rarely to have asked 
the question from the point of view of adding units to reduce 
estimator bias relative to a baseline of unrepresentative sam-
pling for descriptive inference (Henrys et al. 2024). Whilst 
there is considerable mathematical overlap between these 
existing approaches to adaptive sampling (Thompson 2012) 
and that considered here, those approaches have tended to 
use the response values of interest to guide the selection of 
new sampling locations (Thompson 2012), whereas here we 
follow the recently developed survey sampling approach of 
focusing on how to equilibriate inclusion probabilities across 
units to reduce correlations between these and the response 
variable(s) of interest (Schouten et al. 2017). Such approaches 
fall within the second category of Wagner’s typology of non-
response bias indicators (Wagner 2012), as they require data 

on survey response and sampling frame information at the 
population level (here stratum membership), but not on the 
survey outcome variables themselves.

Conclusion

We have laid out the relationship between poststratum-based 
adjustment strategies and inverse probability weighting in 
the context of reducing bias (or, equivalently, improving 
representation) for descriptive inference. Following Meng 
(Meng 2018) and others (Bethlehem 2002, Wu 2022), we 
have characterised this bias as a non-zero correlation between 
inclusion probabilities and the variable(s) of interest and 
clarified the assumptions required to justify this approach. A 
recent review of adaptive sampling in ecology (Henrys et al. 
2024) suggested that the complexity of some techniques 
in the literature likely constituted an important barrier to 
uptake, and our simple approach may help to overcome this 
problem. The approach proposed here relies on assump-
tions that are typically impossible to verify without separate 
survey efforts, but this is no different to the assumptions 
required to reweight existing samples to improve represen-
tativeness (Bailey 2023a, 2023b, Boyd  et  al. 2024b), and 
the ongoing development of R-indicators and related tools 
points to numerous opportunities for ecologists in these 
areas (Schouten et al. 2014, 2017, Nishimura et al. 2016). 
We have focused on a single categorical driver of sampling 
bias to target adaptive sampling, but, in principle, one could 
cross-tabulate many categorical variables and/or discretise 
continuous ones for crossing (Valliant  et  al. 2018). It may 
be that modelling inclusion probabilities using multivariable 
approaches, and using ‘partial’ R-indicators based on these, 
will allow finer-grained exploration and control of adaptive 
sampling strategies relative to inclusion probability variance 
in the future (Schouten and Shlomo 2017).

We reiterate that our approach is not a panacea. In general, 
if sample inclusion probabilites and the response variable are 
still correlated after poststratification (i.e. |ρ(πi(h),yi(h)| >> 0), 
then calculated statistics may still contain important bias rel-
ative to any given research question. However, this applies to 
all such strategies based on weighting adjustments, and cer-
tainly applies to ignoring the problem altogether (i.e. assum-
ing that the sampling mechanism is already equivalent to a 
probability sample without critical inspection). Best practice 
is likely to involve sensitivity analyses (Little and Rubin 2020, 
Pescott 2023), and both quantitative (Boyd et al. 2021) and 
qualitative assessments of the potential for bias relative to key 
research goals (Boyd et al. 2022, Pescott et al. 2023).
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