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dataset aggregation. In these cases some degree of sampling bias is inevitable and, depend-
ing on error tolerance relative to some real-world goal, we may need to ameliorate it.
One option is poststratification to adjust for uneven surveying of strata assumed to be
important for unbiased estimation. We propose that a similar strategy can be used for
the prioritisation of future data collection: that is, an adaptive sampling process focused
on increasing representativeness defined in terms of inclusion probabilities. This is easily
achieved by monitoring the proportional allocation of sampled units in strata relative to
that expected under simple random sampling. The allocation of new units is thus that
which reduces the departure from randomness (or, equivalently, that equalising unit inclu-
sion probabilities), allowing an estimator to approach that level of error expected under
random sampling. We describe the theory supporting this, and demonstrate its applica-
tion using sample locations from the UK National Plant Monitoring Scheme, a citizen
science monitoring programme with uneven uptake, and data on the true distribution of
the plant Calluna vulgarss. This in silico example demonstrates how the successful applica-
tion of the method depends on the extent to which proposed strata capture correlations
between inclusion probabilities and the response of interest.
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Introduction

Ecologists are increasingly concerned with monitoring biodiversity change at a
variety of spatial scales. Whilst this has long been an active area of research within
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conservation and related fields (Spellerberg 2005), in recent
years its importance has increased, with numerous species’
time trends and associated multi-species indicators now
based on a wide variety of data types (Dornelas et al. 2018,
Outhwaite et al. 2019, Ledger et al. 2023). One consequence
of this trend has been the increasing focus on the use of data-
sets for monitoring that lack any explicit survey design rela-
tive to the scientific question of interest. That is, the data used
to estimate species’ abundances or occupancies are frequently
not a probability sample of the statistical target population.
Unfortunately, inference using such nonprobability samples
is considerably more difficult than has often been recognised
in ecology (Boyd et al. 2023). The absence of sampling design
typically means that model-based adjustments must be made
to approach the answer that would have been obtained had
sampling actually been probabilistic, and such adjustments
can rarely, if ever, be shown to be absolutely reliable (Elliott
and Valliant 2017, Meng 2018, Wu 2022, Aubry et al.
2024, Boyd et al. 2024b). As a result, efforts to character-
ise biodiversity change from nonprobability samples have
often received criticism for not being representative of their
inferential target populations (Gonzalez et al. 2016), leading
to a number of high-profile disagreements in the literature
(Boyd et al. 2023).

The technical elements of sampling design underlying these
issues have been well-known in the statistical subdiscipline
of survey sampling for decades (Meng 2018, Valliant et al.
2018, Lohr 2019, Bailey 2023a), yet many of these insights
are frequently overlooked or misunderstood by ecologists
(although by no means all, e.g. see many chapters within ref.
Gitzen et al. 2012). One stumbling block may be the numer-
ous definitions and types of ‘bias’ available in the literature
(Sackett 1979, Gitzen et al. 2012, Pescott et al. 2023); the
lack of any well-known (to ecologists) unified mathematical
definition of sampling bias may also have hindered commu-
nication and progress.

Within survey sampling focused on descriptive inference
(i.e. characterising some directly measurable property of a
population from a sample, Hodges 1996), statistical error
has long been known to be driven in large part by correla-
tions between the probability that any unit is in the sample
7, the inclusion probability, and the property of interest y
(Bethlehem 2002, Groves 2006). Note that in survey sam-
pling 7 is also sometimes designated as the ‘response propen-
sity’, because there the key challenge is unknown probabilistic
variation in subject responses to designed surveys, rather than
the absence of design itself (Lohr 2019). In ecology, this has
also sometimes been discussed under the heading of prefer-
ential sampling (Aubry et al. 2024), although that label tends
to imply a positive association, whereas the issue applies to
correlations of either sign. Probability sampling ensures that
this correlation is zero in expectation (i.e. across repeated,
normally imaginary, realisations of the sampling mechanism;
Meng 2018). A conceptual complication here is that finite
probability samples also have non-zero correlations between
sample inclusion and the response variable, and that there is
variation in the survey sampling literature relative to whether
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people refer to realised error in a sample as bias (when it
may actually be a combination of sampling variance and a
biased sampling mechanism), or whether the term sampling
bias is reserved for situations where it is known (or strongly
expected due to a lack of design) that E[p(m,y)] # 0; that
is, that the sampling mechanism that produced the data
had variable sampling unit inclusion probabilities, which,
by definition, were not designed and so cannot be directly
accounted for when estimating parameters like means from
the data. This means that the expected value (£[-]) of the cor-
relation (p) between the sample inclusion probabilities &, and
the values of the response variable y, is guaranteed to be non-
zero, something that is only assured by probability sampling
(Meng 2018).

Regardless of these terminological issues, Meng (2018)
demonstrated how a standard formula for statistical error
(¥, — J» the difference between the mean of the response

variable in the sample and that of the variable in the full
population) can be re-written as the product of three terms.
One characterising the aforementioned correlation p(m,y),
given the name ‘data quality’ by Meng, and two others rep-
resenting the population fraction sampled (‘data quantity’)
and the amount of variation in the response variable in the
population (‘problem difficulty’). (Note, however, that Meng
approaches the correlation p(m,y) from a finite population
viewpoint, replacing the latent sampling unit inclusion prob-
abilities &, with the realised, binary sample inclusion indica-
tors R). The implications of this algebraic identity have been
hailed in some areas as a ‘new paradigm’ (Bailey 2023b), and,
in our opinion, the formula clarifies many issues that have
previously sometimes only been intuitively understood in
ecology (Boyd et al. 2023, 2024b, 2024c¢).

The adjustment of nonprobability samples for approach-
ing unbiased inference is one area that has been clarified by
Meng’s approach: in a subsequent paper, Meng (2022) dem-
onstrated how all such techniques (inverse probability weight-
ing and poststratification, imputation or superpopulation
modelling, and doubly-robust approaches) can be viewed as
ways to minimise the correlation p(m,y). This insight allows us
to understand the assumptions of our methods, and therefore
to justify our approaches and assess their limitations more
clearly (Boyd et al. 2022). Here we apply these insights to the
use of stratification in ecology, particularly its post hoc use
to adjust unrepresentative sampling, demonstrating its use as
an intelligent driver of adaptive sampling for many situations
involving data that are biased for the estimation of some ‘esti-
mand’ (i.e. the real-world quantity of interest Lundberg et al.
2021).

A priori stratification is often used in survey design to
achieve one or more of the following: good representation
of a population relative to target variables of interest; to
guarantee certain sample sizes within strata (which may be
of intrinsic interest); for the convenience of survey admin-
istration, potentially including cost reduction via regional
administration; and to increase the statistical efficiency of
estimators (Valliant et al. 2018, Lohr 2019). For the last
point, error can be reduced by randomly sampling within
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strata of homogeneous units, i.e. those where subpopulation
means and variances are expected to be similar (Lohr 2019).

Post hoc stratification, or, as it is more commonly known,
‘poststratification’, can also be used to achieve this latter goal.
That is, it can be used to increase the precision of estima-
tors under known sampling schemes (Smith 1991). However,
it can also be used as a way to remove potential biases aris-
ing from the use of nonprobability samples. In this sense, it
is part of the family of reweighting techniques intended to
adjust a sample to better represent some population of inter-
est (Smith 1991, Wu 2022, Boyd et al. 2024D).

The poststratification estimator 7, (Bethlehem 2002), o
‘basic poststratification identity’ ( Gefman and Carlin 2002)
used to achieve this can be defined as:

H
1
7 :721\/* 1
Yps thl » Vb (1)

where N is the population size (here the total number of spa-
tial units), H is the full set of strata into which the popula-
tion is divided, 2V, is the overall size of stratum 4, and ¥, is
the mean within stratum 4. The implication of Eq. 1 is that
within-stratum means substitute for individual unit values,
and it is these that are averaged across the entire popula-
tion once relative stratum sizes in the population have been
accounted for (see Boyd et al. 2024b for a worked ecological
example). This formulation implies that all 7 units within a
given poststratum receive the same weight (Bethlehem 2002,
Wu 2022), equal to

) = Ny /N @)
n, | n

where 7 is the total sample size, and 7, is the size of the
sample within stratum /. Equation 2 can be understood as
upweighting units that are under-represented in the sample
relative to the population and vice versa. These weights imply
an individual unit inclusion probability of =, =7,/N,. And
so it can be shown that

Sy 0

h=1 ien, ’

.7[;: :Epw =

(Wu 2022). Thus poststratification is a special case of inverse
probability weighting (a.k.a. quasirandomization or propen-
sity score weighting) where =, is assumed to be constant
within strata but to (potentially) vary between strata (Wu
2022). In the situation where a set of randomly sampled
population units are surveyed with full response (i.e. no ‘loss’
of design-based survey units), then this estimator, whether
construed as y,, or the inverse probability weighted estima-
tor 7, is unbiased in expectation (Smith 1991, Bethlehem
2002). However, as noted above, it is well known that in
actual samples error will tend to increase as a function of the

correlation between between inclusion probabilities 7 and
the outcome variable y (Groves 2006, Bethlehem 2002).

In the case of uncontrolled (i.e. nonprobability) sam-
ples, whether based on a single survey such as a designed
citizen science scheme with some nonresponse, or an aggre-
gated sample such as one might retrieve from the Global
Biodiversity Information Facility (GBIF) or other meta-data-
base, the lack of statistical design control essentially guaran-
tees that this correlation will be appreciably different from
zero (Boyd et al. 2023). This will not merely be the bad luck
of an unrepresentative random sample, but the expectation
of a biased sampling mechanism; that is, E[p(n,y)] # 0. Here,
increases in sample size will not help; in fact, they have been
shown to make things worse in realistic scenarios, i.e. when 7
<< Nand the standard deviation of y, 6, does not equal zero,
as will generally be the case for most environmental moni-
toring at small scales (Meng 2018, Bailey 2023b, Boyd et al.
2024b).

With regards to poststratification, two situations will
reduce this undesirable correlation (Bethlehem 2002). These
rely on the fact that if either of a pair of variables is fixed then
they cannot be correlated. These are:

i. The response of interest y, is invariable within poststrata
=0V h).

ii. The inclusion probabilities 7, are invariable within post-
strata (i.e. Ty =M, Vie h), achieved by simple ran-

(ie. 0,

dom sampling (SRS) within strata.

In the first of these situations, the poststratification esti-
mator (1) will be more efhicient (lower variance) than the
arithmetic mean, and will reduce error wherever a random
sampling design has yielded an unbalanced sample by chance
(Holt and Smith 1979). In the second of these situations,
the poststratification estimator reduces the bias, but not
the variance (Little 1986, 2009). This is linked to the asser-
tion of Gelman and Carlin (2002) that poststratification is
most important when correcting for differential nonresponse
between poststrata. Assuming that inclusion probabilities are
uniform within poststrata, but correlated with y within the
overall population, then adjusting for poststratum member-
ship renders p(m,y) equal to zero (Meng 2022, Wu 2022):
that is, @ and y are independent conditional on some X,
where here X is the vector of unit poststratum memberships
(Smith 1991).

Whilst poststratification and its variants (Gelman 2007)
can be useful tools for adjusting existing samples (Boyd et al.
2024b), where monitoring is ongoing and survey organisers
have some power to alter data collection, combining adap-
tive sampling with poststratification may be a more efficient
way to reduce error compared to relying on poststratifica-
tion of unrepresentative samples alone (Schouten et al. 2014,
Schouten and Shlomo 2017). Larger samples may be also
desired for other reasons irrespective of the potential for
using the poststratification estimator on a sample in hand
(increases in power for example). The situations in which
poststratification is likely to assist the sampler given above
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suggest a simple approach to adaptive sampling for research-
ers seeking to characterise a population parameter such as a
mean. As noted above, such descriptive targets are increas-
ingly important for ecological monitoring and conservation,
especially where nonprobability samples are used (Boyd et al.
2023). Straightforward approaches to adaptive sampling,
with few assumptions, are therefore likely to be of wide util-
ity (Henrys et al. 2024).

Here we propose an approach to the problem based on
assessments of poststratum sampling coverage. We show how
this can be implemented easily with standard binomial for-
mulae within an adaptive framework using data collected
between 2015-2023 for the UK National Plant Monitoring
Scheme, a designed citizen science programme with uneven
site uptake (Pescott et al. 2019b). Our approach has a direct
link to the literature on the monitoring of survey quality via
assessments of potential nonresponse bias (Wagner 2012,
Nishimura et al. 2016), and we use one such indicator (the
R-indicator of Schouten; Schouten et al. 2012) of variation
in response propensities (or, as we have styled them here,
inclusion probabilities) across strata to explore the poten-
tial improvements in survey representativeness (a measure of
survey quality; Schouten et al. 2009) achievable using our
approach. Finally, we investigate the performance of the
approach through simulation and when confronted with a
real dataset. Specifically, we examine how well stratum-based
adaptive sampling performs in estimating the true 1 km?
occupancy of the subshrub Calluna vulgaris in Great Britain.
We use both simulated locations and actual sampled sites
from the NPMS to explore the potential strengths and weak-
nesses of the method relative to its key assumptions.

Material and methods

A stratum-based adaptive survey strategy

The approach proceeds as follows: for the population of inter-
est (e.g. some geographic area over which the mean of some
attribute of a population of units is desired), select a set of
strata / considered to have some differential relationship with
sample inclusion and/or the response variable(s) of interest.
Each stratum need not be a single spatially contiguous unit,
but each population unit should be assignable to a single stra-
tum (geographical units may often require assigning to the
stratum with the largest overlapping area). Many such strata
will likely already exist, although the approach is not limited
to existing strata, as any set of geographically indexed variables
could be discretised and crossed to create strata (Boyd et al.
2024b). For example, in the UK ‘land classes’ have previously
been erected based on covariation in numerous geographical
and environmental variables (Bunce et al. 1996) and then
amalgamated into broader zones (UKCEH Countryside
Survey 2013); for Europe, biogeographic zones based on pat-
terns of terrestrial and marine biodiversity exist (EEA 2002).
Note that the strata do not have to be absolutely believed
to have an invariable one-to-one relationship between stra-
tum unit membership and inclusion probabilitiy, only that
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there is some nontrivial relationship, such that adjusting for
its contribution to the correlation p(m,y) will be better than
assuming that the sample is equivalent to one selected at ran-
dom (Meng 2022).

For the existing sample for which future adaptive selec-
tions are required, compare the current distribution of units
across strata to that expected for the same sample size under
simple random sampling; this is known as proportional allo-
cation in the survey sampling literature (Valliant et al. 2018).
That is, a given set of strata A partitioning /N will be sampled
in proportion to #/N, such that, for stratum 4, n,=(n/N)
X N,; if achieved, all response propensities would be equal,
both within and between strata. The stratum for which the
next unit should be collected will then be the one with the
current largest negative departure from random expectation,
quantified using z-statistics.

Monitoring representativeness

The link between inclusion probabilities and indicators of
representativeness noted above was formalised by Schouten
and colleagues (Schouten et al. 2009). They provide the fol-
lowing operational definition of ‘representative’ in the survey
sampling context:

, Ty =TV h (4)

Equation 4 is a weaker version of statement (ii) given in the
Introduction, as it does not state that all unit inclusion prob-
abilities within a stratum are identical, only that the means
across strata are equal. Based on this, the Schouten et al.

(2009) R-indicator is R(m)=1-2S; , where S is the

weighted standard deviation (SD) of the mean inclusion
probabilities across strata (Schouten et al. 2009). R(m)=1
denotes maximum representativeness when the variance in
inclusion probabilities across strata is zero.

Adaptive sampling algorithm
This proceeds as follows (also see the R code in the Supporting
information):

Step 1. Assign all population units NV, to a unique corre-
sponding stratum 4,

Step 2. Calculate each stratum’s current z-statis-
tic, z, by comparing the current empirical count

(x,=N,x(n, /] N,)=n,, the current sample size) and

binomial count SD (S, = \/N,, x(m, /N,)x(1=n, /N,))
to the expected count (f1,) based on proportional allocation

(i.e. (W/N) x N,). Then, z, = (x, —n,) / S, the difference
between the empirical and expected counts in SD units.

Step 3. Across the H strata, select that 4 with the small-
est z, as the stratum most in need of additional sampling to
reach the simple random sample benchmark. Call this the
focal stratum /7/.
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Step 4. Given the additii)n of a new site to stratum 4,
calculate the new values of x, and S, directly from the stan-
dard binomial formulae. The new target stratum site count
expected under simple random sampling is also updated as
L= ((n+a)/ N)xN,. In the following examples 2= 1, but
it could be any positive integer as there is no requirement
to evaluate the switch after the addition of every single new
sampling unit.

Step 5. After updating the current focal stratum /,with the
newly added site(s), recalculate the z-statistics for all strata,
including 4, Compare the updated z,; with the minimum
2, across all strata. If z,; is no longer the smallest, switch the
focus to the stratum with the new smallest z,; denoted 4,..
Begin sampling ;. if required, otherwise continue with /

Step 6. Repeat step 2 to 5 K times until the desired new
sample size allowed by current resourcing, 7+ K, is reached,
or until all strata are at their expected simple random sam-
pling counts ((n+aK)IN) X N,

We can monitor the progress of this algorithm by follow-
ing the empirical stratum sampling proportions (7,/N,), and
by calculating the corresponding R-indicator at each step.

Investigating performance

Empirical data and initial proof-of-concept

The UK National Plant Monitoring Scheme (NPMS) asks
volunteers to record plant abundances in small plots located
in particular habitats (Walker et al. 2015). Plots are located
within 1-km? squares (hereafter ‘sites’) of the relevant coun-
try grid (the scheme currently covers Great Britain, Northern
Ireland, the Isle of Man and the Channel Islands). The
available sites within the scheme (www.npms.org.uk/squa
re-near-me-public) are originally a weighted-random selec-
tion, stratified by 100 X 100 km cells of the larger relevant
grid; see Pescott et al. (2019b) for more detail. Due to vari-
able population density and other factors across the region,
uptake of these sites is uneven, and some areas have far fewer
survey returns than others (Pescott et al. 2019b). A primary
aim of the NPMS is the production of nationally representa-
tive indicators of habitat quality (Pescott et al. 2019a), and
so, ideally, coverage of the area would be relatively even. We
know that inclusion probability (i.e. site uptake) is related
to such factors as human population density and correlated
environmental variables such as altitude and land cover type,
and that these variables are also correlated with the local
abundances and occupancies of plant indicator species and
their habitats (Pescott et al. 2019b). North-west to south-
east gradients of all these variables are well-known for Britain
and Ireland (Hill 1991, Preston et al. 2002, 2023, Pescott
and Preston 2014, Stroh et al. 2023). We therefore assume
that representation of broad environmental strata, in tan-
dem with poststratification of results, is likely to be a positive
step towards reducing potential bias in monitoring scheme
outputs. One widely-used set of strata for Great Britain is
the UK Countryside Survey (UKCS) Environmental Zones
(UKCEH Countryside Survey 2013), based on a larger set of
‘land classes’ created originally for the a priori stratification of

national ecological and biogeographical surveys (Bunce et al.
1996). To these we add Northern Ireland as an additional
stratum to better cover our area (Fig. 1). Surveyed NPMS
sites (NPMS 2024) are overlaid on these zones in Fig. 1 to
show their current overall (2015-2023) coverage. We use
these data to demonstrate an initial proof-of-concept, namely
that the algorithm equalises stratum sampled proportions
and maximises the R-indicator as proposed.

Reducing bias in a response variable of interest

Investigating the likely benefits of our strategy for a response
variable of interest, such as a species’ occupancy or average
abundance, is more challenging, as it requires access to a spe-
cies’ true underlying state to evaluate (or a good estimate of
this via a probability-based survey). Whilst pure simulation
approaches could be used, we consider that these would be
less illuminating than investigations more closely aligned to
real-world datasets, because the theoretical principles under-
lying the approach are already well characterised. We use an
approximation of the true 1 km? distribution (for 2000-
2019) of the heathland subshrub Calluna vulgaris (‘heather’),
originally created for Boyd et al. (2024b). This ‘true’ dis-
tribution is based on the 2018 UKCEH Land Cover Map
(Morton et al. 2022) (where ‘heather’ and ‘heather grassland’
are land covers derived from satellite images and other infor-
mation) and occurrence data from the distribution mapping
project Plant Atlas 2020 (Stroh et al. 2023). See Boyd et al.
(2024c) for more information on the construction of the
Calluna map.

Adaptive sampling based on simulated locations

First, we demonstrate the performance of the method when
the key assumption regarding random sampling within strata
is met. Here we only use empirical data from the NPMS
(2024) dataset to initialise stracum sample sizes for the adap-
tive algorithm (specifically we use data from 2019 for these
investigations). The initial samples themselves are new ran-
dom selections within strata; the adaptive addition of sites
uses our suggested algorithm. We refer to this approach as
‘Stratum SRS [simple random sampling] +adaptive’. The
iterative estimates of the mean occupancy of Calluna for this
scenario use the poststratification estimator from the R pack-
age ‘survey’ (Lumley 2010; www.r-project.org).

Adaptive sampling based on empirical locations

Second, we investigate the performance of the method using
the actual sampled sites from 2019 in the NPMS (2024)
dataset. This approach provides insight into how the method
might perform when the key assumption of random sam-
pling within strata is unlikely to be fully met. We refer to this
approach as ‘NPMS +adaptive’. Again, iterative estimates of
Calluna occupancy use the poststratification estimator from
the R ‘survey’ package (Lumley 2010). We also include a sce-
nario where our proposed strata are ignored, and new sites
added to the existing NPMS 2019 sample are chosen ran-
domly from the total site population of Great Britain. We call
this approach ‘NPMS +SRS’. Calluna occupancy estimates
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Scotland (-62.6%)
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Figure 1. UK Countyside Survey (UKCS) Environmental Zones plus Northern Ireland. The numbers following the UKCS zone names give
the difference between the empirical National Plant Monitoring Scheme (NPMS) square count and that expected under simple random
sampling (SRS), expressed as a percentage difference () relative to the expected count. Percentages closer to zero therefore approach SRS

counts. Grey circles are surveyed NPMS sites, 2015-2023.

from this procedure are the simple (i.e. unadjusted) mean
rather than the poststratified mean. For all three scenarios
new sites added to the sample are labelled as unavailable for
future iterations of the algorithm.

Results

Table 1 gives the current distribution of NPMS 1 km? sites
by UKCS Environmental Zone stratum. These are given in
order of their discrepancy from proportional allocation (i.e.

simple random sampling) of the 2015-2023 sample of 1204
sites that could be assigned to strata, from under- to over-
sampled (NPMS 2024).

Figure 2 demonstrates the progress of the stratum-based
adaptive sampling algorithm in terms of stratum sampled
proportions and R-indicator. The example here uses 600 iter-
ations (i.e. the final target sample size was 7+600=1804).
This amount of adaptive sampling may be unrealistic in most
real world situations where there is existing nonresponse,
but we use this number to demonstrate the point at which
all strata become proportionally allocated, and to show the

Table 1. The current distribution of NPMS sites by UKCS Environmental Zone strata, ordered from under- to over-sampled relative to simple
random sampling (SRS). Exp. count is the expected number of squares under SRS. Pct sampled is the current percentage of the stratum area
sampled; Count discrepancy is the difference between the actual square count and the expected count expressed as a percentage difference

(+) relative to the expected count.

Stratum Pct Count discrepancy
Stratum no. Stratum No. sites Exp. count area (km?) sampled (%) (% of expected)
5 Intermediate Uplands and 53 142.2 29 866 0.18 -62.7
Islands, Scotland

6 True Uplands, Scotland 65 152.5 32 034 0.20 —57.4

4 Lowlands, Scotland 76 109.9 23 084 0.33 -30.9

7 Northern Ireland 73 67.4 14 156 0.52 8.3

8 Lowlands, Wales 60 53.8 11 309 0.53 11.4

9 Uplands, Wales 55 48.9 10 272 0.54 12.5

1 Easterly Lowlands, England 395 311.6 65 441 0.60 26.8

2 Westerly Lowlands, England 321 246.7 51 815 0.62 30.1

3 Uplands, England 106 74.9 15 739 0.67 41.5
Page 6 of 12
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(a) Stratum sampled proportions by iteration
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Figure 2. Evolution of UKCS Environmental Zone (a) stratum mean sampled proportions and (b) their R-indicator by iteration.

evolution of the R-indicator towards its maximum possible
value of 1 (Fig. 2). As per Table 1, Fig. 2a shows how, initially,
only the Intermediate Uplands and Islands and True Uplands
of Scotland are underallocated. These have the lowest stra-
tum proportions sampled initially: up to around the 100th
iteration it is only these sites that are being selected for new
sampling locations. The other strata ‘flatline’ up to this point,
indicating that they are over-sampled relative to the number
of samples they would expect if the total sample had actually
been proportionally allocated. The most over-sampled stra-
tum is the Uplands of England, as this does not see its sample
size increased until around the 500th iteration. This is also
the point at which the R-indicator (Fig. 2b) approaches its
maximum value of 1 and itself flatlines; this indicates that
all strata are now being sampled relative to the proportions
expected under proportional allocation.

Table 2 gives abridged output of the adaptive sampling
algorithm underlying Fig. 2. The top of the table shows how,
initially, stratum number 5, the ‘Intermediate Uplands and
Islands’ zone of Scotland is targeted in isolation (as expected
from its position at the top of Table 1). The bottom of Table
2 shows how, once all strata are undersampled relative to the
addition of new sites, the target stratum switches with every
iteration of the algorithm. The total population size of UK
1 km? sites assigned to UKCS Environmental Zone strata is
257 502; 1804/257 502=0.0070, hence the stratum sam-
pled proportions achieved for the final six iterations at the
bottom of Table 2 (‘Mean prop.” column).

Figure 3 shows the results of applying our algorithm to
the case of estimating our ‘true’ 1 km?* occupancy of Calluna
vulgaris (0.27). The simple (i.e. unadjusted) mean occu-
pancy of the existing 2019 NPMS data for Calluna is 0.33.
Taken together, the four elements of Fig. 3 reveal both the
potential strengths and weaknesses of the proposed method
in improving on the unadjusted sample mean through the
adaptive sampling algorithm. Figure 3a demonstrates how
three different data/model scenarios can lead to better esti-
mates of the true mean with increasing sample size. Given
that both simple random sampling and stratified random
sampling are standard methods in survey sampling, this is not

surprising; it is the differences between the strategies investi-
gated that provide useful insights into the likely performance
of our approach when applied to real-world datasets. Figure
3a also shows that the initial poststratified estimate (itera-
tion 1) of Calluna occupancy using the 2019 NPMS loca-
tions (‘NPMS +adaptive’; see also Table 3) leads to the most
biased estimate (0.41). In addition, the ‘NPMS +adaptive’
estimates are worse than those estimated using the sample
mean with new sites added through simple random sampling
(‘NPMS +SRS’). However, the ‘NPMS +adaptive’ poststrati-
fied estimates approach the true value more quickly than
‘NPMS + SRS’, presumably due to the important variation in
Calluna occupancy across the strata used (Fig. 3d).

The third scenario, ‘Stratum SRS +adaptive’, indicates the
reason for the initially poor poststratified estimates under
‘NPMS +adaptive’: the 2019 NPMS locations are biased
towards the presence of C. vulgaris within all strata. Evidence
for this can be seen within Fig. 3¢; for example, the estimated
occupancy within the Uplands of England is very strongly
overestimated before it is incorporated into the adaptive

Table 2. Abridged adaptive sampling output for the first and last six
added sites across 600 iterations. Stratum no.=stratum number of
focal stratum (Table 1 for stratum name); Mean prop.=sampled pro-
portion for target stratum; SD=binomial SD for site count within
stratum.

Stratum Site
Iteration no. z-value Mean prop.  count SD
1 5 -1.2x 10 1.8 x 107 54 7.3
2 5 -1.2x 10 1.8x 107 55 7.4
3 5 -1.2x 10 1.8x 107 56 7.5
4 5 -1.2x 10 1.9x107 57 7.5
5 5 -1.1x 10 1.9x 107 58 7.6
6 5 -1.1x 10 1.9x 107 59 7.7
595 3 1.1x 10 7.1x107 111 10.5
596 1 1.0x 10 7.0x 107 460 21.4
597 5 9.9 x 1072 7.0x 107 214 14.6
598 4 9.1 x 107 7.0x 107 164 12.8
599 2 8.7 x 107 7.0x 107 368 19.1
600 7 8.5x 107 7.1x107 102 10.1
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Figure 3. Adaptive sampling of Calluna vulgaris occupancy within the National Plant Monitoring Scheme 2019. (a) Overall Great Britain
occupancy estimates for different adaptive sampling scenarios, with binomial proportion SE ribbons, compared to the ‘true’ mean (0.27).
The simple (i.e. unadjusted) mean of the initial 2019 NPMS data is 0.33 (the starting point of the NPMS+ SRS curve plotted in green).
The estimates shown by the orange (NPMS +adaptive) and blue (Stratum SRS +adaptive) curves use our adaptive algorithm coupled with
poststratified estimates of the mean; (b) R-indicators for stratum unit inclusion probabilities, NPMS + adaptive and + SRS scenarios; (c)
Stratum occupancies for the NPMS +adaptive method by iteration, colour-coding follows (d); (d) Estimated ‘true’ mean occupancies of
Calluna by UKCS Environmental Zone stratum (these are displayed at, or near, stratum centroids on the map).

sampling algorithm. Other strata show weaker patterns, but
the pattern of initial overestimation is clear (Fig. 3d provides
the ‘true’ values for comparison). This means that some stra-
tum occupancy estimates require the addition of many new
sampling locations before their estimates increase in accuracy:

Table 3. Initial and final mean occupancies (with SEs) of Calluna
vulgaris for different adaptive sampling methods and starting data.

Iteration ~ Mean SE Method Estimator

1 0.33  0.024 NPMS+SRS Unadjusted
600 0.28 0.014 NPMS+SRS Unadjusted
1 0.41  0.021 NPMS+adaptive Poststratified
600 0.31 0.012 NPMS+adaptive Poststratified
1 0.25 0.021 Stratum SRS+adaptive  Poststratified
600 0.27  0.011 Stratum SRS+adaptive  Poststratified
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before this point the poststratification estimator simply
weights the biased stratum estimates according to their areas,
resulting in important residual bias in the overall estimate.
The ‘Stratum SRS +adaptive’ scenario shows that rejecting
the existing locations within the 2019 NPMS dataset and
selecting new random sets of sites within strata results in more
accurate poststratified estimates that rapidly improve (Fig. 3a,
‘Stratum SRS +adaptive’). This highlights that if the assump-
tions of the poststratification model are approximately correct
(i.e. sampling is random conditional on the strata), then our
approach can perform well: the estimates also show slightly
decreased SEs over the iterative series relative to the simple
random sampling site-addition approach (Table 3). Finally,
the R-indicators shown in Fig. 3b demonstrate how these
metrics are only as useful as the accuracy of the underlying
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assumptions (Schouten et al. 2017): the R-indicator for the
‘NPMS +adaptive’ scenario shows the expected pattern of
decreasing variation in the mean sample inclusion probability
across strata (note that ‘Stratum SRS +adaptive’ is not shown
as it is identical to ‘NPMS +adaptive’), whereas the simple
random sampling additions to the original NPMS sample do
not aim to harmonise stratcum sampling proportions on this
basis.

Discussion

Nonprobability samples of different types are now routinely
used within ecology and conservation for various monitor-
ing aims, often with minimal critical assessment (Boyd et al.
2022, 2023). Not infrequently such projects relate to the
desire to produce large-scale indicators of biodiversity change,
with representativeness of large geographical areas implied
as a consequence. Whilst estimates based on such data can
potentially be partially adjusted for sampling bias using a
family of reweighting techniques including poststratification
(Meng 2022, Boyd et al. 2024b), targeting new effort in order
to reduce such biases is likely to be a useful complementary
strategy (Schouten et al. 2014, Schouten and Shlomo 2017).
We suggest that the use of strata, hypothesized to capture
important relationships between inclusion probabilities and
the response variable(s) of interest, is a useful and simple
theoretical starting point for adaptive sampling for projects
with descriptive goals (i.e. where the aim is to estimate some
directly measurable property of a population from a sample;
Hodges 1996).

If the strata are well-chosen relative to their potential to
reduce correlations representing sampling bias, our adaptive
approach aimed at a random sample stratified using propor-
tional allocation can improve matters. An example would be
where a common plant has near 100% occupancy at some
broad scale (e.g. a 10 X 10 km grid), but its average local
cover (e.g. at the square-metre scale) varies with an environ-
mental gradient. If sampling co-varies along the same gradi-
ent (e.g. due to population density, as in the UK National
Plant Monitoring Scheme; Pescott et al. 2019b) then esti-
mates of average abundance are likely to exhibit important
bias. However, if some set of strata partition the environment
into areas where sampling is close to random with respect to
regional variation in the species’ abundance, then this bias will
be significantly reduced: the national correlation is removed
by estimating means within smaller areas and then combin-
ing these in relation to their expected national proportions
to better represent the total population (Boyd et al. 2024b).
Whilst it is true that in such a case the poststratification
estimator will theoretically reduce bias anyway (Bethlehem
2002, Gelman and Carlin 2002, Schouten et al. 2017,
Caughey et al. 2020), the combination of adaptive sampling
and reweighting has been shown to be superior to relying
on reweighting alone, both in theory and in empirical inves-
tigations in the survey sampling literature (Schouten et al.
2014, 2017). Adding new sites to the sample in this way

can reduce variance, as well as keeping bias low (Zhang and
Wagner 2024). Regardless of this, monitoring programs will
often have a focus on increasing uptake for other reasons (e.g.
engagement, increasing power; Henrys et al. 2024), and so
targeted approaches to selecting new sites are likely to be
required irrespective of existing analytical options for poten-
tial bias reduction of the sample in hand (Boyd et al. 2024b).
In theory, such approaches could also be applied to sampling
in other dimensions, e.g. to prioritise the digitisation of liter-
ature or museum records to improve spatial and/or temporal
representativeness in historic time periods.

Researcher domain knowledge is crucial to the success-
ful application of the strategy explored here and elsewhere
(Schouten et al. 2017). Reweighting nonprobability samples
via any analytical technique requires a substantive under-
standing of plausible relationships between variables driv-
ing the sampling process and those driving the response
(Mercer et al. 2017, Caughey et al. 2020, Boyd et al. 2024b).
If strata are in fact random with respect to both y and =,
that is they have no relationship with the correlation between
sample inclusion and variable of interest, then new loca-
tions based on them should not contribute to estimator bias,
although variance may be increased. It is also possible that
selected strata increase bias. As our Calluna example demon-
strates, this may be due to the poststratification step amplify-
ing poor within-stratum estimates (i.c. those with substantial
remaining biases). Theoretically the adaptive sampling step
itself should not increase bias if it is a probability-based selec-
tion. In reality, constraints on the sampling of new locations
within strata could increase or maintain bias for the same rea-
sons that the sample in-hand was initially biased, for example
due to land access issues.

A similar situation might occur if an adaptive sampling
strategy was applied to a finite pool of interested surveyors,
and the strategy ended up merely shifting attention from one
area to another, introducing a bias that might change over time
if left unadjusted. Whilst poststratification could continue
to reduce such biases if the underlying strata were effective,
survey organisers would presumably want to monitor such
situations given that they may represent no net gain in accu-
racy. There would be little point in attempting to manipulate
data collection if it merely led to a new sample configuration
with biases of a similar size unless other inferential aims were
in play: the desire to cover some environmental gradient to
better estimate predictive or causal regression coefficients for
use in species distribution modelling or similar across broader
time-slices, for example (Mondain-Monval et al. 2024). A
related issue is that our algorithm only considers the addition
of new sampling units, not their removal. In theory, remov-
ing existing sites could also reduce bias: for example, in our
Calluna example, even if we did not have access to the ‘true’
distribution, a coarser map of habitat types might clearly indi-
cate oversampling of heathland and other relevant habitats
within strata. Whether or not reducing survey effort in this
way is a sensible option will of course be survey specific.

Other practical issues also need considering. Spatial bias in
citizen science surveys is not unexpected given the vounteer
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effort underpinning them (Pescott et al. 2015), and so it
may not be realistic to recruit surveyors for locations selected
according to theories of statistical optimisation. Some
schemes may be able to avoid this issue through the combi-
nation of volunteer and professional effort; for example, the
UK Pollinator Monitoring Scheme currently relies on both
(UK Pollinator Monitoring Scheme 2024). In other cases low
uptake in some areas can be very challenging, and substantial
effort may be required to understand the reasons for nonre-
sponse. An example is the ‘Upland Rovers’ scheme of the UK
Breeding Bird Survey, where substantial effort has gone into
trialling different approaches to increasing surveyor uptake of
upland squares (Border et al. 2019).

Even if practical implementation is difficult, our approach
can have value as a conceptual tool for the investigation of
existing biases via simulation exercises in a similar way to
the Calluna example given here. Discretised species distribu-
tion models, or simply habitat or land cover maps, could still
provide insight into likely biases affecting the sampling of a
species’ abundance or occupancy, and this type of informa-
tion could be used to better construct adjustment poststrata
and/or adjust uncertainty intervals for estimates (Pescott
2023, Boyd et al. 2024b). If large biases are suspected to
remain, even after the exploration of adaptive sampling or
poststratification, then other bias reducton strategies should
be explored, the simplest being to adjust the estimand to a
population that one has more confidence of being sampled
representatively. That is, do not make inferential claims that
are significantly larger than the evidence (Boyd et al. 2022).
An example would be claiming that a time series of a but-
terfly’s local abundance was actually indicative of that across
the whole of a country in the face of strong evidence for
geographic bias and temporal shifts in such over time (cf
Boyd et al. 2025).

Adaptive sampling in environmental monitoring is not
new (Seber and Thompson 1994), however, a majority of
previous investigations in this area have primarily aimed
at taking ‘advantage of population characteristics to obtain
more precise estimates of population abundance or density,
for a given size or cost, than is possible with conventional
designs’ (Thompson 2012). Indeed, work in this area of ecol-
ogy has tended to focus on the reduction of variance condi-
tional on controlled design, and seems rarely to have asked
the question from the point of view of adding units to reduce
estimator bias relative to a baseline of unrepresentative sam-
pling for descriptive inference (Henrys et al. 2024). Whilst
there is considerable mathematical overlap between these
existing approaches to adaptive sampling (Thompson 2012)
and that considered here, those approaches have tended to
use the response values of interest to guide the selection of
new sampling locations (Thompson 2012), whereas here we
follow the recently developed survey sampling approach of
focusing on how to equilibriate inclusion probabilities across
units to reduce correlations between these and the response
variable(s) of interest (Schouten et al. 2017). Such approaches
fall within the second category of Wagner’s typology of non-
response bias indicators (Wagner 2012), as they require data
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on survey response and sampling frame information at the
population level (here stratum membership), but not on the
survey outcome variables themselves.

Conclusion

We have laid out the relationship between poststratum-based
adjustment strategies and inverse probability weighting in
the context of reducing bias (or, equivalently, improving
representation) for descriptive inference. Following Meng
(Meng 2018) and others (Bethlehem 2002, Wu 2022), we
have characterised this bias as a non-zero correlation between
inclusion probabilities and the variable(s) of interest and
clarified the assumptions required to justify this approach. A
recent review of adaptive sampling in ecology (Henrys et al.
2024) suggested that the complexity of some techniques
in the literature likely constituted an important barrier to
uptake, and our simple approach may help to overcome this
problem. The approach proposed here relies on assump-
tions that are typically impossible to verify without separate
survey efforts, but this is no different to the assumptions
required to reweight existing samples to improve represen-
tativeness (Bailey 2023a, 2023b, Boyd et al. 2024b), and
the ongoing development of R-indicators and related tools
points to numerous opportunities for ecologists in these
areas (Schouten et al. 2014, 2017, Nishimura et al. 2016).
We have focused on a single categorical driver of sampling
bias to target adaptive sampling, but, in principle, one could
cross-tabulate many categorical variables and/or discretise
continuous ones for crossing (Valliant et al. 2018). It may
be that modelling inclusion probabilities using multivariable
approaches, and using ‘partial’ R-indicators based on these,
will allow finer-grained exploration and control of adaptive
sampling strategies relative to inclusion probability variance
in the future (Schouten and Shlomo 2017).

We reiterate that our approach is not a panacea. In general,
if sample inclusion probabilites and the response variable are
still correlated after poststratification (i.e. [p(m,,),y,,| >> 0),
then calculated statistics may still contain important bias rel-
ative to any given research question. However, this applies to
all such strategies based on weighting adjustments, and cer-
tainly applies to ignoring the problem altogether (i.e. assum-
ing that the sampling mechanism is already equivalent to a
probability sample without critical inspection). Best practice
is likely to involve sensitivity analyses (Little and Rubin 2020,
Pescott 2023), and both quantitative (Boyd et al. 2021) and
qualitative assessments of the potential for bias relative to key
research goals (Boyd et al. 2022, Pescott et al. 2023).
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