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Abstract
1. Urban greenspaces are crucial for public health, climate resilience and community 

well- being, yet there are inequalities in accessibility in cities across the world. The 
‘x- minute city’ framework has been proposed as a potential solution, proposing 
that essential services and amenities—including greenspace—should be accessi-
ble within a short commute from every residence. However, current approaches 
to measuring and implementing this framework often rely on single dimensional 
metrics that fail to capture the full complexity of how people actually access and 
use urban greenspaces.

2. This review synthesizes methods from three distinct fields to develop a more com-
prehensive understanding of greenspace accessibility: geographic information sci-
ence (GIScience), which provides spatial analytical tools; behavioural ecology (BE), 
which offers frameworks for understanding movement decisions; and human mobil-
ity analysis, which reveals movement patterns through the urban environment.

3. While GIScience approaches allow for the identification of spatial inequalities in 
greenspace distribution, they often overlook the behavioural and social factors that 
influence actual usage, highlighted in BE approaches. Similarly, human mobility mod-
els can track movement patterns but may miss environmental and cultural factors.

4. To bridge the gap between these methods, we introduce the Multi- context 
Inclusive City (MIC) framework, which integrates spatial, behavioural and mobility 
perspectives to analyse greenspace accessibility. This framework moves beyond 
proximity measures to incorporate diverse experiences, movement pathways and 
the environmental and social factors that influence greenspace usage.

5. The MIC framework offers practical guidance for selecting appropriate models 
and methods based on specific research questions or planning objectives. By 
providing a more nuanced understanding of how people interact with urban 
greenspaces, this framework can help planners and policymakers develop more 
effective strategies for creating equitable, accessible and sustainable cities.
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1  |  INTRODUC TION

Since the Industrial Revolution, cities around the world have been 
developed with an emphasis on productivity and economic growth 
rather than liveability. This focus has often led to sprawling, dense 
built environments that prioritize industrial and commercial func-
tions over residential comfort, greenspaces and community well- 
being (Childe, 1950; Reps, 2021). Greenspaces—encompassing 
parks, urban forests and green infrastructure—are crucial for cre-
ating healthier, more resilient cities. They provide residents with 
critical ecosystem services—the benefits that natural environments 
provide to human well- being and functioning of cities—such as air 
purification, heat reduction, stormwater management and noise 
buffering, all of which directly contribute to improved public health 
(Bolund & Hunhammar, 1999; Coutts & Hahn, 2015). Research 
consistently links greenspaces to positive health outcomes, in-
cluding reduced stress, enhanced mental health and lower rates of 
respiratory diseases (Gianfredi et al., 2021). As climate challenges 
grow, greenspaces also strengthen urban resilience by mitigating 
the urban heat island effect, improving biodiversity and managing 
flood risks. For instance, a recent systematic review highlighted 
that regions abundant in greenspaces report lower rates of heat- 
related morbidity and mortality compared to those with sparse 
greenspace (Nazish et al., 2024). However, disparities in greenspace 
distribution and accessibility exacerbate health inequalities, partic-
ularly in underserved or ‘left- behind’ areas (Houlden et al., 2018). 
Addressing these disparities is essential for creating sustainable, 
inclusive and productive cities that prioritize well- being (Kabisch & 
van den Bosch, 2017).

These disparities in greenspace accessibility are influenced by 
income inequality, historical planning practices and urban develop-
ment patterns, among other social factors. In the United Kingdom, 
for example, there is a clear need for more equitable greenspace 
access, with recent statistics indicating that approximately 38% of 
people in the United Kingdom do not have greenspace within a 15- 
min walk of their home, reflecting the ongoing accessibility crisis 
(Department for Environment, Food and Rural Affairs, 2023). The in-
come gap in greenspace accessibility can be clearly seen in European 
cities such as Brussels, Milan, Prague and Stockholm; higher income 
residents typically enjoy greater access to greenspaces. In contrast, 
Birmingham in the United Kingdom shows a reverse pattern, with 
more greenspace in lower income areas (Buckland & Pojani, 2023). 
Similar inequities are found globally, as in Denver and Los Angeles, 
where minority and low- income neighbourhoods face limited ac-
cess to parks (Rigolon et al., 2018; Rigolon & Flohr, 2014; Wolch 
et al., 2005). However, addressing these disparities in greenspace 
access requires careful planning as sudden enhancements of greens-
pace can lead to ‘green gentrification’, where improvements elevate 
property values and push out lower income residents, as observed in 
various United States and European cities (Anguelovski et al., 2022; 
Quinton et al., 2022; Wolch et al., 2014).

The ‘x- minute city’ framework has emerged as a potential 
solution for equitable urban accessibility, promoting the idea 

that essential services, including greenspaces, should be ac-
cessible within a short walk or bike ride (typically 15–20 min) of 
every household (Moreno et al., 2021). Although the x- minute 
city framework is a recent concept, it builds on a long tradition of 
urban planning principles that emphasize density, proximity and 
diversity—ideas rooted in Jane Jacobs's The Death and Life of Great 
American Cities in the 1960s (Jacobs, 1961)—expanding upon them 
by including digitalization, the integration of smart technologies 
to enhance accessibility (Moreno et al., 2021). For a more com-
prehensive history of these planning principles, see Fuller and 
Moore (2017) for an early review and LeGates et al. (2020) for a 
recent synthesis that highlights significant developments in urban 
planning frameworks.

Given their role in enhancing public health and serving as 
‘ecological guardians’ for urban areas, greenspaces are a key 
amenity that should be within the accessible range of the x- 
minute city (Wolch et al., 2014). However, greenspace accessi-
bility presents unique challenges that distinguish it from other 
forms of accessibility, such as transportation or retail access. 
Greenspace use is influenced not only by physical proximity but 
also by individual perceptions, environmental quality, landscape 
patterns and social factors, which standalone accessibility met-
rics generally fail to capture (Ha et al., 2022; Jarvis et al., 2020; 
Robinson et al., 2023).

To fully understand greenspace accessibility, there is a need to 
move beyond traditional location- based metrics such as proximity 
and density and incorporate additional individual- based metrics to 
capture the nuanced, variable factors that influence greenspace 
use. This review identifies a critical gap in the literature: While geo-
graphic information science (GIScience hereafter), human mobility 
(HM) analysis and BE each contribute valuable insights, these fields 
remain largely siloed, limiting their ability to address greenspace 
accessibility comprehensively. Methods from GIScience provide es-
sential spatial analysis techniques to map and quantify greenspace 
distribution, highlighting spatial inequalities, but often neglect the 
behavioural and contextual elements of accessibility—the perceived 
accessibility (e.g. how crime taking place in a greenspace influences 
the decision to visit it) (Pot et al., 2021). HM analysis—encompass-
ing fields such as geographic data science and network science—le-
veraging big data from sources such as mobile phones and social 
media, has made significant strides in tracking real- world movement 
patterns, yet it often overlooks the socio- environmental and moti-
vational factors that influence greenspace use (Toole et al., 2015). 
Behavioural ecology, through the Movement Ecology Paradigm, fo-
cuses on adaptive behaviours and movement motivations, adding a 
qualitative aspect of the perceived accessibility, but this theoretical 
framework and modelling strategy has been underutilized in urban 
planning contexts (Joo et al., 2022). By combining spatial analysis, 
empirical movement data and behavioural frameworks, we can de-
velop more comprehensive insights into both physical and perceived 
accessibility to urban greenspace.

While acknowledging the breadth of literature in these 
fields, this review concentrates on their primary methodological 
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approaches to establish a ‘Multi- Context Inclusive City’ (MIC) 
framework. This framework provides a structured approach for 
combining and integrating methods from GIScience (GIS), human 
mobility studies (HM) and behavioural ecology (BE). The MIC 
framework offers guidance on how existing approaches can be sys-
tematically combined to provide more comprehensive insights into 
greenspace accessibility, rather than presenting entirely new mod-
els. The framework identifies four potential integration pathways: 
combining two approaches (GIS- BE, HM- BE or GIS- HM) or all three 
approaches (GIS- HM- BE) to address specific research questions 
and planning needs.

2  |  FROM MINIMAL TO COMPREHENSIVE 
INTER AC TIONS: C APTURING THE 
CONNEC TIONS BET WEEN PEOPLE AND 
NATURE IN THE X-  MINUTE CIT Y

2.1  |  Spatial place- based approaches: Perspectives 
from GIScience and urban analytics

While spatial accessibility analysis has evolved beyond simple 
proximity measures, proximity- based approaches remain common 
for mapping and defining the x- minute city across disciplines. These 
approaches apply a variety of spatial analytical techniques derived 
from GIScience, ranging from basic distance measures to more 
sophisticated methods incorporating multiple transport modes and 
temporal factors (Geurs & van Wee, 2004). For example, Natural 
England defines a ‘15- min walk zone’ for greenspace accessibility 
as any residence that falls within 1 km of a natural greenspace, 
without considering the road network (Natural England, 2023). 
Another example of this can be seen in a recent study by Balletto 
et al. (2021) that described the ‘service area’ as an area of 1200 m 
around a building, corresponding to an approximation of a 15- min 
walk along the street network. These proximity- based metrics, in 
this case buffer analysis, provide a simplistic way of defining spatial 
coverage but lack the ability incorporate real- world travel conditions 
or temporal variability.

Place- based, proximity metrics can be extended by incorporat-
ing transportation costs to calculate travel times or distances, and 
competition of many people trying to access the same amenity, 
forming the basis for catchment area analysis. A common example 
is the Two- Step Floating Catchment Area (2SFCA) method, which 
incorporates transportation networks, supply (e.g. greenspace area) 
and demand (e.g. population density) to create catchment areas and 
identify spatial inequalities (Luo & Qi, 2009; Luo & Wang, 2003). The 
2SFCA method is not solely proximity- based, but flexible enough to 
account for different transportation modes, including walking, cy-
cling or driving (Liu et al., 2022). An important strength of the 2SFCA 
method is its ability to account for service provision weighted by 
demand, while also considering the availability of alternative op-
tions for potential users within a given time or distance catch-
ment. This approach mitigates issues related to cross- boundary 

flows—situations where service areas are not simply confined to 
administrative boundaries, instead incorporating time and distance 
into the accessibility measure (Higgs, 2004). However, the 2SFCA 
method has its limitations. It often relies on generalized parameters 
with single standardized values, ignoring individual features, and as-
signs arbitrary values to key characteristics, such as average walking 
speed (Liu et al., 2022). It also implements a place- based approach 
instead of an individual- based one, making it less effective for cap-
turing person- specific accessibility dynamics.

Efforts have been made to incorporate qualitative data (such 
as surveys, walkability indices and visual reporting) into the tradi-
tional quantitative approaches of proximity- based metrics for the 
x- minute city (Campisi et al., 2021; Ignaccolo et al., 2020; Weng 
et al., 2019). Studies by Weng et al. (2019), Calafiore et al. (2022) and 
Liu et al. (2021) demonstrate how combining spatial analysis with 
survey data and sociodemographic factors can reveal accessibility 
patterns that place- based measures miss. Similarly, approaches like 
geographically weighted regression and equity- specific metrics have 
revealed how accessibility varies across sociodemographic and spa-
tial scales, underscoring the persistent disparities faced by marginal-
ized groups. Yet, these methods often remain static and aggregate, 
failing to capture the dynamic, individual- level interactions that 
shape greenspace use.

Recent research has further exposed the inadequacy of relying 
solely on objective measures of accessibility. For example, analyses 
of greenspace access have revealed significant disparities in both 
inter- group and intra- group equity, such as variations between ra-
cial/ethnic groups and income- based inequities within those groups 
(Liu et al., 2021). These findings challenge the assumptions underly-
ing aggregate accessibility metrics, emphasizing the need for tools 
that address not only physical proximity but also the socio- spatial 
dynamics of equity and inclusion. Moreover, the disconnect be-
tween objective accessibility and actual greenspace use highlights 
the critical role of subjective perceptions—such as attractiveness, 
safety and inclusivity—in determining how and whether people 
engage with greenspaces (Liu et al., 2024). These insights suggest 
that accessibility is as much about perceived opportunities as it is 
about physical availability. Person- based approaches, including HM 
assessment, provide a promising avenue for addressing this gap (see 
Section 2.4).

Place- based, proximity approaches provide a critical starting 
point for understanding greenspace accessibility within the x- 
minute city. These methods offer straightforward, scalable tools 
for identifying underserved neighbourhoods and spatial dispari-
ties. However, their focus on service areas and place- based aggre-
gate accessibility measures limit their ability to address the nuance 
of greenspace accessibility. To move beyond these limitations, 
place- based approaches must be integrated into a broader, mul-
tidimensional framework that incorporates mobility patterns, be-
havioural insights and subjective experiences. The MIC framework 
proposed in this review provides a pathway to advance greenspace 
accessibility analysis, bridging spatial, mobility and perceptual 
dimensions.
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2.2  |  Approaches from Behavioural ecology: 
Incorporating a movement ecology perspective

Broadly, BE allows us to explore the ‘why’ behind human move-
ment. The movement of animals, especially in how they access re-
sources in the environment, has been heavily studied for decades 
with various models that explore how organisms forage in their 
environment (Ahearn et al., 2017; Fretwell & Lucas, 1969). These 
models can be applied to human behaviour to understand how hu-
mans move through the environment and examine their internal 
motivation for doing so (Miller et al., 2019). These models assess 
the cost–benefit relationship associated with movement, and in-
corporate aspects of learned behaviour (assuming that organisms 
will use their previous knowledge of the environment), past ex-
periences and social networks to decide where to move (Dolan 
et al., 2021; Glover, 2009). While these models have yet to be 
applied to human movement in the x- minute city, they have the 
potential to assess how people choose their destination based on 
their individual circumstances.

Optimal foraging theory proposes that while foraging, animals 
act in a way to maximize their net benefit by obtaining the most 
resources while minimizing the associated costs such as time, en-
ergy and risk (Pyke, 1984). This can further be broken down into 
how an individual chooses, handles and consumes a resource in 
the environment (King & Marshall, 2022). When applied to humans 
seeking services (including ecosystem services) and amenities in the 
x- minute city, this can be viewed as, for example, the behaviour of 
people moving through the environment to access the resource of 
greenspace, considering the travel time, quality of greenspace and 
crowdedness of the space. Extensions of this such as the marginal 
value theorem (Charnov, 1976) and ideal free distribution (Flaxman 
& deRoos, 2007) attempt to quantify these aspects of movement 
by describing the weights of the benefits of staying in one place 
versus moving to another based on the benefit they gain in a place. 
For the marginal value theorem, the ideal time to leave a location 
is variable depending on the quality of the current location and the 
distance to other potential destinations. For example, people may 
choose to leave a low- quality, crowded greenspace sooner than a 
higher quality greenspace with more space between individuals. The 
concept of ideal free distribution handles the aspects of competition 
and cooperation between individuals to determine the optimal ratio 
of resources and people (e.g. how community members share and 
coordinate park usage times to maximize greenspace accessibility 
for everyone) (Flaxman & deRoos, 2007). In this way, the marginal 
value theorem and ideal free distribution can consider both social 
group dynamics and the quality of a greenspace as components that 
contribute to an individual's motivation to move throughout the city 
when seeking greenspace, or simply when trying to find the most 
optimal route to get to work (Barton et al., 2009; Cantor et al., 2020; 
Davis et al., 2022; Fuller et al., 2007).

While not a direct method for modelling the x- minute city, be-
havioural aspects of these models could be considered when taking 
a quantitative approach as they can refine the movement dynamics 

of people in the urban environment. For example, urban greenspace 
usage would be influenced by factors such as the size of the green-
space, its facilities, the crime present in the area and the number of 
access points. These BE models could be applied to a wide range 
of human behaviours, modelling how people interact with resources 
such as urban amenities, transportation and the local economy, 
providing a general framework for understanding resource use, 
decision- making and the process of when and how to move around 
the city (Kennedy & Gray, 1993).

The movement ecology paradigm (MEP), elaborated by Nathan 
et al. (2008), incorporates a more complex approach to studying 
the movement of organisms in relation to benefits. It proposes 
that movement trajectories result from four interconnected com-
ponents: motion capacity, navigation capacity, the internal state 
of the individual and the external factors of the environment. The 
motion capacity of an individual incorporates the factors that en-
able an individual to move (i.e. transportation accessibility, walking 
speed and movement disabilities). Navigation capacity similarly 
details the factors that contribute to an individual's ability to nav-
igate in the environment (i.e. spatial awareness, map reading skills 
and sensory perception). The internal state encompasses the psy-
chological reasons for moving, addressing why the individual is 
moving and the external factors detail the environmental layout 
of a city, such as the transportation and technological infrastruc-
ture. This framework is able to address multiple mechanisms that 
drive movement: why move, how to move, when to move, in what 
direction to move and how external factors influence movement 
(Nathan et al., 2008).

The MEP's value in x- minute city planning lies not in replacing ex-
isting transport modelling methods, but rather in providing decision- 
makers with a structured framework to conceptualize and analyse 
human movement behaviour holistically (Demšar et al., 2021). Rather 
than jumping directly to technical metrics like transport availability 
measures, the MEP framework encourages first considering the 
basic drivers of movement behaviour. The structured consideration 
of internal motivations (why move?), navigation capabilities (where 
to move?) and motion capacities (how to move?) helps identify which 
aspects of mobility truly need to be measured and modelled in each 
context (Demšar et al., 2021; Nathan et al., 2008). When applied 
to the x- minute city concept, the MEP's components can be mean-
ingfully adapted to incorporate the behavioural components of 
movement.

Behavioural and movement ecology frameworks provide essen-
tial insights into how people navigate and utilize urban greenspaces, 
moving beyond simple distance- based accessibility measures to con-
sider the complex motivations and decision- making processes that 
influence movement patterns. While traditional accessibility metrics 
remain valuable, the MEP framework demonstrates the importance 
of considering multiple contexts simultaneously—from internal mo-
tivations and individual capabilities to environmental conditions and 
social factors. This multidimensional perspective reveals why con-
ventional planning approaches may fall short: They fail to capture 
the dynamic interplay between spatial accessibility, behavioural 
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    |  1495SCHENDL et al.

patterns and contextual factors that shape how people access and 
use greenspaces. By highlighting these interconnections, the MEP 
framework helps justify the need for more comprehensive, inte-
grated approaches to understanding greenspace accessibility. Such 
holistic frameworks must be capable of bridging between technical 
measurements and behavioural realities while accounting for the di-
verse contexts that influence how different communities experience 
and access urban greenspaces.

2.3  |  Understanding urban dynamics: Population 
mobility models

Both population- level and individual- level mobility models offer 
critical insights into understanding the movement of people in the 
urban environment. Population- level models, including proximity- 
based approaches like the 2SFCA method (Luo & Qi, 2009), are 
grounded in the gravity model framework. The gravity model is the 
foundation of population- level HM models and has been used to 
analyse spatial relationships and movement dynamics in a variety 
of areas including economics, international trade, transportation 
analysis and human migration (Lewer & Van den Berg, 2008; 
Ramos, 2016; Rodrigue et al., 2013; Schläpfer et al., 2021). 
Fundamentally, the gravity model suggests that two locations 
have distinct levels of attraction based on their population and the 
distance between them (Zipf, 1946).

Approaching population- level mobility from a different perspec-
tive, Stouffer's law of intervening opportunities was proposed in 
1940 to address the relationship between proximity and migration 
(Stouffer, 1940). It suggests that as an individual moves towards 
their destination, they are likely to choose the closest area with suf-
ficient ‘opportunities’ relative to where they started, halting their 
migration once a suitable location is encountered (Stouffer, 1940). 
This concept has been incorporated into several HM models as a way 
of explaining an individual's decision- making process in choosing a 
location to stop at while in route to their destination.

Choosing an appropriate model depends on the context, re-
search goals, and data availability. Comparative studies have 
shown mixed performance outcomes for the intervening opportu-
nities model relative to the gravity model. For example, Akwawua 
and Pooler (2001) found that the intervening opportunities model 
performs about the same as the gravity model when modelling 
US interstate migration patterns; while Wilmot et al. (2006) re-
ported that it outperforms the gravity model in certain contexts, 
suggesting that when intermediate opportunities are accurately 
represented and data quality is high, the intervening opportuni-
ties model can capture spatial flows more effectively. However, 
Elffers et al. (2008) and Kotsubo and Nakaya (2021) observed that 
the gravity model sometimes performs better than the intervening 
opportunities model, which may occur when travel patterns are 
strongly influenced by population size and distance. The varying 
performance of these models can be attributed to the context and 
specific factors of the migration flows being studied, such as the 

scale, the characteristics of origin and destination locations, and 
the availability of data.

Both the intervening opportunities and gravity models are con-
strained by their assumptions. Neither model can perfectly predict 
flows under all conditions, with the gravity model relying on ag-
gregate measures of population and distance, and the intervening 
opportunities model being influenced if the attractiveness of inter-
mediate destinations is only moderately influential (Anderson, 2011). 
In other words, each model encounters an ‘upper bound’ on predic-
tive power: Conditions under which its assumptions no longer pro-
vide reliable predictions. The fluctuations in performance are not 
only due to data availability or scale, but also to the theoretical con-
straints embedded within each framework.

The radiation model is a modern application of the intervening 
opportunities model that captures more movement characteristics 
than Stouffer's model. The model is based on the idea that when 
an individual decides on their destination, they go through a dual- 
step procedure, accounting for the internal motivation of the indi-
vidual and the proximity of opportunities (Nathan et al., 2008; Simini 
et al., 2012). First, an individual looks for opportunities at a coarse 
scale, expanding their seeking range to cover a large geographic 
area. Second, the ideal location is chosen based on the proximity 
of the opportunity to the individual's home and the weight of the 
benefits in comparison to other opportunities closer to the individ-
ual's home. A closer location with sufficient opportunities is more 
likely to be chosen over a farther location with better opportunities 
(i.e. travel distance has more weight over the opportunity value). For 
example, someone in an urban area who wants to enjoy a hike may 
first identify (or have existing knowledge of) all the greenspaces that 
are within an hour's drive from their home. Within this area, there 
may be several small greenspaces, a few large greenspaces and one 
long corridor of greenspace. While the small greenspaces may be 
very close to the person's home, they do not offer much in terms of 
hiking. The large greenspaces may have a few short trails and are a 
short drive from home. The corridor of greenspace may be an hour 
drive from their home but provides a scenic hiking trail. In theory, 
based on the radiation model, the individual would likely choose 
one of the nearby large greenspaces with sufficient hiking oppor-
tunities over the farther location with better opportunity. However, 
this would depend on the exact distances and the exact value of the 
opportunities at each location.

The radiation model resolves some of the major limitations of 
the gravity model, having strictly defined parameters, accounting 
for variable population density in between the origin and destina-
tion, and resulting in a flow output that predicts both the average 
flow and its variance (Simini et al., 2012). However, one of the major 
limitations of the radiation model is the issue of scalability. There 
have been multiple studies in which the radiation model has over-
estimated the flows terminating at short distances, and underes-
timated long- distance flows at the city level due to the underlying 
assumption that an individual will terminate their search process 
once they encounter the closest suitable opportunity (Kotsubo & 
Nakaya, 2021; Liang et al., 2013; Liu & Yan, 2019). As a response to 
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this shortcoming, the model has been adjusted with different param-
eters to address different areas depending on the scale of the study 
(Kotsubo & Nakaya, 2021; Simini et al., 2012; Yang et al., 2014).

These population- level HM models offer key aspects to consider 
for incorporating the proximity, density and diversity aspects of the 
x- minute city. The concept of intervening opportunities and distance 
decay are both critical in understanding how people navigate the 
urban environment and make decisions on where to go based on 
what amenities and opportunities are available within their vicinity.

2.4  |  A close- up on citizens: Exploring individual 
mobility models

Individual- level mobility models account for personal preferences 
and constraints and can help in understanding the variability in 
people's mobility patterns (Barbosa et al., 2018). These models can 
simulate diverse mobility behaviours, aiding in the assessment of 
how different population groups access greenspaces in the city. For 
instance, some individuals might prioritize proximity, preferring to 
use the closest amenities, while others might prioritize quality or 
variety and be willing to travel further for better options.

Random walks serve as a foundational concept, providing a null 
model of individual movement. However, their randomly gener-
ated movement trajectories do not mirror actual human movement 
(Barbosa et al., 2018; Song, Koren, et al., 2010). In a random walk 
model, each step in the trajectory is independent, uninfluenced by 
previous locations visited. Due to the random nature of these mod-
els, they are not the best fit for realistic human movement, which 
often exhibits more predictable properties. As a result, various ver-
sions of the random walk model, such as Brownian motion (Wang & 
Uhlenbeck, 1945) and continuous time random walks (Montroll & 
Weiss, 1965), have been developed.

A particularly successful variant is the Lévy flight model, which 
has been shown to accurately capture many aspects of human and 
animal movement. Lévy flights are characterized by a pattern of 
many small steps interspersed with occasional long jumps, creating 
a power law distribution for the jump length (Chechkin et al., 2008). 
This mirrors common HM patterns, such as daily commuting inter-
spersed with occasional long- distance travel (González et al., 2008). 
While Lévy flights can describe routine behaviour of HM, this model 
may not capture the nuances of urban travel and the decision of 
where to travel to. For example, Lévy flights do not consider the 
external factors present in the city, such as the crowdedness of a 
destination or the amount of traffic on the street, only creating a 
network of travel along the edges and nodes of the graph (Barbosa 
et al., 2018).

The Exploration and Preferential Return (EPR) model (Song, Qu, 
et al., 2010) incorporates an additional component of human be-
haviour, the propensity to visit previous locations at a higher fre-
quency than new locations. The EPR model works on a principle of 
balance between two significant behavioural actions: exploring new 
locations and returning to previously visited ones. The evolution of 

this model over time has seen several adaptations aimed at increas-
ing its realism and representativeness of actual HM. For instance, 
the density- EPR model combines the gravity model and cumulative 
knowledge of an individual to guide the decision of which location 
to visit next (Pappalardo et al., 2016). Additionally, incorporating 
recency bias into the model accounts for another layer of human 
behaviour prioritizing the tendency of an individual to re- visit a 
recent location rather than a frequently visited location (Barbosa 
et al., 2015).

The recency model breaks down the EPR model, deriving two 
separate ranks—frequency and recency (i.e. ranking the most fre-
quently/recently visited locations) (Barbosa et al., 2015). The re-
cency model operates in much the same way as the EPR model with 
the same probability for exploration; however, the preferential re-
turn probability is altered to adjust the jumps to return locations to 
be selected from both frequently visited locations and recently vis-
ited locations (Barbosa et al., 2015). This additional nuance captured 
by the recency model enhances the overall output of the EPR model, 
making it more applicable to use in generating trajectories in urban 
environments. By combining recency and frequency, the frequency 
of visits can be broken down to better understand the human moti-
vation for visiting a location.

Agent- Based Models (ABMs) represent another approach in in-
dividual mobility modelling, simulating the decision- making process 
of individuals based on a set of rules and interactions. While previ-
ous models like EPR and recency models focus on predicting move-
ment patterns based on historical behaviour, ABMs allow for more 
complex decision- making processes that incorporate both individual 
preferences and environmental factors. In these models, agents are 
programmed to make autonomous decisions about their movement 
patterns while responding to both environmental conditions and the 
behaviour of other agents (Serena et al., 2023).

ABMs are particularly valuable for their ability to represent het-
erogeneous types of agents with varying decision conditions and to 
handle only partial data in complex urban environments, reducing 
the need for large training datasets (Maggi & Vallino, 2016). One 
key advantage of ABMs over other mobility models is their ability to 
capture how individuals adapt their route choices, departure times 
and transportation modes in response to dynamic conditions such as 
congestion, availability of services and the presence of other agents 
in the system (Heppenstall et al., 2012). This makes them especially 
suitable for studying complex urban environments where multiple 
factors influence movement decisions. However, ABMs struggle 
with validation because they produce emergent behaviours that 
cannot be easily observed or verified in the real world (Heppenstall 
et al., 2021).

Recent advances in big data analytics, particularly from smart-
phone GPS data and financial transactions, have given researchers 
the ability to understand HM patterns and can be used to help val-
idate theoretical models. High- resolution smartphone GPS data 
enables researchers to track individual movements with precision, 
allowing for detailed examination of how movement patterns vary 
across different temporal and spatial scales, and in response to 
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different environmental conditions. The ability to track individ-
ual movements has proven especially valuable for analysing spe-
cific population segments, from commuters to tourists, revealing 
how different demographics interact with urban spaces (Rout 
et al., 2021). When combined with other data sources like financial 
transactions and social media check- ins, researchers can create rich 
behavioural profiles that capture not only where people go, but also 
the purpose and context of their movements (Andrade et al., 2020; 
Birkin, 2019). Studies using mobile phone data have opened up the 
possibility of revealing how socio- economic factors shape mobility 
patterns. For example, research in Bogotá demonstrated how lower 
income groups maintained higher mobility levels during COVID- 19 
due to necessity, while higher income groups could more easily 
adapt their movement patterns through remote work (Guzman 
et al., 2021). This type of granular mobility data analysis helps val-
idate theoretical models while uncovering critical patterns in how 
different demographic groups navigate and access urban spaces. 
Such insights contribute to understanding the real- world implica-
tions of accessibility disparities and evaluating the effectiveness of 
urban interventions across different population segments.

Individual mobility models have great potential in assessing the 
movement of people through urban environments, particularly re-
garding greenspace accessibility. Random walks and their variants, 
such as Lévy flights, establish foundational principles for model-
ling movement trajectories, though their limitations in capturing 
real- world behaviour require more sophisticated approaches. The 
EPR model and its extensions offer valuable insights into the bal-
ance between exploration and routine behaviour, with the recency 
model adding nuanced understanding of temporal decision- making 
patterns. ABMs further enhance our understanding by incorporat-
ing complex decision- making processes and environmental interac-
tions, though their validation remains challenging. The integration 
of big data analytics, particularly from smartphone- GPS, has sig-
nificantly improved these models' accuracy and applicability; how-
ever, there are concerns surrounding the ethical usage of this data.

While each model type has specific limitations, collectively they 
provide complementary insights into how individuals navigate and 
utilize urban spaces. Collectively, these models for understand-
ing greenspace accessibility are capable of capturing both routine 
usage patterns and exploratory behaviours, resulting in factors 
such as distance, quality and temporal variations in visitation pat-
terns. Future research could enhance these approaches by better 
integrating environmental quality metrics, social dynamics and sea-
sonal variations, potentially leading to more robust predictions of 
greenspace usage patterns in the context of the x- minute city.

3  |  BUILDING A HOLISTIC FR AME WORK: 
THE MULTI-  CONTE X T INCLUSIVE CIT Y 
FR AME WORK

The previous sections explored different models and approaches 
to understanding human movement and accessibility within the 

x- minute city, examining methods from GIS, BE and HM research 
(Figure 1). Each approach encompasses particular aspects of both 
the urban environment and human behaviour, providing a distinct 
perspective on urban accessibility. These approaches have been 
developed largely in parallel to each other. However, while this 
parallel evolution has led to sophisticated methods within each 
domain, it has also created methodological ‘silos’ that limit the 
processes in which we examine urban mobility and accessibility.

Recent studies demonstrate this limitation. For instance, 
GIScience approaches excel at identifying spatial inequalities in 
greenspace access (Wu et al., 2022), but may miss the behavioural 
factors that influence actual usage patterns. Similarly, mobility 
models can reveal movement patterns through urban greenspaces 
(Zheng et al., 2024), but often lack environmental and social context. 
Behavioural ecology approaches offer insights into decision- making 
processes but may not fully account for spatial constraints. This 
fragmentation of approaches mirrors a broader challenge in urban 
planning—the disconnect between physical infrastructure, human 
behaviour and movement patterns (Smith & Walters, 2018).

To address this knowledge gap, while acknowledging practical 
constraints, these approaches can be combined in various ways to 
address specific urban planning challenges, particularly in under-
standing access to greenspace. We propose the MIC approach as 
a flexible framework that can be adapted based on data availability 
and research needs (Figure 2).

The MIC framework represents a new perspective in how we 
conceptualize and analyse urban accessibility. Rather than treat-
ing spatial distribution, human behaviour and movement patterns 
as separate phenomena, we recognize them as interconnected 
dimensions of urban life that influence each other. The frame-
work identifies four distinct approaches for combining different 
analytical methods: GIScience- Behavioural Ecology (GIS- BE), 
Human Mobility- Behavioural Ecology (HM- BE), GIScience- Human 
Mobility (GIS- HM) and a combined GIScience- Human Mobility- 
Behavioural Ecology approach. Each integration pathway within 
the MIC framework opens new possibilities for examining urban 
accessibility.

The GIS- BE approach combines spatial analysis with be-
havioural insights to understand how environmental conditions, 
the built environment and individual perceptions influence move-
ment patterns. This integration proves particularly useful for sce-
narios where understanding both spatial distribution and human 
behaviour is crucial. GIS analysis reveals critical spatial patterns 
in urban resources distribution and accessibility barriers (Jin 
et al., 2023; Leboeuf et al., 2023), complemented by behavioural 
movement analysis that quantifies how people navigate through 
based on environmental factors and resource availability such as 
greenspace crowdedness (Mears et al., 2021; Vallejo et al., 2015; 
Xu et al., 2024). Together, these approaches provide a robust 
framework for evaluating both the spatial and behavioural dimen-
sions of urban accessibility.

The HM- BE approach integrates individual movement patterns 
with behavioural principles to understand the motivations behind 
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urban mobility. This combination provides unique insights that nei-
ther field can achieve alone (Demšar et al., 2021). Rather than treat-
ing movement patterns as purely spatial phenomena, this integration 
acknowledges that HM emerges from complex decision- making pro-
cesses shaped by both individual preferences and environmental 
contexts. Empirical research demonstrates how behavioural frame-
works enhance our understanding of HM patterns. Ladle et al. (2018) 
used smartphone GPS data combined with behavioural resource 
selection analysis to quantify how university students select green-
spaces. Their integration revealed that students' selection of green-
spaces and trails varied significantly by season and day of week, with 
stronger selection during summer months and weekends. Oliver 
et al. (2020) demonstrated how mobile phone data could track be-
havioural responses to public health measures, showing how people 
adjusted their mobility patterns in response to interventions during 
the COVID- 19 pandemic. These studies show how integrating mo-
bility data with behavioural analysis helps explain both the temporal 
dynamics and underlying motivations driving urban movement.

The GIS- HM approach merges spatial analysis with empirical 
movement data, creating a bridge between static data approaches 
and dynamic human behaviour. This integration reveals how peo-
ple actually navigate and utilize urban spaces, expanding upon tra-
ditional accessibility measures. The incorporation of GPS- derived 
mobility data (or synthetically modelled movement data) allows for a 
more realistic representation of travel paths and individual behaviour 
patterns (Mears et al., 2021). This creates the possibility to distin-
guish between potential accessibility—the theoretical opportunity 
to access a place based on its location and population demand—and 

realized accessibility, which accounts for actual mobility patterns, 
transport modes and temporal dynamics (Filazzola et al., 2022; Lin 
et al., 2024; Tao et al., 2018). In terms of greenspace accessibility, 
mobility data and spatial analysis can be used to assess how acces-
sibility fluctuates depending on factors such as the time of the day 
or the number of greenspace access points. It can also reveal how 
disparities in accessibility differ between different socio- economic 
groups, to uncover barriers to safe and consistent greenspace ac-
cess. The integration of HM approaches with traditional spatial anal-
ysis provides a more realistic lens for understanding how cities are 
experienced and accessed by different communities.

The GIS- HM- BE approach represents the most comprehensive 
integration within the MIC framework, combining spatial analytics 
from GIScience, movement pattern analysis from HM studies and 
decision- making frameworks from BE. For example, when analysing 
greenspace accessibility, the GIScience component provides spatial 
distribution and network analysis, HM models or data can reveal 
actual usage patterns and temporal tracking, while BE frameworks 
help explain and quantify the underlying motivations for these pat-
terns. The model can capture complex interactions between spatial 
contexts (e.g. demographics, socio- economic status, neighbour-
hood segregation and transportation networks) and behavioural 
factors (e.g. individual preferences, social dynamics and temporal 
constraints).

While the GIS- HM- BE approach provides the most complete 
analysis of urban movement patterns, its implementation requires 
substantial data resources and processing capacity. Therefore, re-
searchers should carefully consider whether their specific research 

F I G U R E  1  A summary of the advantages, denoted by ticks, and limitations, denoted by crosses, for each family of models.
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    |  1499SCHENDL et al.

questions necessitate this full integration or if a simpler MIC combi-
nation would suffice. Like other MIC approaches, the GIS- HM- BE 
approach serves as a complementary tool to existing urban analysis 
methods. One promising application is in urban digital twins, where 
the model's ability to simulate realistic human behaviour patterns 
can help evaluate proposed urban interventions before implementa-
tion (Deng et al., 2021).

The selection of appropriate models and methods for analys-
ing urban accessibility depends heavily on both data availability 
and specific research objectives. While comprehensive analytical 

frameworks offer powerful opportunities, their application is often 
constrained by real- world data limitations. For example, studies in 
regions with limited digital infrastructure may need to rely primarily 
on GIS approaches, as data for mobility tracking or behavioural anal-
ysis may be unavailable. Similarly, research questions themselves 
often dictate methodology choice—investigating spatial equity pat-
terns might primarily require GIS techniques, while understanding 
temporal usage patterns would necessitate mobility data (Figure 2). 
When combining these approaches, the balance between the meth-
ods needs to be carefully calibrated based on both the specific 

F I G U R E  2  A general overview of the different MIC models. Each of the circles represents the three approaches used to model human 
movement in the city: HM, BE and GIS. These sections describe the reason for using the individual model, as well as the priorities for using 
this type of model. The overlapping areas describe the different MIC frameworks by describing a potential scenario or application, and giving 
a brief example of the types of data that could be used.
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research objectives and practical constraints of data availability, 
while ensuring that the selected combination provides meaningful 
insights without unnecessary analytical complexity.

4  |  CONCLUSION

The MIC framework presented in this review marks a collaborative 
approach in how we conceptualize and analyse urban accessibility, 
particularly concerning greenspace. While the traditional approach 
to the x- minute city has focused on spatial proximity, this 
multidisciplinary approach attempts to bridge the divide between 
GIS, HM analysis and BE, opening new pathways for understanding 
the complex relationship between urban residents and their 
environment. The framework's value extends beyond theory by 
providing practical tools for addressing persistent spatial inequalities 
in urban planning.

While the comprehensive MIC framework proposed here needs 
to be tested empirically as a unified approach, evidence already 
exists in support of individual components and specific integra-
tions within the framework. The GIS- BE component is well rep-
resented in studies by Comber et al. (2008) and Van Herzele and 
Wiedemann (2003), who combined spatial analysis with behavioural 
factors to understand how different demographic groups perceive 
and access urban greenspaces. The HM- BE component has been 
demonstrated by Ladle et al. (2018), who analysed HM data along-
side behavioural decision- making processes to reveal patterns in 
greenspace selection and movement responses. For the GIS- HM 
component, Filazzola et al. (2022) and Lin et al. (2024) distinguished 
between potential and realized accessibility by incorporating empir-
ical movement data with spatial analysis. While the full three- way 
GIS- HM- BE component of this framework is novel and has yet- to- be 
fully implemented, Mears et al. (2021) have made important contri-
butions in this direction by combining GPS HM data with GIS analy-
sis and behavioural factors influencing greenspace selection. These 
existing studies provide a strong foundation for the value of our 
proposed MIC framework, while highlighting the need for further 
research fully implementing the comprehensive integration.

Several key research directions emerge from this integrated ap-
proach. First, there is a need to develop more sophisticated methods 
for incorporating subjective experiences and perceptions into quan-
titative accessibility measures. While current approaches can map 
physical access to greenspace, they often fail to capture the qualita-
tive factors that make greenspaces truly accessible to diverse com-
munities. The BE component of the MIC framework offers promising 
avenues for addressing this gap, particularly through the adaptation 
of movement ecology to urban contexts.

A critical area for future development lies in the framework's 
application to emerging urban challenges in greenspace access, 
particularly in understanding how different socio- economic groups 
access key ecosystem services. The MIC approach could help plan-
ners understand how communities adapt their movement patterns 
in response to environmental stressors such as urban heat islands, 

extreme weather events and air pollution. By integrating spatial 
analysis with behavioural and mobility data, planners can identify 
barriers that prevent certain communities from accessing these 
vital services and develop targeted interventions. For instance, the 
framework could reveal how low- income neighbourhoods might 
alter their greenspace usage patterns during heatwaves, or how 
the distribution of tree canopy coverage affects walking routes in 
different communities. These insights would inform more equitable 
and resilient urban design strategies that ensure essential ecosys-
tem services are accessible to all residents, regardless of their socio- 
economic status (Masson et al., 2020).

The availability of big data and the rise in artificial intelligence 
present both opportunities and challenges for implementing the 
MIC framework. While machine learning algorithms can process 
vast amounts of mobility data to identify movement patterns and 
predict behavioural responses to urban changes, these tools must 
be carefully calibrated to avoid perpetuating existing biases. For in-
stance, GPS data from smartphones might underrepresent elderly 
populations or low- income communities who have limited access 
to technology, potentially skewing any analyses (Kang et al., 2020). 
AI- driven approaches could help integrate diverse data types—from 
social media check- ins to environmental sensors—but questions re-
main about data privacy, ownership and the ethical implications of 
tracking urban movement patterns (Shanley et al., 2024). Future re-
search should focus on developing frameworks for data governance 
and ethical AI implementation while ensuring that technological ad-
vances in mobility analysis serve to reduce, rather than exacerbate, 
existing urban inequalities.

The success of the MIC framework will depend largely on its abil-
ity to bridge the gap between theoretical understanding and prac-
tical implementation. This requires developing user- friendly tools 
and guidelines that enable planners, policymakers and researchers 
to apply these integrated approaches. For example, the framework's 
flexible structure allows cities to leverage their existing data infra-
structure while systematically incorporating new data streams and 
analytical capabilities. Comparative case studies will demonstrate 
the MIC framework's enhanced capacity to capture complex accessi-
bility patterns and inform evidence- based planning decisions, partic-
ularly in optimizing greenspace distribution and identifying barriers 
to access. These applications will further refine the framework while 
expanding its utility across different urban planning challenges.

As urban populations continue to grow, the challenge of pro-
viding equitable access to urban greenspace becomes increasingly 
critical for public health and environmental justice. The multidi-
mensional perspective offered by the MIC framework contributes 
to this goal by revealing the complex interactions between spatial 
distribution, movement patterns, and human behaviour that shape 
urban accessibility. Through its integrated approach, the framework 
provides essential tools for evidence- based planning decisions that 
can address historically overlooked barriers to greenspace access. 
By combining GIScience capabilities, HM insights and behavioural 
ecology principles, this approach enables planners and policymak-
ers to develop targeted interventions that not only optimize the 
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spatial distribution of greenspace but also account for how different 
communities perceive, access and benefit from these vital urban re-
sources. The MIC framework thus represents a significant step for-
ward in creating more accessible, sustainable and equitable urban 
environments for all residents.
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