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Beyond linear Thinking: Redefining chemical pollution impacts on 
biodiversity

Since the onset of the Anthropocene, chemical pollution has 
emerged as a primary global threat to biodiversity across all 
biogeographical realms. This planetary-scale challenge affects 
ecosystem functionality from local to global scales, contributing 
significantly to biodiversity loss worldwide [1]. Traditional ecolog-
ical risk assessments have predominantly relied on chemical-by- 
chemical dose–response linear models, presuming that incremen-
tal increases in harmful chemical pollutant concentrations lead to 
proportional declines in species abundance (Fig. 1a). However, this 
linear paradigm, which forms the foundation of environmental 
regulations across diverse geopolitical contexts—critically over-
simplifies the intricate interactions within ecosystems. Such 
simplification fails to capture the multifaceted responses elicited 
by chemical pollutants interacting with other global change 
drivers across different biomes, ecoregions, and latitudinal gradi-
ents. Emerging evidence from cross-continental studies highlights 
that pollutant impacts on ecosystems often exhibit significant 
nonlinear characteristics, including thresholds, hysteresis, and 
potentially irreversible regime shifts [2]. These nonlinearities are 
shaped by ecological phenomena, including baseline stress levels, 
species sensitivity, and habitat connectivity. For example, pollut-
ants that seem benign in isolation may cause severe disruption 
when associated with thermal stress or habitat loss [1]. Such 
nonlinear responses could be linked to delays in population recov-
ery, spatial heterogeneity, adaptive traits, and reinforcing loops. 
For instance, in coral reef ecosystems, functional groups of herbi-
vores, such as grazers and scrapers, play a critical role in mediating 
algal-coral dynamics and influencing ecosystem recovery trajec-
tories [3]. These complex dynamics challenge traditional predic-
tive frameworks and underscore the need for monitoring 
systems capable of detecting indirect, delayed, and context- 
dependent effects.

Biodiversity across global ecosystems experiences nonlinear 
impacts from chemical pollutants. At sublethal levels prevalent 
in human-dominated landscapes, they subtly disrupt physiology, 
metabolism, and gene expression, thereby reducing individual 
fitness, reproduction, and population resilience, while also height-
ening susceptibility to co-stressors across diverse taxa. These ef-
fects accumulate through trophic levels and regions, gradually 
compromising ecosystem integrity without necessarily triggering 
detectable population declines. As concentrations rise, sensitive 
species may exhibit non-monotonic population dynamics, poten-
tially triggering cascading disruptions via altered competition in-
teractions, predation pressures, and ecosystem engineering 
processes [4]. Such threshold-driven responses, as emphasized 
by Folke et al. [3], reveal that minor increases in pollutant levels 

can precipitate disproportionate ecological disruptions, necessi-
tating a review of context-specific safety thresholds to avert irre-
versible tipping points.

Chemical contaminants persist and bioaccumulate across inter-
connected ecosystems, posing significant threats to global biodi-
versity and ecosystem stability [5]. These pollutants interact 
with ecological drivers across spatial scales, including habitat 
structure, resource availability, disturbance regimes, and biotic in-
teractions, shaping complex, multi-peaked biodiversity patterns 
that challenge linear and unimodal models across biomes [6]. 
This complexity demands a shift from simplistic risk assessments 
as we become aware of nonlinear interactions between pollutants 
and global change drivers across terrestrial, freshwater, and ma-
rine ecosystems. For instance, Rockstr€om et al. [1] demonstrated 
that an agricultural nitrogen surplus of 61 Tg N per year, combined 
with land-use change and a tightened boundary of 57 Tg N per year 
due to groundwater nitrate, disrupted soil microbial communities 
and plant species richness in temperate grasslands. This case un-
derscores how nutrient pollution and land degradation can 
interact through altered nutrient cycling and habitat loss, ampli-
fying ecological impacts beyond those predicted by single- 
stressor models. Similarly, Schartup et al. [4] revealed non- 
additive interactions among climate warming, overfishing, and 
methylmercury (MeHg) bioaccumulation in the Gulf of Maine 
over three decades. A 1 ◦C rise in seawater temperature increased 
MeHg concentrations in Atlantic cod by 32 %, whereas overfishing- 
induced trophic shifts reduced them by 12 %, resulting in a net 10 % 
decrease. However, warming and herring depletion drove a 70 % 
surge in MeHg in spiny dogfish through physiological and dietary 
changes, highlighting the unpredictable nature of multiple inter-
acting stressors over decades of environmental change in marine 
ecosystems. At a broader landscape scale, Johnson et al. [7] 
employed a machine learning model incorporating 41 environ-
mental variables to explain 73 % of macroinvertebrate family rich-
ness variation in English rivers. Their findings revealed that 
elevated zinc and copper levels, particularly when combined 
with high wastewater exposure, disproportionately drove biodi-
versity declines, even after adjusting for habitat quality and hydro-
morphology, emphasizing the dominant influence of chemical 
stressors in freshwater ecosystems worldwide. These cases collec-
tively demonstrate that the ecological risks of chemical pollution 
cannot be solely predicted by contaminant concentrations but 
must account for interactions with environmental context and 
co-occurring stressors. In stressed or degraded ecosystems, 
ranging from tropical to temperate zones, such synergies can 
amplify toxicological impacts, driving severe and potentially 
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irreversible biodiversity and functional losses across multiple 
scales [3]. Addressing these global challenges, identifying and 
quantifying these nonlinear relationships, alongside defining 
ecological safety thresholds for pollutants, could be vital for 
advancing environmental science in the Anthropocene [1].

The intrinsic complexity and interconnectedness of ecological 
networks amplify the nonlinear effects of chemical pollutants, 
extending their impacts far beyond direct toxicological interac-
tions across ecosystem boundaries. Pollutants influence ecosys-
tems through multiple pathways, including bioaccumulation, 
biomagnification, food web restructuring, altered competitive dy-
namics, and delayed demographic responses, resulting in complex, 
nonlinear patterns at both community and ecosystem scales [3]. 
For example, biomagnification of persistent organic pollutants 
within food webs can exert selective pressure on apex predators 
through reproductive impairment or immune suppression. These 
disruptions cascade through trophic networks, potentially trig-
gering alternative stable states characterized by fundamentally 
different community structures and ecosystem functions [9]. 
Additionally, ecosystems under multiple anthropogenic stressors 
become increasingly vulnerable to ecological tipping points, which 
are thresholds that trigger rapid, nonlinear shifts to alternate 
states with reduced biodiversity and ecosystem services [1,10]. 
These transitions, such as shallow lakes transitioning to 
phytoplankton-dominated systems or coral reefs collapsing into 
algal dominance, occur when interacting stressors disrupt feed-
back mechanisms [2,3]. Such disruptions arise from interactions 
between chemical pollution and other global environmental pres-
sures, such as climate change and habitat fragmentation, which 
erode resilience by weakening negative feedback and amplifying 
positive ones, thereby accelerating shifts while hindering recovery. 
The combined effects of various environmental stressors, 
including chemical pollutants, climate change, and land-use 
change, heighten the probability of crossing these tipping points 

across ecosystems worldwide. For instance, the accumulation of 
persistent pollutants can undermine coral reef resilience, dimin-
ishing their capacity to withstand ocean acidification and acceler-
ating their transition to degraded states [3]. These global cases 
underscore the urgent need for a shift from single-stressor assess-
ments to integrated frameworks that capture complex, nonlinear 
dynamics in real-world ecosystems under multiple pressures.

Addressing these complex global challenges requires a funda-
mental paradigm shift toward a comprehensive framework 
centered on “nonlinear response patterns under multiple 
stressors” (Fig. 1b). We propose an innovative and integrated 
framework that consolidates multiple approaches to tackle the 
complex, multi-peaked nonlinear behaviors arising from interac-
tions between chemical pollutants and biodiversity across ecosys-
tems worldwide. Unlike traditional approaches, which often treat 
stressors in isolation, this framework considers the combined ef-
fects of multiple environmental stressors, providing a more holis-
tic and predictive tool for ecosystem management in diverse 
geographical contexts [4,8]. It aims to overcome the limitations 
of conventional monitoring by integrating real-time data, 
advanced data analysis, predictive modeling, and technology 
development. To tackle chemical pollution's biodiversity impact 
across global ecosystems, this approach requires recognizing the 
complexity of anthropogenic chemicals and leveraging expertise 
from ecotoxicology, community ecology, biogeochemistry, and 
environmental informatics. Transdisciplinary collaboration 
strengthens predictive power and supports targeted, context- 
specific mitigation [1,2].

The framework comprises four interconnected components. 
First, a hierarchically structured, integrated monitoring system 
should be developed, combining chemical, biological, and ecolog-
ical data to track pollutant effects across ecosystems [5]. Tools such 
as non-target screening (NTS), molecular biomarkers, and environ-
mental deoxyribonucleic acid metabarcoding can detect emerging 

Fig. 1. Frameworks of ecological risk assessments. a, Traditional dose–response linear models for conventional approaches. b, Nonlinear response patterns framework for natural 
ecosystems under multiple stressors.
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contaminants, shifts in community structure and function, and 
early warning signals of ecological transitions. In Chebei Stream, 
Guangzhou, NTS-based chemical fingerprints effectively traced 
pollutant sources in complex mixtures, illustrating its potential 
in ecosystem monitoring [8]. A multi-source data fusion platform 
can synthesize such data to identify tipping points and guide pro-
active management across environmental gradients. Second, 
multi-stressor assessments require advanced methods to quantify 
interactive effects across ecosystems. Tools such as mixture 
toxicity testing, food web metrics, and functional redundancy 
analysis help identify the impacts and thresholds of compounds. 
Machine learning enhances early warning capabilities by detecting 
signals such as critical slowing. At the global level, the Safe and Just 
Earth System Boundaries framework applies similar principles, 
revealing that multiple thresholds have been exceeded in densely 
populated regions [1]. Third, environmental management policies 
must integrate multi-stressor frameworks into chemical manage-
ment decisions to boost adaptive capacity and ecological rele-
vance. For instance, the European Union's Registration, 
Evaluation, Authorisation, and Restriction of Chemicals requires 
manufacturers to provide safety data before market approval, 
creating a strategic point for integrating nonlinear, multi-stressor 
monitoring [9]. Embedding real-time early warning systems based 
on remote sensing and biosensors into such frameworks can 
enable timely responses near ecological thresholds and improve 
resilience under multiple pressures. Finally, advancing supportive 
technologies is essential for nonlinear ecological risk assessment. 
Smart biosensors enable the real-time detection of stress in 
sentinel species, while remote sensing facilitates large-scale resil-
ience monitoring. In the Amazon Basin, satellite vegetation indices 
showed increasing autocorrelation and slower recovery after 
droughts, indicating a decline in ecosystem resilience [10]. Com-
bined with machine learning, these tools enhance the early detec-
tion of ecological tipping points and support timely interventions 
in response to multiple stressors. This framework lays a founda-
tion for assessing the impacts of complex pollutants and setting 
science-based safety boundaries, thereby strengthening environ-
mental decision-making amid interacting global change drivers.

The implementation of nonlinear ecological risk assessment at 
scale may face practical challenges, including high costs, data het-
erogeneity, and limited infrastructure, particularly in resource- 
constrained settings. These obstacles can be addressed through 
modular monitoring, standardized protocols, and cross-sector 
collaboration. While nonlinear models offer valuable insights, 
they are sensitive to data quality, structural assumptions, and sys-
tem complexity, often producing outputs that are difficult to inter-
pret or validate. Therefore, they are most effective when used as 
adaptive decision-support tools, supported by empirical validation 
and transparent communication of uncertainties. By integrating 
multidimensional monitoring with nonlinear analyses, environ-
mental management can enhance the early detection of ecosystem 
instability and facilitate timely interventions. Ultimately, this 
framework fosters adaptive, context-specific risk models that 
identify ecological tipping points and pollution thresholds, 
thereby enhancing policy responses, safeguarding biodiversity, 
and sustaining ecosystem resilience in the face of global change.
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