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Since the onset of the Anthropocene, chemical pollution has emerged as a primary 24 

global threat to biodiversity across all biogeographical realms. This planetary-scale 25 

challenge affects ecosystem functionality from local to global scales, contributing 26 

significantly to biodiversity loss worldwide [1]. Traditional ecological risk assessments 27 

have predominantly relied on chemical-by-chemical dose–response linear models, 28 

presuming that incremental increases in harmful chemical pollutant concentrations lead 29 

to proportional declines in species abundance (Fig. 1a). However, this linear paradigm, 30 

which forms the foundation of environmental regulations across diverse geopolitical 31 

contexts—critically oversimplifies the intricate interactions within ecosystems. Such 32 

simplification fails to capture the multifaceted responses elicited by chemical pollutants 33 

interacting with other global change drivers across different biomes, ecoregions, and 34 

latitudinal gradients. Emerging evidence from cross-continental studies highlights that 35 

pollutant impacts on ecosystems often exhibit significant nonlinear characteristics, 36 

including thresholds, hysteresis, and potentially irreversible regime shifts [2]. These 37 

nonlinearities are shaped by ecological phenomena, including baseline stress levels, 38 

species sensitivity, and habitat connectivity. For example, pollutants that seem benign 39 

in isolation may cause severe disruption when associated with thermal stress or habitat 40 

loss [1]. Such nonlinear responses could be linked to delays in population recovery, 41 

spatial heterogeneity, adaptive traits, and reinforcing loops. For instance, in coral reef 42 

ecosystems, functional groups of herbivores, such as grazers and scrapers, play a critical 43 

role in mediating algal-coral dynamics and influencing ecosystem recovery trajectories 44 

[3]. These complex dynamics challenge traditional predictive frameworks and 45 

underscore the need for monitoring systems capable of detecting indirect, delayed, and 46 

context-dependent effects.  47 

Biodiversity across global ecosystems experiences nonlinear impacts from 48 

chemical pollutants. At sublethal levels prevalent in human-dominated landscapes, they 49 

subtly disrupt physiology, metabolism, and gene expression, thereby reducing 50 

individual fitness, reproduction, and population resilience, while also heightening 51 

susceptibility to co-stressors across diverse taxa. These effects accumulate through 52 

trophic levels and regions, gradually compromising ecosystem integrity without 53 
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necessarily triggering detectable population declines. As concentrations rise, sensitive 54 

species may exhibit non-monotonic population dynamics, potentially triggering 55 

cascading disruptions via altered competition interactions, predation pressures, and 56 

ecosystem engineering processes [4]. Such threshold-driven responses, as emphasized 57 

by Folke et al. [3], reveal that minor increases in pollutant levels can precipitate 58 

disproportionate ecological disruptions, necessitating a review of context-specific 59 

safety thresholds to avert irreversible tipping points. 60 

Chemical contaminants persist and bioaccumulate across interconnected 61 

ecosystems, posing significant threats to global biodiversity and ecosystem stability [5]. 62 

These pollutants interact with ecological drivers across spatial scales, including habitat 63 

structure, resource availability, disturbance regimes, and biotic interactions, shaping 64 

complex, multi-peaked biodiversity patterns that challenge linear and unimodal models 65 

across biomes [6]. This complexity demands a shift from simplistic risk assessments as 66 

we become aware of nonlinear interactions between pollutants and global change 67 

drivers across terrestrial, freshwater, and marine ecosystems. For instance, Rockström 68 

et al. [1] demonstrated that an agricultural nitrogen surplus of 61 Tg N per year, 69 

combined with land-use change and a tightened boundary of 57 Tg N per year due to 70 

groundwater nitrate, disrupted soil microbial communities and plant species richness in 71 

temperate grasslands. This case underscores how nutrient pollution and land 72 

degradation can interact through altered nutrient cycling and habitat loss, amplifying 73 

ecological impacts beyond those predicted by single-stressor models. Similarly, 74 

Schartup et al. [4] revealed non-additive interactions among climate warming, 75 

overfishing, and methylmercury (MeHg) bioaccumulation in the Gulf of Maine over 76 

three decades. A 1 °C rise in seawater temperature increased MeHg concentrations in 77 

Atlantic cod by 32%, whereas overfishing-induced trophic shifts reduced them by 12%, 78 

resulting in a net 10% decrease. However, warming and herring depletion drove a 70% 79 

surge in MeHg in spiny dogfish through physiological and dietary changes, highlighting 80 

the unpredictable nature of multiple interacting stressors over decades of environmental 81 

change in marine ecosystems. At a broader landscape scale, Johnson et al. [7] employed 82 

a machine learning model incorporating 41 environmental variables to explain 73% of 83 

Jo
urn

al 
Pre-

pro
of



 

4 

 

macroinvertebrate family richness variation in English rivers. Their findings revealed 84 

that elevated zinc and copper levels, particularly when combined with high wastewater 85 

exposure, disproportionately drove biodiversity declines, even after adjusting for 86 

habitat quality and hydromorphology, emphasizing the dominant influence of chemical 87 

stressors in freshwater ecosystems worldwide. These cases collectively demonstrate 88 

that the ecological risks of chemical pollution cannot be solely predicted by 89 

contaminant concentrations but must account for interactions with environmental 90 

context and co-occurring stressors. In stressed or degraded ecosystems, ranging from 91 

tropical to temperate zones, such synergies can amplify toxicological impacts, driving 92 

severe and potentially irreversible biodiversity and functional losses across multiple 93 

scales [3]. Addressing these global challenges, identifying and quantifying these 94 

nonlinear relationships, alongside defining ecological safety thresholds for pollutants, 95 

could be vital for advancing environmental science in the Anthropocene [1]. 96 

The intrinsic complexity and interconnectedness of ecological networks amplify 97 

the nonlinear effects of chemical pollutants, extending their impacts far beyond direct 98 

toxicological interactions across ecosystem boundaries. Pollutants influence 99 

ecosystems through multiple pathways, including bioaccumulation, biomagnification, 100 

food web restructuring, altered competitive dynamics, and delayed demographic 101 

responses, resulting in complex, nonlinear patterns at both community and ecosystem 102 

scales [3]. For example, biomagnification of persistent organic pollutants within food 103 

webs can exert selective pressure on apex predators through reproductive impairment 104 

or immune suppression. These disruptions cascade through trophic networks, 105 

potentially triggering alternative stable states characterized by fundamentally different 106 

community structures and ecosystem functions [9]. Additionally, ecosystems under 107 

multiple anthropogenic stressors become increasingly vulnerable to ecological tipping 108 

points, which are thresholds that trigger rapid, nonlinear shifts to alternate states with 109 

reduced biodiversity and ecosystem services [1,10]. These transitions, such as shallow 110 

lakes transitioning to phytoplankton-dominated systems or coral reefs collapsing into 111 

algal dominance, occur when interacting stressors disrupt feedback mechanisms [2,3]. 112 

Such disruptions arise from interactions between chemical pollution and other global 113 
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environmental pressures, such as climate change and habitat fragmentation, which 114 

erode resilience by weakening negative feedback and amplifying positive ones, thereby 115 

accelerating shifts while hindering recovery. The combined effects of various 116 

environmental stressors, including chemical pollutants, climate change, and land-use 117 

change, heighten the probability of crossing these tipping points across ecosystems 118 

worldwide. For instance, the accumulation of persistent pollutants can undermine coral 119 

reef resilience, diminishing their capacity to withstand ocean acidification and 120 

accelerating their transition to degraded states [3]. These global cases underscore the 121 

urgent need for a shift from single-stressor assessments to integrated frameworks that 122 

capture complex, nonlinear dynamics in real-world ecosystems under multiple 123 

pressures. 124 

Fig.1. Frameworks of ecological risk assessments. a, Traditional dose–response 125 

linear models for conventional approaches. b, Nonlinear response patterns framework 126 

for natural ecosystems under multiple stressors. 127 

Addressing these complex global challenges requires a fundamental paradigm 128 

shift toward a comprehensive framework centered on “nonlinear response patterns 129 

under multiple stressors” (Fig. 1b). We propose an innovative and integrated framework 130 

that consolidates multiple approaches to tackle the complex, multi-peaked nonlinear 131 

behaviors arising from interactions between chemical pollutants and biodiversity across 132 

ecosystems worldwide. Unlike traditional approaches, which often treat stressors in 133 

isolation, this framework considers the combined effects of multiple environmental 134 

stressors, providing a more holistic and predictive tool for ecosystem management in 135 

diverse geographical contexts [4,8]. It aims to overcome the limitations of conventional 136 

monitoring by integrating real-time data, advanced data analysis, predictive modeling, 137 

and technology development. To tackle chemical pollution’s biodiversity impact across 138 

global ecosystems, this approach requires recognizing the complexity of anthropogenic 139 

chemicals and leveraging expertise from ecotoxicology, community ecology, 140 

biogeochemistry, and environmental informatics. Transdisciplinary collaboration 141 

strengthens predictive power and supports targeted, context-specific mitigation [1,2]. 142 

The framework comprises four interconnected components. First, a hierarchically 143 
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structured, integrated monitoring system should be developed, combining chemical, 144 

biological, and ecological data to track pollutant effects across ecosystems [5]. Tools 145 

such as non-target screening (NTS), molecular biomarkers, and environmental 146 

deoxyribonucleic acid metabarcoding can detect emerging contaminants, shifts in 147 

community structure and function, and early warning signals of ecological transitions. 148 

In Chebei Stream, Guangzhou, NTS-based chemical fingerprints effectively traced 149 

pollutant sources in complex mixtures, illustrating its potential in ecosystem monitoring 150 

[8]. A multi-source data fusion platform can synthesize such data to identify tipping 151 

points and guide proactive management across environmental gradients. Second, multi-152 

stressor assessments require advanced methods to quantify interactive effects across 153 

ecosystems. Tools such as mixture toxicity testing, food web metrics, and functional 154 

redundancy analysis help identify the impacts and thresholds of compounds. Machine 155 

learning enhances early warning capabilities by detecting signals such as critical 156 

slowing. At the global level, the Safe and Just Earth System Boundaries framework 157 

applies similar principles, revealing that multiple thresholds have been exceeded in 158 

densely populated regions [1]. Third, environmental management policies must 159 

integrate multi-stressor frameworks into chemical management decisions to boost 160 

adaptive capacity and ecological relevance. For instance, the European Union’s 161 

Registration, Evaluation, Authorisation, and Restriction of Chemicals requires 162 

manufacturers to provide safety data before market approval, creating a strategic point 163 

for integrating nonlinear, multi-stressor monitoring [9]. Embedding real-time early 164 

warning systems based on remote sensing and biosensors into such frameworks can 165 

enable timely responses near ecological thresholds and improve resilience under 166 

multiple pressures. Finally, advancing supportive technologies is essential for nonlinear 167 

ecological risk assessment. Smart biosensors enable the real-time detection of stress in 168 

sentinel species, while remote sensing facilitates large-scale resilience monitoring. In 169 

the Amazon Basin, satellite vegetation indices showed increasing autocorrelation and 170 

slower recovery after droughts, indicating a decline in ecosystem resilience [10]. 171 

Combined with machine learning, these tools enhance the early detection of ecological 172 

tipping points and support timely interventions in response to multiple stressors. This 173 
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framework lays a foundation for assessing the impacts of complex pollutants and setting 174 

science-based safety boundaries, thereby strengthening environmental decision-making 175 

amid interacting global change drivers.  176 

The implementation of nonlinear ecological risk assessment at scale may face 177 

practical challenges, including high costs, data heterogeneity, and limited infrastructure, 178 

particularly in resource-constrained settings. These obstacles can be addressed through 179 

modular monitoring, standardized protocols, and cross-sector collaboration. While 180 

nonlinear models offer valuable insights, they are sensitive to data quality, structural 181 

assumptions, and system complexity, often producing outputs that are difficult to 182 

interpret or validate. Therefore, they are most effective when used as adaptive decision-183 

support tools, supported by empirical validation and transparent communication of 184 

uncertainties. By integrating multidimensional monitoring with nonlinear analyses, 185 

environmental management can enhance the early detection of ecosystem instability 186 

and facilitate timely interventions. Ultimately, this framework fosters adaptive, context-187 

specific risk models that identify ecological tipping points and pollution thresholds, 188 

thereby enhancing policy responses, safeguarding biodiversity, and sustaining 189 

ecosystem resilience in the face of global change. 190 
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