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ABSTRACT. South Georgia lies in a remote position in the circumpolar South Atlantic and is
one of the most isolated continental fragments on Earth. The basement geology of South
Georgia is restricted to the southeast sector of the island and is termed the Drygalski Fjord
Complex, which consists of metasedimentary rocks and localised paragneisses that form an
accretionary complex cut by multiple dolerite dykes and gabbroic intrusive rocks. We examine
the detrital zircon geochronology and geochemistry of six metasedimentary.samples from the
Drygalski Fjord Complex to determine their depositional and provenance history.and explore
correlations to elsewhere in West Gondwana. The basal«<Salomon Glacier Formation has a
maximum depositional age of ca. 270 Ma and a secondary age peak atica. 470 Ma that is
consistent with West Gondwana accretionary. complexes from the northern Antarctic
Peninsula and Patagonia. This depositional age.is also shared with$edimentary successions
from the Karoo Basin (South Africa) and East Antarctica, but they lack the secondary age peak
(ca. 470 Ma), being instead characteriseddy an age peakat ca. 530 Ma, associated with the
recycled Cambrian sources of East Antarctica:The late Permian accretionary complex of South
Georgia is closely correlated tounits from the northern Antarctic Peninsula (Trinity Peninsula
Group) and the southern Cordillera Darwin, and we favour a common origin on the Antarctic

Plate before closure of the Rocas Verdes Basin and translation to the Scotia Plate.

Keywords: Antarctic, provenance, Patagonia, Lu-Hf isotopes
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Georgia del Sur en el contexto de Gondwana Occidental: geocronologia de circones detriticos de un
complejo acrecionario del Pérmico tardio. Georgia del Sur se encuentra en una posicidon remota del
Atlantico Sur circumpolar y constituye uno de los fragmentos continentales mas aislados del planeta.
La geologia del basamento de la isla esta restringida al sector suroriental y se conoce como el Complejo
Drygalski Fjord, compuesto por rocas metasedimentarias y paragneises localizados que conformanun
complejo acrecionario intruido por numerosos diques de dolerita y cuerpos gabroicos. En este estudio
analizamos la geocronologia y geoquimica de circones detriticos de seis muestras metasedimentarias
del Complejo Drygalski Fjord, con el fin de determinar su historia de depositacion y proveniencia, asi
como explorar sus posibles correlaciones con otras regiones de Gondwana Occidental. En la base de
este complejo, la Formacién Salomon Glacier tiene una edad mdaxima/de depositacion'deca. 270 Ma
y una poblacién secundaria de circones detriticos de ca. 470 Ma, lo cuales consistente con los
complejos acrecionarios de Gondwana Occidental ubicados en el norte de la Peninsula Antartica y
Patagonia. Edades de depositacién similares se han observado en sucesiones sedimentarias de la
Cuenca del Karoo (Sudafrica) y en la Antdrtica Oriental; sin embargo, estas ultimas carecen de la
poblacién de circones de ca. 470 Ma, presentando, en cambio, otra de ca. 530 Ma, asociada a fuentes
recicladas del Cdmbrico de la Antartica Oriental. El complejo acrecionario Pérmico tardio de Georgia
del Sur muestra una estrecha correlacion con unidades del norte de la Peninsula Antartica (Grupo de
la Peninsula Trinidad) y del sur de la Cordillera’Darwin, por'losgue consideramos mas probable un
origen comun en la Placa Antdrtica, previo al cierre de la Cuenca Rocas Verdes y a su posterior

traslacidon hacia la Placa‘Scotia.

1. Introduction

South Georgia is a remote island in the South Atlantic Ocean, lying approximately 1700 km
east of the southern tip of South America. The island is situated towards the eastern extremity
of the.North Scotia Ridge (Fig. 1), which defines a transform plate boundary between the
South American and Scotia plates (Livermore et al., 1994). The North Scotia Ridge is a long-
lived strike-slip system that accommodated oceanic spreading during the opening of the

Scotia Sea and consists of several, mostly submerged, continental crustal blocks in a linear
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chain from Tierra del Fuego to South Georgia. The broad consensus (e.g. Carter et al., 2014;
Dalziel et al., 2021; Beaver et al., 2022) is that from at least the Cretaceous until the Eocene,
the South Georgia microcontinent was a continuation of the Andean Cordillera until Eocene
separation and translation to its current location. Dalziel et al. (2021) highlighted the
similarities in sedimentary successions between Tierra del Fuego and South Georgia,.and
proposed that South Georgia originated in the Staten Embayment (Fig.d)=These correlations
are supported by detrital zircon provenance analysis of sedimentary successions.from South
Georgia, Fuegian Andes and the North Scotia Ridge (Barbeau et al., 2010; Carter et al., 2014;
Riley et al., 2019).

However, a fundamental problem with a contiguous relationship between Tierra del Fuego
and South Georgia during the Late Cretaceous is that analysis of seafloor spreading along the
West Scotia Ridge can only accommodate approximately half of the strike-slip translation
along the North Scotia Ridge required. for the post-Eocene separation between Tierra del
Fuego and South Georgia (Eagles, 2010). Dalziel et al. (2021) also acknowledged that the
Scotia Sea tectonic history could not fully explain the present-day location of South Georgia
and suggested that ‘escape tectonics’ during the Late Cretaceous along transcurrent faults
may have also played a role.

One aspect that has not been fully addressed is the paleo-location of South Georgia during
the late Palaeozoic—early Mesozoic, prior to the breakup of Gondwana. Eagles (2010) and
Eagles and Eisermann (2020) proposed that South Georgia originated within the interior of
Gondwana, where it must have had a paleo-location to the east of a ‘barrier’ of thick oceanic
lithosphere between the Falkland Plateau and central Scotia Sea basins. They argued that the

main stratigraphic elements of South Georgia’s Mesozoic and late Palaeozoic history are
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ubiquitous throughout West Gondwana and are not uniquely diagnostic. Eagles and
Eisermann (2020) suggested that detrital zircon age profiles from mid- to Late Cretaceous
sedimentary successions on South Georgia could have been derived from magmatic and
recycled sources in South Africa as opposed to the Andean Cordillera.

In this work we examine, for the first time, the basement metasedimentary succession‘of
South Georgia to explore potential correlations with South America, Antarctic Peninsula, East
Antarctica and South Africa in the late Permian, and to provide'a test for a South Georgia-
South Africa connection. Six metasedimentary siliciclastic samples from the basement
Salomon Glacier Formation and Cooper Island Formation of the Drygalski.Fjord Complex were
analysed for their detrital zircon U-Pb age population, combined with a subset of Lu-Hf

isotope analysis, and calculations of maximum depositional age.

2. Geological setting

The basement geology of Seuth Georgia is restricted to the southeast sector of the island
(Fig. 2) and is composed of two distinct complexes, probably separated by a fault (Macdonald
et al., 1987). The Drygalski Fjord Complex was defined by Storey (1983) and is characterised
by a suite of highly deformed metasedimentary rocks and paragneisses intruded by multiple
mafic plutons, leading to localised hornfels texture. Storey (1983) also highlighted the
presence of local migmatite layers associated with paragneisses. The Drygalski Fjord Complex
has three spatially distinct metasedimentary successions that can be identified in the Salvesen
Range, adjacent to Drygalski Fjord and Cooper Island (Fig. 2): the Salomon Glacier, Novosilski

Glacier and Cooper Island formations (Dalziel et al.,, 2021). The age of deposition of the



119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

metasedimentary rocks of the Drygalski Fjord Complex is uncertain, but it is intruded by Early
Jurassic plutons (Tanner and Rex, 1979; Curtis et al., 2010), some of which are anatectic
(Tanner and Rex, 1979). The basal Salomon Glacier Formation, which is the focus of this study,
has been subject to higher grade metamorphism (?Buchan-type) and greater deformation
than the Cooper Island and Novosilski formations, and as such may not represent a diréect
equivalent.

To the west of the Drygalski Fjord Complex is the Larsen Harbour Complex (Fig. 2), which
is interpreted as an ophiolite sequence consisting of a suceession, up to 2 km in thickness, of
tholeiitic pillow basalts, massive lavas and intercalated chert, cut by multiplefmafic dykes
(Mair, 1987). It has also been correlated with the Tortuga and Sarmiento ophiolite complexes
of South America (Dalziel et al., 2021)..The Larsen Harbour and Drygalski Fjord complexes
were together interpreted as a Gondwana margin accretionary complex that was subject to
crustal thinning during the Late Jurassic (Mukasa and Dalziel, 1996).

The major part of South Georgia is dominated by Lower Cretaceous (Carter et al., 2014)
turbidite sequences that weredeposited in a back-arc basin setting and are separated from
the basement units by the Cooper Bay shear zone (Curtis et al., 2010) (Fig. 2). Two laterally
equivalent, units are identified, the extensive Cumberland Bay Formation and the more
spatially restricted Sandebugten Formation (Fig. 2). The Cumberland Bay Formation is up to 8
km in thickness and consists of volcaniclastic greywackes of andesitic composition deposited
in a continental margin magmatic arc setting that was deformed into large-scale (>100 m)
folds associated with low-grade regional metamorphism. The Cumberland Bay Formation is
host to a probable Lower Cretaceous (Aptian) fossil (ichnofauna) assemblage (Macdonald,

1982). The adjacent Sandebugten Formation is a more siliciclastic quartz-rich sandstone and
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shale turbidite sequence, inferred by Dalziel et al. (1975) to be derived from the continental
margin.

Volcanic arc rocks are restricted to Annenkov Island and Pickersgill Islands (Fig. 2) to the
west of South Georgia. The units exposed are distinct to the lithologies of the maindsland. The
Annenkov Island Formation is formed of andesitic tuffs and breccias that have a total
thickness of almost 2 km (Pettigrew, 1981) and are probably Cretaceousiin.age (Dalziel et al.,
2021).

A potential facies equivalent of the Annenkov Island.wolcanic rocks is the Ducloz Head
Formation (Fig. 2) consisting of massive volcaniclastic breccias andasinterbéedded tuffs,
although Storey (1983) also raised the possibility that components of it may be related to the
Sandebugten Formation. Another potentially related metasedimentary succession identified
as the Cooper Bay Formation is restricted to the southeast corner of the island and is a likely
facies variation of the Cumberland Bay.Formation (Clayton, 1982).

Magmatic rocks have a limited areal extent across South Georgia, with the main
concentration cropping out in.the southeast of the island along the Cooper Bay shear zone,
Larsen Harbour, Smaaland Cove and outlying islands (Fig. 2). Several of the granitoid plutons
have beendated (Mukasa and Dalziel, 1996; Curtis et al., 2010) and have yielded Middle—Late
Jurassic (ca. 160=150 Ma) U-Pb zircon ages from the Cooper Bay shear zone, Larsen Harbour
Complex and Smaaland Cove intrusive suite. Earlier geochronology on granitoid rocks by
Tanner and Rex (1979) yielded Rb-Sr and K-Ar ages from the Early Jurassic to mid-Cretaceous,

but with concerns over reliability.

3. Sample selection
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Six samples (British Antarctic Survey archive collection) from the Drygalski Fjord Complex
of South Georgia were selected for detrital zircon provenance analysis; four from the
basement Salomon Glacier Formation (M.2022.1a, M.1683CMB2.12, M.2025.3, M.2042.1d),
one from the Cooper Island Formation (M.4131.15), and one undifferentiated sample
(M.2171.8b). All samples are medium- to coarse-grained siliciclastic metasedimentary rocks.

Their location is shown in figure 2 and positional information is provided in table.1.

4. Analytical methods

4.1 U-Pb zircon geochronology

Zircon (U-Pb) geochronology was carried out at University College London and the Swedish
Museum of Natural History. Full analytical procedures, data (Supplementary Table S1) and
representative spot» location images (Supplementary Fig. S1) are provided in the
Supplementary Material. A summary of the analytical procedures is detailed here.

Heavy minerals were separated from bulk sieved (<300 um) crushed rock using standard
density liquid and magnetic separation procedures. Zircon-enriched extracts were mounted
innhard epoxy resin on glass slides and polished for analysis. Zircon crystals were typically in
the size.range 100-180 um, with a range of grain sizes analysed for all samples. Zircon U-Pb
geochronology on four of the samples (M.2022.1a, M.2025.3, M.4131.15, M.2171.8b) was
carried out at University College London (November 2023) using laser ablation inductively

coupled mass spectrometry (LA-ICP-MS) facilities (Agilent 7700 coupled to a New Wave
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Research 193 nm excimer laser) at the London Geochronology Centre. Typical laser spot sizes
of 25 um were used with a 7-10 Hz repetition rate and a fluence of 2.5 J/cm?, and the outer
parts of the grain were analysed. Background measurement before ablation lasted 15 seconds
and laser ablation dwell time was 25 seconds. The external zircon standard was'Plesovice,
which has a TIMS reference age of 337.13+0.37 Ma (Slama et al., 2008). Standard errorston
isotope ratios and ages included the standard deviation of 2°°Pb/?38U.ages of the PleSovice
standard zircon. Time-resolved signals that record isotopic ratios with depth in.each crystal
were processed using GLITTER 4.5, developed by the ARC" National Key Centre for
Geochemical Evolution and Metallogeny of Continents (GEMOC) at Macquarie University and
CSIRO Exploration and Mining, Australia. Processing enabled filtering to remove spurious
signals owing to overgrowth boundaries, weathering, inclusions,<or fractures. Ages were
calculated using the 2°°Pb/?38U ratios for samples dated as <1.1 Ga, and the 2°’Pb/?°®Pb ratios
for older grains. Discordance was determined using (*”Pb/?3>U - 206pb/?38U)/(2°6Pb/?38U) and
similar for 297Pb/?%Phages.

At the Swedish Museum of Natural History (Stockholm), U-Pb ion-microprobe zircon
geochronology was carried out using a CAMECA 1280 ion microprobe at the NordSIMS facility
(March2024) on two further samples (M.1683CMB2.12, M.2042.1d). The analytical method
closely followed\Whitehouse and Kamber (2005) but differed insomuch that the oxygen ion
primary beam was generated using a high-brightness, radiofrequency plasma ion source
(Oregon, Physics, Hyperion Il) rather than a duoplasmatron, and a focused beam instead of
illuminated aperture. The 10 nA O;- beam was rastered over 5x5 um to homogenize beam
density, the final analytical spot size being ~15 um in diameter. Sputtered secondary ions

introduced into the mass spectrometer were analysed using a single ion counting electron
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multiplier over 10 cycles of data. Data were reduced using in-house developed software. The
power law relationship between 2°Pb/?38U®0 and 238U'0,/?38U®0 measured from the
91500 standard was used to calibrate U/Pb ratios following the recommendations of Jeon and
Whitehouse (2015). Common-Pb corrections were applied to analyses where statistically
significant 2%*Pb was detected, using the present-day terrestrial common-Pb estimate‘of
Stacey and Kramers (1975). 2°’Pb corrected ages were calculated assumingsnon-radiogenic Pb
was from surface contamination and had an isotopic composition of modern-day average

terrestrial common-Pb (?°’Pb/2°¢Pb = 0.836; Stacey and Kramers, 1975).

4.2 Lu-Hf isotope analysis

Lu-Hf isotopes were determined on just one of the samples from the Salomon Glacier
Formation (M.2042.1d), using the same spot locationas for the U-Pb dating. The analyses
were determined (April 2024) on a Neptune multi-collector inductively coupled plasma-mass
spectrometer (MC-ICP-MS) coupled with a laser ablation system at the British Geological
Survey. Initial 176Hf/1’’Hf ratios were calculated using the U-Pb crystallisation age of each grain
and the results are expressed asyinitial eHf (eHf;). eHf values were calculated using a '’®Lu
decay constant of 1.867x1011y! (Séderlund et al., 2004), a present-day chondritic *’6Lu/Y"Hf
value of 0.0336, and a *’®Hf/*77Hf ratio of 0.282785 (Bouvier et al., 2008). Full analytical details
are provided in the Supplementary Material and results are presented in the Supplementary

Table S2.

5. Results
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5.1 U-Pb detrital zircon geochronology

The age distributions of the six analysed samples are displayed as kernel density estimator
plots (KDE) in figure 3. They are plotted alongside the age distributions from two samples
from the Cretaceous Sandebugten Formation (Carter et al., 2014) to illustrate their Permian
age contributions. The analysed samples have very few ages >1200 Ma (Supplementary Table
S1), and these are omitted from the KDE plots to better illustrate the Palaeozoic age profiles.
The six samples from the broader Drygalski Fjord" Complex all have similar<age profiles
characterised by prominent late Permian and Early Ordovician age peaks, and a minor
Devonian age peak (Fig. 3; Table 1). Each sample is also characterised by a broad range of
Neo- and Mesoproterozoic age zircons. Howeyer, there are also notable distinctions in the
age profiles, with the four samples from the Salomon Glacier Formation characterised by clear
age peaks at ca. 270 and ca. 470 Ma (Fig. 3; Table 1), whilst the sample from the Cooper Island
Formation has an older Permian age peak (ca. 283 Ma), and the sample from the
undifferentiated Drygalski Fjord Complex (M.2171.8b) has a younger Permian age peak (ca.
253 Ma) and no clearly defined Early Ordovician age peak. The two samples from the
Sandebugten Formation, although dominated by mid-Cretaceous and Middle Jurassic age
peaks also have significant late Permian and minor Early Ordovician age peaks. The late
Permian age peaks from the Cretaceous units are distinct, with one sample having a peak at

ca»250 Ma and the other at ca. 270 Ma.

5.2 Maximum depositional age

11
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In the absence of diagnostic fossil assemblage and no dateable volcanic beds, detrital
zircon geochronology is a valuable technique to provide an estimate on the depositional age
of siliciclastic rocks. We follow the approach of Vermeesch (2021), who applied the‘'maximum
likelihood algorithm of Galbraith and Laslett (1993) to determine the maximum depositional
age (MDA). The results for the six samples from the Drygalski Fjord Complex are presented as
radial plots (Supplementary Fig. S2) where the minima are used to derive the MDA (Table 1).

The samples from the Drygalski Fjord Complex and its component formations are
dominated by middle to late Permian MDAs, typically in the range, 265-275.Ma (Table 1;
Supplementary Fig. S2). One sample (M.2022.1a) has a younger MDA of 255+6 Ma and is
consistent with a marginally younger<primary age peak. Sample M.2171.8b, from the
undifferentiated Drygalski Fjord Complex yields a significantly younger MDA (1956 Ma) with
a primary age peak of ca. 253 Ma. This sample is characterised by a significant (n=23) number
of Early Jurassic—Triassic zircon grains and.may represent an episode of early Mesozoic
accretion and recycling that developed in West Gondwana accretionary provinces (Trouw et

al., 1997; Flowerdew et al., 2007; Riley et al., 2023a).

5.3 Multi-dimensional scaling analysis

Multi-dimensional scaling analysis (MDS) is a valuable tool to help determine which
sedimentary units may correlate in terms of their age profile and common source regions.
The samples from the Drygalski Fjord Complex (excluding M.2171.8b; see section 5.1) are

plotted in figure 4 in comparison to a range of middle to late Permian sedimentary successions

12
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from South America, Antarctic Peninsula, East Antarctica, South Africa and the
Falkland/Malvinas Islands (full comparative data sources in Supplementary Table 3). All
samples have broadly similar age profiles dominated by a primary late Permian age peak at
ca. 270 Ma (Fig. 5). However, the secondary age peak at ca. 470 Ma evident from'the South
Georgia basement unit is only pronounced for the Trinity Peninsula Group (Antarctic
Peninsula), the southern Cordillera Darwin and the Duque de York Complex (Patagonia). The
MDS plot highlights this observation, with the late Permian Salomon Glacier Formation having
a close relationship to the middle Trinity Peninsula Group, the southern Cordillera Darwin
and, to a lesser degree, the Duque de York Complex. Late Permian sedimentary units from
South Africa have a close relationship to sedimentary rocks from the Falkland/Malvinas
Islands, Theron Mountains (East Antarctica), Polarstar Formation (Ellsworth Mountains) and
the Erewhon Beds of the southern Antarctic Peninsula (Fig. 6A) as highlighted by Riley et al.
(2025). Late Permian accretionary complexes from the LeMay Group of the southern Antarctic
Peninsula and the Bruce Bank of the southern Scotia Sea (Fig. 6A) have a more distant
relationship to the metasedimentary units from South Georgia and generally lack an age
population at ca. 470 Ma but a more prominent Cambrian peak at ca. 530 Ma that is absent
from the metasedimentary units of South Georgia.

Overall, there,is a significant overlap across all late Permian sedimentary successions from
West Gondwana, but the units from South Georgia, particularly the Salomon Glacier
Formation, share the closest relationship to the accretionary complexes from the northern
Antarctic Peninsula (Trinity Peninsula Group) and metasedimentary rocks of southern

Patagonia (Cordillera Darwin and Duque de York Complex).
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5.4 Lu-Hf isotopes

Age-adjusted Lu-Hf isotope data complement zircon U-Pb age data to provide improved
controls on provenance and correlation of sedimentary units, with a common source (e.g.,
Riley et al., 2023b). Lu-Hf isotopic analysis was undertaken on a single sample (M.2042.1d)
from the Drygalski Fjord Complex (Salomon Glacier Formation) that was-also analysed for U-
Pb geochronology. The data are plotted in figure 7A alongside data from_late Permian
sedimentary successions from Patagonia and the northern Antarctic Peninsula. The analysed
sample from the Salomon Glacier Formation has late Permian gHf;i values.in the range -5 to
+2. There is a broad overlap in gHf; values for the late Permian age population between the
metasedimentary units from South Georgia, Trinity Peninsula Group and Duque de York
Complex. The sample from the<Salomon Glacier Formation analysed for Lu-Hf isotopes
exhibits a closer relationship to the late Permian Trinity Peninsula Group than to the Duque
de York Complex, with'an overlap in more juvenile values (>0), which are absent in the Duque
de York Complex. This.close relationship is also evident in the MDS plot (Fig. 4).

Also plotted in figure 7 are Lu-Hf values from late Permian accretionary complex from
Alexanderisland (LeMay Group; Riley et al., 2023b) (Fig. 7B) and the late Permian deltaic
sandstones of the Bay of Harbours Formation from the Falkland/Malvinas Islands (Riley et al.,
2025) (Fig. 7C). The Bay of Harbours Formation is correlated with the upper Balfour Formation
of the Karoo Basin, South Africa (Riley et al., 2025) (Fig. 4) and can be considered a proxy for
the late Permian Karoo Basin, for which no Lu-Hf data are available. The gHf; range for the
LeMay Group overlaps with that of the Salomon Glacier Formation, particularly LeMay Group

2. The range defined by the Bay of Harbours Formation (Fig. 7C) exhibits only limited overlap

14
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with the distribution of Salomon Glacier Formation data and generally lacks the more evolved
values (<-3) of the Salomon Glacier Formation and the Trinity Peninsula Group/Duque de York

Complex.

6. Discussion

Eagles and Eisermann (2020) examined plate kinematic reconstructions of the Scotia Sea
and established that only half of South Georgia’s proposed translation can be readily
accounted for, assuming a ‘starting’ position in a back-arc setting adjacentito Tierrfa del Fuego.
As a consequence, they challenged existing correlations to South America based on
similarities in stratigraphy, tectonic setting and, detrital zircon geochronology as being non-
unique and equally explicable through geological links to southern Africa and East Antarctica.
Their Early Jurassic reconstruction (Fig:»6B), which we use as an early Mesozoic proxy, places
South Georgia adjacent to Coats Land and the Theron Mountains of East Antarctica, and
adjacent to the NatahEmbayment, with close links to southern Africa. Eagles and Eisermann
(2020) suggested the presence of a newly recognised plate (‘Skytrain’; Fig. 6B) that was
hypothesised from sea floor architecture in the Falkland/Malvinas Basin. Their model also
requires a South American setting for the Falkland/Malvinas Islands and negates the
requirement for long distance translation of the South Georgia microcontinent.

In‘contrast, our analysis demonstrates strong evidence in favour of a connection between
the late Permian accretionary successions of South Georgia with the mid-late Permian
accretionary complexes of the northern Antarctic Peninsula and parts of Tierra del Fuego. We

agree with Eagles and Eisermann (2020) that the application of detrital zircon geochronology
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for identifying exact provenance is often non-unique, particularly during periods of enhanced
volcanism, deposition and sediment recycling. The late Permian is such an episode, with
extensive silicic (zircon-rich) volcanism (e.g., Choiyoi Province), widespread accretionary
complexes (e.g., Madre de Dios) and extensive sediment recycling and deposition in the
hinterland (e.g., Karoo Basin). However, our analysis of the U-Pb dataset from the_late
Permian metasedimentary units from South Georgia, supported by Lu-Hfisotopes, highlights
several aspects in the data that argue against a direct connection/to East Antarctica.and South
Africa, but strongly favour a close relationship to the northern Antarctic Peninsula and parts
of Tierra del Fuego. The maximum depositional agé of ca. 270 Ma of the Salemon Glacier
Formation and other parts of the Drygalski Fjord Complex (Table 1), as well as the accretionary
complexes of the Antarctic Peninsula and Patagonia, is also ubiquitous in East Antarctica,
Karoo Basin and the southern Antarctic Peninsula (Riley et al., 2025). However, a critical
aspect of the age profile from the Salomon Glacier Formation and Drygalski Fjord Complex is
the significant secondary age peak at ca. 470 Ma that is essentially absent from the hinterland
successions in South, Africa and East Antarctica, which are instead characterised by a
secondary age peak at ca. 530 Ma, that is absent in South Georgia (Fig. 5). This Cambrian age
peak may correlate with sources from granitoids associated with the Ross Orogen, or more
likely represent recycling from early Palaeozoic sedimentary successions with more distal
Gondwana sources. The ca. 470 Ma event is related to the widespread Famatinian magmatic
arc and,orogeny of South America (Rapela et al.,, 2018; Otamendi et al., 2020) that also
extended via northeastern Patagonia (Pankhurst et al., 2014) into eastern Graham Land of
the northern Antarctic Peninsula (Riley et al., 2012, 2023b). The age signature of the

Ordovician Famatinian arc is evident in the recycled component of the late Permian
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metasedimentary rocks of Patagonia (Duque de York Complex, Cordillera Darwin) and the
northern Antarctic Peninsula, and indicates relative proximity to a source region. Lu-Hf
isotopes also support a close relationship between the Salomon Glacier Formation of South
Georgia and the mid-Permian Trinity Peninsula Group of the Antarctic Peninsula;‘as well as
components of the Duque de York Complex (Fig. 7).

Overall, the data support a close association between the South Georgia microcontinent
and the northern Antarctic Peninsula, with a near-neighbour relationship in age profiles.and
Lu-Hf isotopes between the mid-late Permian accretionary complex of the Trinity Peninsula
Group and the accretionary complex of the Salomon Glacier Formation..The Duque de York
Complex is also likely to be relatively close, but we supporta closer location to the Cordillera
Darwin (Fig. 6A), particularly if a South.Georgia location adjacent to the Isla de los Estados
(Staten Island; Fig. 1) is favoured{Dalziel et al/, 2021). A detrital zircon age profile for a late
Permian metasedimentary unit from thesouthern Cordillera Darwin (FO0642; Hervé et al.,
2010) is plotted in figures 4 and 5 and exhibits a prominent mid-late Permian age peak, and
also a significant Early Ordovician age peak likely indicating derivation from the Famatinian
arc or recycled unit.

Hervé et al. (2010) suggested, that the Cordillera Darwin metamorphic complex has a
distinct geological history from elsewhere in Patagonia and lies on the Scotia Plate and not
the South American Plate. This scenario was supported by Riley et al. (2022) who developed
a new dynamic plate model to demonstrate that the Cordillera Darwin metamorphic complex
could have originated on the Antarctic Plate before translation to the Scotia Plate in the
Eocene, along with the crustal blocks of the South Scotia Ridge (Fig. 1). Close paleo-location

of the Cordillera Darwin, northern Antarctic Peninsula and the South Georgia microcontinent
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is supported by their overlap in the MDS plot (Fig. 4), although this only represents late
Permian successions.

Placing South Georgia adjacent to the northern Antarctic Peninsula and Cordillera Darwin,
particularly with a rotated Antarctic Peninsula, may negate the requirement for such lengthy
lateral translation for the South Georgia microcontinent (Eagles and Eisermann, 2020),-but
still satisfies geological and tectonic correlations to the Staten Embayment (Dalziel et al.,
2021). Famatinian-age (ca. 470 Ma) zircons in South Georgia,/ Cordillera Darwin and the
northern Antarctic Peninsula all suggest a nearby source: The cHfi data (Fig. 7A) from the
Salomon Glacier Formation for the Ordovician-age zircons (typically®-5 to<0) are also
consistent with the values reported by Rapela et al. (2018) from the Famatinian magmatic
province. The Famatinian magmatic arc.is generally considered to only extend as far south as
the North Patagonian Massif (Pankhurst et al., 2014; Rapela et al., 2018), but with well-
defined age peaks in the recycled sediméntary record of the northern Antarctic Peninsula
(Riley et al., 2023b), afmore southerly extentiis likely (Castillo et al., 2020). Isolated outcrops
of Early Ordovician magmatism in the north-eastern Antarctic Peninsula (Riley et al., 2012)

confirm this.

7. Conclusions

Using. U-Pb and Lu-Hf detrital zircon analysis we demonstrate that the late Permian
accretionary complex of South Georgia (Drygalski Fjord Complex) has a close association in
depositional age and common source to metasedimentary units from the northern Antarctic

Peninsula, and also the southern Cordillera Darwin and Duque de York Complex of southern

18



418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Patagonia. The mid-late Permian is dominated by widespread accretionary complexes and
recycled sedimentary successions across West Gondwana, which are all characterised by
prominent late Permian age signals (ca. 260—270 Ma). The late Permian units from South
Georgia, the northern Antarctic Peninsula and southern Patagonia are also characterised by
a significant secondary age peak at ca. 470 Ma, correlating with the Early Ordovician
Famatinian magmatic arc.

Although mid-late Permian units from South Africa, Falkland/Malvinas Islands and East
Antarctica all have similar maximum depositional ages to the accretionary complexes of South
Georgia, they lack a significant secondary age peak at ca. 470 Ma, and<are instead
characterised by a mid-Cambrian age peak at ca.. 530 Ma, typical of Cambrian recycled
material of East Antarctica.

We favour a late Permian—early Mesozoic paleo-location of South Georgia adjacent to the
northern Antarctic Peninsula and the Cordillera Darwin, all located on the Antarctic Plate,
prior to closure of the'Rocas Verdes Basin and subsequent translation of South Georgia and
Cordillera Darwin to the ScotiaPlate.

We rule out close links between South Georgia and South Africa/East Antarctica as

proposed by Eagles and Eisermann (2020) in their Skytrain Plate model.
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616 . Kernel density estimator (KDE) plots (Vermeesch, 2013) of U-Pb detrital zircon ages for
617 metasedimentary rocks from the Drygalski Fjord Complex (this study) and from the

618 Sandebugten Formation (Carter et al., 2014). Full datasets are available in Supplementary
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619 Table 1. Analytical details in Supplementary Material. Bandwidths for all plotted samples are
620 50 Myr. The area under the KDE plots in not normalised and an adaptive kernel bandwidth

621  was applied. Sample locations as shown in figure 2.
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623  FIG. 4. Multidimensional scaling maps<{(MDS; Vermeesch, 2013, 2018) for late Permian
624  sedimentary units from West Gondwana. MDS plots compare the complete age spectra in
625  dissimilar samples calculated‘using the Kolmogorov-Smirnov statistic with any two points
626  plotting closer together if they are more similar. Nearest (solid) and secondary (dashed)
627  neighbour lines are shown. The axis scales are dimensionless and have no physical meaning.
628 Data from Hervé et al. (2003, 2010), Barbeau et al. (2010), Flowerdew et al. (2012), Elliot et
629 al.(2016), Castillo et al. (2016), Carter et al. (2017), Craddock et al. (2017), Viglietti et al.
630 . (2018), Nelson and Cottle (2019), and Riley et al. (2022, 2023a,b, 2025). A detailed list of late
631 Permian data sources is provided in Supplementary Table S3. Salomon Glacier Formation
632 (M.2022.1a, M.2025.3, M.2042.1d, M.1683CMB2.12); Cooper Island Formation (M.4131.15);
633  Drygalski Fjord Complex (M.2171.8b).
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U-Pb age stacked (KDE) plots for mid-late Permian samples. Grey bars represent
rcon peaks at ca. 27015 Ma, ca. 470+5 Ma and ca. 53015 Ma. Data sources as in
637 figure 4. The area under the KDE plots is normalised and an adaptive kernel bandwidth was

638  applied. Data sources are provided in Supplementary Table S3.
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ly Mesozoic plate reconstruction from Eagles and Eisermann (2020) showing the

642  putative Skytrain Plate (purple domain).
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FIG. 74U-Pb zircon ages (%8U/?°°Pb) versus initial eHf values for zircon grains from late
Permian metasedimentary successions examined as part of this study. Vertical grey and white
bars represent geological periods. A. Drygalski Fjord Complex (South Georgia), Trinity
Peninsula Group (Antarctic Peninsula), Duque de York Complex (Patagonia) (Barbeau et al.,
2010; Fanning et al., 2011; Castillo et al., 2016; this study). B. LeMay Group accretionary
complex (Riley et al. 2023a). C. Bay of Harbours Formation (Riley et al., 2025). Full Lu-Hf
dataset is provided in Supplementary Table S2. Dashed lines in B and C encompass the late

Permian South Georgia sample data shown in A. CHUR: Chondritic uniform reservoir.
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