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Abstract Rock debris partially covers glaciers worldwide, with varying extents and distributions, and
controls sub‐debris melt rates by modifying energy transfer from the atmosphere to the ice. Two key physical
properties controlling this energy exchange are thermal conductivity (k) and aerodynamic roughness length (z0).
Accurate representation of these properties in energy‐balance models is critical for understanding climate‐
glacier interactions and predicting the behavior of debris‐covered glaciers. However, k and z0 have been derived
at very few sites from limited local measurements, using different approaches, and most model applications rely
on values reported from these few sites and studies. We derive k and z0 using established and modified
approaches from data at three locations on Pirámide Glacier in the central Chilean Andes. By comparing
methods and evaluating melt simulated with an energy‐balance model, we reveal substantial differences
between approaches. These lead to discrepancies between ice melt from energy‐balance simulations and
observed data, and highlight the impact of method choice on calculated ice melt. Optimizing k against measured
melt appears a viable approach to constrain melt simulations. Determining z0 seems less critical, as it has a
smaller impact on total melt. Profile aerodynamic method measurements for estimating z0, despite higher costs,
are independent of ice melt calculations. The large, unexpected differences between methods indicate a
substantial knowledge gap. The fact that field‐derived k and z0 fail to work well in energy‐balance models,
suggests that model values represent bulk properties distinct from theoretical field measurements. Addressing
this gap is essential for improving glacier melt predictions.

Plain Language Summary Debris on glaciers affects how quickly the ice underneath melts by
controlling how heat moves from the air to the ice. Key properties like thermal conductivity (k) and
aerodynamic roughness length (z0) are rarely measured directly and are often taken from other studies.
Representing these properties accurately in energy‐balance models is important for understanding how glaciers
interact with the climate. In our study on Pirámide Glacier (Chile), we compare and evaluate how accurately we
can model sub‐debris melt when using values of k and z0 derived from existing methods. We found that methods
for calculating k and z0 can give very different results, and most lead to mismatches between modeled and
observed ice melt. Optimizing k using measured ice melt and temperature data works well for energy‐balance
modeling. While determining z0 is less critical, the profile aerodynamic method‐derived estimates are preferable
since they do not rely on the energy‐balance model itself. The differences between methods reveal a significant
knowledge gap. Overall, values of k and z0 from field measurements often do not match what energy‐balance
models need to reproduce melt, showing that field‐based and model‐based values do not align, highlighting the
need for more research to close the gap.

1. Introduction
Rocky debris partially covers 44% of Earth's glaciers (excluding Antarctica) and is prominent (over 1.0 km2) on
15% of them (Herreid & Pellicciotti, 2020). These glaciers are common in many mountain ranges, including
High‐Mountain Asia, the European Alps, the Andes, the Alaska Range and New Zealand's Southern Alps
(Herreid & Pellicciotti, 2020). Supraglacial debris influences ablation patterns and leads to distinct glacier
evolution (Anderson & Anderson, 2016; Compagno et al., 2022; Gibson et al., 2017; Nicholson & Benn, 2006;
Reid et al., 2012; Rounce et al., 2021; Rowan et al., 2015). Understanding how these glaciers evolve is critical as
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debris‐covered glaciers are projected to increase with climate warming (Anderson & Anderson, 2018; Fischer
et al., 2013; Gruber & Haeberli, 2007).

Debris thickness is a key factor influencing melt rates and it can vary from fine dust to layers several meters thick
(McCarthy et al., 2017; Nicholson et al., 2018), influenced by gravitational reworking (Moore, 2018), englacial
debris melt‐out (Swithinbank, 1950) and ice flow displacement (Anderson & Anderson, 2018; Fyffe et al., 2020;
Westoby et al., 2020). We understand from numerical modeling and field data the overall relationship between
debris thickness and ablation rates: thin debris layers (less than a few centimeters) enhance melt, while thicker
debris reduces it (Nicholson & Benn, 2006; Reid & Brock, 2010; Östrem, 1959). However, key properties of the
debris layer, such as thermal conductivity (Evatt et al., 2015; Fyffe et al., 2014; Rounce et al., 2015), albedo
(Fujita & Sakai, 2014), porosity (Juen et al., 2013), aerodynamic roughness length (Miles et al., 2017; Rounce
et al., 2015) and moisture content (Giese et al., 2020; Steiner et al., 2021), modulate this relationship and influence
how efficiently energy is transferred from the atmosphere to the ice through the debris layer. Thermal conduc-
tivity (k), aerodynamic roughness length (z0,M, hereafter z0) and albedo (α) have all been shown to be important in
modeling ice melt (Fyffe et al., 2014; Rounce et al., 2015; Steiner et al., 2021). However, while α is relatively easy
to measure and commonly documented, thermal conductivity and aerodynamic roughness length are challenging
to measure directly and therefore rarely reported. k in particular has been identified as a particularly sensitive
factor in sub‐debris melt estimates (Fyffe et al., 2014; Miles et al., 2022; Rounce et al., 2015; Steiner et al., 2021).
The sensitivity to z0 is more debated: Rounce et al. (2015) found ablation rates to be most sensitive to k, followed
closely by z0 and α, while Fyffe et al. (2014) reported that, at the glacier scale, simulated melt rates are largely
unaffected by changes in z0 within the range tested.

Given that the measurements required to derive k and z0 are rarely made, many modeling studies rely on pre-
viously published values. Importantly, even when these measurements are collected, multiple methods exist for
deriving these properties, each with different assumptions, strengths and limitations. These methods have not,
with some exceptions, been systematically compared to evaluate their impact on sub‐debris melt. This study
addresses these gaps by conducting an observational campaign at Pirámide Glacier in Chile to investigate the
thermal conductivity and aerodynamic roughness length of supraglacial debris to answer the following research
questions:

1. How do the estimates of thermal conductivity and aerodynamic roughness length from the most commonly
used methods based on field measurements compare to each other?

2. When used in an energy‐balance model, are the calculated values of thermal conductivity and aerodynamic
roughness length able to simulate melt consistent with ablation measurements?

To address these questions, we used established approaches, and variations on those approaches, to derive k and z0
from field measurements. We then conducted point‐scale energy‐balance modeling using the k and z0 values
obtained to evaluate how differences propagate into the simulated melt rates and how well the latter compare to
measured ice melt.

Deriving debris thermal conductivity from field measurements was first attempted by Nakawo and Young (1982).
Their method assumes that the temperature profile of the debris layer is constant, with no heat conducted into the
ice, and requires measurements of debris thickness, surface temperature and ablation. Brock et al. (2010) applied
this method but also measured the temperature at the ice‐debris interface, assuming a linear mean vertical gradient
and negligible net heat change in debris over time, an assumption valid for periods exceeding a week (Conway &
Rasmussen, 2000; Nicholson & Benn, 2012). Conway and Rasmussen (2000) calculated thermal diffusivity (κ)
using vertical temperature profiles and the one‐dimensional diffusion equation, assuming purely conductive
conditions. This method requires knowledge of the debris layer's lithology, porosity and moisture content to
compute k (Nicholson & Benn, 2012; Steiner et al., 2021). Laha et al. (2022) adapted this approach to account for
inhomogeneities in debris thermal properties using a two‐layered model. Fugger et al. (2022) optimized k against
ablation and surface temperature measurements by simulating energy conduction through a homogeneous debris
cover during snow‐free periods.

The profile aerodynamic method has been used to derive the aerodynamic roughness length of debris surfaces
based on Monin‐Obukhov similarity theory (e.g., Chambers et al., 2020; Miles et al., 2017; Quincey et al., 2017;
Sicart et al., 2014). Under idealized surface boundary layer conditions (horizontal, homogeneous and steady‐
state), the turbulent characteristics of the surface boundary layer can be described using turbulent velocity and
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temperature scales, along with length scales and aerodynamic roughness lengths for momentum and temperature.
Alternatively, optimization approaches for energy‐balance modeling (e.g., Fugger et al., 2022; Steiner
et al., 2021) have calibrated z0 to reproduce observed ice melt, mass loss or surface temperature. z0 has also been
derived from microtopographic methods using: (a) Mechanistic approaches (Lettau, 1969; Munro, 1989), which
use elevation profiles to identify obstacles; and (b) empirical approaches, which use detrended DEMs of equal
height and width to calculate the standard deviation of elevations and estimate z0 from empirical parameteri-
zations (Nield, Chiverrell, et al., 2013; Nield, King, et al., 2013). Finally, turbulent fluxes measured using an eddy
covariance system can be used to calculate z0 at the point scale (Nicholson & Stiperski, 2020; Steiner et al., 2018).

2. Study Site, Data and Methods
2.1. Study Site

Our study focuses on the debris‐covered Pirámide Glacier in the Rio Yeso catchment, Central Chile, about 70 km
east of Santiago (Figures 1a and 1b). The catchment is 19% glacierized (Ayala et al., 2016; Burger et al., 2018)
and located in the semiarid Andes, characterized by cold, humid winters and hot, dry summers (Ayala et al., 2016;
Schaefer et al., 2020). Precipitation is mainly during winter and highly variable (Falvey & Garreaud, 2009), and
the region has experienced a prolonged megadrought since 2010 (Boisier et al., 2016; Garreaud et al., 2020,
2021).

Figure 1. (a) Map of Pirámide Glacier showing debris cover extent, locations of the study sites (AWSs, debris thermistors,
soil moisture and ablation stakes) and the long‐term AWSs operated by the DGA. The lithological map highlights changes in
debris cover type (even within a single lithology or Formation) (modified from Reyes Kutscher, 2023, with permission from
the author), underlain by a 2018 Pleiades‐derived DEM hillshade (Shaw et al., 2020). (b) Location of Pirámide Glacier in the
Andes of Central Chile (yellow square). (c) Diagram of the experimental setup at site 1, including the AWS and in‐debris
sensors (location of the ablation stake and in‐debris sensors not to scale).
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Pirámide Glacier ranges from 3,200 to 4,600 m a.s.l., averaging 3,670 m a.s.l., covering 4.4 km2 over 7.5 km and
is almost entirely debris‐covered (Ayala et al., 2016; Schaefer et al., 2020). It lacks a defined accumulation area,
gaining mass primarily from avalanches off steep headwall slopes (Burger et al., 2018). The glacier is nearly
stagnant, with annual velocities <5 m a− 1 (Millan et al., 2022) and has had minimal area loss compared to other
regional glaciers (Janke et al., 2015). Its mass balance shows no significant variation with altitude, controlled by
debris cover and avalanches (Ayala et al., 2016).

The debris on Pirámide Glacier is composed mainly of rocks from the Lo Valdés and Río Damas Formations and
gypsum. The Lo Valdés Formation consists of intercalated marine sedimentary and volcanic rocks, while the Río
Damas Formation is mainly sandstones (Reyes Kutscher, 2023). These lithologies have distinct properties, such
as specific heat capacity and density (Waples & Waples, 2004), affecting the thermal properties of the debris
layer.

2.2. Data

2.2.1. Meteorological Measurements

Three automatic weather stations (towers) were installed on the glacier, equipped with air temperature, relative
humidity and wind speed sensors at four heights (0.5, 1, 2 and 2.7 m) (Figure 1, Table 1). They operated from late
November 2022 to early March 2023. Tower 1 remained upright throughout, while the other two toppled (see
dates in Table 1).

Air temperature and relative humidity were measured using TinyTag Plus 2 (TG‐4505) sensor–logger units, with
accuracies of±0.35°C and±3.0% respectively. The sensors were shielded using an ACS‐5050 Stevenson Screen.
Wind speed and direction were measured using two different sensor types due to logger limitations, which
allowed only one connection per sensor type. Davis Pro‐D anemometers (accuracy: 0.89 m s− 1) were installed at 2
and 2.7 m heights to record both wind speed and direction, while Vortex anemometers (accuracy: 0.45 m s− 1)
were used at 0.5 and 1 m heights to measure wind speed only. Temperature and humidity were recorded at 10‐min
intervals and averaged to 30‐min intervals for analysis, while wind speed was recorded at 1‐min intervals and
averaged to 30‐min values (Figures S1–S3 in Supporting Information S1).

Daily air temperature patterns were consistent across the three sites (Figures 2a–2c). Comparing only the period
when all three sites were operational (before 12/02/2023), the average temperatures at sites 1 and 2 were
approximately the same (∼8.93 and 8.92°C, respectively), whereas site 3 recorded lower temperatures (7.3°C).
While daily averages do not show substantial temperature differences between different heights, the average daily
temperature cycle shows that during the day, a negative vertical gradient is observed, with higher sensors
recording cooler temperatures than lower ones within each site (Figures 3c–3g and 3k). Daytime and nighttime
averages also show a temperature gradient between sites: site 1 is the warmest and site 3 the coolest. During the
day, the vertical temperature gradients are − 0.07, − 0.20, and − 0.14°C m− 1 for sites 1, 2, and 3, respectively. At
night, the gradients reverse to 0.24, 0.25, and 0.42°C m− 1 for the same sites (Figure 3 and Figure S5a in Sup-
porting Information S1).

Daily averages of wind speed indicate a clear height‐dependent pattern at all three sites, with higher wind
speeds recorded at the upper sensors and lower speeds at the bottom (Figures 2d–2f). Average wind speeds
show consistent differences between sites: site 1 has values approximately 0.1–0.4 m s− 1 higher than site 3 and
0.1–0.5 m s− 1 lower than site 2. All three sites exhibit relatively uniform vertical gradients, with values of 0.58,
0.49, and 0.42 m s− 1/m for sites 1, 2, and 3, respectively (Figures 2d–2f and Figure S5b in Supporting In-
formation S1). There are two predominant wind directions observed at each site: One occurring in the early
morning and another in the afternoon to early evening. These wind directions are roughly opposed at each
tower, and there appears an anti‐clockwise rotation from site 1 to site 3 (Figures 2d–2f and Figure S4 in
Supporting Information S1).

2.2.2. In‐Debris Measurements

In flat areas adjacent to each tower (not too close to avoid shading, not too far to maintain representativeness,
and not too close to ice cliffs to avoid potential backwasting; see Table 1 for distances), five thermistors and
three moisture sensors were installed within the debris at regular depth intervals between the debris surface and
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the ice surface (Figures 1c, Table 1). Near‐surface thermistors (labeled as 0 cm in Table 1) were covered with a
thin debris layer (∼2 cm), consisting of enough gravel‐sized clasts to cover the sensor from direct radiation
(Figure S6 in Supporting Information S1). Temperature was measured using Tinytag Transit 2 sensors (model
TG‐4080) with an accuracy of ±0.4°C and moisture content was measured using HOBO sensors (model S‐
SMC‐M005) with an accuracy of ±3%. Debris temperature measurements were taken at 30‐min intervals and
moisture content readings were recorded at 5‐min intervals. At each site we recorded the observed lithologies,
with which we calculated a weighted average rock density and specific heat capacity (Text S2 in Supporting
Information S1).

Average temperature profiles within debris over the full measurement period are approximately linear, with
linear regressions of sensor temperature versus depth yielding R2 values ranging from 0.80 to 0.99
(Figures 3b–3f and 3j). The calculated temperature gradients range between 21.4 and 24.6°C m− 1. Diurnal
debris temperature peak values at the surface range from − 3 to 0°C at night and from 24 to 27°C during the
day. Deeper sensors exhibit smoother daily cycles, with the timing of the temperature peak shifting later in
the day and approaching a constant value of ∼0°C at the base of the debris. The mean peak temperature
transit time is similar for sites 1 and 2 (14.1 and 15.8 hr m− 1), while it is slightly shorter at site 3 (9.3 hr
m− 1) (Figures 3c–3g and 3k).

2.2.3. Sub‐Debris Ice Ablation

A 3 m PVC stake, marked at 10 cm intervals, was drilled into the ice at the pit excavated for the installation of the
debris temperature and moisture sensors, ensuring that the debris thickness at the stake and thermistors was
consistent. A Bushnell 24MP hunting camera captured hourly images of the ablation stake from 07:00 to 19:00, as
well as one image at night (03:00). Tracker software, a free Java video analysis and modeling tool from Open
Source Physics (https://physlets.org/tracker/), was used to read changes in length of exposed stake. For our

Figure 2. (a–c) Daily averages of air temperature and (d–f) wind speed at the different elevations, and (d–f) daytime/nighttime wind directions at the 2 m sensor. Shaded
areas represent the sensor uncertainty (for air temperature a combined area is shown, since all the measurements are clustered at this scale). Vertical dashed lines indicate
the times when the towers at sites 2 and 3 toppled. For the full data and distribution of wind directions see Text S1, Figures S1–S4 in Supporting Information S1).
Ablation measurements from the hunting camera pictures are shown in blue. For sites 2 and 3 there is an additional measurement when the site was visited at the end of
the period (see Figure 7).
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application, the software automatically identifies the top and bottom of the stake for each picture and the distance
between these points is calculated by assigning a scale (10 cm between two marks on the stake). Errors in
automated readings (usually overnight or when the light reaching the stake changed) were manually corrected by
selecting a point on the bottom or top of the stake, if it had been incorrectly placed. We then converted surface
lowering (m) to melt (m w.e.) based on ice density of 917 m− 3 (Benn & Evans, 2010). Due to the falling of towers
2 and 3, continuous readings were not possible for the entire period. Stakes were also manually measured in
March 2023.

2.2.4. Surface Relief

The areas around the towers were surveyed using a DJI Mavic 2 Enterprise quadcopter Unmanned Aerial Vehicle
(UAV) at a 12.4 MP resolution, producing 4056 × 3040‐pixel RGB images with a fixed 24 mm focal length
(35 mm equivalent) and using automatic exposure and focus settings. We then used the structure‐from‐motion
approach to generate DEMs (4 cm ground resolution) with Agisoft Photoscan from the UAV optical imagery
(Figure 4a). For details on the structure‐from‐motion approach workflow, see Westoby et al. (2012), and for
specifics on Agisoft, refer to Immerzeel et al. (2014).

The elevation variability of the glacier surface in the area around the towers is shown in Figure 4a. The difference
between the lowest and the highest point is 26, 30 and 15 m for sites 1, 2, and 3, respectively, with corresponding
standard deviations of 5.8, 5.7, and 2.6 m.

Figure 3. (a, e, i) Daily mean Td isotherms for the debris layer at each site. (b, f, j) Temperature profiles showing the hourly average temperature and boxplots of the
temperature measurements per depth at the three sites. Temperature gradient obtained from a linear regression of the mean temperature as a function of depth. (c, g, k)
Debris temperature and (d, h, l) air temperature average diurnal cycles for each depth and height measured, circles indicate the hour at which the maximum is reached.
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2.3. Methods

2.3.1. Thermal Conductivity

To derive thermal conductivity, we tested four different methods based on the studies of: (a) Nakawo and
Young (1982) and Brock et al. (2010), indicated as NYB; (b) Conway and Rasmussen (2000), indicated as CRh;
(c) Laha et al. (2022), indicated as CRi; and (d) Fugger et al. (2022), indicated as Opt (Table 3).

2.3.1.1. Nakawo and Young (1982) and Brock et al. (2010)

The thermal conductivity of the debris layer can be calculated as follows:

k =
M ⋅ Lf ⋅ ρi ⋅ hd
(Ts − Tdi) ⋅ dt

(1)

where M is the cumulative melt over a measurement period (m w.e.), Lf is the latent heat of fusion of ice at 0°C
(334,000 J kg− 1), ρi is the ice density (kg m− 3), hd is the thickness of the debris layer (m), Ts − Tdi is the mean
temperature between the surface (Ts) and the debris‐ice interface (Tdi), in °C, and dt is the duration of the
measurement period (s). With this method we calculate a single value for the measurement period for each site.

2.3.1.2. Conway and Rasmussen (2000)

We calculated the thermal diffusivity (κ) of the debris layer using the one‐dimensional diffusion equation from
measurements of vertical temperature profiles within the debris as follows:

∂Td
∂t

= κ
∂2Td
∂z2

+ s, (2)

where Td is the debris temperature (°C), t is time, z is the depth of the measurement (m) and the term s includes the
non‐conductive processes. If the system is purely conductive (s = 0), then the gradient of the linear regression
line provides an estimate of the average κ for depth z and the scatter around the regression indicates non‐
conductive processes (Figures S8–S10 in Supporting Information S1). To account for the effect of lithological
properties, porosity and moisture content, we use Equation 3 (Steiner et al., 2021) to calculate the thermal
conductivity from the κ obtained.

k = κ(ρrcr (1 − ϕd) + (ρwcw
θ
θsat

+ ρaca(1 −
θ
θsat
))ϕd) (3)

Where ρ, c, and ϕ are density, specific heat capacity and porosity, the subindices r, w, a, and d stand for rock,
water, air and debris, respectively, and θ and θsat are the moisture content and the fully saturated moisture content.

Figure 4. (a) DEMs generated with UAV photogrammetry around the towers (dots) showing the relative elevation compared to the tower location. (b) Standard deviation
of elevations around the towers at different distances.
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This method yields up to five results per site (one for each thermistor's depth). The top and bottom sensors were
excluded from the CRh, as a synthetic experiment showed that those sensors do not perform well (Text S3 in
Supporting Information S1).

Due to ∂Td
∂t and

∂2Td
∂z2 having different units, we used normalized total least squares for the regression analysis,

and performed the fitting both considering and ignoring the sensor uncertainties. For the top and bottom
sensors, single‐sided differences were calculated, whereas central differences were calculated for the other
sensors. With Equation 2, we calculated κ with R2 > 0.5 and R2 > 0.75, and with these values we obtained the
conductivity (k, W m− 1 K− 1) with Equation 3. We tested values of ρr, cr, ϕ and θsat from previous studies, as
well as estimated values of ρr and cr from field observations. Additionally, we tested calculations with both
θ = 0 and θ ≠ 0. For the latter one, we used the average value of the measurements of moisture content at each
site, for which we considered only the period between the precipitation events of January and February,
obtaining moisture content of 0.079, 0.127 and 0.085 m3m− 3 for sites 1, 2 and 3, respectively (Figure S12 in
Supporting Information S1).

2.3.1.3. Laha et al. (2022)

This method employs the finite‐difference approximations shown in Equation 4 to evaluate the derivative terms in
Equation 2. It considers higher‐order correction terms to be negligible and account for variations in debris thermal
properties by using a two‐layered model with different thermal diffusivities as follows:

Td(0, t + Δt) − Td(0, t)
Δt

≈
κ1
Td (− dz1, t) − Td(0, t)

dz1
− κ2

Td(0, t) − Td (dz2, t)
dz2

dz1 + dz2
2

(4)

where κ1 and κ2 represent the thermal diffusivities of the top and bottom layers, with respective thicknesses dz1
and dz2. We applied the method to all the consecutive sets of three thermistors, resulting in up to three values for
each site (Figures S13–S15 in Supporting Information S1). We calculated the effective thermal diffusivity of the
two layers (κeff ) for each set of thermistors following Laha et al. (2022), as in Equation 5, and then calculated an
effective thermal conductivity with Equation 3

hd
κeff

=
dz1
κ1
+
dz2
κ2

(5)

We also tested values of ρr, cr, ϕ, and θsat from previous studies, as well as estimated values of ρr and cr from field
observations, and performance metric (R2 cut‐off limit) for the fit of Equation 2.

Since both CRh and CRi yield multiple values per site, a weighted average was calculated using the obtained k
values and the following equation:

k =
1

∑
n
i=1

li
ki

, (6)

where li is the thickness of each sub‐layer and ki is the conductivity of each sub‐layer.

2.3.1.4. Fugger et al. (2022)

We optimized k by simulating only the conduction of energy through an homogeneous debris cover during snow‐
free conditions using the one‐dimensional heat equation, surface temperature data from the top debris thermistor
(near‐surface), and ice melt from the ablation stake measurements as the target variable, with the Mean Absolute
Error as the performance metric (Figures S16–S18 in Supporting Information S1). We validated these results by
comparing the modeled debris temperatures with the debris thermistor data (excluding the top one, since it was
used in the optimization process).
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2.3.2. Aerodynamic Roughness Length

To derive z0, we tested two different methods: (a) Profile aerodynamic method (Chambers et al., 2020; Miles
et al., 2017; Quincey et al., 2017; Sicart et al., 2014), indicated as PAM; and (b) Fugger et al. (2022), indicated as
Opt (Table 3).

2.3.2.1. PAM

z0 can be calculated using the tower measurements of temperature with the following equations:

u(z) =
u∗

k
(ln

z + d
z0

+ αM
z + d
L
) (7)

T(z) − Ts =
T∗

k
(Pr ln

z + d
zT

+ αH
z + d
L
) (8)

L =
T(u∗)2

kgT∗ (9)

where, u(z) and T(z) are wind speed (m s− 1) and temperature (°C) at a height z (m), d is the displacement height
from the zero reference level (m), u∗ and T∗ are the friction velocity and scaling temperature, respectively, z0 and
zT are the aerodynamic roughness length for momentum and temperature, L is the Monin‐Obukhov length, k is the
von Kármán constant (k = 0.4), αM and αH are the bulk stability corrections for momentum and heat (empirically
derived coefficients, αM = αH = 5; Dyer, 1974, Stull, 1988) and the Prandtl number Pr is set to 1 (Brock
et al., 2006; Chambers et al., 2020; Miles et al., 2017; Sicart et al., 2014). To derive z0 we minimized the mismatch
between the calculated T̂(z) and û(z) (Equations 7–9) and the measured T(z) and u(z) at the towers. That is, we
iteratively varied z0, zT , u∗, T∗, and d until T̂(z) and û(z)matched T(z) and u(z). We performed the calculations to
estimate d and not estimate d (assuming d = 0).

Rib = g
Tz − Ts
T0u2

(z − zs) (10)

For the stability condition we calculated the Richardson number (Rib) as in Equation 10, which describes the
stability of the surface layer by relating the effects of buoyancy to mechanical forces (Moore, 1983). In this
equation, g is the gravitational constant, T(z) and Ts are the temperatures (K) at height z and at the surface zs, T0 is
the mean temperature of the air layer (K) and u is the wind speed (m s− 1). We used the criteria of
− 0.03<Rib < 0.03 and u2m ≥ 1.5 m s− 1 separately (Rib and u2m) and combined (Ribu2m). The surface temperature
was not directly measured, but a near‐surface temperature was measured with the top thermistor installed next to
the tower, which was used as Ts in Equations 7 and 8. Alternatively, we did the calculations replacing Ts by T0.5m.
As in Chambers et al. (2020), both wind and temperature profiles were fitted simultaneously and iteratively to
calculate z0, u∗, zT , T∗, d and L in Equations 7 and 8. To do this, an initial estimate of L is needed, where, following
Chambers et al. (2020), we used 108 m. With this guess, values for z0, u∗, zT , T∗ (and d) were obtained, which
were used to calculate a new L (with Equation 9). This sequence is repeated 10 times (Chambers et al., 2020), if
the values of L converge, it is assumed that the profiles fit the theory, and they are then used to calculate z0,
whereas if they did not converge they were discarded.

To estimate the goodness of fit, we used R2 > 0.75 and a goodness‐of‐fit coefficient ( j) that considers the sensor's
uncertainties values:

j1 =∑ (
û − u
σu

)

2

j2 =∑ (
T̂ − T
σT

)

2

j = j1 + j2,

(11)
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where û and T̂ are the fitted values, u and T are the measured values and σu and σT are the sensor uncertainties,
and the lower j is, the better the fit is. We calculated the z0 with R2 and j separately and compared the results.
Different combinations of calculations were performed, by (a) using the surface temperature value as the top
thermistor (Ts) or the temperature measured at 0.5 m (T0.5m), (b) considering or not the temperature and wind
sensor uncertainties for the fit, (c) using the data of the entire measurement period for each tower or just the
measurement period of tower 3 (the shortest record); (d) using j or R2 as the performance metric, and (e)
considering d ≠ 0 or d = 0.

2.3.2.2. Fugger et al. (2022)

We optimized z0 after determining the optimized k by running a complete energy‐balance melt model, using the
surface temperature as the target variable and the Nash–Sutcliffe Efficiency as performance metric (Figures S16–
S18 in Supporting Information S1). Since this optimization requires calculation of the full energy mass balance,
the required inputs are more than for the optimization of k (for a detailed description of the inputs see
Section 2.3.4).

2.3.3. Land‐Surface Model Tethys and Chloris

Tomodel sub‐debris ice melt rates with the derived debris properties and to estimate the optimized z0, we used the
energy‐balance module of the mechanistic land surface model Tethys − Chloris with an hourly time step (T&C,
Fatichi et al., 2012a, 2012b; Fugger et al., 2022; Mastrotheodoros et al., 2020). The cryospheric components and
energy balance routines of T&C have been validated in several previous studies (e.g., Buri et al., 2023; Fugger
et al., 2022, 2024; Fyffe et al., 2021; Shaw et al., 2022) and the T&C energy balance model for snow, ice, and
debris‐covered ice is detailed in Fyffe et al. (2014) and Fugger et al. (2022). In T&C, surface temperature (Ts), the
homogeneous radiative temperature of the surface, is determined prognostically at each point. An iterative nu-
merical method calculates all relevant surface energy fluxes, solving for Ts to achieve energy balance closure
while simultaneously determining the mass of ice and snow that melts and sublimates (Fyffe et al., 2014). The ice
column is represented as a single layer with conduction of energy down to a depth of 2 m, below which it is
assumed to be isothermal (Fugger et al., 2022). Transient debris temperature profiles are computed with the heat
diffusion equation using numerical methods (Reid & Brock, 2010) and the conductive energy flux at the base of
the debris is used for ice melt (Fugger et al., 2022). To estimate the heat transfer between the debris surface and
the atmosphere T&C uses a resistance analogy scheme (Brutsaert, 2005; Garratt, 1992), where the aerodynamic
resistance is based on a simplified Monin‐Obukhov solution using a bulk transfer coefficient (Mascart
et al., 1995) with aerodynamic, thermal and vapor roughness lengths calculated based on Brutsaert (1982).
Accordingly, in T&C, the aerodynamic roughness lengths for temperature, water vapor, and momentum are
related by the expression z0,T = z0,W = 0.1z0,M (Fugger et al., 2022). Thus, once z0,M is determined as detailed
above, the roughness lengths for temperature and vapor can be directly derived.

2.3.4. Input Data and Initial Conditions

T&C requires hourly time series of air temperature (Tair), precipitation (Pr), atmospheric pressure (Pre), wind
speed (Ws), relative humidity (RH), incoming shortwave radiation (SWin) and incoming longwave radiation
(LWin) . We used data from AWSs belonging to the ChileanWater Authority (Dirección General de Aguas, DGA)
(Figure S19 and Table S3 in Supporting Information S1): the off‐glacier AWS (Termas del Plomo, 33.61380°S,
69.90634°W, 3,027 m a.s.l.) has a relatively continuous record since 2016, whereas the on‐glacier AWS (Pirá-
mide Glacier, 33.58940°S, 69.89060°W, 3,448 m a.s.l.) has a discontinuous record since 2017. Both stations were
used to calculate lapse rates for air and dew point temperature, radiation and atmospheric pressure. ERA5 Land
data were used to fill in the gaps after accounting for the calculated lapse rates. Tair was distributed using monthly
mean lapse rates, while for Pre and SWin an average annual lapse rate was used. For RH the dew temperature was
adjusted using lapse rates and then converted to RH. Pr and Ws were assumed to be spatially uniform across the
study area at each time step. These lapse rates were used to obtain the forcing variables at the points where ice
melt was calculated. Surface albedo was calculated from incoming and outgoing solar radiation at the on‐glacier
AWS (Figure S20 in Supporting Information S1), with an average albedo of 0.2 over the period of record. For this
study, we do not consider spatial variations in surface albedo over the debris. We used the point implementation of
the model but accounted for local topographic effects on incoming shortwave radiation, therefore, we required the
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topography and geometry of the entire glacier. For the topography we used a 12.5 m resolution DEM from the
Alaska Satellite Facility. The glacier geometry was extracted from the DGA public glacier inventory (IPG, 2022),
and the debris‐covered outline was derived from the glacier outline and Google Earth imagery (imagery from 20/
01/2023 and 20/05/2023).

2.3.5. Experimental Set‐Up

Ice melt at each site was calculated using combinations of k and z0 and was compared to ablation stake mea-
surements, as well as to ice melt estimates derived using the k and z0 values reported by Brock et al. (2010), as
those are commonly used in previous studies. From all the possible combinations, one value from each method of
k and z0 was selected to simulate and compare sub‐debris melt. For CRh and CRi the values used (Figure 5 and
Table 4) correspond to the results of the variations that we considered more locally representative, in the sense that
they account for more local variables and have a more strict selection criteria: using local ρr and cr values,
measured moisture content, sensor uncertainty and R2 > 0.75 (0.5 for CRi). The NYB and the optimization
methods only yielded one result per site, thus no choice had to be made. For z0 using the profile aerodynamic
method we selected the variation we considered more locally representative: the one that considered d ≠ 0,
accounted for sensor uncertainty and used the entire measurement period for each tower and the measured Ts
(Figure 6 and Table 4). For both parameters, the “more locally representative” is not necessarily the most
accurate.

3. Results
3.1. Thermal Conductivity Values

The k values show substantial variability, ranging from 0.93 to 3.59 W m− 1 K− 1 for site 1, 0.92–2.63 W m− 1 K− 1

for site 2 and 1.09–2.27Wm− 1 K− 1 for site 3 (Figure 5). Overall, there is a lack of agreement among the methods,
with variations of up to 1.09, 4.05, and 0.82 W m− 1 K− 1 for site 1, 2 and 3 respectively.

Figure 5. k values obtained with the different variations of CRh and CRi methods (box plots) and the single values yielded by
the NYB and Opt methods (horizontal dashed lines).
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At site 1, NYB and Opt methods are in close agreement, whereas the CRh and CRi methods yield higher k. The k
obtained with CRh is considerably higher and shows a larger spread among the different variations (∼1.4–3.6 W
m− 1 K− 1), whereas CRi yields fewer values (i.e., more results with R2 < 0.5), but with less spread (Figure 5). At
site 2, when calculating k with CRh and including the moisture content (θ ≠ 0), the results are similar to both
NYB and Opt. However, all CRi results are higher than NYB and Opt results. At site 3, as opposed to the other
ones, the results of NYB and Opt differ. This site has very few valid values for the CRh/CRi methods (as most
calculations resulted inR2 < 0.5), but both CRh and CRi give relatively similar results, with median values close to
the NYB value and most results higher than the Opt value. Since NYB, CRh, and Opt agree at site 2, we analyzed
the temperature profiles of the other sites to identify time windows where their behavior was similar to the profiles
at site 2. We then tested these time windows for the k calculations to see if the results agreed more. However, these
calculations yielded fewer and less consistent results across all sites, with k values changing both in number and
value simply by taking a subset of the original data, highlighting the methods' sensitivity to input data.

With all variations calculated for the CRh and CRi methods we can analyze how these methods are affected by
changes in ρr and cr, sensor uncertainty, moisture content and performance metric cut‐off. Both methods show a
greater dependence on the inclusion of moisture content compared to any of the other variables, with the
exception of site 1, where the change between using R2 > 0.75 and R2 > 0.5 has a similar impact to the moisture
content. Including the moisture in the calculations increases the resulting k value in all cases (Figure 5 and Table
S4 in Supporting Information S1), with mean increases of 0.79, 0.37 and 0.59 W m− 1 K− 1 for sites 1, 2 and 3,
respectively. In our case, the debris lithology does not significantly affect the derived k value, as the three sites
have relatively similar lithological compositions (Text S2 in Supporting Information S1). However, considering
that the debris cover lithological units can change significantly in small areas (Figure 1), in glaciers where li-
thologies vary more drastically, debris composition could have a greater influence on thermal conductivity.

Figure 6. Calculated z0 values with the different variations of the PAM method considering different filters for stability:
None: no stability filtering; Rib: Richardson number <|0.03|; u2m: wind speed at 2 m <1.5 m s− 1; Ribu2m: both Rib and u2m.
For visual clarity, the figure was truncated, as the uncertainty of some results extends beyond the displayed range. The lower
bounds of the uncertainty bars are located at 4.3 × 10− 5, 2.3 × 10− 4 and 0.019 m for sites 1, 2 and 3, respectively. The results
of the Opt method are shown as an orange dashed horizontal line for each site.
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Previous studies on aerodynamic roughness length of debris‐covered glaciers have demonstrated its variability in
response to meteorological conditions (e.g., Quincey et al., 2017). Similarly, changes in thermal conductivity
values over time have been observed (e.g., Nicholson & Benn, 2012). Despite this, many studies often use a single
value for prolonged periods. Given that our results indicate a strong influence of moisture on the derived k values,
we investigated whether our k estimates vary over time and explored potential links to meteorological conditions.
Daily k values calculated using CRh and CRi variations (Figure S21 in Supporting Information S1) show sig-
nificant variability. CRh is particularly sensitive to precipitation events, leading to unstable and elevated k values
during wet periods compared to drier conditions. In contrast, CRi does not seem to show the same dependency,
with values across sites showing less consistent stabilization. We therefore explored the effect of subdividing the
data into “wet” periods, defined as precipitation events and up to two days afterward, and “dry” periods, defined
as the intervals between precipitation events (Figure S22 and Table S5 in Supporting Information S1). Our results
remain relatively unchanged when comparing the overall results with the dry periods (absolute change between
∼0.007–0.08Wm− 1 K− 1 for CRh and∼0.005–0.04Wm− 1 K− 1 for CRi), whereas, when comparing with the wet
periods CRh shows a more substantial increase between 0.3 and 0.6Wm− 1 K− 1 and CRi an increase between 0.05
and 0.6 W m− 1 K− 1.

3.2. Aerodynamic Roughness Length Values

Aerodynamic roughness length values range from 0.013 to 0.075 m, from 0.005 to 0.096 m and from 0.027 to
0.05 m in sites 1, 2 and 3, respectively (Figure 6). At site 1, the PAM values are lower than the Opt ones, and
the different stability filters do not have a large impact on the results. At site 2, the value of the Opt method is
within the range of the PAM results, there is a greater spread of values and filtering has a larger impact than at
site 1. Finally, at site 3, the median value of the PAM results are in good agreement with the Opt results, there
is little spread among all the variations and the different filtering methods do not considerably affect the end
result.

Using all variations calculated for the PAMmethod, we can evaluate how the method responds to changes in Ts, d,
sensor uncertainty, measurement period and performance metric cut‐off. Using Ts instead of T0.5m has the greatest
impact at all three sites, always decreasing the final z0 value. This is followed in importance by the time period
used at sites 1 and 2, where using the shorter measurement period of site 3 increases z0 (Figure 6 and Table S6 in
Supporting Information S1).

Aerodynamic roughness length is also variable in time as surface conditions change (Quincey et al., 2017), and
the PAM method is usually used to obtain one representative value or a range of values for each glacier (e.g.,
Chambers et al., 2020; Sicart et al., 2014). We calculated daily values of z0 using the selected variation of PAM
(Figure S23 in Supporting Information S1) and examined whether the derived values show temporal changes, as
well as whether these variations correlate with local meteorology. The three sites exhibit significant variability
over the measurement period, although the variation does not show a clear correlation with temperature or wind
speed/direction variability (data used for the calculations) during this period.

3.3. Modeled Ablation

The simulated ice melt using different combinations of k and z0 ranges widely, and in some cases differs sub-
stantially from ice melt observed at the ablation stakes (Table 5 and Figure 7).

When modeling ice melt with the debris properties reported by Brock et al. (2010), the modeled ice melt does
not align with the measurements. Furthermore, using the k values calculated with the CRh, CRi and NYB
methods, the modeled ice melt generally does not match the measurements, with the exception of the values
calculated using the CRh method on site 2 and the NYB method on site 1 (Table 5 and Figure 7). When
examining the effect of the values of k and z0 on the simulated melt, it can be seen that the final ice melt is more
dependent on the choice of method for calculating k. For example, at site 2, when calculating ice melt with CRi/
PAM and CRi/Opt (keeping the k method constant) the difference of ice melt is <2%, whereas when calculating
with CRi/PAM and Opt/PAM (keeping the z0 method constant), the difference is 66% (Table 5). When looking
at the modeled surface temperature, the results are similar to the ice melt (Figure S24 in Supporting
Information S1).

Journal of Geophysical Research: Earth Surface 10.1029/2025JF008360

MELO‐VELASCO ET AL. 14 of 22

 21699011, 2025, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025JF008360 by T

est, W
iley O

nline L
ibrary on [16/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4. Discussion
4.1. Thermal Conductivity Estimates

4.1.1. CRh and CRi

CRh explicitly considers debris properties such as ρr, cr, ϕ and θ, particularly with Equation 3. Given that this
method is based on the one‐dimensional diffusion equation, it would perform the best under conditions where
∂T
∂t = 0, the system is entirely conductive, and conductivity is constant with depth (Conway & Rasmussen, 2000).
Yet, these conditions are uncommon in porous materials like supraglacial debris, where energy transfer involves
multiple processes (Farouki, 1981; Humlum, 1997). Variations in moisture content, lithology and porosity can
cause depth‐dependent variations in k (Conway & Rasmussen, 2000; Nicholson & Benn, 2012; Steiner
et al., 2021). CRi addresses debris layer heterogeneity with a two‐layered model, yet it also performs best under
conditions where ∂T

∂t = 0 and the system is purely conductive. The linear regressions with higher R2 values
usually correspond to positions lower in the debris layer, where non‐conductive processes are less prevalent
(Figure S25 in Supporting Information S1).

The variation in the methods' performance may relate to the debris layer structure. Despite similar debris
thickness and ice melt between sites 1 and 2, site 1 exhibits significantly higher k values with CRh and CRi
compared to NYB and Opt. The debris layer structure at the two sites is very different: at site 1, a thin layer of wet
fine debris sits beneath a thick layer of dry large debris; while at site 2 a thicker layer of wet fine debris is beneath a
thinner layer of dry large debris. This is also evident in the shape of the daily temperature profiles within the debris
(Figures 3b–3f and 3j). At site 1, where a large proportion of the debris consists of medium‐to large‐sized clasts
(Figure S26 in Supporting Information S1), the temperature profiles show a wider spread between the surface and
approximately 30 cm depth. In contrast, at site 2, which a lower proportion of medium and large clasts, the wider
temperature distribution is limited to the upper∼10 cm of the debris layer. This distinct layering might explain the
higher k value at site 1 (Figure S26 in Supporting Information S1): The thicker large debris layer at site 1 impacts
CRh and CRi, since it contains air pockets between large clasts, which could facilitate convection. Figure 5 and
Table S4 in Supporting Information S1 supports this hypothesis, with an increased R2 cut‐off threshold notably
impacting k values at site 1, which we interpret to indicate a larger non‐conductive processes term (Conway &
Rasmussen, 2000; Nicholson & Benn, 2012; Petersen et al., 2022). CRh and CRi at site 3 show values generally
higher than Opt and median values similar to NYB, but this site is dominated by wet fine debris, which may
enhance heat advection through water transport, and the debris thickness at this site falls below recent literature
recommendations (Beck & Nicholson, 2023).

Our results indicate that moisture within the debris significantly influences k, particularly during wet periods
following precipitation events. While individual k estimates are site‐specific and reflect localized conditions
within the debris layer, fluctuations in these values may indicate changes in the bulk k, which integrates the effects
of all physical processes across the debris layer.

Figure 7. Modeled and measured ice melt at the three sites. The shaded areas represent the melt modeled using the
uncertainties of k and z0. The combination of the selected values (Table 4) for each method are plotted as colored lines, the
commonly used values in previous studies (Brock et al., 2010) as a black line and measured ablation as black crosses (plotted
only once a week for visualization purposes). Box plots of all the combinations are shown to the right of each plot.
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Temporal and spatial sampling intervals, sensor uncertainty, and errors in debris thermistor depth can alter the
calculated k. Beck and Nicholson (2023) recommend using thermistors with a precision of 0.1°C, a debris layer
depth of at least 40 cm, three thermistors spaced 8–20 cm apart, high temporal resolution, then average over a
5 min period, and stable, dry meteorological conditions for at least a week. We were able to implement most of
their recommendations, except for the high temporal resolution, which could be a contributing factor to the
disagreement between methods.

4.1.2. NYB and Opt

NYB assumes minimal change in heat stored in the debris layer over time and a linear vertical temperature
gradient (Brock et al., 2010), generally acceptable for periods exceeding a week (Conway & Rasmussen, 2000;
Nicholson & Benn, 2006). However, hourly temperature gradients may not always be linear, revealing varied
profile patterns (Figures 3b–3f and 3j). Despite a higher linearity at site 3 (R2 = 0.99) , NYB results differ most
there from Opt, which best reproduces the observed ablation. NYB uses only surface and ice‐debris interface
temperatures and ablation data, neglecting debris layer characteristics. The advantage lies in calculating bulk k
(required by energy‐balance models), acknowledging heat transport complexities such as convection, evaporation
and percolation of rainwater (Brock et al., 2010). In contrast, the CRh and CRi methods rely on linear regressions,
which often have higher R2 values at lower debris depths where non‐conductive processes are less significant. As
a result, these depths are used in the calculation of k, while depths with lower R2 are excluded, which biases the k
values obtained to be representative of the lower layers. This can lead to a mismatch between the local k values
derived in this way and the “bulk” thermal conductivity required for models, as the latter has to integrate the
effects of all physical processes throughout the debris layer.

We examined how the NYB and Opt methods are affected by the measurement period by analyzing sub‐periods
(>week) of ablation and temperature data, comparing them to results from the entire period (Figure S27 in
Supporting Information S1). The findings indicate differences within ranges of − 24% to 12% (NYB) and − 42% to
5% (Opt) for site 1, ±20% (NYB) and ±30% (Opt) for site 2%, and − 36% (NYB) and 0% (Opt) for site 3,
highlighting their high dependency on the length of the measurement period.

4.2. Aerodynamic Roughness Length Estimates

The PAM method relies on assumptions that hold true only under an idealized surface boundary layer that is
horizontal, homogeneous and in steady‐state conditions. Filtering measured data to ensure a good fit and satisfy
theoretical assumptions drastically reduces the number of valid profiles, which represent only a small fraction of
the measurement period at each site (Table 2). Nonetheless, profile fits with and without filtering yield generally
similar values, as observed in previous studies Figure 6; Sicart et al., 2014).

The application of Monin‐Obukhov similarity theory assumes the presence of a homogeneous upwind area with
consistent aerodynamic properties, which is rarely the case for debris‐covered glaciers (Chambers et al., 2020;
Miles et al., 2017), and is also not observed at our study sites except for site 3, which exhibits relatively ho-
mogeneous terrain around the tower (Figure 4a). Variability in elevation around the tower increases rapidly with
distance for sites 1 and 2, whereas site 3 shows a slower increase. At 30 m from the towers, site 3 demonstrates
less than half the standard deviation of sites 1 and 2 (2.6 vs. 5.8 and 5.8; Figure 4b).

The hummocky nature of debris‐covered glaciers and the debris surface's ability to regulate temperature (Evatt
et al., 2015) significantly complicate the implementation of Monin‐Obukhov theory (Miles et al., 2017). The large
hummocks and troughs combine to create an unstable and heterogeneous roughness layer (Shao & Yang, 2008),
and the underlying viscous sublayer, which is regulated by roughness elements at the microtopographic scale,
may limit turbulent energy transfer to the surface (Smeets & Broeke, 2008).

4.3. Limitations and Recommendations

Because of sampling biases in our experimental setting, our derived values may or may not represent the broader
glacier domain. The towers were placed in relatively flat areas along the glacier's central line, where debris
thickness ranged from 24 to 50 cm, allowing for easier placement of thermistors with reasonable spacing.
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Although site selection did not explicitly account for variations in parameters
affecting k (e.g., lithology and moisture content), our results represent some
variability across the glacier surface. This variability might not cover the full
range of values at the site but is illustrative. Few studies have reported
multiple and simultaneous (or within the same year) measurements of con-
ductivity at different glacier locations (Anderson et al., 2021; Conway &
Rasmussen, 2000; Rounce et al., 2015). These studies show similar ranges of
variability (∼0.4–1.2Wm− 1 K− 1), highlighting that a single value may not be
suitable for any site. Notably, in our case, the NYB and Opt methods pro-
duced consistent values for sites 1 and 2 (NYB: 0.94 and 0.95 W m− 1 K− 1;
Opt: 0.93 and 0.92 W m− 1 K− 1, respectively).

For the z0 results, we obtain ranges of approximately one order of magnitude
(0.018–0.0285 m for PAM and 0.03–0.075 m for Opt). Unfortunately, to the
best of our knowledge, no other studies use multiple wind‐temperature towers
to estimate z0, but we can compare this range with that estimated by Miles

et al. (2017) with the microtopographic method on Lirung Glacier (Nepal), which obtained results varying at least
3 orders of magnitude across the glacier. Considering this, our results from the three towers in Pirámide Glacier
are clustered around the established values for a debris‐covered glacier (Brock et al., 2010; Miles et al., 2017), but
may not represent the full range of possible values.

The discrepancies observed between the methods also highlight the need for caution when relying on assumed or
previously published values for debris properties. Given the variability encountered between sites and ap-
proaches, it becomes important to reconsider the validity and applicability of such values in modeling sub‐debris
ice melt with energy‐balance models or in the estimation of debris thickness (e.g., Buri et al., 2023; Fugger
et al., 2022; McCarthy et al., 2022; Rounce et al., 2018; Rounce et al., 2021). Revisiting previous studies that
derive these properties from one method and analyzing them with alternative methods or parameters could be
informative both to analyze the transferability of our findings and to verify previous results. This re‐evaluation
could provide insights into the robustness of previous results and lead to more accurate assessments of param-
eter uncertainty in future research.

For energy‐balance modeling of debris‐covered glaciers, deriving a k value by optimizing it against measured
ice melt with observed surface temperature data appears to be the most viable approach. This method requires
less field data and provides the bulk value that the energy‐balance model requires. Its transferability to other

Table 2
Number of Profiles and Percentage of the Total Profile Count After Filtering
the Calculations Using the Measured Surface Temperature With the Top
Debris Thermistor, Considering d ≠ 0, Sensor Uncertainty and the Entire
Measuring Period of Each Tower

Site 1 Site 2 Site 3

Number % Number % Number %

All profiles 4,299 100 3,851 100 607 100

Rib filter 1,890 44 1,331 35 132 22

u2m filter 3,443 80 2,441 63 386 64

Ribu2m filter 1,731 40 1,288 33 107 18

L convergence, j< 1 572 13 290 8 54 9

L convergence, R2 > 0.75 358 8 174 5 26 4

Table 3
Summary of Methods Used for k and z0 Derivation

Method Description

Thermal conductivity

NYB (Nakawo & Young, 1981, 1982) From ablation measurements and assuming a linear mean vertical temperature gradient

CRh (Conway & Rasmussen, 2000) Based on the one‐dimensional diffusion equation, assuming a heterogeneous debris layer,
multiple thermistors at different depths and calculating the temporal and spatial derivatives

CRi (Laha et al., 2022) Based on CRh, but generalized to a two‐layered model to account for inhomogeneities

Opt (Fugger et al., 2022) Optimisation by simulating conduction through a homogeneous debris cover with surface
temperature and ablation as the target variables

Aerodynamic roughness length

PAM (e.g., Sicart et al., 2014) Profile Aerodynamic Method: derives z0 from wind and temperature towers, based on the
Monin‐Obukhov similarity theory, which is only valid for a near‐neutral surface boundary
layer

Opt (Fugger et al., 2022) Optimisation of the energy balance, following the determination of k with the Opt method
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sub‐debris conduction models (e.g., Evatt et al., 2015; Reid & Brock, 2010) remains to be seen, but it should
produce a similar bulk estimate for most models due to similar assumptions. While optimized k values can
improve model performance for the specific data set and conditions used, they may not represent universally
applicable or physically accurate values, given that other factors (e.g., aerodynamic roughness length, albedo,
or debris moisture content) could partially compensate for inaccuracies in k. The choice of method and
configuration for determining z0 is less critical compared to thermal conductivity since it has a smaller impact
on total ice melt. While optimizing for k only involves simulating conduction through the debris, optimizing
for z0 requires running the entire energy‐balance model, making it model‐dependent. Despite the higher
economic cost of measurements for PAM compared to Opt, the latter remains independent of ice melt cal-
culations and is therefore preferable.

5. Conclusions
This study analyses established methods for deriving thermal conductivity and aerodynamic roughness length for
debris‐covered glaciers from field measurements and assesses the impact the results have when applying an
energy‐balance model to calculate ice melt at the point scale.

Our analysis of the effect of changing moisture content, sensor uncertainty, performance metric cut‐off, and
lithological parameters revealed that methods for estimating thermal conductivity using the diffusivity equation
(CRh and CRi) were most affected by changes in moisture content. Additionally, the CRh calculations were
notably affected by increases in moisture content resulting from precipitation events. The profile aerodynamic
method for estimating aerodynamic roughness length showed more dependence on surface temperature, followed
by the measurement period used.

Table 4
k and z0 Values Used for the Ice Melt Simulations for Each Site

Thermal conductivity

Site Method ρ cp Range of R2 of the fits Sensor uncertainty Moisture # Of k values k [W m− 1 K − 1] σ[W m− 1 K− 1]

1 CRh 2,685 796.9 0.79 Yes Yes 1 2.02 ± 0.13

CRi 2,685 796.9 0.8 − 0.85 – Yes 3 1.89 +0.54/ − 0.77

NYB – – – – – – 0.94 –

Opt 2,685 796.9 – – – – 0.93 –

2 CRh 2,657 816.1 0.75 − 0.87 Yes Yes 2 0.92 +0.09/ − 0.1

CRi 2,657 816.1 0.79 − 0.89 – Yes 3 2.63 +0.26/ − 0.31

NYB – – – – – – 0.95 –

Opt 2,657 816.1 – – – – 0.92 –

3 CRh 2,658 815.6 0.52 − 0.58 Yes Yes 2 2.27 ±0.07

CRi 2,658 815.6 0.64 – Yes 1 2.08 ±0.37

NYB – – – – – – 1.66 –

Opt 2,658 815.6 – – – – 1.26 –

Aerodynamic roughness length

Site Method Ts Performance metric Sensor uncertainty d Period z0[m] NMAD [m]

1 PAM Ts j< 1 Yes Yes Full 0.021 0.0198

Opt – – – – 0.075 –

2 PAM Ts j< 1 Yes Yes Full 0.018 0.0176

Opt – – – – 0.03 –

3 PAM Ts j< 1 Yes Yes Full 0.0285 0.03

Opt – – – – 0.035 –
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We find that:

• There is a lack of consistent agreement between the different methods of deriving both thermal conductivity
and aerodynamic roughness length, leading to a large range of values depending on the approach, experi-
mental set‐up, and assumptions. Discrepancies often arise between the ice melt results from energy‐balance
calculations and the observed data from ablation stakes when using established methods. These in-
consistencies highlight the substantial impact that the chosen method can have on the modeled ice melt.

• For the purpose of energy‐balance modeling of debris‐covered glaciers, optimizing thermal conductivity
values against measured ice melt with observed surface and debris/ice interface temperature data appears to be
a viable method to constrain melt simulations. It requires less field data, it is independent of the energy‐
balance model structure and associated limitations, and it provides a bulk value.

• The selection of a method to determine the aerodynamic roughness length is less critical at this glacier during
the study period, since it has a smaller impact on total ice melt. Moreover, optimizing for aerodynamic
roughness length is dependent on the energy‐balance model. Despite the higher economic cost associated with
measurements for the profile aerodynamic method compared to optimization, they remain entirely indepen-
dent of ice melt calculations and might thus be preferable.

This study highlights the challenges and limitations of existing methods in determining thermal conductivity and
aerodynamic roughness length on debris‐covered glaciers, revealing large and unexpected differences between
existing methods. This identified knowledge gap has implications for modeling ice melt and understanding
energy‐balance processes on debris‐covered glaciers. Therefore, it should be addressed by the community.

Table 5
Total Modeled Ice Melt (Ice meltMod) at the Three Sites Over the Modeling Period, December 2022 to April 2023 and Over the Ablation Stake Measuring Period,
Compared With the Observed Ice Melt From the Ablation Stakes (Ice meltObs)

Site k method z0 method k [W m− 1 k− 1] z0 [m] Ice meltMod (modeling period) [mm w.e.]
Ice meltMod (ablation stake
measuring period) [mm w.e.] Ice meltObs [mm w.e.]

1 CRh PAM 2.02 0.021 1,203 960 390

Opt 2.02 0.075 1,118 880

CRi PAM 1.89 0.021 1,122 896

Opt 1.89 0.075 1,043 820

NYB PAM 0.94 0.021 539 433

Opt 0.94 0.075 499 394

Opt PAM 0.93 0.021 532 427

Opt 0.93 0.075 493 389

2 CRh PAM 0.92 0.018 510 409 384

Opt 0.92 0.03 496 395

CRi PAM 2.63 0.018 1,503 1,189

Opt 2.63 0.03 1,479 1,164

NYB PAM 0.95 0.018 529 424

Opt 0.95 0.03 514 409

Opt PAM 0.92 0.018 509 408

Opt 0.92 0.03 494 394

3 CRh PAM 2.27 0.029 1,430 1,125 877

Opt 2.27 0.035 1,418 1,113

CRi PAM 2.08 0.029 1,799 1,411

Opt 2.08 0.035 1,787 1,398

NYB PAM 1.66 0.029 1,430 1,124

Opt 1.66 0.035 1,417 1,112

Opt PAM 1.26 0.029 1,075 849

Opt 1.26 0.035 1,065 839

Note. The gray cells are the modeled results that are within ±10% of the observed melt for each site.
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Data Availability Statement
Available at the following link: https://doi.org/10.5281/zenodo.11581073 (Melo Velasco et al., 2024), are all the
data sets and codes for calculating thermal conductivity and aerodynamic roughness length at the three sites.
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