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H I G H L I G H T S

• The 0.1◦ × 0.1◦ simulation by downscaling improves the global BaP accuracy.
• Health risk due to BaP at 0.1◦ × 0.1◦ resolution has increased by over 50 %.
• Health risk due to BaP is significantly higher in winter than in other seasons.
• Health risk due to BaP is larger for children and young adults than for other groups.
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A B S T R A C T

Polycyclic aromatic hydrocarbons (PAHs) are one of the highly toxic pollutants that require strict control. High- 
resolution distribution of PAHs is crucial for accurately quantifying their population exposure levels. However, 
due to the high computational cost, few models applying the dynamical approach could simulate global PAHs to 
evaluate health effects with resolution down to 1–10 km. This study simulated the global distribution of PAHs by 
combining the IAP-AACM model with a nonlinear downscaling method based on relative anthropogenic emis-
sions and observations. A global high-resolution (0.1◦ × 0.1◦, ~10 km in middle latitudes) dataset of Benzo[a] 
pyrene (BaP, the most representative PAHs) in 2013 and 2018 is generated to support exposure studies. The 0.1◦

× 0.1◦ results are comparable to the nested simulation and have better consistency with observations than that of 
the 1◦ × 1◦ simulation. The 0.1◦ × 0.1◦ estimation shows significantly higher population-weighted total incre-
mental lifetime cancer risks (PTILCR), with an increase larger than 50 %, compared to the 1◦ × 1◦ simulation. 
The PTILCR is greatly higher in winter than in other seasons and it is larger for children and young adults than for 
adolescents and seniors. The study has significant implications for the reliable assessment of global health risks of 
PAHs and the development of scientific management strategies for different age groups.
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a kind of persistent 
organic pollutants (POPs), mainly produced by anthropogenic activities 
such as organic residues and incomplete combustion of fuels (Chang 
et al., 2006; Liao and Yu, 2020). Different from many other POPs, PAHs 
are by-products of combustion, i.e., they are not intentionally produced 
(Friedman et al., 2014). In addition, PAHs can be produced by natural 
processes, such as volcanic eruptions and wildfires (Fu et al., 2023). 
Exposure to PAH-containing environments increases the risk of cancer in 
humans (Boström et al., 2002; Xia et al., 2013), and it can enter the 
human body through inhalation and dermal contact routes (Ma et al., 
2020). PAHs have been classified as human mutagens and carcinogens 
by the World Health Organization (WHO) due to their different toxicity 
levels (World Health Organization, 2000; Ting et al., 2023). The United 
States Environmental Protection Agency (USEPA) has identified 16 
PAHs as priority pollutants (Li et al., 2023). Among them, benzo[a] 
pyrene (BaP), the first chemical carcinogen to be discovered (Ravindra 
et al., 2008), is often studied as a representative substance of PAHs (Cao 
et al., 2022; Zhang et al., 2011; Zhu et al., 2015). Thus, understanding 
the spatial and temporal distribution characteristics of BaP in the at-
mosphere is essential for assessing its impact on the environment and 
human health.

The environmental persistence and semi-volatility of PAHs allow 
them to be transported over long distances (Marusenko et al., 2011; 
Zhang and Chen, 2017). The health risks assessment based on a 
long-term and broad regional analysis of atmospheric PAHs through 
monitoring is costly and technically limited. Modeling is an effective 
tool for representing the chemical and physical processes of PAHs, and 
has been widely used to investigate their spatial and temporal distri-
bution in the atmosphere. (Byun and Schere, 2006). At present, several 
modeling studies of PAHs at the global scale have been reported, with 
resolutions ranging from 4.5◦ × 4.5◦ to 1◦ × 1◦ (Lammel et al., 2009, 
2015; Lou et al., 2023; Octaviani et al., 2019; Shrivastava et al., 2017). 
Models with these resolutions can only provide averaged concentrations 
within grids of 100 × 100 km to 500 × 500 km, which cannot capture 
detailed spatial variation, especially the hotspots in heavily polluted 
areas (Wang et al., 2014), and thus are insufficient for investigating the 
health risks of PAHs (Shen et al., 2014). Along with the increase in 
resolution (0.1◦ × 0.1◦), the number of grids will increase exponentially, 
greatly increasing the computation costs (Dinkelacker et al., 2023; 
Rivera et al., 2022). For this reason, it remains challenging for global 
chemical transport models to perform simulations at high resolutions 
(≤10 km).

Downscaling based on emission and meteorological factors is an 
efficient method to derive a high-resolution distribution of PAHs. For 
example, Shen et al. (2014) established a method to downscale the PAHs 
distribution from 1.875◦ × 1.895◦ to 0.1◦ × 0.1◦. Shrivastava et al. 
(2017) and Lou et al. (2023) also applied this method to enhance the 
data resolution from 1.9◦ × 2.5◦ to 0.1◦ × 0.1◦, finding that 
high-resolution data could increase the BaP concentration by about a 
factor of two in some areas, thereby increasing the associated health 
risks. The above studies demonstrate that model resolution significantly 
impacts simulated concentrations, with higher resolution enhancing the 
model’s ability to capture detailed spatial variability, resulting in better 
agreement between simulations and observed values. However, few 
studies have compared the downscaled PAHs concentrations with 
high-resolution dynamical simulations for data validation, and the dif-
ferences in global health risks based on low and high resolution have yet 
not been quantified. In addition, the uncertainties in the global 
high-resolution estimation of the health risks of PAH remain to be 
further addressed although some studies using Monte Carlo simulations 
have investigated the sensitivity of parameters such as inhalation rate, 
body weight, and cancer slope factor (Xia et al., 2013; Zhang et al., 
2016, 2023). In this paper, we assessed the global health risks of BaP 
based on a high-resolution simulation. The results are helpful to view the 

global distribution of BaP and evaluate the health risks induced by 
PAHs. The structure of this paper is as follows: Section 2 describes the 
global model, the downscaling approach, and the health risk assessment 
method. Section 3 shows the downscaling results, the impact of reso-
lution on health risks due to PAHs, and an uncertainty analysis. Section 4
summarizes the main conclusions.

2. Method

2.1. Description of model

The global atmospheric chemical transport model is the Atmospheric 
Aerosol and Chemistry Model developed by the Institute of Atmospheric 
Physics, Chinese Academy of Sciences (IAP-AACM) (Wei et al., 2019). 
The model uses nesting method across multi-domain to simulate atmo-
spheric processes from global to regional scales. The model has been 
widely used to investigate dust transport (Li et al., 2012), regional ozone 
pollution and haze formation (Du et al., 2019; Wang et al., 2001), global 
transport of mercury (Chen et al., 2015), new particle formation (Chen 
et al., 2019), and the global distribution of particle number concentra-
tion (Chen et al., 2021).

Recently, we incorporated several chemical and physical processes 
to simulate PAHs in the IAP-AACM. The processes include: (1) Gas- 
particle partitioning, adsorption onto black carbon (BC) and absorp-
tion into aerosol organic matter (OM), (2) Gaseous-phase reactions, the 
reactions of gas-phase PAHs with hydroxyl radical (OH), nitrate radical 
(NO3), and ozone (O3), (3) Heterogeneous reaction with O3 using a 
detailed parameterization considering temperature and humidity 
developed by Mu et al. (2018), (4) Air-soil exchange, using parameters 
determined in Jury et al. (1983) and Strand and Hov. (1996), and (5) 
Dry and wet deposition. The detailed model description can be found in 
Text S1.

In this study, we use nested domains to simulate the distribution of 
BaP in 2013 and 2018. Each simulation has a one-month spin-up to 
minimize the influence of initial conditions. The global domain is 
configured with a horizontal resolution of 1◦ × 1◦ to combine the 
downscaling technique to generate high-resolution datasets (0.1◦ ×

0.1◦). The nested domains are focused on eastern China and Central 
Europe with a horizontal resolution of 0.11◦ × 0.11◦, which is set to 
verify the dataset from the downscaling method. The emission inventory 
of PAHs was derived from the Emissions Database for Global Atmo-
spheric Research (EDGAR, Crippa et al., 2020, available from 
https://edgar.jrc.ec.europa.eu/dataset_pop60#sources, last access: May 
10, 2024) with a resolution of 0.1◦ × 0.1◦, which includes sectors such as 
industry, transportation, energy for buildings, agriculture, and power. 
To match the grid of the IAP-AACM, we re-gridded the emission in-
ventory to 1◦ × 1◦ and 0.11◦ × 0.11◦. The meteorological field input to 
the IAP-AACM is simulated by the global version of the Weather 
Research and Forecasting Model (GWRF, version 3.7.1, Skamarock 
et al., 2008; Zhang et al., 2012). The GWRF initial conditions were 
produced by Final Analysis data (FNL) from the National Centers for 
Environmental Prediction (NCEP).

2.2. Description of downscaling methods

Anthropogenic emissions are a major source of PAHs, so we used a 
nonlinear downscaling method based on relative anthropogenic emis-
sions (RAEs). This method assumes that the subgrid spatial distribution 
of BaP concentrations is associated with the underlying distribution of 
emission (Kohl et al., 2023; Wang et al., 2014). It should be noted that 
this method implicitly incorporates the effect of mixing within the 
coarse grid by fitting with observation data. Compared to the method 
used by Shen et al. (2014), the influence of meteorological factors would 
be underestimated by the method in this study. However, considering 
that the monthly and annual mean concentration is less affected by the 
variation of meteorological conditions than the hourly concentration, 
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the method can be used to generate the high-resolution simulations.
The original resolution of the EDGAR inventory (0.1◦ × 0.1◦) is finer 

than the resolution of the global simulation (1◦ × 1◦). Specifically, BaP 

concentrations within the coarse grid were redistributed based on 
relative emissions, which are defined as the differences in emissions 
between fine and coarse grids. Key parameters for this redistribution 

Fig. 1. Scatterplot of (a) relative anthropogenic emission (RAE) versus observations/simulations (Europe: blue; China: red; Japan: pink). The red line represents the 
fitted curve through the point (1,1). (b) Box plot of the distribution of fitting parameters A. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)

Fig. 2. Illustration of the downscaling process using anthropogenic emissions of PAHs from the EDGAR inventory, using (a) the Beijing-Tianjin-Hebei region (China) 
and (b) the Czech Republic (Europe) as examples. Relative anthropogenic emissions (middle row) are derived from primary anthropogenic emissions of 1◦ × 1◦ and 
0.1◦ × 0.1◦ (upper row). Results from model resolution (1◦ × 1◦) to 0.1◦ × 0.1◦ horizontal resolution (bottom row) are obtained from RAE and Eq. (2). It should be 
noted that the average RAE in each low-resolution grid box (shown in gray) is equal to 1, ensuring that the mean PAH concentrations in each grid box 
remain consistent.
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were derived from observational data, enabling the construction of a 
high-resolution global distribution of BaP concentrations.

Fig. 2 illustrates the above downscaling process of how to obtain the 
PAHs dataset at 0.1◦ × 0.1◦ horizontal resolution in detail, using the 
example over the areas in Beijing-Tianjin-Hebei (in China) and Czech 
Republic (in Europe). We calculated RAEs, i.e., local anthropogenic 
emissions in the fine grid relative to the averaged emissions of all fine 
grids within the coarse grid: 

RAE=PAE0.1/PAE1 (1) 

Where PAE0.1 is the original anthropogenic emission from the EDGAR 
inventory (0.1◦ × 0.1◦). PAE1 is the emission inventory re-gridded to 
match the IAP-AACM resolution (1◦ × 1◦).

After calculating the RAE values, we obtain the nonlinear fitting 
relationship between the ratios of observations/simulations and RAE 
values (shown in Fig. 1). Nonlinearity arises because the distribution of 
PAHs in the atmosphere is influenced not only by emissions but also by 
complex physicochemical processes, such as air-soil exchange and gas- 
particle partitioning. These processes lead to a nonlinear relationship 
between the concentrations of PAHs and their emissions. These con-
siderations are implied in adjustments using observations. In the 
downscaling, the concentration can be greater or less than that in the 1◦

× 1◦ simulation depending on whether the value of RAE is greater than 
or less than 1.

We selected 230 observational datasets from Europe, China, and 
Japan. For the simulated concentrations, we select the values in the grids 
where observation sites are located at 1◦ × 1◦ resolution. Then, we carry 
out fitting through the point (1, 1), and the expression obtained is y =

A× (x − 1)+ 1. The fitting curve is shown as the red curve in Fig. 1a. 
Where x represents RAE and y represents observation/simulation at low 

resolution. A is the fitting parameter, which represents the degree of 
influence of the change of RAEs on the observation/simulation. We used 
this relationship to adjust the PAHs simulations, and then obtained the 
PAHs concentration by downscaling using the equation as follows: 

PAHD =PAHM × (0.311×(RAE − 1)+1) (2) 

Where PAHM is the simulated concentration of PAHs in the coarse grid at 
low resolution (before downscaling). PAHD is the calculated concen-
tration of PAHs in the fine grid at high resolution after downscaling.

The fitting parameters have uncertainties associated with the 
discontinuity and insufficiency of the observational data. Therefore, we 
randomly selected 120 observations from the total of 230 as a training 
dataset and conducted 5000 experiments to obtain different fitting pa-
rameters. As shown in Fig. 1b, the range of fitting parameter A is be-
tween 0.2 and 0.4 in 88 % of the experiments, and the mean value (0.32) 
is very close to the fitting value (0.311) from the complete dataset.

In addition, we applied Eq. (2) to the simulation results at the low 
resolution in 2018 to verify the independence of the downscaling pro-
cess from the data used for fitting, and showed that fitting parameters 
can be applied to data points outside the training dataset.

2.3. Observational data

To evaluate the performance of the downscaling approach, we 
collected the observational data of PAHs in Europe, China, and Japan 
from publicly available datasets and published papers as follows: (1) 
European Monitoring and Evaluation Program (EMEP, https://projects. 
nilu.no/ccc/reports.html, last access: May 10, 2024), this includes 
monthly and annual averages of BaP concentrations from 2003 to 2021 
in Poland, Czech Republic, Germany, and other European countries; (2) 

Table 1 
The parameters used in Eq. (3)-Eq. (4) for different groupsa (lognormal distribution with geometric mean and geometric stand deviation: LN (gm, gsd)).

Parameter Children Adolescents Young Middle-aged Older The Oldest

(0–6) (7–17) (18–44) (45–59) (60–79) (> 80)

IR LN (5.8,1.2) LN (13.1,1.3) LN (16.7,1.1) LN (16.7,1.1) LN (13.8,1.2) LN (12.0,1.1)
BW LN (10.7,1.2) LN (40.3,1.4) LN (61.9,1.2) LN (63.5,1.2) LN (60.3,1.2) LN (55.5,1.2)
ED 6 11 27 15 10 5
SA LN (1050,1.3) LN (1600,1.4) LN (2000,1.1) LN (2000,1.1) LN (2000,1.2) LN (1800,1.2)
SFOinh

b 3.14 3.14 3.14 3.14 3.14 3.14
SFOder

b 37.47 37.47 37.47 37.47 37.47 37.47

a Adapted from Duan et al. (2015); Duan et al. (2016).
b Adapted from Hussain et al. (1998).

Fig. 3. Comparison of annual mean concentrations of BaP at 1◦ × 1◦ resolution (blue) and 0.1◦ × 0.1◦ resolution (red) with observations in 2013 in (a) East Asia and 
(b) Europe. The black line shows a ratio of 1 : 1 and the dashed gray lines from top to bottom show ratios of 5 : 1, 2 : 1, 1 : 2, and 1 : 5, respectively. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Chinese Persistent Organic Pollutants (POPs) Soil and Air Monitoring 
Program Phase II (SAMP-II, Ma et al., 2018) and the reference therein. 
Due to the limitation of PAHs monitoring technology, the measurements 
of PAHs in China are very scarce. In addition, most of the observational 
data are not continuous in time, and we have selected data in years close 
to the simulation year (2013). These data sources can refer to Wu et al. 
(2024); (3) Environmental Outlook Station of the National Environ-
mental Research Institute of Japan (NIES, https://tenbou.nies.go.jp/gis 
/monitor/, last access: May 15, 2024), this includes annual and monthly 
averages of BaP concentrations in a large number of stations in Japan 
from 2000 to 2018.

2.4. Health risk assessment

The health risk of PAHs was estimated by the ILCR model proposed 
by the USEPA (1991). In our evaluation, the population is divided into 
six age groups, i.e., children (0–6 years old), adolescents (7–17 years 
old), young adults (18–44 years old), middle-aged adults (45–59 years 
old), older adults (60–79 years old), and the oldest adults (> 80 years 

old). The ILCR of BaP through inhalation and dermal contact is calcu-
lated as follows: 

ILCRinh =C × IR × EF × ED × SFOinh × cf/AT × BW (3) 

ILCRder =C × SA × ABS × AF × EF × ED × SFOder × cf/AT × BW (4) 

TILCR= ILCRder + ILCRinh (5) 

where ILCRinh and ILCRder are the ILCR through inhalation and dermal 
contact, respectively. TILCR is the total ILCR of exposure through the 
two pathways. C is the concentration of BaP in the atmosphere (ng m− 3). 
We treated inhalation rate (IR, m3 d− 1), body weight (BW, kg), and skin 
exposed surface area (SA, cm2), which obeyed lognormal distribution in 
Eq. (3)-Eq (4) probabilistically. EF is the exposure frequency (day 
year− 1), which is set as 90 for seasonal exposure and 365 for the whole 
year exposure. ED is the exposure period (year), with values of 6, 11, 27, 
15, 10, and 5 for children, adolescents, young adults, middle-aged 
adults, older adults, and the oldest adults, respectively. SFOinh and 
SFOder are the carcinogenic slope factor of inhalation and dermal contact 

Fig. 4. Spatial correlations between high-resolution simulation (Sim_0.11◦ × 0.11◦) and downscaling result (DS_0.1◦ × 0.1◦) of (a, f) annual and (b-e, g-j) seasonal 
mean concentrations in (a–e) China and (f–j) Europe (2013).
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respectively (kg day year− 1). cf is the conversion factor (10− 6 mg ng− 1). 
AT is the average exposure time (25550 days). ABS is skin absorption 
factor (0.13). AF is dermal adherence rate (the values are 0.04 for 
children and adolescent and 0.02 for young adults, middle-aged adults, 
older adults, and the oldest adults). The values of this parameters are 
shown in Table 1.

The population data were obtained from LandScan (https://landscan 

.ornl.gov, last access: June 10, 2024). The original resolution of the data 
is 1 km × 1 km (at the Equator), and we re-gridded it to 1◦ × 1◦ and 
0.11◦ × 0.11◦ to match the IAP-AACM resolution. When calculating the 
ILCR, the cancer risk is set to 0 in regions without population. Consid-
ering the influence of population distribution (Aunan et al., 2018), we 
also calculated the population-weighted BaP concentrations (PC) for 
health risk assessment as follows: 

Fig. 5. Spatial distribution of annual mean BaP concentrations at low-resolution (1◦ × 1◦) in (a) eastern China and (f) central Europe in 2013. Comparison of the 
concentrations at high resolution (0.11◦ × 0.11◦, b/g) and downscaling (0.1◦ × 0.1◦, c/h). The concentration difference between (d/i) high-resolution/(e/j) 
downscaling results and low-resolution concentrations, positive values indicate that the low-resolution results are greater than the high-resolution/downscaling 
results, and negative values are the opposite.
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PC=
∑

i
(Pi ×Ci)

/

P (6) 

where Ci is the concentration of BaP for each grid (ng m− 3). Pi and P are 
the population for each grid and total population for the region.

In addition, a Monte Carlo simulation with 10,000 iterations was 
implemented to investigate the uncertainties of the parameters in the 
health risk assessment model. Incorporating parameter variability and 
uncertainty into the health risk assessment provides a more realistic 
representation of exposure level. The results are presented in the form of 
probabilities, cumulative probability distributions, and sensitivity ana-
lyses, where probability analyses are used to represent the uncertainty of 
health risks (Xia et al., 2013), and sensitivity analyses are used to assess 
the relative importance of each input parameter to the output (Chen and 
Liao, 2006; Fang et al., 2020).

3. Results

3.1. Evaluation of high-resolution data

To evaluate the performance of IAP-AACM, we compared coarse 
resolution simulations (1◦ × 1◦, before downscaling) and downscaling 
results (0.1◦ × 0.1◦) with observations in East Asia (Fig. 3a) and Europe 
(Fig. 3b) in 2013. We find that many simulations are underestimated at 

some stations in East Asia. This is because of the smoothing effect by 
averaging high concentration in a coarse-resolution grid. The model can 
simulate 33 % of the observations within a factor of 2 (PF2) and 76 % of 
the observed samples within a factor of 5 (PF5) when using 1◦ × 1◦

resolution simulation. We further compared the downscaled results with 
the observational data and found that the underestimation is improved 
significantly, with PF2 and PF5 increasing to 43 % and 83 %, respec-
tively. Especially in East Asia, the simulations become more closer to the 
observations, with their S/O (geometric mean of the ratio between the 
simulated and observed values, Simulation/Observation) changing from 
0.43 to 1.12 and NMB (normalized mean bias) decreasing from − 0.75 to 
− 0.30. The NMB is also decreased from − 0.52 to − 0.09 in the European 
sites. The NMB is − 0.39 in the study using downscaling based on 
emission density, wind speed/direction/frequency (Shrivastava et al., 
2017). Our downscaling bias is acceptable although we did not explicitly 
consider the influence of mixing and transport within the coarse grid.

We further use the seasonal data (Spring: March, April, and May; 
Summer: June, July, and August; Autumn: September, October, and 
November; Winter: December, January, and February) to evaluate the 
downscaling results. The spatial correlations between high-resolution 
and downscaling results of annual and seasonal mean BaP concentra-
tions in China and Europe are shown in Fig. 4. The downscaling method 
effectively captures the seasonal variation in BaP concentrations in the 
atmosphere, providing a reliable foundation for using this approach to 

Fig. 6. Spatial distributions of annual mean BaP concentrations (a, c) at 0.1◦ × 0.1◦ resolution and the absolute changes between the 1◦ × 1◦ resolution and 0.1◦ ×

0.1◦ resolution in (a, b) 2013 and (c, d) 2018. The absolute (c/e) concentration changes from 2013 to 2018 at (e) 0.1◦ × 0.1◦ and (f) 1◦ × 1◦ resolution.
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generate high-resolution simulations. The correlation coefficients (R2) 
are all above 0.53 and the slope (k) is approximately 1, indicating a 
significant spatial correlation between the high-resolution and down-
scaled results. In general, BaP concentrations are highest in winter and 
lowest in summer, which is influenced by both emission sources and 
meteorological conditions. The R2 for winter in China and Europe are 
0.67 and 0.53, respectively, indicating that the downscaled results 
effectively reproduce the distribution characteristics of BaP in winter, 
when the concentrations are higher.

3.2. Regional and global distribution of BaP in different resolutions

Fig. 5 shows the annual mean BaP concentrations from low- 
resolution simulation, high-resolution simulation, and downscaling 
calculation over the nested areas in China and Central Europe in 2013. 

We find that the downscaling results show good agreement with the 
high-resolution simulations, in which the detailed features of hot spots 
are better captured than in low-resolution simulations. The distribution 
of BaP in the eastern provinces of China shows a higher concentration 
than in the western provinces (Fig. 5a) due to the higher emission, which 
is also found in other studies (Lou et al., 2023; Shrivastava et al., 2017). 
The highest BaP concentrations are found in Beijing-Tianjin-Hebei 
(BTH), Shandong, Henan, and the Yangtze River Delta (YRD), greatly 
higher than the European Union target value for BaP (1 ng m− 3). The 
above features are well characterized in high-resolution simulation 
(Fig. 5b) and downscaling results (Fig. 5c).

The downscaling result shows a slightly decreasing trend in most 
regions of China compared to the low-resolution results, except in some 
high-concentration areas, i.e. Beijing and Shanghai (Fig. 5e). At the 
high-concentration site in Beijing, the downscaling concentrations 
increased by about 11 ng m− 3 compared to the low-resolution concen-
tration, while the concentration around this site decreased with different 
levels. It can be seen that the concentrations at heavily polluted sites are 
underestimated when the resolution is coarse, while surrounding sites 
with low concentrations are also overestimated at the same time.

To verify the applicability of the methodology in different regions, a 
similar comparison was performed in Europe. Clearly, the downscaling 
approach reproduced the BaP concentration in Europe successfully. We 
found that all three results have high concentrations in the central areas 
(Fig. 5f, g, and h). Especially, Poland exhibits a large area of high con-
centrations (>2 ng m− 3) at high resolution. Although the area of high 
concentrations in Poland in the low-resolution and downscaled results 
became smaller than in the high-resolution simulations, it is still high 
(>1 ng m− 3) compared to other countries in Central Europe. This in-
dicates a regional pollution of BaP in Poland. In addition, to validate the 
downscaling method across different years, we also compared the 
simulation and downscaling results for the annual mean BaP concen-
trations in 2018 (Fig. S1), and the key features of spatial variation are 
also reproduced.

The above results give us the confidence to use the downscaling 
method to improve the global map of BaP concentration based on 
coarse-resolution simulation. Fig. 6 shows the global spatial distribu-
tions of the annual mean BaP concentrations at 0.1◦ × 0.1◦ resolution 
and the changes between the values at 1◦ × 1◦ resolution and 0.1◦ × 0.1◦

resolution in 2013 (a/b) and 2018 (c/d). The downscaling method is 
implemented based on the relative emissions (RAE) between coarse and 
fine resolution. As can be seen in Fig. 6b and d, the downscaled con-
centrations in Europe and China are lower than the low-resolution 
simulations, consistent with the trend in Fig. 2. In contrast, most re-
gions such as the United States and Africa have higher downscaled 
concentrations. In summary, the downscaling results can capture more 
subtle localized features by obtaining higher-resolution spatial distri-
butions while maintaining the low-resolution spatial distribution fea-
tures. The key point is that the downscaling method can generate 
datasets in a way that saves a significant number of resources and time 
compared to direct high-resolution simulations with the model, which is 
crucial for global studies of PAHs.

3.3. Global health risks of PAHs

According to the USEPA (1991), ILCR ≤1 × 10− 6 indicates that the 
cancer risk is at an acceptable level, 1 × 10− 6< ILCR ≤1 × 10− 4 indicates 
that the cancer risk exceeds the acceptable level and there is a potential 
cancer risk, and ILCR >1 × 10− 4 indicates that the cancer risk is at an 
unacceptable level. Fig. 7a and b show the spatial distributions of TILCR 
(sum of ILCR through inhalation and dermal contact routes) in 2013 at 
1◦ × 1◦ and 0.1◦ × 0.1◦ resolution, respectively. They have similar 
spatial distribution characteristics, e.g. both have large areas of TILCR 
>1 × 10− 6 in eastern China and central Europe, indicating potential 
cancer risks in these areas. Compared to the spatial distributions of 
TILCR (Fig. 7c), we found that differences in most regions were within 1 

Fig. 7. Spatial distributions of TILCR (sum of ILCR of the two exposure paths) 
at 1◦ × 1◦ resolution (a) and 0.1◦ × 0.1◦ resolution (b) in 2013 and their dif-
ference (c), positive values indicate that the downscaling results are higher than 
the low-resolution simulations, and negative values are the opposite.
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× 10− 7, except for Central Europe and Eastern China, where the TILCR 
mainly showed a decreasing trend (with the greatest reduction of 3 ×
10− 6). The distribution characteristics in 2018 (Fig. S2) are similar to 
those in 2013, which are mainly related to changes in concentration 
(Fig. 6).

The population-weighted TILCR (PTILCR) across different seasons in 
2013 is shown in Fig. 8. We found that the global PTILCR in 2013 was 
increased by 73.0 % from 5.7 × 10− 7 in the 1◦ × 1◦ simulation to 1.0 ×
10− 6 in the 0.1◦ × 0.1◦ simulation. Among the regions, China has the 
largest PTILCR, which is consistent with the results of Shrivastava et al. 
(2017). This is significantly associated with the high emissions over 
densely populated areas. Especially, the high-resolution based PTILCR 
was increased significantly in China, from 2.1 × 10− 6 to 3.7 × 10− 6 

(increased by 74.6 %) in 2013, and from 1.4 × 10− 6 to 2.4 × 10− 6 

(increased by 71.4 %) in winter. This suggests that resolution is partic-
ularly critical in areas with dense populations and high emissions. The 
PTILCR in Europe increased from 3.8 × 10− 7 to 6.2 × 10− 7 (increased by 
63.0 %) in winter and from 5.7 × 10− 7 to 9.3 × 10− 7 in 2013 (increased 
by 62.2 %). Although the PTILCR in the United States is lower than in 
China and Europe, it still increased from 1.9 × 10− 7 to 2.8 × 10− 7 in 
2013. Clearly, high-resolution concentrations can significantly improve 
the accuracy and reliability of health risk assessments by resolving 
hotspots within an area of concern. Compared to 2013, the global 
PTILCR in 2018 (Fig. S3) decreased by 5.4 % and 7.8 % at low resolution 
and downscaled results, respectively. In China, the PTILCR in 2018 
decreased by 6.5 % and 9.5 %, respectively, which is associated with 
emission reductions due to the implementation of “the Action Plan on 
Air Pollution Prevention and Control” in 2013.

We analyzed the cumulative probability distributions for the six age 
groups across four seasons in 2013 at 1◦ × 1◦ and 0.1◦ × 0.1◦ resolution 
(Fig. 9). The distribution in 2018 is shown in Fig. S4. The results indicate 
that the median estimated TILCR ranged from 1.76 × 10− 7–1.14 × 10− 6 

for different age groups in 2013 (Fig. 9a). The order of TILCR from 
largest to smallest is: winter (1.12 × 10− 7–7.19 × 10− 7), autumn (3.13 
× 10− 8~2.07 × 10− 7), spring (2.45 × 10− 8~1.58 × 10− 7), and summer 
(5.44 × 10− 9~3.50 × 10− 8). The TILCR shows a significant seasonal 
characteristic, which is closely associated with solid fuel combustion 
activities in winter. In the same season at the same resolution, children 
and young adults are the most sensitive group exposure to PAHs in at-
mosphere, which is consistent with the previous research by Ma et al. 
(2020). This may be related to the fact that young adults have longer 
exposure periods, faster inhalation rates, and more skin-exposed sur-
faces than other age groups. For children, this may be due to their high 
ratio of skin contact area to body weight and the higher frequency of 
hand contact with pollutants during outdoor activities. This result 
highlights the importance of considering age-specific exposure factors in 
risk assessment. For the whole year, the TILCR in 2013 was larger than 1 

× 10− 6 at the 92nd, 94th, and 99th percentile for children, adolescents, 
and young adults based on the low-resolution results, respectively. In the 
high-resolution result, the TILCR was larger than 1 × 10− 6 at the 33rd, 
61st, and 49th percentile for the above three groups, respectively. The 
distribution indicates that more people were exposed to potential health 
risks in the high-resolution result. These results further show that 
low-resolution simulations would likely underestimate the health risk. 
At the same resolution, the TILCR in 2018 was larger than 1 × 10− 6 at 
the 44th, 68th, and 65th percentile for the above three groups, respec-
tively, indicating that the health risk was decreased in 2018. We also 
analyzed the probability distribution of the higher-risk adult group 
across the four seasons at different resolutions, which further confirmed 
the importance of resolution in health risk assessment and the devel-
opment of scientific management strategies.

3.4. Uncertainty analysis

A Monte Carlo simulation sensitivity analysis was conducted to 
evaluate the parameters in the exposure pathways (IR: inhalation rate; 
BW: body weight; SA: skin exposed surface area) that had the greatest 
impact on the calculation of the TILCR in six age groups. As shown in 
Fig. 10, there are significant differences in variance contributions among 
the various age groups. BW is the parameter that contributed the most to 
the TILCR, contributing 58.7 % and 66.7 % for children and adolescents, 
respectively, and even more than 85 % for young and middle-aged 
adults. SA contributed the next most to the TILCR, followed by IR. It is 
worth noting that the contribution of SA to children and adolescents is 
more significant than that to adults. This is because of the relatively high 
ratio of skin surface area to body weight in children and adolescents that 
leads to a more prominent role of dermal contact pathway in the health 
risks assessment. The Monte Carlo simulation analysis suggested that we 
could reduce the uncertainty of the estimated ILCR by improving the 
accuracy of these parameters.

4. Conclusions and discussion

In this paper, the global health risks of BaP are assessed based on 
high-resolution modeling by simulation and downscaling. This down-
scaling approach is based on the relative anthropogenic emissions and 
observations of BaP, providing high-resolution BaP concentrations and 
achieving a good compromise between data quality and computation 
cost. The high-resolution data of BaP can well reproduce the global 
distribution feature. The downscaling generally makes the simulated 
concentrations closer to the observations although the performance 
differs in different regions. By downscaling, PF2, PF5, and S/O increased 
from 33 % to 43 %, 76 % to 83 %, 0.43 to 1.12, and NMB decreased from 

Fig. 8. The PTILCR in China, Europe, United States, and the world at 1◦ × 1◦ resolution and 0.1◦ × 0.1◦ resolution in 2013.
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− 0.75 to − 0.30, respectively. The high-resolution distribution of global 
BaP can be reliably used to assess health effects. The dataset makes up 
for the scarcity of observational data. The increased health risk revealed 
by the high-resolution data, with the global PTILCR increasing from 5.7 
× 10− 7 to 1.0 × 10− 6, indicates the necessity of using high-resolution 
data to evaluate the health risk posed by BaP and other PAHs. The 
order of age-specificity PTILCR from largest to smallest was: children, 
young adults, adolescents, and seniors, which may be related to the 
higher exposure in children and adults, suggesting that there is a need to 
consider the exposure characteristics of different populations when 
assessing the health risks. The PTILCR is highest in winter indicating the 

need to control solid fuel combustion activities and thereby reduce 
health risks. The results could provide an important guide for the 
development of scientific management strategies for different age 
groups, as well as for effective control policies to reduce health risks.

However, our study still has some uncertainties. Firstly, the high- 
resolution simulation by downscaling depends heavily on the observa-
tions and therefore the spatial and temporal representativeness of the 
collected observations is a major uncertainty, even though the spatial 
distribution of BaP concentrations has been well captured. More con-
straints of observation and using other downscaling methods such as 
machine learning (random forest and neural networks, etc.) would help 

Fig. 9. The cumulative probabilities (a/c/e/g/i) of TILCR for children (blue), adolescents (black), young adults (orange), middle-aged adults (green), older adults 
(red), and the oldest adults (brown) and the probability (b/d/f/h/j) for children across four seasons and in 2013 at 1◦ × 1◦ and 0.1◦ × 0.1◦ resolution. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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decrease the uncertainties. Secondly, there remains uncertainty in the 
selected parameters for health risk assessment. In addition to body 
weight, inhalation rate, and surface area, there is uncertainty in other 
parameters such as the cancer slope factor. We did not adequately 
consider the impact of racial differences between the population. 
Thirdly, the health risk assessment method in this paper does not ac-
count for individual sensitivity differences and the dynamic cumulative 
effects of life-cycle exposure doses within the population.

In the future, we hope to obtain more observational data in devel-
oping countries to constrain the downscaling results, thus reducing 
uncertainty and enhancing the performance of the downscaling 
methods. In addition, we plan to use different downscaling methods to 
refine the multi-year PAH datasets with a wider variety of species for 
health risk assessment. We will introduce a well-defined Developmental 
Vulnerability Factor (DVF) and dynamic cumulative effects for the age 
groups considered, which will improve health risk assessment and pro-
vide a more realistic picture of the impact of PAHs.

CRediT authorship contribution statement

Zichen Wu: Writing – original draft, Visualization, Formal analysis. 
Xueshun Chen: Writing – review & editing, Supervision, Conceptuali-
zation. Yuanlin Wang: Writing – review & editing, Conceptualization. 
Wenyi Yang: Writing – review & editing. Yang Wang: Visualization, 
Software, Formal analysis. Zhe Wang: Writing – review & editing. 
Huansheng Chen: Writing – review & editing. Lianfang Wei: Writing – 
review & editing. Wending Wang: Data curation. Huiyun Du: Writing – 
review & editing. Zhuoran Wang: Visualization. Ying Wei: Writing – 
review & editing. Xiao Tang: Writing – review & editing. Jie Li: Writing 
– review & editing. Lin Wu: Writing – review & editing. Zifa Wang: 
Writing – review & editing, Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

This research has been supported by the National Key R&D Program 
of China (2024YFC3711700) and the National Natural Science Foun-
dation of China (Grant NO. 42377105 and 42305201). We also thank the 
National Key Scientific and Technological Infrastructure project “Earth 
System Science Numerical Simulator Facility” (EarthLab).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.atmosenv.2025.121340.

Data availability

The high-resolution dataset for monthly and annual averages of BaP 
concentrations in 2013 and 2018 has been submitted to Zendo 
(https://doi.org/10.5281/zenodo.13334701), with a data size of 1800 
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