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Abstract: The concept of thermodynamic efficiency is central to the theoretical understand-
ing of tropical cyclone intensity and intensification, but the issue has remained controversial
owing to the existence of distinct and incompatible definitions. Physically, thermodynamic
efficiency relates to the fraction of the surface enthalpy fluxes and diabatic processes that
contributes to the generation of the potential energy available (APE) for conversions into
kinetic energy, so that the main difficulty is how best to define APE. In this study, we
revisit the available energetics of axisymmetric vortex motions by redefining APE relative
to a non-resting reference state in gradient wind balance instead of a resting state. Our
approach, which accounts for both diabatic and frictional effects, reveals that the choice of
reference state significantly impacts the prediction of APE generation and its conversion to
kinetic energy. By using idealised numerical experiments of axisymmetric tropical cyclone
intensification, we demonstrate that the APE production estimated from a non-resting
reference state is a much more accurate predictor of APE to KE conversion than those based
on other choices of reference states such as initial, mean, and sorted profiles. These find-
ings suggest that incorporating the balanced dynamical structure of tropical cyclones into
APE-based theories could lead to improved potential intensity models, with implications
for forecasting and understanding cyclone behaviour.

Keywords: tropical cyclone intensification; available potential energy; potential intensity
theory

1. Introduction
Tropical cyclones (TCs) derive their energy from air–sea interactions, but there is still

no consensus on the appropriate theoretical framework for defining and quantifying the
energy input associated with surface enthalpy fluxes. According to thermodynamics, only
a fraction of these fluxes—the thermodynamic efficiency—is in principle usable by TCs,
with the rest of the energy going into the environment. Understanding how to define this
thermodynamic efficiency is a key research topic. One popular approach is to regard TCs
as a heat engine, as in potential intensity (PI) theory, and define thermodynamic efficiency
as a Carnot-like efficiency:

Υc =
Tin − Tout

Tout
, (1)

where Tin and Tout are the mean temperatures at which the TC is heated and cooled,
respectively [1,2]. Typically, Tin is related to the sea surface temperature and Tout is the
temperature of the outflow, usually assumed to be close to that of the tropopause.

However, in practice, Carnot efficiency has been found to strongly overestimate the
power input due to surface buoyancy fluxes, leading to gross overestimation of maximum
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winds in PI theory [3]. Various adjustments to the Carnot efficiency framework have
been suggested. For example, Bister and Emanuel [4] showed that including the effect
of dissipative heating in the boundary layer was equivalent to increasing the efficiency
by a factor of Tin/Tout. Modifications have also been proposed to include the effects of
ocean coupling [5,6]. The lost work due to irreversible frictional dissipation associated with
falling rain was studied by Sabuwala et al. [7], who suggested that this effect could reduce
PI by 20% on average. However, regarding TCs as a Carnot heat engine requires identifying
a closed thermodynamic cycle, which is not easily justified. The Carnot viewpoint also
presents challenges for assessing numerical models of TC intensification, whether idealised
axisymmetric or realistic three-dimensional, as advanced methods are required to approxi-
mate heat engine cycles in the numerical model output by representing parcel trajectories
using isentropic streamfunctions [8].

Due to these limitations, there has been interest in recasting thermodynamic theories
of TC intensification using Lorenz [9]’s theory of available potential energy (APE). By defi-
nition, APE represents the part of the potential energy available for reversible conversions
into kinetic energy (KE). APE-based theories of TC energetics are based on budgets taking
the form:

d
dt

APE = GA − C(APE, KE), (2)

d
dt

KE = C(APE, KE)− DK, (3)

where GA is the APE production/destruction by all forms of diabatic processes, C(APE, KE)
is the conversion of APE into KE, and DK is the dissipation of kinetic energy by frictional
processes. Such an approach allows one to provide an alternative approach to Carnot-based
potential intensity (PI) theories by balancing APE production with surface enthalpy fluxes
and surface dissipation at the radius of the maximum winds.

In practice, both GA and APE depend on the choice of background reference state, usu-
ally envisioned to be obtained from the actual state by means of an adiabatic rearrangement
of mass. This is complicated, however, for a moist atmosphere [10,11]. One objective way
to assess the merits and usefulness of a reference state is by comparing the APE generation
rate GA with C(APE, KE). The goal is to try to construct an APE theory so that GA is as
close a predictor of C(APE, KE) as feasible. In this regard, Wong et al. [12] established that
some choices of reference state are clearly better than others. So far, APE-based studies
of TC intensification have been based on notional states of rest. The main aim of this
study is to explore the possibility of using a non-resting state in gradient wind balance
for axisymmetric TC intensification, building upon the previous works by Codoban and
Shepherd [13,14] and Andrews [15].

This paper is organised as follows: Section 2 presents the model formulation and its
analysis in terms of standard energetics. Section 3 presents a new physical justification for
the concept of local available potential energy using a non-resting state in gradient wind
balance and establishes its basic properties. Section 4 discusses the role of diabatic and
frictional effects on the energy budget of an axisymmetric vortex using the newly developed
framework. Section 5 extends the results to the APE-based studies of axisymmetric TC
intensification previously considered by Harris et al. [16]. Section 6 summarises and
discusses the results.

2. Model Formulation and Standard Energetics
2.1. Model Formulation

The evolution of compressible vortex motions is most effectively described by express-
ing the Navier–Stokes equations in cylindrical coordinates (r, ϕ, z):
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Du
Dt

−
(

f +
v
r

)
v + ν

∂p
∂r

= Du, (4)

Dv
Dt

+
(

f +
v
r

)
u +

ν

r
∂p
∂ϕ

= Dv, (5)

Dw
Dt

+ ν
∂p
∂z

= −∂Φ
∂z

+ Dw, (6)

Dη

Dt
=

q̇
T

, (7)

∂ρ

∂t
+

1
r

∂(ρru)
∂r

+
1
r

∂(ρv)
∂ϕ

+
∂(ρw)

∂z
= 0, (8)

Dρ

Dt
+ ρ

(
1
r

∂(ru)
∂r

+
1
r

∂v
∂ϕ

+
∂w
∂z

)
= 0,

D
Dt

=
∂

∂t
+ u

∂

∂r
+

v
r

∂

∂ϕ
+ w

∂

∂z
, (9)

where r is the radial distance increasing outward from the centre of the vortex, z is height
increasing upward, ϕ is the azimuthal angle around the z-axis, f is the Coriolis parameter
(assumed constant), T is in situ temperature, (u, v, w) is the velocity field, p is pressure, ρ

is density, ν = 1/ρ is the specific volume, η is the specific entropy, g is the acceleration of
gravity, and Φ = Φ(z) = gz is the geopotential. The terms Di, i = u, v, w denote dissipative
terms for momentum, while q̇ denotes diabatic heating. The thermodynamic equation of
state is assumed in the form ρ = ρ(η, p) or ν = ν(η, p). For the subsequent developments,
it is beneficial to rewrite Equation (5) for the azimuthal motion in terms of the specific
angular momentum

M = rv +
f
2

r2 (10)

as
DM
Dt

= rDv −
1
ρ

∂p
∂ϕ

. (11)

As expected, M is materially conserved for purely axisymmetric motions (∂p/∂ϕ = 0) in
the absence of the dissipative term Dv. From this point forward, only the axisymmetric
case is considered. The following relations expressing various quantities in terms of M will
prove useful:

v =
M
r
− f r

2
, (12)

v2

2
=

M2

2r2 +
f 2r2

8
− f M

2
= µχ +

f 2

16χ
−

f
√

µ

2
, (13)

(
f +

v
r

)
v =

M2

r3 − f 2r
4

= −
(

µ − f 2

16χ2

)
∂χ

∂r
, (14)

where we have defined χ = 1/(2r2) and µ = M2, similarly to Andrews [15]. Note that (13)
assumes M > 0 in order to write M =

√
µ. Other quantities of importance in the following

discussions include the vorticity

ξ =

(
1
r

∂w
∂ϕ

− ∂v
∂z

)
r̂ +

(
∂u
∂z

− ∂w
∂r

)
ϕ̂ +

1
r

(
∂(rv)

∂r
− ∂u

∂ϕ

)
ẑ (15)

and potential vorticity

Q =
(ξ + f ẑ) · ∇η

ρ
, (16)
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which is materially conserved in the absence of heating/cooling and friction. It is useful to
remark that, for purely axisymmetric motions, M and Q are linked through the relation

Q =
1
ρr

∂(M, η)

∂(r, z)
. (17)

Potential vorticity is thus proportional to the Jacobian of the coordinate transformation,
allowing one to map the physical space (r, z) to the space (M, η) of the materially con-
served quantities for axisymmetric motions. As discussed later, the stability of axisym-
metric compressible vortex motions depends crucially on Q being single-signed over the
domain considered.

2.2. Linking Momentum Equations to Vortex Static Energy

The main aim of this paper is to generalise the local theory of APE [16–18] to account
for the momentum constraints arising from presence of rotation, leading us to redefine the
concept of APE relative to a non-resting state instead of a resting state. Indeed, rotation
allows for the existence of non-trivial equilibrium states in geostrophic or gradient wind
balance, which ‘lock’ part of the potential energy, thus making it non-available. To under-
stand the fundamental justification for separating the potential energy into available and
non-available components pioneered by Lorenz [9], it is first necessary to understand how
the forces entering the momentum equations relate to energy. To that end, we find it useful
to introduce the vortex static energy (VSE)

V =V(η, µ, χ, p, Φ) =
v2

2
(µ, χ) + h(η, p) + Φ

=µχ +
f 2

16χ
−

f
√

µ

2
+ h(η, p) + Φ

(18)

defined as the sum of azimuthal kinetic energy plus regular static energy Σ = h(η, p) + Φ
that formed the basis for [19]’s recent approach, where h(η, p) is the specific enthalpy.
Mathematically, V can be regarded as a function of (η, µ, χ, p, Φ), which define an extended
phase space with five independent degrees of freedom. The partial derivatives of V with
respect to (η, µ, χ, p, Φ) are

∂V
∂χ

= µ − f 2

16χ2 ,
∂V
∂p

=
1
ρ
= ν,

∂V
∂Φ

= 1 (19)

∂V
∂η

= T,
∂V
∂µ

= χ − 1
4
√

µ
. (20)

As seen below, the derivatives with respect to (χ, p, Φ) are related to the dynamically active
part of V , whereas the derivatives with respect to the materially conserved variables (η, µ)

are related to the dynamically inert part. The importance of the VSE lies in allowing us to
define the following force:

Fv =
∂V
∂χ

∇χ +
∂V
∂p

∇p +
∂V
∂Φ

∇Φ (21)

The force Fv may be used to rewrite the momentum balance equations as follows:

Du
Dt

+ F(r)
v = Du, (22)

Dw
Dt

+ F(z)
v = Dw, (23)
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DM
Dt

+ rF(ϕ)
v = rDv (24)

with F(ϕ)
v = 0 for purely axisymmetric motions. The important point here is that the

force Fv only involves the partial derivatives of V with respect to (χ, p, Φ), but they are
independent of those with respect to (η, µ). This is important, as this justifies decomposing
V into dynamically active and inactive components Va and Vr as follows:

V = Va(η, µ, χ, p, Φ) + Vr(η, µ). (25)

Here, Vr is dynamically inactive, because being a function of (η, µ) only, it does not
contribute to the force Fv, and is therefore ’invisible’ to the dynamics. The aim of the
generalised local APE theory developed in this paper is to identify an appropriate physical
principle for defining the dynamically inert component Vr. As shown in this paper, Vr is
most naturally associated with the vortex static energy of an equilibrium axisymmetric
adiabatic and inviscid azimuthal solution in gradient wind balance.

2.3. Standard Energetics Viewpoint

Our aim in the following is to establish the conditions under which the sinks and
sources of specific entropy and angular momentum can lead to the intensification of an
incipient cyclonic seed vortex. To that end, we place ourselves in a Northern-Hemisphere-
like situation (v > 0, f > 0). A standard viewpoint in the tropical cyclone literature, e.g.,
Smith et al. [20], is to consider separate evolution equations for the azimuthal kinetic energy
v2/2 and the rest of the flow, as follows:

ρ
D
Dt

(
u2

s
2

+ Φ + h − p
ρ

)
+∇ · (pus) = ρus · Ds + ρq̇ +

(
f +

v
r

)
ρuv, (26)

ρ
D
Dt

v2

2
= −

(
f +

v
r

)
ρuv + ρvDv, (27)

whose sum yields

ρ
D
Dt

(
u2

s
2

+
v2

2
+ Φ + h − p

ρ

)
+∇ · (pv) = ρv · D + ρq̇ (28)

where us = (u, 0, w) represents the velocity vector in the (x, z) plane associated with the
secondary circulation, while Ds = (Du, 0, Dv) relates to the dissipation term affecting
the secondary circulation. Since the dissipation term vDv presumably acts as a brake
on v, Equation (27) demonstrates that because v > 0 by design, the radial velocity must
be negative (u < 0) in order for v to intensify. This is the only way that the energy
conversion term −( f + v/r)uv can be positive and hence act as a source of energy for v.
This condition is well known and observed in numerical simulations of TCs. Physically,
the lower level inward flow is a priori driven both by frictional and diabatic effects [21].
Near the ground, part of the inward flow can be explained in terms of the friction-driven
Ekman transport associated with the cyclonic azimuthal circulation. The inward flow is also
driven by the low-level convergence promoted via mass conservation by the diabatically
induced strong vertical motion associated with cumulus convection taking place within
the eyewall. The secondary cell is global in nature, however, so that its intensity can
also be modulated, at least in principle, by any other processes controlling the outward
flow near the tropopause, for instance. The present framework redefines the concepts
of thermodynamic and mechanical efficiencies, which can help in clarifying the relative
importance of diabatic versus frictional effects in driving or modulating the intensity of the
secondary circulation.
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An alternative and purely Eulerian argument that calls for both u < 0 and w > 0 can
be made from the angular momentum conservation Equation (11), which has essentially
the same information content as (27), written in the following form:

∂M
∂t

= −u
∂M
∂r

− w
∂M
∂z

+ rDv. (29)

If the distribution of M is such that ∂M/∂r > 0 and ∂M/∂z < 0, as is seen to be the case
for the analytical reference vortex case described in Appendix A and illustrated in Figures
1 and 2, see further in the text, Equation (29) makes it clear that both u < 0 and w > 0
will contribute to the local intensification of M and hence of v. The understanding of
axisymmetric TC intensification therefore boils down to understanding how viscous and
diabatic effects cooperate to drive an upward and radially inward secondary circulation at
low levels near the eyewall.

3. Vortex Available Energetics
3.1. Definition of the Non-Resting Reference State

In this paper, we build upon the previous studies by [13–15] to seek a generalisation
of local APE theory. In this generalisation, the non-available energy is associated with
the total energy of an axisymmetric vortex in gradient wind and hydrostatic balance
with background reference profiles for entropy ηm(r, z), pressure pm(r, z), and density
ρm(r, z) = ρ(ηm, pm), hence satisfying

−
(

f +
vm

r

)
+

1
ρm

∂pm

∂r
= 0, (30)

∂pm

∂Φ
= −ρm, (31)

which correspond to the steady and inviscid form of (4) and (6), respectively, for an
axisymmetric purely azimuthal flow independent of azimuthal angle ϕ. As shown in [15], it
is advantageous to work with χ = 1/(2r2) rather than radius r, as well as with the squared
angular momentum µ = M2 = (rv + f r2/2)2 rather than v. In terms of such variables, the
gradient wind balance (30) becomes

µm − f 2

16χ2 +
1

ρm

∂pm

∂χ
= 0, (32)

while the hydrostatic balance (31) remains unaffected. In the following, all quantities are
therefore regarded as functions of (χ, Φ) rather than (r, z). The corresponding reference
profiles ηm(r, z) and Mm(r, z) for the specific entropy and angular momentum may then
be inferred from the equation of state for density ρm(r, z) = ρ(ηm(r, z), pm(r, z)), and
via the definition of angular momentum Mm(r, z) = rvm(r, z) + f r2/2. For illustrative
purposes, Figure 1 shows a particular example of azimuthal wind speed associated with
the analytical dry atmospheric vortex solution to (30)–(31) used by Smith et al. [22], whose
details can be found in Appendix A. This analytical solution serves as the basis for all
subsequent illustrations.
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Figure 1. Azimuthal wind speed vm of the analytical dry vortex from Smith et al. [22] used as a
reference state to illustrate the momentum-constrained available energy. Contour labels indicate
speed in m · s−1.

3.2. Available Versus Static Vortex Energy

As alluded to previously, the physical origin for the concepts of available potential
energy and available vortex energy can easily be understood by observing that the force (21)
only depends on the partial derivatives of the vortex static energy V with respect to (χ, Φ, p),
but not on those with respect to (η, µ). Indeed, this fact implies that only some fraction of
the total vortex static energy

Va = V(η, µ, χ, p, Φ)− Vr(η, µ) (33)

is available for the vortex dynamics, as Vr(η, µ), being a function of (η, µ), does not enter the
definition of Fv and is hence ‘invisible’ to inviscid and adiabatic motions. We refer to Va and
Vr as the dynamically active and inert components of the vortex static energy, respectively.

In classical APE theory, the non-available or background potential energy is defined
as the potential energy of a notional resting state of minimum potential energy obtainable
from the actual state by means of an adiabatic rearrangement of mass, as per the original
approach of Lorenz [9]. Likewise, it is possible to regard the reference state in gradient wind
and hydrostatic balances defined by (32) or (30) and (31) as a vortex static energy minimum
obtainable from the actual state by means of rearrangement of the mass conserving both η

and µ. To show this, let us assume that (η, µ, χ, p, Φ) represent the values of the parameters
of a given fluid parcel in the actual state and (η, µ, χ⋆, p⋆, Φ⋆) the corresponding values of
the same parcel in the reference state. Therefore, the reference value of vortex static energy
must be given by

Vr = V(η, µ, χ⋆, p⋆, Φ⋆) = µχ⋆ +
f 2

16χ⋆
−

f
√

µ

2
+ h(η, p⋆) + Φ⋆, (34)

while the conditions that the rearrangement of mass conserves η and µ require

µ = µm(χ⋆, Φ⋆), η = ηm(χ⋆, Φ⋆). (35)
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Now, assuming that p⋆ = pm(χ⋆, Φ⋆), the mathematical conditions for χ⋆ and Φ⋆ to define
a local minimum of static vortex energy at fixed values of (η, µ) are

∂Vr

∂χ⋆
(χ⋆, Φ⋆) = 0,

∂Vr

∂Φ⋆
(χ⋆, Φ⋆) = 0. (36)

By successively differentiating (34) with respect to χ⋆ and Φ⋆, accounting for the fact that
p⋆ = pm(χ⋆, Φ⋆), it is easily verified that (36) are equivalent to the following conditions:

µ − f 2

16χ2
⋆
+ ν(η, p⋆)

∂pm

∂χ
(χ⋆, Φ⋆) = 0, (37)

ν(η, p⋆)
∂pm

∂Φ
(χ⋆, Φ⋆) = −1, . (38)

Now, since p⋆ = pm(χ⋆, Φ⋆), µ = µm(χ⋆, Φ⋆) and η = ηm(χ⋆, Φ⋆) by definition, it
follows that

ν(η, p⋆) = ν(ηm(χ⋆, Φ⋆), pm(χ⋆, Φ⋆) = νm(χ⋆, Φ⋆) =
1

ρm
(χ⋆, Φ⋆). (39)

and hence that (37) and (38) may be rewritten in the form

µm(χ⋆, Φ⋆)−
f 2

16χ2
⋆
+

1
ρm

∂pm

∂χ
(χ⋆, Φ⋆) = 0, (40)

∂pm

∂Φ
(χ⋆, Φ⋆) = −ρm(χ⋆, Φ⋆), (41)

which are easily recognised as the gradient wind and hydrostatic balance equations (32)
and (31) evaluated at (χ⋆, Φ⋆). The above derivations therefore establish that a background
reference state in gradient wind and hydrostatic balances can be regarded as a vortex static
energy extremum obtainable from the actual state by means of an adiabatic rearrangement
of mass conserving η and µ, thus generalising classical local APE theory when the additional
momentum constraints are also considered. If the reference state satisfies the stability
conditions derived further in the text, the extremum can be shown to represent a minimum.

Standard APE theory is recovered in the special case where pm(χ, Φ) = p0(Φ),
ηm(χ, Φ) = η0(Φ), ρm(χ, Φ) = ρ(η0(Φ), p0(Φ)) = ρ0(Φ) are all functions of Φ only,
whereas µm(χ, Φ) = µ0(χ) is a function of radius only. In that case, one may still define
radial and vertical reference positions χR = 1/(2r2

R) and ΦR as solutions of the simplified
form of Equations (37) and (38), which reduce to

µ − f 2

16χ2
R
= 0 =⇒

f r2
R

2
= M, (42)

dp0

dΦ
= −ρ(η, p0(ΦR)) = −ρ0(ΦR) =⇒ η0(ΦR) = η. (43)

The radius rR is referred to as the potential radius by Emanuel [23].

3.3. Properties of Available Vortex Energy

By subtracting (34) from the total vortex static energy (18), the following expression
for the dynamical component of the vortex static energy is obtained:

Va = µ(χ − χ⋆) +
f 2

16

(
1
χ
− 1

χ⋆

)
+ h(η, p)− h(η, p⋆) + Φ − Φ⋆. (44)
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In this section, we seek to establish some of its main properties. The results of local APE
theory [17] suggest the following decomposition:

Va = Π1 + Ae +
p − pm

ρ
(45)

with Π1 and Ae, respectively, given by

Π1 = h(η, p)− h(η, pm)−
p − pm

ρ
, (46)

Ae = µ(χ − χ⋆) +
f 2

16

(
1
χ
− 1

χ⋆

)
+ h(η, pm)− h(η, p⋆) + Φ − Φ⋆. (47)

The term Π1 may be showed using classical results of local APE theory [17,24] to be positive
definite (meaning Π1 ≥ 0) and to scale as Π1 ≈ (p − pm)2/(2ρ2c2

s ), where cs is the speed
of sound; in the literature, it is sometimes referred to as available acoustic energy (AAE) or
available compressible energy (ACE) [17,24].

The term Ae was previously obtained and discussed by Andrews [15] using a very
different approach. Here, we provide an alternative, much simpler analysis. A major
novelty is to interpret Ae as the work against generalised buoyancy forces, defined in terms
of the vector be below. To that end, we find it useful to rewrite Ae as the following path
integral between the reference position X⋆ = (χ⋆, Φ⋆) to the actual position X = (χ, Φ),

Ae =
∫ X

X⋆

(
∂Ae

∂χ
dχ +

∂Ae

∂Φ
dΦ
)

, (48)

where
∂Ae

∂χ
= µ − f 2

16χ2 + ν(η, pm)
∂pm

∂χ
= µ − µm + (νh − νm)

∂pm

∂χ
, (49)

∂Ae

∂Φ
= ν(η, pm)

∂pm

∂Φ
+ 1 = (νh − νm)

∂pm

∂Φ
, (50)

where we made use of the gradient wind balance relations (32) and (31). We also have
νh = ν(η, pm), while νm = ν(ηm, pm). This makes it possible to write Ae as

Ae = −
∫ x

x⋆
be · dx′, (51)

be = (µm − µ)∇χ︸ ︷︷ ︸
bM

e

+ (νm − νh)∇pm︸ ︷︷ ︸
bT

e

. (52)

The force be can be seen to the sum of two components, one thermodynamical in nature,
the other mechanical. Physically, the vector bT

e represents the generalised buoyancy force
discussed by Smith et al. [22], while the mechanical force bM

e has been discussed in relation
to centrifugal waves by Markowski and Richardson [25]. This motivates us to decompose
the available energy Ae by splitting the integral into two legs,

Ae =
∫ xµ

x⋆
be · dx′︸ ︷︷ ︸
Πe

+
∫ x

xµ

be · dx′︸ ︷︷ ︸
Πk

, (53)
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1. x⋆ → xµ following the surface of constant angular momentum µm(χ′, Φ′) = µ along
which the force bM

e vanishes identically. Along this path, the path integral is given by

Πe =−
∫ xµ

x⋆
bT

e · dx =
∫ xµ

x⋆
(νh − νm)∇pm · dx′

=µ(χµ − χ⋆) +
f 2

16

(
1

χµ
− 1

χ⋆

)
+ h(η, pm)− h(η, p⋆) + Φµ − Φ⋆;

(54)

2. xµ → x following the isobaric surface pm(χ′, Φ′) = pm(χ, Φ) along which the force
bT

e vanishes. Along this path, the path integral is given by

Πk =−
∫ x

xµ

bM
e · dx′ =

∫ x

xµ

(µ − µm)∇χ · dx′

=µ
(
χ − χµ

)
+

f 2

16

(
1
χ
− 1

χµ

)
+ Φ − Φµ.

(55)

By definition, the intermediate point (χµ, Φµ) lies at the intersection of the isobaric surface
p = pm and of the surface of angular momentum µm = µ, and must therefore be a solution
of the following system:

pm(χµ, Φµ) = pm(χ, µ), µm(χµ, Φµ) = µ. (56)

Such a construction and the two different integration paths are illustrated in Figure 2 for
the analytical vortex solution detailed in Appendix A.

50 100 150 200
r (km)

0

4

8

12

16

z (
km

)

(r, z)
(r , z )

(r , z )

Figure 2. Illustration of a particular pathway linking a fluid parcel reference position (r⋆, z⋆) to its
actual position (r, z) via the intermediate point (rµ, zµ) for the analytical vortex state described in
Appendix A. The first leg of the path linking x⋆ to xµ follows a surface of constant angular momentum
(denoted by dotted lines). The second leg linking xµ to x follows an isobaric surface (denoted by
dashed lines). The thick full lines denote isentropic surfaces, which illustrate the warm core character
of such a cyclonic vortex.

The conditions under which Πe and Πk are positive definite are discussed in
Appendix B. They establish that Πe is positive definite provided that ηm increases with
height along surfaces of constant angular momentum. They also establish that Πk is
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positive definite provided that Mm increases with radius along isobaric surfaces. Both
conditions represent the well-known conditions for symmetric stability, e.g., Andrews [15].
As an illustration, Figure 3 shows a particular example of Ae as a function of M and η

perturbations (top panel), as well as a function of µ and p⋆ perturbations (bottom panel),
clearly demonstrating its positive character (see Appendix B for details).

Figure 3. Available energy Ae of a perturbed dry air parcel at r = 40 km, z = 5 km, in terms of M and
η perturbations (top panel) and µ and p⋆ perturbations (bottom panel). The grey lines in the bottom
panel indicate the horizontal and vertical axes along which Πk and Πe change, respectively, and the
grey shading covers points in the space that are not sampled by the chosen perturbations of M and η.
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4. Energetics of Vortex Growth and Decay Due to Diabatic Effects
4.1. Generalised Buoyancy Forces and Available Energy

The results from the previous section allow us to rewrite the static energy in the
following form:

V =h(η, p)− h(η, pm) + Ae + Vr

=Π1 + Ae + Vr +
p − pm

ρ
.

(57)

As a result, the force driving the secondary circulation may be rewritten as

Fv =
∂V
∂χ

∇χ +
∂V
∂p

∇p +
∂V
∂Φ

∇Φ

=ν∇p − νh∇pm + be = (ν − νh)∇p + ν∇p′ + be.
(58)

This allows us to rewrite the momentum balance equations for the secondary circulation as

Dus

Dt
+ ν′∇pm + ν∇p′ + be = Ds, (59)

where ν′ = ν − νh. Regarding the evolution equation for the non-dynamical component of
static energy Vr, it may be verified that

DVr

Dt
=

(
χ⋆ −

f
4
√

µ

)
Dµ

Dt
+ T⋆

Dη

Dt
+ ν(η, p⋆)

∂p⋆
∂t

=(χ⋆ − χR)
Dµ

Dt
+

T⋆ q̇
T

+ ν(η, p⋆)
∂p⋆
∂t

,

(60)

where χR is defined in Equation (42). To obtain (60), simply take the Lagrangian derivative
of (18) by using (19)–(20), and accounting for the fact that, in the reference state,

∂Vr

∂χ
∇χ⋆ +

∂Vr

∂p
∇p⋆ +

∂Vr

∂Φ
∇Φ⋆ = 0 (61)

(which expresses gradient wind and hydrostatic balance) thus implying the simplification

∂Vr

∂χ

Dχ⋆

Dt
+

∂Vr

∂p
Dp⋆
Dt

+
∂Vr

∂Φ
DΦ⋆

Dt
=

∂Vr

∂p
∂p⋆
∂t

. (62)

As a result, the total energy Equation (28) may be rewritten as

ρ
D
Dt

(
u2

s
2

+ Π1 + Ae −
pm

ρ

)
+∇ · (pv)

=ρv · D +

(
T − T⋆

T

)
ρq̇ − ρν⋆

∂p⋆
∂t

+ ρ(χR − χ⋆)
Dµ

Dt
.

(63)

This may also be written in the form

ρ
D
Dt

(
u2

s
2

+ Π1 + Πk + Πe

)
+∇ · ((p − pm)v)

=ρv · D +

(
T − T⋆

T

)
ρq̇ +

∂pm

∂t
− ρν⋆

∂p⋆
∂t

+ ρ(χR − χ⋆)
Dµ

Dt

(64)

using the fact that ρD/Dt(pm/ρ) = ∂pm/∂t +∇ · (pmv). For a stable reference vortex state,
these equations show that the total energy u2

s /2 + Π1 + Πk + Πe is globally conserved for
purely adiabatic and inviscid axisymmetric disturbances. In that case, be acts a restoring
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force giving rise to a complex combination of internal and inertial/centrifugal waves,
as discussed by Emanuel [26]. As long as the stability conditions are met, any transfer
between the eddy and mean energies is forbidden, so that there cannot be any net growth
or decay of the azimuthal circulation unless non-axisymmetric or diabatic/viscous effects
are also considered. As an example application of our framework, we show in the following
how to use it to shed light on the issue of how diabatic/viscous effects may lead to the
intensification of a cyclonic vortex, a central issue in the study of tropical cyclones. The
discussion of non-axisymmetric effects, which is significantly more involved, is left to a
future study.

4.2. Generalised Buoyancy/Inertial Force Viewpoint

We now regard the azimuthal circulation as the sum of balanced and unbalanced
parts v = v⋆ + v′′ (Lagrangian viewpoint) or v = vm + v′ (Eulerian viewpoint). In this
view, the observed intensification of v may a priori be due to the intensification of either
vm or v′ (equivalently v⋆ or v′′) or both, depending on how vm is defined. Because there is
some freedom in the specification of vm in the present framework (for instance, it could be
imposed to be time independent), we first discuss the case where the intensification of v
may be primarily attributed to that of v′ (restricting ourselves to the Eulerian viewpoint in
the following). Evidence that such a case is relevant for the understanding of actual TC
intensification is provided by the study of Bui et al. [27], which suggests that the degree
of unbalance of TCs is likely significant, especially in the boundary layer. Now, because
v′ = v − vm = (M − Mm)/r = (µ − µm)/(r(M + Mm)), any increase in v′ must result
from the creation of a positive anomaly µ′ = µ − µm > 0 and hence from an increase in the
mechanical energy reservoir Πk, the only one that increases when |µ − µm| increases.

Prior to discussing energetics, it is useful to first discuss the forces at work in the
system, as this is what is most helpful to establish causal relationships. To that end, let us
consider the form of the momentum equation for the secondary circulation us that makes
apparent the role of the generalised inertial/buoyancy force be, viz.,

Dus

Dt
= be −

1
ρ
∇p′ − ν′∇pm + Ds, (65)

where from (52), the radial and vertical components of be may be written explicitly
as follows:

b(r)e = −(νh − νm)
∂pm

∂r
+

(µ − µm)

r3 = −ρm(νh − νm)
(

f +
vm

r

)
vm +

(µ − µm)

r3 , (66)

b(z)e = −(νh − νm)
∂pm

∂z
= ρmg(νh − νm). (67)

One of the expected advantages of introducing a non-resting reference state is to min-
imise the role of ∇p′ in (65) and hence to maximise the ability of be to predict the actual
acceleration Dus/Dt. Assuming this to be the case, and recalling that (µ − µm)/r3 > 0,
Equation (66) shows that a necessary condition for the radial component of be to point
towards the centre of the cyclone is that the fluid parcels are positively buoyant,

νh − νm > 0, (68)

in which case, (67) shows that b(z)e will also point upward, as is expected physically. By
definition, νh = ν(η, pm(r, z)) and νm = ν(ηm(r, z), pm(r, z)) so that

νh − νm ≈ Γ(η(r, z, t)− ηm(r, z)) (69)
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is proportional to the local entropy anomaly η′ = η − ηm (we have neglected the time
variation of the reference variables, but these can be retained if desired). Since Γ > 0 in
general, the creation of a positive specific volume anomaly requires a sustained diabatic
source of entropy to increase η. As discussed by Smith et al. [22], whether (68) is satisfied
depends critically on the choice of reference state used to define buoyancy. For instance,
Brown [28] found such a condition to be met for buoyancy defined relative to a relatively
elaborate reference vortex state, even including some degree of asymmetry. However,
Zhang et al. [29] found the parcels to be negatively buoyant for buoyancy defined relative
to a rest state, the desired upward acceleration then being entirely provided by the pressure
gradient term ∇p′.

Even if (68) holds, it is not sufficient to ensure that b(r)e is negative. Indeed, because
(µ − µm)/r3 > 0, (66) imposes a further constraint on the magnitude of positive buoyancy
anomalies, namely

νh − νm >
[
ρm

(
f +

vm

r

)
vm

]−1 µ − µm

r3 . (70)

If specific volume anomalies νh − νm are bounded, as must be the case in reality, (70) appears
to impose an upper limit on the maximum angular momentum anomalies µ− µm and hence
on the maximum intensity that the vortex can reach. This limit is a priori different from
the maximum potential intensity (MPI) predicted by Emanuel [1] (see Emanuel [30] for a
recent review on this topic and wider TC research), which is reached when the production
of available energy by surface enthalpy fluxes balances the dissipation by surface friction
in the region of maximum winds. Whether such a condition could account for why the
intensity of many observed TCs remains significantly below their theoretical maximum
intensity [31] is left for future study.

4.3. Energy Cycle

The generalised buoyancy/inertial force be and other forces that drive the secondary
circulation do work and cause energy transfers between the different existing energy
reservoirs, for which sources and sinks must exist in order for the system to achieve a
steady state. In the following, we discuss the energy cycle associated with an intensifying
cyclonic vortex whose intensification is dominated by the intensification of v′. To that end,
we find that the simplest and most economical description of the local energy cycle is one
based on separate evolution equations for the following: the sum of the kinetic energy of
the secondary circulation plus the AAE, u2

s /2 + Π1; the eddy slantwise APE Πe; and the
eddy mechanical energy Πk. This leads to the following set of equations:

ρ
D
Dt

(
u2

s
2

+ Π1

)
+∇ · (p′us) = ρ(bT

e · us + bM
e · us) + ρGs, (71)

Gs =

(
T − Th

T

)
q̇ + ν′

(
∂pm

∂t
+ us · ∇pm

)
, (72)

DΠe

Dt
= −bT

e · us +

(
Th − T⋆

T

)
q̇ + (χµ − χ⋆)

Dµ

Dt
+ νh

∂pm

∂t
− ν⋆

∂p⋆
∂t

, (73)

DΠk
Dt

= −bM
e · us +

(
χ − χµ

)Dµ

Dt
. (74)

For an intensifying vortex resulting from an increase in v′, we established in the previous
section that νh − νm > 0 and µ − µm > 0. The implications for the work against the
generalised inertial and buoyancy forces bT

e and bM
e by the secondary circulation are

−bM
e · us = (µ − µm)∇χ · us = −u(µ − µm)

r3 > 0, (75)
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−bT
e · us = (νh − νm)∇pm · us = (νh − νm)

[
u

∂pm

∂r
− ρmgw

]
< 0. (76)

The sign of such energy conversions suggests that the flow of energy follows the paths

Πe → u2
s

2
+ Π1 → Πk, (77)

as illustrated in Figure 4. If we neglect the terms related to the time dependence, the
following term needs to be positive(

Th − T⋆

T

)
q̇ + (χµ − χ⋆)

Dµ

Dt
> 0. (78)

If Dµ/Dt < 0 acts as a retarding effect, Figure 2 shows that (r⋆ − rµ) > 0 and hence
that (χµ − χ⋆) > 0, suggesting that the sink of angular momentum is of the wrong sign.
Therefore, for (78) to act as a source term, the diabatic term must be positive and larger
than the term proportional to the angular momentum sink term, viz.,(

Th − T⋆

T

)
q̇ >

∣∣∣∣(χµ − χ⋆)
Dµ

Dt

∣∣∣∣ > 0. (79)

By definition, Th = T(η, pm) and T⋆ = T(η, p⋆), so again from Figure 2, pm − p⋆ > 0 and
therefore Th − T⋆ > 0. Now, if we regard pm = p̂m(ηm, µm) as a function of the reference
entropy and squared angular momentum, we have

(Th − T⋆)

T
≈ 1

T
∂T
∂p

(pm − p⋆) ≈ − 1
T

∂T
∂p

{
∂ p̂m

∂ηm
(η − ηm) +

∂ p̂m

∂µm
(µ − µm) + · · ·

}
. (80)

Since, in general, pressure varies little with µm, it follows that the term is dominated by
the entropy anomaly, which needs to be positive as ∂ p̂m/∂ηm < 0. For the intensification
of v′ to proceed, a finite amplitude entropy anomaly η′ needs to be produced in order
to make the thermodynamic efficiency (Th − T⋆)/T large enough to satisfy the threshold
relation (79), consistent with physical intuition.
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Figure 4. Hypothesised energy pathways associated with the intensification of a cyclonic vortex
forced by sources of diabatic heating q̇ and angular momentum Dµ/Dt.

5. Application to Energetics of TC Intensification
5.1. Motivation and Background

One important motivation for the APE-based study of TCs is the quest for a more
accurate thermodynamic foundation of Emanuel’s potential intensity (PI) theory. In its
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most basic form, PI theory is based on balancing the production of energy with dissipation.
Specifically, PI theory regards TCs as heat engines whose source of energy can be expressed
as a Carnot-type efficiency times the surface enthalpy fluxes, and the dissipation is achieved
at the radius of the maximum wind. However, because Carnot theory only provides an
upper bound for the energy input of heat engines, PI theory usually greatly overestimates
the maximum intensity of TCs. Developments in energetics over the past decade or so,
e.g., Tailleux [32], have suggested that APE theory represents a potentially greatly superior
approach to the study of heat engines than Carnot theory.

In APE-based studies of TC intensification, the volume-integrated APE and KE budgets
may be written as stated in the introduction as

d
dt

APE = GA − C(APE, KE), (81)

d
dt

KE = C(APE, KE)− DK, (82)

where GA is the net APE production by all possible diabatic terms, including the surface
enthalpy fluxes; C(APE, KE) is the reversible conversion between APE and KE; and DK is
the dissipation of kinetic energy. As is well known, the choice of reference state affects the
prediction for both the generation term GA and the storage term d(APE)/dt. The question
is whether it is possible to find a reference state such that the associated APE prediction is
an accurate predictor of the conversion of APE into KE, in which case

C(APE, KE) ≈ GA. (83)

In Wong et al. [12], the authors examined the net generation term for two different con-
structions of the reference state, one obtained from a top-down sorting of the actual state,
the other obtained from a bottom-up sorting. Ways of sorting the atmosphere have been
discussed by Harris and Tailleux [11] and Stansifer et al. [10]. Assuming that there is no
source of KE other than the APE to KE conversion, one may therefore obtain an alternative
to potential intensity theory in the case where a quasi-steady state is reached by balancing
the APE production by the dissipation,

GA ≈ DK. (84)

5.2. Numerical Experiment

In local APE theory as developed by Tailleux [17], there is in fact greater freedom in the
choice of reference state. Alternative choices are to use the initial sounding, an artificially
modified colder sounding, or an isobarically averaged sounding, in addition to the bottom-
up and top-down sorted states. Here, we performed an objective test of the suitability of a
variety of reference states for understanding tropical cyclone intensification, by assessing
the balance between GA and C(APE, KE) for each reference state in an axisymmetric
numerical simulation of a TC.

We used a non-hydrostatic axisymmetric model of Rotunno and Emanuel [33], with
modifications to the microphysics by Craig [34,35]. This model simulates the intensification
of an existing cyclonic vortex over a slab ocean. The full model setup was identical to the
one detailed in Harris et al. [16], in which a method for computing a complete local APE
budget was developed, based on using the model’s initialisation sounding as a reference
state. This reference state, henceforth referred to as the initial reference state, represents
the atmospheric environment outside of the TC. We also tested the top-down and bottom-up
reference states based on sorting procedures, as used by Wong et al. [12]. In addition,
we introduced the mean reference state, which uses time-varying radial averages of the
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potential temperature θ and the water vapour mixing ratio rv (weighted by the volume
represented by each grid point), and the pressure that is in hydrostatic balance with these.
Using this reference state rather than the initial state accounts for general heating and
moistening across the domain, which alters the environment in which the TC is situated.
We additionally tested a cold reference state, computed by taking the initial sounding
and subtracting 5 K from θ. The rv profile was then determined such that the relative
humidity profile was the same as in the initial state. Finally, the pressure was adjusted to
hydrostatic balance. Computing APE relative to a much colder environment than the one
inhabited by the model TC eliminated discontinuities in APE density of the kind found
by Harris et al. [16].

Finally, in addition to these non-radially-varying reference states, we tested the vortex
reference state, defined by a vortex in thermal wind balance. At each time t, the azimuthal
wind speed of the reference vortex was set as the azimuthal wind field from the model,
v0(r, z, t) = v(r, z, t). The thermodynamic fields that held this vortex in hydrostatic and
gradient wind balance were then found using the method of Nolan and Montgomery [36]:
iterating between integrating inwards to gradient wind balance and adjusting vertically to
hydrostatic balance, the thermodynamic fields converged to a reference state determined
by v0, θv0 and Π0. A decomposition into θ0 and rv0 was required in order to continue using
the model’s approximation for buoyancy; it was assumed that rv0 = rv and then θ0 was
calculated from this. This decomposition is non-unique, but the overall results of the APE
calculations were found to be insensitive to choosing a different reference mixing ratio, for
example using the initialisation sounding value of rv as rv0 .

For the non-radially-varying reference states, the components of the APE budget were
calculated according to the method of Harris et al. [16], lifting air parcels vertically to their
level of neutral buoyancy (LNB). Using the vortex reference state necessitates accounting for
both the radial and vertical motion of each parcel until it reaches its LNB. This was achieved
by introducing the angular momentum M as an additional conserved variable, as was
performed by Andrews [15] and Codoban and Shepherd [14] when using an axisymmetric
vortex as a reference state.

The APE density of a moist air parcel with respect to the vortex reference state was
therefore computed by lifting it reversibly and adiabatically along a surface of constant
angular momentum until it reached an LNB. Unlike the method used with the profiles that
vary in the vertical only, this approach uses information about the trajectory the parcel is
expected to follow in the TC. The full numerical discretisation used to lift parcels along
surfaces of constant angular momentum to their LNB, along with the model equations for
GA and C(APE, KE) is included in Appendix C.

Our metric for the suitability of a reference state was that the diabatic production of
APE (relative to this reference state) should be directly linked to the generation of kinetic
energy (which is independent of reference state), and thus to the intensification of the TC.
Only the positive parts of the APE production and the kinetic energy production rates
were compared, rather than their net production rates. This was done at the parcel level:
we integrated the APE production rate over all air parcels in the model for which the
APE production was positive. Different diabatic processes may have competing effects on
the APE production within the parcel, but its overall APE production must be positive.
Similarly, the kinetic energy production rate is integrated over those parcels for which the
kinetic energy production is positive. For brevity, these integrals will be referred to as
simply the rates of “APE production” and “kinetic energy production”, but it should be
understood that they only include the positive contributions to the production. The positive
production rates were studied because there is a direct causal link between the (positive)
APE production and (positive) kinetic energy production, which does not hold for the
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dissipation rates. The consideration of only the positive APE production is somewhat
analogous to the consideration of only the positive heat input when defining the Carnot
efficiency of a heat engine, rather than the net heat input.

Figure 5 compares the rate of kinetic energy production, which is independent of
reference state, to the rate of APE production computed using each of the reference states,
over the intensification of the TC in the axisymmetric model. The poorest estimation of the
kinetic energy production was given by the APE production relative to the cold reference
state. This is because when the potential temperature of the reference state is decreased, it
no longer resembles the environment that the cyclone actually inhabits, and so the APE
production loses physical meaning for the intensification. Measured relative to the cold
reference state, almost all parcels below the tropopause will be buoyant; however, this
large-scale positive “buoyancy” is not associated with upward vertical motion of all parcels,
and so the notional reference heights are mostly not achieved, so most of the APE produced
by diabatic processes does not contribute to the generation of kinetic energy.
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Figure 5. Comparison between the positive part of the kinetic energy production rate in the axisym-
metric numerical model (thick black line) and the positive production rates of APE with respect to
each reference state described in Section 5 (coloured lines).

The sorting-based reference states (top-down and bottom-up) performed worse than
the initial or mean reference states. These results indicate that the sorting procedures are
releasing too much APE, even in the case of bottom-up sorting, which was specifically
intended to limit the APE release to realistic levels [12]. The sorted states were also far more
computationally expensive to obtain (taking longer than the model run itself). Therefore,
it is preferable to use an environmental reference state to study local APE rather than the
sorting methods of Wong et al. [12], although it is possible that other sorting methods could
be designed that would perform better.

The mean profile reference state yielded a much closer match than the initial sounding
to the kinetic energy production towards the end of the model run. Allowing the reference
state to vary with time accounted for general heating and moistening in the domain, which
altered the environment experienced by the cyclone. Therefore, using the mean state
appears to be preferable to using the initial state.

However, the best predictor of the kinetic energy production for this model run was
the vortex reference state, by a substantial margin. Using a reference state that is as close
as possible to the actual model state minimised the stored available elastic energy and
APE density, and therefore yielded the most direct correspondence between the production
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of APE and the production of kinetic energy. If a direct link between APE production
and kinetic energy production is to be drawn, these results show that accounting for the
balanced dynamical structure of the TC is essential. The kinetic energy generation can be
entirely explained in this case by the unbalanced part of the flow. A reference state based
on a vortex in gradient wind balance allows the production of APE by diabatic processes to
be directly linked to the generation of kinetic energy in the TC.

6. Summary and Conclusions
In this paper, we extended the Tailleux [17] local theory of APE to account for momentum

constraints for axisymmetric vortex motions in a dry compressible atmosphere. The theory
significantly simplifies and extends previous work by Codoban and Shepherd [13,14], Andrews
[15] in a number of ways. Notably, we showed that the available potential energy density can
be related to to the work against centrifugal and generalised buoyancy forces.

Although the work was derived for a dry atmosphere, we showed that the theory
can be used for APE-based studies of moist TC intensification, as recently developed by
Harris et al. [16]. The present results show that APE generation based on a non-resting
state is a much more accurate predictor of the APE to KE conversion, suggesting that it is
therefore a much more accurate quantifier of the potential energy actually available to the
tropical cyclone. Such a result has important potential implications for the development
of improved potential intensity theories of tropical cyclones, which will be developed in
subsequent studies.
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Appendix A. Analytical Expression for Vortex Motions
Many of the illustrations of this paper are based on a dry idealised tropical cyclone

axisymmetric vortex taken from Smith et al. [22], defined by its pressure perturbation

p(s, z) = (pc(0)− p∞(0))
[

1 − exp
(
−x
s

)]
exp

(
−z
z⋆

)
cos

(
π

2
z
z0

)
. (A1)

Here, pc(0) is the central pressure at the surface and p∞(0) is the surface pressure at large
radial distance (i.e., in the far-field environment in which the tropical cyclone is situated),
and s = r/rm. The constant rm determines the approximate radius of maximum wind,

https://github.com/bethanharris/vortex-available-energy
https://github.com/bethanharris/vortex-available-energy
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while the constant x sets the radial length scale over which the pressure field declines. The
constant z⋆ similarly sets the vertical length scale of pressure decrease. Finally, the constant
z0 determines the height at which the pressure reaches zero. The constant values are chosen
identically to those in [22]: p∞(0)− pc(0) = 50 hPa, rm = 40 km, x = 1.048, z⋆ = 8 km,
z0 = 16 km. Again following [22], the environmental temperature sounding assumes a
linear decrease in temperature upwards from a surface temperature of 303 K with a lapse
rate of 2.12 × 10−5 m−1.

This approach is designed to create an analytical pressure field that represents the
major features of a tropical cyclone pressure field, i.e., decreasing outwards and with a
maximum radial pressure gradient just outside the core. This yields a balanced azimuthal
wind field typical of the sort found in a tropical cyclone, as further discussed by [22,37].

Appendix B. Signs of Πe and Πk and Stability Conditions
In this section, we discuss the necessary conditions for Πe and Πk to be positive

definite, as these determine the symmetric stability conditions. We start with Πe. To that
end, note that ∇pm · dx′ = dp′ and hence that Πe may be rewritten in pressure coordinates
as follows:

Πe =
∫ pm

p⋆

[
ν(η, p′)− νm(χ

′, Φ′)
]

dp′ (A2)

in which χ′ = χ0(p′) and Φ′ = Φ0(p′) are parameterisations of the integral path along a
surface of constant angular momentum defined as solutions of the system:

µm(χ0(p′), Φ0(p′)) = µ, p′ = pm(χ0(p′), Φ0(p′)). (A3)

Note that by inverting these relations, it is possible to regard χ′ and Φ′ as functions of µ

and p′, thus allowing Πe to be rewritten in the form

Πe =
∫ pm

p⋆

[
ν(η, p′)− ν̃m(µ, p′)

]
dp′ =

∫ pm

p⋆

[
ν(η, p′)− ν(η̃m(µ, p′), p′)

]
dp′, (A4)

where we also use the fact that νh = ν(η, p′), that pm(x⋆) = p⋆, that pm = pm(x), and that
νm(χ′, Φ′) = ν̃m(µ, p′) = ν(η̃m(µ, p′), p′) along the surface of constant angular momentum
µm = µ. Physically, Equation (A4) can be recognised as being similar to the conventional
APE density (compare with Equation (2.18) of Tailleux [17]), for a definition of buoyancy
defined relative to the horizontally varying reference specific volume ν̃m(µ, p) evaluated
along a constant angular momentum surface. As a result, Πe represents a ‘slantwise’ APE
density, by analogy with the concept of slantwise convective available potential energy
(SCAPE) used in discussions of conditional symmetric instability [38–40]. To establish the
positive definite character of Πe, note that (A4) may be rewritten as

Πe =
∫ pm

p⋆

∫ η

η̃m(µ,p′)

∂ν

∂η
(η′, p′)dη′dp′ =

∂ν

∂η
(ηi, pi)

∫ pm

p⋆

∫ η̃m(µ,p⋆)

η̃m(µ,p′)
dη′dp′

=
∂ν

∂η
(ηi, pi)

∫ pm

p⋆

∫ p⋆

p′

∂η̃m

∂p
(µ, p′′)dp′′dp′, (A5)

where we have used the mean value theorem to take the adiabatic lapse rate ∂ν/∂η =

Γ = αT/(ρcp) out of the integral (α is the isobaric thermal expansion and cp is the isobaric
specific heat capacity), where (ηi, pi) represent some intermediate values of entropy and
pressure, and use the fact that η = η̃m(µ, p⋆) by definition. If the adiabatic lapse rate Γ is
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positive, as is normally the case, Equation (A5) shows that a sufficient condition for Πe to
be positive definite is

∂η̃m

∂p
(µ, p′′) < 0, (A6)

regardless of p′′; this shows that the specific entropy should increase with height (decrease
with pressure) along surfaces of constant angular momentum, as expected. The special
case where

∂ηm

∂z
(r, z) > 0,

∂η̃m

∂p
(µ, p′′) > 0, (A7)

would correspond to the so-called conditional symmetric instability (CSI), whereby the
entropy profile is stable to upright vertical displacements but not to slantwise displace-
ments. For small amplitude perturbations, a Taylor series expansion shows that (A5)
approximates to

Πe ≈ −Γi
∂η̃m

∂p
(µ, p⋆)

(pm − p⋆)2

2
(A8)

where Γi is shorthand for ∂ν/∂p(ηi, pi). Note that this expression is essentially the same
as the classical small-amplitude expression N2δz2/2 for the conventional APE density in
terms of an appropriate squared buoyancy frequency, where δz is the vertical displacement
from the reference height. Note that in Equation (A5), we could equally have regarded
pressure as a function of entropy to obtain a small amplitude approximation proportional
to the squared entropy anomaly (η̃m(µ, p)− η̃m(µ, p⋆))2/2 instead if desired.

We now turn to Πk. Observing that ∇χ · dx′ = dχ′ suggests rewriting the latter in χ

coordinates as
Πk =

∫ χ

χµ

(µ − µm(χ
′, Φp(χ

′))dχ′ (A9)

where this time the path χ′, Φp(χ′) parameterises an isobaric line path, hence defined
so that

pm(χ
′, Φp(χ

′)) = pm(χ, Φ) (A10)

By inverting this relation, it is hence possible to rewrite µ(χ′, Φp(χ′) = µ̃m(pm, χ′) as a
function of pm = pm(χ, Φ) and χ′, and therefore in the following form:

Πk =
∫ χ

χµ

(µ − µ̃m(pm, χ′))dχ′ = −
∫ χ

χµ

∫ χ′

χµ

∂µ̃m

∂χ
(χ′′, pm)dχ′′dχ′ (A11)

using the fact that µ = µ̃m(pm, χµ). This therefore shows that Πk is positive definite
provided that

∂µ̂m

∂χ
< 0 =⇒ ∂M̃m

∂r
(pm, r) > 0 (A12)

which is equivalent to stating that the isobaric radial gradient of Mm should be positive,
corresponding to the usual centrifugal stability. For small amplitude perturbations, one
may write

Πk ≈ −∂µ̂m

∂χ
(χµ, pm)

(χ − χµ)2

2
. (A13)

Combining the results shows that for small amplitude perturbations, it is possible to
write Ae as the following quadratic function:

Ae ≈ N2
e
(p − pm)2

2
− ∂µ̃m

∂χ

(χ − χµ)2

2
. (A14)

Other representations in terms of other variables exist, which have been discussed
in [13–15]. For instance, Ae can also be regarded as a function of (M − Mm) and (η − ηm),
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as well as a function of (p − pm) and (µ − µm) for instance. Discussing these representa-
tions is beyond the scope of this paper. However, these representations are easily computed
numerically, as illustrated in Figure 3. Based on this figure, the representation based on
(M − Mm) and (η − ηm) looks somewhat superior, as seemingly achieving a near orthogo-
nal finite-amplitude decomposition of available energy.

Appendix C. Numerical Methods for Computing Local APE with Vortex
Reference State in Axisymmetric Model

Using a radially varying reference state necessitates a slightly different approach to
computing APE density compared to that in standard APE theory based on the use of
a notional resting state. When using a reference state varying only in the vertical, it is
acceptable to simply lift parcels vertically to their LNB, since a parcel’s radial location is
irrelevant to the calculations once θei and rt are known, as explained in Harris et al. [16].
With the introduction of the non-resting state, the path along which a parcel is lifted to its
LNB must be more carefully defined.

For the vortex reference state described in Section 5, parcels are moved reversibly and
adiabatically along surfaces of constant angular momentum between their actual position
and reference position. The three relevant model-conserved variables are the equivalent
potential temperature θei, total mixing ratio rt, and angular momentum M:

θei ≈ θ +
Ls

cpΠ
rv +

L f

cpΠ
(
rl + rp

)
, (A15)

rt = rv + rl + rp + ri, (A16)

M = rv +
f r2

2
. (A17)

These three variables are approximately conserved by all modelled processes other than
radiative cooling, the fallout of precipitation (both liquid and ice), surface fluxes, and
subgrid turbulence and frictional dissipation. The model variables involved are fully
described by Harris et al. [16]: θ is potential temperature, Π is Exner pressure, rv is water
vapour mixing ratio, rl the mixing ratio of cloud liquid water, rp the mixing ratio of liquid
precipitation, and ri the ice mixing ratio. Ls = 2.834 × 106 J kg−1 is the latent heat of
sublimation, L f = 0.334 × 106 J kg−1 is the latent heat of fusion, and cp = 1004.5 J kg−1 K−1

is the specific heat capacity at a constant pressure of dry air.
When using the vertical buoyancy force,

b(θei, rt, z) = g
α(θei, rt, Π0(z))− α0(z)

α0(z)
(A18)

the APE density was defined in Harris et al. [16] as

ea =
∫ zr

z
b
(
θei, rt, z′

)
dz′. (A19)

for a reference height zr. In terms of the two-dimensional coordinate x⃗ = (r, z), we similarly
define the generalised buoyancy force similarly as

b⃗(θei, rt, M0, x⃗, t) = g⃗
α(θei, rt, Π0(x⃗, t))− α0(x⃗, t)

α0(x⃗, t)
, (A20)

where the subscript 0 denotes a value in the reference state and g⃗ is the effective gravity

g⃗ = (C0, g), (A21)
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which accounts for the radial force C0 = −
(

f v0 +
v2

0
2

)
experienced by the parcel in the

reference vortex. C0 is the sum of the centrifugal and Coriolis forces. Henceforth, whenever
buoyancy is referred to in the context of the balanced vortex, this refers to the generalised
buoyancy (A20). Note that since here the reference vortex has been defined by v0 = v, the
effective gravity g⃗ is identical to the one defined by Smith et al. [22].

The APE density using the generalised buoyancy force is, analogously to Equation (A19)
for the vertical case,

ea =
∫ x⃗r

x⃗
b⃗
(
θei, rt, M0, x⃗′, t

)
· dx⃗′. (A22)

This equation defines APE density as the work done by the generalised buoyancy force
when a parcel is lifted reversibly and adiabatically along a surface of constant angular
momentum, from its actual position x⃗ = (r, z) to its reference position x⃗r = (rr, zr).

The reference position is similarly defined as an LNB to the reference height of Harris
et al. [16], but now with respect to the generalised buoyancy:

b⃗(θei, rt, M0, x⃗r, t) = 0. (A23)

Both components of the generalised buoyancy must be zero, which is satisfied if and only if

α(θei, rt, Π0(x⃗r, t)) = α0(x⃗r, t). (A24)

The conservation of angular momentum provides the second constraint necessary to
calculate the reference position, namely that

M0(x⃗r, t) = M0(x⃗, t). (A25)

The reference position is defined as the first point satisfying Equation (A24) that is encoun-
tered when a parcel moves reversibly and adiabatically along a surface of constant angular
momentum in the direction of its in situ generalised buoyancy.

Computing the APE density (A22) in the axisymmetric model first requires the
construction of the angular momentum surface, along which the generalised buoyancy
will be integrated. For a parcel with specific angular momentum Mp, the difference
∆M(r, z, t) = M0(r, z, t)− Mp is computed at all v-points. For each vertical v-level (de-
noted by its index k), linear interpolation is then used to find the radius rMk (r, z, t) at which
∆M = 0. If multiple such roots exist, the one closest to the parcel’s actual radius r is
selected. The profile rMk is linearly interpolated in the vertical to include w-levels, and
computed at z = 0 by assuming that v0|sfc = 0.8 v0| ∆z

2
.

The discretisation of the parcel’s angular momentum surface at time t therefore com-
prises the points

PM =

{
x⃗Mk =

(
rMk , zk

)
: k =

1
2

, 1,
3
2

, 2, . . . ,
ztop

∆z
+

1
2

}
, (A26)

where an integer value k denotes the kth vertical v-level and a half-integer value indicates
a w-level. At each point x⃗Mk ∈ PM, the values of θ0, C0, rv0 and Π0 are computed, using
linear vertical and radial interpolation where necessary. This produces reference profiles
along the parcel’s angular momentum surface.

The computation of the reference position and the APE density requires the values of
both the radial and vertical components of the generalised buoyancy, br and bz, along the
angular momentum surface. The parcel is lifted reversibly and adiabatically to Π0

(
x⃗Mk , t

)
for each x⃗Mk , and θ, rv, rl , rp and ri are calculated using the same lifting procedure as in Har-
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ris et al. [16]. For brevity, the notation θ̂(x⃗, t) = θ(θei, rt, Π0(x⃗, t)) is used in the following.
The components of buoyancy are computed using the model’s buoyancy approximation:

brk = −C0
(

x⃗Mk , t
){ θ̂

(
x⃗Mk , t

)
− θ0

(
x⃗Mk , t

)
θ0
(
x⃗Mk , t

) + 0.61
[
r̂v
(

x⃗Mk , t
)
− rv0

(
x⃗Mk , t

)]
−r̂l
(

x⃗Mk , t
)
− r̂p

(
x⃗Mk , t

)
− r̂i

(
x⃗Mk , t

)}
, (A27)

bzk = g

{
θ̂
(
x⃗Mk , t

)
− θ0

(
x⃗Mk , t

)
θ0
(

x⃗Mk , t
) + 0.61

[
r̂v
(
x⃗Mk , t

)
− rv0

(
x⃗Mk , t

)]
−r̂l
(

x⃗Mk , t
)
− r̂p

(
x⃗Mk , t

)
− r̂i

(
x⃗Mk , t

)}
. (A28)

Once the profile of bz has been computed, the reference height zr is found using the
same method as in Harris et al. [16] (since b⃗ = 0 if and only if bz = 0), and rr = rM(zr) is
obtained by linearly interpolating between rMk points.

The parcel’s APE density is then computed by taking a discretised line integral along
the path of conserved angular momentum. For illustrative purposes, it is assumed that
zr > z. If the parcel resides at vertical level j (z = zj), and n is the integer such that
zn < zr < zn+1, then

ea =
n

∑
k=j

[
bz

k+ 1
2

∆z +br
k+ 1

2

(
rMk+1 − rMk

)]
+ bz

n+ 1
2
(zr − zn) + br

n+ 1
2
(rr − rMn). (A29)

For each line segment from
(
rMk , zk

)
to
(
rMk+1 , zk+1

)
, the generalised buoyancy is evaluated

at the midpoint of the line segment,
(

br
k+ 1

2
, bz

k+ 1
2

)
. This value of the generalised buoyancy

is assumed to be constant along the whole line segment and is then integrated over the line
segment. An equivalent method is applied in the case zr < z.

As was done for the resting reference states, the method of integration is reused to
define the discretised APE production coefficients as

Gθei =
∂ea

∂θei
=

n

∑
k=j

[
∂bz

∂θei

∣∣∣∣
k+ 1

2

∆z +
∂br

∂θei

∣∣∣∣
k+ 1

2

(
rMk+1 − rMk

)]

+
∂bz

∂θei

∣∣∣∣
n+ 1

2

(zr − zn) +
∂br

∂θei

∣∣∣∣
n+ 1

2

(rr − rMn), (A30)

Grt =
∂ea

∂rt
=

n

∑
k=j

[
∂bz

∂rt

∣∣∣∣
k+ 1

2

∆z +
∂br

∂rt

∣∣∣∣
k+ 1

2

(
rMk+1 − rMk

)]

+
∂bz

∂rt

∣∣∣∣
n+ 1

2

(zr − zn) +
∂br

∂rt

∣∣∣∣
n+ 1

2

(rr − rMn). (A31)

The partial derivatives of bz are identical to the derivatives of the vertical buoyancy
given in Harris et al. [16], while the partial derivatives of br are easily found by observing that

∂br

∂θei
(x⃗, t) = −C0(x⃗, t)

g
∂bz

∂θei
(x⃗, t), (A32)
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and similarly with respect to rt.
The APE production rate shown in Figure 5 is then computed by integrating

GA = ρ

(
Gθei

Dθei
Dt

+ Grt

Drt

Dt

)
(A33)

over all parcels with a positive value of GA. Here, ρ is the density in the model’s initialisa-
tion sounding.

The rate of conversion between APE and kinetic energy is

C(APE, KE) = ρ

[⃗
b · v⃗ − cpθv0 v⃗ · ∇(Π − Π0)−

(
f v0 +

v2
0

r

)
u

]
. (A34)

For a resting reference state (i.e., any reference state tested here, other than the vortex
reference state), v0 and b⃗v⃗ reduces to its vertical component bw, as in Harris et al. [16].
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