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Simple Summary: Although animals are typically modeled as making uniform responses
to weather conditions in the context of climate change, in reality the resilience and adaptive
capacity of a population or species relate to differences in the way individuals respond.
Using European badgers (Meles meles) in a high-density population as a model, we inves-
tigated how overall dynamic body acceleration (ODBA, a measure of activity intensity)
and “Activity” (above an ODBA threshold) differed between individuals across seasons.
Weather (including wind speed) affected badger ODBA and activity according to predic-
tors of food resource (earthworm) availability and potential for cooling effects. In spring,
maximal ODBA was expended with intermediate rainfall and temperatures, suggesting
that badgers traded off foraging success against thermoregulatory losses. Crucially, ODBA
plasticity to temperature was highly dependent on individual body condition. Thinner
badgers maintained high spring ODBA irrespective of temperature, while fatter badgers
reduced ODBA at colder temperatures. Conversely, in summer, thin badgers modulated
ODBA according to temperature, likely in response to super-abundant food supply. Ul-
timately, 35% to 57% of remaining variation in daily ODBA was due to inter-individual
activity profiles beyond the effects tested. We conclude that heterogeneity among indi-
vidual energy expenditure profiles may contribute to population resilience under rapid
environmental change.

Abstract: Diverse individual energy-budgeting tactics within wild populations provide
resilience to natural fluctuations in food availability and expenditure costs. Although
substantial heterogeneity in activity-related energy expenditure has been documented, few
studies differentiate between responses to the environment and inter-individual differences
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stemming from life history, allometry, or somatic stores. Using tri-axial accelerometry,
complemented by diet analysis, we investigated inter-individual within-season variation
in overall dynamic body acceleration (ODBA; activity intensity measure) and “Activity”
(above an ODBA threshold) in a high-density population of European badgers (Meles meles).
Weather (including wind speed) affected ODBA and activity according to predictors of
earthworm (food) availability and cooling potential. In spring, maximal ODBA expenditure
at intermediate rainfall and temperature values suggested that badgers traded foraging
success against thermoregulatory losses, where lower-condition badgers maintained higher
spring ODBA irrespective of temperature while badgers in better body condition reduced
ODBA at colder temperatures. Conversely, in summer, lower-condition badgers modu-
lated ODBA according to temperature, likely in response to super-abundant food supply.
Between 35% (spring, summer) and 57% (autumn) of residual total daily ODBA variance
related to inter-individual differences unexplained by seasonal predictors, suggesting
within-season tactical activity typologies. We propose that this heterogeneity among indi-
vidual energy-expenditure profiles may contribute to population resilience under rapid
environmental change.

Keywords: activity profiles; age differences; behavioral plasticity; behavioral thermoregulation;
dynamic heterogeneity; tri-axial accelerometry

1. Introduction
Vulnerability to human-induced rapid environmental change (HIREC) [1] generally

focuses on the species as the minimal unit of investigation [2,3], yet, fundamentally, natural
selection operates on the individual [4,5]. Energy provides a common currency [6] for quan-
tifying how individuals within the same population balance obligate and elective activities.
Overarching constraints at the species level determine the context within which this balanc-
ing occurs; such as diet diversity [7], average body size [8], climatic constraints in achieving
thermoneutrality [9], reproductive strategies [10], and predator pressures [11]. Ultimately,
however, in order to optimize energy allocation between survival and reproduction, and to
have sufficiently predictable energy security to plan tactical energy budgets [12,13], each
individual aims to balance available energy inputs (food supply) with outputs (physiolog-
ical homeostasis and activity) [14] according to circumstances (sex, age, body-condition,
social status, etc.).

Under stable and consistent environmental conditions, directional selection should
drive energy budgeting canalization [15] after accounting for variation stemming from
intrinsic effects such as sex [16], age [17], and body condition [12]. This would result in a
narrow range of optimized tactics prevailing across the entire population or a small set of
alternating strategies under density-dependent fluctuating selection [18]. In reality, environ-
ments are seldom so predictable [19], and multiple pathways to equivalent fitness outcomes
can produce tactical heterogeneity between individuals at both fine (daily) [20] and coarse
(seasonal) [21] timeframes. This can result in disruptive selection, giving individuals with
widely differing behavioral tactics—and consequently, energy expenditure—a stochastic
fitness advantage over more moderate tacticians [22]; or, alternatively, fluctuating selection
for tactics that suit alternating environments [18]. In either case, inter-individual tactical
diversity provides a population with resilience to change, where some individuals will
exhibit plastic variation in energy budgeting that may make them “pre-adapted” to newly
emergent conditions [23,24].
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Rapid anthropogenic climate change reduces environmental predictability and desta-
bilizes the selection pressures that govern energy allocation tactics [13,25]. These effects are
compounded by other forms of HIREC disturbances, such as habitat loss [26], such that
even vagile organisms may be unable to fully track their optimal bioclimatic niche [27,28].
Coping strategies in situ are therefore often essential for population and species persis-
tence [29,30], but the short timescales involved limit the response effectiveness of genetic
adaptation [19,31,32]. Plastic changes in energy expenditure, therefore, represent an essen-
tial coping strategy [33,34], although little attention has been given to how activity budgets,
as the most pliable component of energy expenditure modification, are simultaneously
(a) constrained between individuals experiencing the same contemporary environmental
conditions (e.g., site, weather, predators, etc.) after accounting for sex, age, etc.; (b) limited
by intra-individual consistency, potentially reflecting tactical activity budgeting types; and,
crucially, (c) affected by inter-individual differences in responses to the shared environmen-
tal conditions they experience (differential plasticity) [35].

Energy intake and its environmental covariates are frequently characterized through
diet analysis [36], but quantifying how individuals deploy the energy assimilated from
their diet is more challenging. Recently, advances in bi- and tri-axial accelerometry have
enabled the intensity of activity to be quantified through overall dynamic body acceleration
(ODBA) [37]. ODBA correlates with total metabolism in a wide range of species [38,39],
particularly at short timescales [40], although the ability of ODBA to predict metabolic
rate declines as the contribution of non-movement-related factors, such as heat production,
rises [41]. Nevertheless, ODBA generally provides a robust proxy for movement-based
power [41], making it a good proxy for mechanical energy expenditure [42].

Here, we used collar-mounted custom tri-axial accelerometers to examine variability
in individual activity regimens in a population of wild European badgers (Meles meles,
hereafter “badger”). Badgers provide a highly informative model system for studying
individual activity, exhibiting strongly weather-dependent foraging patterns according to
prevailing conditions and food availability [43–45]. At our high-density population study
site, badgers live in social groups averaging 6.8 individuals (range 1–28), comprising an
overall population of est. 248 individuals in 2016 [46]. Moreover, badger groups occupy
subterranean dens (setts), providing weather refugia [47] from being above ground in
suboptimal thermal conditions [48]—particularly for fatter badgers with lower motivation
to forage [49]. On fine timescales, the availability of earthworms (particularly Lumbricus
terrestris), a primary though not obligate food item consumed in our study region [50], also
varies extensively with weather conditions [51]. Although badgers mate post-partum from
mid-February following winter torpor [52,53], blastocyst implantation is delayed until the
onset of the following winter [54], which enables badgers to align the energetically costly
stages of mating with peak spring food abundance [50,55], focusing the majority of these
costly reproductive investments into one season. During the transition from summer to
autumn, badgers undergo substantial seasonal increases in body fat reserves to prepare for
winter torpor [25].

To investigate how weather affected daily activity in badgers (quantified at the hourly
scale), we tested how “Activity” (binary thresholded using ODBA values—denoted with
a capital “A” to differentiate from general activity) and absolute “ODBA” (the intensity
of activity) were linked to prevailing weather conditions. Rainfall and temperature can
affect wild animals’ survival probabilities non-linearly, where intermediate conditions are
often optimal [30,56]; therefore, we also tested these two covariates for quadratic effects.
Furthermore, we examined whether under-evaluated weather covariates (wind speed,
relative humidity, and a range of soil conditions) can influence activity and ODBA; for
instance, wind speed reduces earthworm surfacing rates and interferes with predator
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sensory perception [57], as well as affecting convective heat loss [58]. For background
seasonal energy intake context, we also conducted a year-long fecal dietary analysis.

Within the context of environmental conditions—and seasonal relevance—we quan-
tified how activity budgeting varied in relation to intrinsic traits (sex, age, and body
condition). Particularly, we predicted that older badgers might exhibit risk-averse activity
patterns due to geriatric frailty [25]. We then examined whether there was substantial
inter-individual tactical response heterogeneity in the population, and whether individuals
exhibited consistent energy expenditure typologies across measurements (i.e., “energetic”
vs. “lethargic” activity types).

2. Materials and Methods
2.1. Data Collection

Badger data were collected as part of a long-term demographic study in Wytham
Woods (Oxfordshire, UK 51◦46′ N, 1◦20′ W) [59]. In May (“spring”), September (“summer”),
and November (“autumn”) of 2018 and 2019, we captured badgers at setts used by three
different social groups (n = 75, see Table 1 below for seasonal sample sizes) and transported
them to a central field station. We sedated badgers with 0.2 mL ketamine hydrochloride
(Vetalar, Zoetis UK Limited, Leatherhead, UK) per kg of body weight via intramuscular
injection [60] and equipped the first 9–12 adults captured each season with custom-built
tri-axial accelerometers (SensorTile turn-key sensor modules, STEVAL-STLK01V1, STMi-
croelectronics, Geneve, Switzerland) within 3D-printed ABS plastic casings attached to
padded dog collars (averaging 1.34% of bodyweight). In the collared subset, age was
inferred from the date of the individual’s initial capture as a cub; only one badger was first
captured as an adult, and its age was estimated from tooth wear [46]. Only adults were
collared, due to welfare considerations for growing cubs. After sedation, we measured
each individual’s weight (to the nearest 0.1 kg) and body length (to the nearest 5 mm), then
computed a body-condition index (BCI) as a measure of body fat reserves [25,61]:

BCI =
loge(mass)

loge(length)
(1)

Table 1. Deployments of tri-axial accelerometry collars.

Season Date Deployed Deployment
Duration # Deployed # Recovered # Returning Data Avg. Data

Returned

Spring 21/05/18 7 days 9 7 5 7.02 days
Summer 03/09/18 7–10 days 10 10 10 6.62 days
Summer 09–10/09/18 65–82 days 9 6 4 15.50 days
Autumn 13/11/18 6–8 days 12 11 0 0 days
Spring 27/05/19 7–8 days 12 12 12 7.04 days

Summer 02/09/19 7–9 days 12 12 10 7.98 days
Autumn 13/11/19 6–8 days 11 11 10 4.51 days

Female breeding success could not be deduced unequivocally, and so was not tested
explicitly as an explanatory variable; however, we used teat length and width and assessed
recent lactation status visually to establish whether a female had lactated in the year of
capture [25,62]. Badgers were released at their place of capture in the afternoon of the
same day.

These badgers were then targeted for recapture 6–10 days later to recover collars (see
Table 1 for a breakdown of collar recovery rates). In four cases, individuals could not be
recaptured within seasonal trapping sessions (12 days) and collars were recovered at later
trappings. A longer deployment was made from 10 September 2018. Catastrophic data
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failure occurred from a hardware incompatibility test in November 2018, resulting in only
one year’s data for autumn deployments.

All captures were licensed under the Badger Act (1992) (Natural England license
2019-2020-4417) and the Animals (Scientific Procedures) Act (1986) (PPL 30/3379).

We obtained hourly weather data from the UK Environmental Change Network (ECN,
terrestrial site T08) meteorological station at Wytham Woods [63]. We used: (a) mean
air temperature (“Temp”, ◦C); (b) total rainfall (“Rain”, mm); (c) wind speed (“Wind”,
m/S); (d) mean relative humidity (“RH”, in %); (e) soil moisture at 20 cm (“SoilM”, %);
and (f) soil temperature at 10 and 30 cm (“SoilT10” and “SoilT30”, ◦C). During September
2019 deployments, the rainfall gauge was obstructed. We cross-referenced these days with
data from the Radcliffe Meteorological Station 6 km away in Oxford and established that
total daily precipitation for 7 of these 9 days was 0 mm or only trace amounts; therefore,
we substituted hourly precipitation data with 0s for these days, removing the two days
for which we could not determine hourly data. We then compared each weather metric
during the accelerometry data periods to the long-term average for these same dates
(1991–2015). Although various covariates differed significantly from the long-term mean
(Supplementary S1), most deviations were within one standard deviation of these means,
making these periods broadly representative of typical seasonal values (Table S1), with two
exceptions: SoilT10, which was 1.0 standard deviation higher than the long-term average
in spring 2018 (p < 0.001), and SoilM, which was 1.3 standard deviations lower than the
long-term average in spring 2019 (p < 0.001), indicating unusually warm and dry soil
conditions. We found substantial seasonal correlations between various weather metrics
(Supplementary S1), and so only evaluated models without collinear subsets of predictors
in Sections 2.3–2.5.

As dietary context for seasonal energy availability, we analyzed feces from Apr-
Nov 2018. While seasonal diet patterns can vary year-to-year, this variation was not the
analytical subject of this study and therefore we considered a single year’s dietary data
to be broadly representative of seasonal patterns for both years. We counted earthworm
chaetae present in effluent washed through sieved scats, producing a measure of average
chaetae found in 10 1-cm2 squares on a Petri dish [64,65]. We also calculated the monthly
frequency of occurrence (FO = occurrences/samples) and relative frequency of occurrence
(RFO = occurrences/total diet item occurrences) for each diet item (Supplementary S4).

2.2. Processing Accelerometry Data

We quantified mechanical energy expenditure from overall dynamic body acceleration
(ODBA) as the L1-norm of the three acceleration channels [42,66]:

ODBA = |Ax| + |Ay| + |Az| (2)

A{x,y,z} represent the difference between the mean and the midpoint of each channel
over a 2 s window, divided by 214, the g-force programmed for these accelerometers.

We used the sum of hourly ODBA as a measure of hourly mechanical energy expendi-
ture and used minute-averaged ODBA (see Supplementary S2) to calculate activity at both
the hourly and daily scales. We used a sensitivity analysis [67] to delimit an active/inactive
threshold for minute-averaged ODBA (0.28, Supplementary S2) and used it to compute
(a) hourly activity (binary: active defined as above threshold for >30 min in the hour) and
(b) the total number of active minutes (above the same threshold) per night (noon-to-noon),
to characterize daily activity duration.

We detected significantly lower activity during the first day after release compared to
subsequent days [68], and so used data only from the second day of deployment onwards
in our models. We also excluded data from the last day of each deployment, as the exact
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time of capture during the last night of activity was uncertain. Finally, we excluded one
badger with a naturally occurring limp from spring 2018, which expended only 73% of
the population’s average ODBA. This resulted in 6238 “badger-hours” of data (spring:
1933 h/14 deployments/12 individuals; summer: 3585 h/19 deployments/16 individuals;
autumn: 720 h/7 deployments/7 individuals).

2.3. Seasonal Drivers of ODBA and Activity

For each season, we constructed a full generalized additive mixed model (GAMM, mgcv
package) [69] to describe ODBA expenditure, including ODBA at the hourly scale (log2-
transformed; higher values had greater variance than lower values—Supplementary S2), as
badger activity follows a clear circadian pattern and can respond to environmental covari-
ates at a finer scale than an entire night. For interpretation, we then summed hourly model
predictions to infer the total daily ODBA per individual under given conditions. Therefore,
we modeled hourly ODBA seasonally as a function of: (a) a cyclic cubic regression spline of
hour of day; (b) weather covariates, including quadratic terms for rainfall and temperature;
(c) individual intrinsic covariates (age, sex, and BCI); (d) pairwise BCI interactions with sex,
temperature, and rainfall; and (e) random intercepts for individuals. We standardized all
continuous covariates to a mean of 0 and a standard deviation of 1 (standardize package) [70].
Autumn data included only two female badgers (from seven), so we did not include sex as
a covariate in that model.

We verified that random intercepts improved model fit for the full model structure
(after Zuur et al., ∆AIC > 10 in all seasons) [71]. We detected substantial autocorrelation
in the residuals, and so we included an AR-1 autoregressive term in each seasonal model.
We then performed all-subsets model selection for each season using Akaike’s Informa-
tion Criterion (AIC, MuMIn package) [72], excluding models with collinear covariates
(Supplementary S1). We also performed equivalent selection for models constructed with-
out Supplementary terms and on thinned data to evaluate the effects of autocorrelation on
term selection. We proceeded for each season with the model exhibiting the lowest AIC
with AR-1 terms (see Supplementary S3 for models with ∆AIC < 2 and full coefficients for
top models from all three model selection approaches, which produced similar results).

We used the same procedure to select models predicting hourly activity (binomial, 1/0)
for each season. Due to the computational intensity of evaluating binomial models with
autoregressive terms, we performed activity model selection without modeling residual
autocorrelation (see Supplementary S3 for models with ∆AIC < 2). We then included AR-1
terms in the selected seasonal models.

2.4. Inter-Individual Environmental Response Heterogeneity

We investigated inter-individual differences in ODBA expenditure per night in two
ways: (i) in seasonal hourly ODBA and activity models, we included interactions between
individual traits (age, sex, and BCI) and key environmental metrics (see Section 2.1) to
establish potential drivers of inter-individual plasticity; (ii) remaining unexplained plas-
ticity was investigated by re-computing the best seasonal model of hourly ODBA with
random individual slopes for weather metrics, limited to the period between sunset and
sunrise. We used AIC to compare separate models with and without random slopes for
each weather covariate.

2.5. Intra-Individual Consistency (Activity Types)

Variance in hourly ODBA relating to the day/night cycle exceeded inter-individual
variance; therefore, the random intercepts from hourly ODBA models could not sufficiently
quantify individual activity types. Instead, we used intra-class correlation (ICC) coefficients
from seasonal models of total nightly ODBA (sum of hourly ODBA values from noon-to-
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noon) as a function of the covariates selected in each seasonal hourly ODBA model, in
which hourly weather covariates were averaged between sunset and sunrise (derived from
the suncalc package) [73]. We performed an identical procedure with models of the total
minutes each individual was active per night. We calculated ICC as the ratio of variance
described by individual intercepts to total variance, after Nakagawa and Schielzeth [74]:

ICC =
var(Individual)

var(Individual + Residual)
(3)

3. Results
3.1. Individual and Seasonal Variation in ODBA and Activity Patterns

Individuals exhibited substantially different total ODBA on the same nights, under
the same conditions (see Figure 1). On average, the most active badger on a given night
expended 1.9 times (range 1.1–5.9x) the ODBA of the least active.

Figure 1. Nightly ODBA variation. Variation in total nightly ODBA expended by individual badgers
(connected by gray lines) under the same environmental conditions in (a) spring, (b) summer, and
(c) autumn. Colored lines show averages of nightly ODBA, and vertical dotted red lines separate
datasets by year.

Nightly badger activity duration was longest in autumn (569.8 ± 146.4 SD minutes),
shortest in spring (502.3 ± 109.1 min), and intermediate in summer (526.8 ± 110.0 min).
Total nightly ODBA was, however, nearly identical in spring and summer (6.54 ± 1.58
and 6.51 ± 1.48, respectively) and somewhat higher in autumn (7.44 ± 2.29). Nightly
ODBA schedules (from hourly ODBA models) exhibited one peak around sunset and
one before sunrise (Figure 2a). Activity patterns were similar (Figure 2b), although in
autumn, the activity exhibited only a post-sunset peak, with no elevated probability of
pre-sunrise activity. While individuals were more likely than not to be active on any given
night (Figure 2b), 12.1% (spring), 20.9% (summer), and 27.3% (autumn) of all night-time
badger hours (between ODBA peaks) were below the activity threshold, representing
substantial episodes of nocturnal inactivity across all seasons. Diurnal activity did not
exhibit this variability, with only 2 h of diurnal activity across all badgers (09:00–15:00),
both during summer. While post-sunset ODBA/activity peaks occurred 1.5–2.5 h after
sunset in summer and autumn, the spring peak coincided with sunset. Spring and summer
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post-sunset ODBA peaks were 36.9% and 37.2% higher than in autumn, respectively, while
the pre-sunrise activity peak was only ODBA-intensive in spring, being 56.6% and 98.0%
higher than in summer and autumn, respectively (Figure 2a). There were fewer seasonal
differences between peaks in the hourly activity relationship, where >95% of badgers in
all seasons were active during the sunset peak; in spring and summer, 90.9% and 85.1% of
badgers, respectively, were active during the pre-sunrise peak, dropping to 66.4% at 03:00
(pre-inactivity; no second activity peak) in autumn (Figure 2b).

Figure 2. Hourly trends by season. Output predictions from smooth terms (cyclic cubic spline) in
(a) ODBA models and (b) activity models by season as a function of hour of day. Shaded region
shows 95% confidence interval for hourly relationship; vertical dotted lines show average sunrise
and sunset for deployment periods (blue = spring, green = summer, purple = autumn).

Model fit was high for hourly ODBA in spring (R2 = 0.819), slightly lower for sum-
mer (R2 = 0.718), and lowest in autumn, although still explaining over 50% of variance
(R2 = 0.581). Model fit was high for all hourly activity models, with 94.6% (spring),
88.4% (summer), and 84.7% (autumn) of hours classified accurately as either active or
inactive. Matthews correlation coefficients (MCCs), which measure correlations of clas-
sified data points while accounting for sensitivity and specificity (from −1 for perfect
negative correlation to +1 for perfect classification), supported the high classification relia-
bility of seasonal models, with MCCs of 0.883 (spring), 0.761 (summer), and 0.701 (autumn).
Five-fold cross-validation showed this classification success was robust to data sub-setting,
producing accuracies of 94.3% (spring, MCC = 0.877), 88.3% (summer, MCC = 0.759), and
83.5% (autumn, MCC = 0.670).

3.2. Seasonal Drivers of Daily ODBA/Activity
3.2.1. Weather Drivers

Figure 3 summarizes covariate coefficient values and presence in top models.
Temperature affected ODBA quadratically in both spring and summer, with a posi-

tive effect of higher temperatures below an optimum, and a negative effect beyond that
(Figure 4)—the particular optimum was determined by BCI (see Section 3.3). In spring,
higher temperatures were linearly associated with higher activity probability, but summer
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activity probability peaked at intermediate temperatures (13.1 ◦C). In spring, rainfall had a
similar effect to temperature, with rainfall beyond an optimal point (0.8 mm h−1) reduc-
ing hourly ODBA. In autumn, higher rainfall correlated negatively with activity, with a
25.6% lower probability of autumnal activity (±SE, 2.2–47.4%) at the highest rainfall values
(1 mm h−1). There was no effect of rainfall on summer or autumn ODBA, or on spring or
summer activity.

Figure 3. Drivers of ODBA/activity. Panels (a,c) show the coefficients of lowest-AIC seasonal models
for hourly ODBA and activity (±SE); panels (b,d) show the percentage of models with ∆AIC < 2 from
the best model that included the term. Vertical dotted line depicts 0 coefficient value.

Wind speed correlated negatively with both ODBA and activity in spring. The highest
speeds (3.8 m s−1) coincided with a 24.2% ODBA reduction (12.1–34.7% SE) compared to
the lowest speeds (0.3 m s−1) but correlated positively with summer activity (predicting up
to 19.4% greater likelihood of activity at highest wind speeds—6.8 m s−1, SE 9.2–28.7%).
Although RH had a positive effect on activity in autumn and a negative effect in summer,
these effects lost statistical significance (p = 0.10 and 0.20, respectively) after accounting for
autocorrelation, and RH was not retained in the best ODBA model for any season.

SoilT10 was only retained in autumn models (Temp and SoilT10 were collinear, and
Temp was consistently selected over SoilT10 in other models, Figure 3b,d), with ODBA and
activity substantially higher at the highest soil temperatures (up to 44.3% higher activity
probability, 9.2–71.6% SE, with total ODBA expended being 2.3-fold higher, 1.4–3.9x SE).
SoilT30, conversely, had a negative association with ODBA in both spring and summer
(23.1%, 11.5–33.2% SE and 28.1, 15.6–38.8% SE reduction in nightly expenditure, respec-
tively), and with activity in summer. Higher SoilM values were associated with up to a
1.4-fold greater nightly summer ODBA (1.2–1.6x SE). SoilM was also retained in autumn
activity models but fell below statistical significance after modeling residual autocorrelation
(p = 0.43).
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Figure 4. Non-linear effects of temperature and rainfall on nightly ODBA. Total ODBA expended per
day (sum of hourly predictions) as a function of (a) rainfall or (b) temperature.

3.2.2. Intrinsic Drivers of ODBA and Activity

An individual’s age related to ODBA and activity only in summer, when it correlated
strongly with lower ODBA (a 13-year-old badger’s total per diem ODBA was 31.1% lower
than a 1-year-old’s, 21.0–39.9% SE) and slightly less strongly with lower activity (only 12.8%
reduction for the same contrast, 2.6–23.6% SE).

Sex was not retained in any ODBA models. However, in spring only, males (positive)
and females (negative) had opposite relationships between BCI and activity (Figure 5).
Although this negative female effect was in part shaped by one high-BCI female—the only
one who had not lactated in the year of collaring—the interaction term remained significant
(p = 0.01) after re-running the model to exclude that individual.

3.3. Inter-Individual Response Variability: Explanatory Factors

No model with a random slope by an individual for a weather metric had a lower
AIC value than the best random-intercept model for each season. A random slope for
temperature increased the log-likelihood of models in spring and summer, but not sig-
nificantly (p = 0.28 and 0.18, respectively). However, in spring and summer, individuals
differed substantially in their ODBA response to temperature as a function of BCI. In spring,
the lowest condition badgers collared (with BCIs in the 0.9th percentile for their social
groups) had consistently high nightly ODBA (with predicted values from 6.0 to 7.2), while
there was a positive relationship between temperature and ODBA for the higher-condition
badgers in our sample (61.3th percentile), ranging from 3.9 to 6.4 (Figure 6a). In summer
(Figure 6b), the relationship was inverted, where lower condition badgers (1.2th percentile)
responded to Temp, with total ODBA ranging from 2.6 to 7.0, while higher condition
badgers (97.4th percentile) remained consistently around 5.6. A similar (but marginally
significant, p = 0.059) activity relationship occurred for summer but not spring (Figure 3c,d).
Neither BCI nor its interactions with extrinsic conditions were retained in autumn models.
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Figure 5. Effect of BCI on spring activity probability. Relationship between BCI and spring activity
probability (with 95% CI) for the two sexes; points show the BCI values in the dataset.

3.4. Intra-Individual Activity Consistency

After accounting for terms retained in each seasonal ODBA model and for sex, age
and BCI, some badgers were consistently active for longer, and expended consistently more
ODBA per night, than others.

ICCs for total nightly ODBA were highest (implying greater night-to-night consistency)
in autumn (0.57) but also relatively high in spring and summer (both 0.35); for total nightly
activity duration, spring and autumn ICCs were high (0.37 and 0.38, respectively) and
somewhat lower in summer (0.27). These ICCs indicate substantial differences between
individual activity regimes not explicable by the suite of modeled drivers of hourly ODBA,
with a 1.25-, 1.49-, and 1.92-fold difference in average nightly ODBA expenditure from the
most to the least ODBA-intensive badger for spring, summer, and autumn, respectively
(Figures 7a and 8), with the most active badgers in spring, summer, and autumn being active
for 2.2, 1.9, and 3.2 h a night, respectively, longer than the least (Figure 7b). For individuals
with data for multiple seasons, there was no intra-individual correlation between spring
and summer individual intercepts (Spearman rank correlation = 0.07 and −0.02 for total
ODBA and minutes spent active, respectively); that is, intra-individual consistency of
mechanical energy expenditure tactics did not extend between seasons (sample size was
insufficient to evaluate correlations with autumn intercepts).

3.5. Diet

Badger diet varied opportunistically throughout 2018 (Figure 9). Earthworms were
the primary prey item consumed by this population, with 77.9% average monthly FO
(and 96% FO in March)—alongside year-round consumption of arthropods and snails
(Figure 9b)—but earthworm consumption was substantially lower during the summer
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(Jun-Aug, Figure 9a), with cultivated wheat (Triticum aestivum var., FO = 76% in Jul) and
wild blackberries (Rubus fruticosus, FO = 84% in Aug) filling some of this deficit. By
September, blackberries were supplemented with other fruits (FO = 32% in Sep), hazelnuts
(Corylus avellana), horse chestnuts (Aesculus hippocastaneum), and sweet chestnuts (Castanea
sativa), which continued to be substantial diet components through the resumption of high
earthworm consumption in autumn (Figure 9b).

Figure 6. Seasonal BCI-Temp interaction. An individual’s total ODBA in (a) spring and (b) summer
(with 95% CI) varied differently according to temperature for low-BCI (dashed) and high-BCI (solid)
individuals. Low and high BCI reflect the most extreme contrasts in our sample: see main text for
values relative to population context. X-axis spans temperatures experienced by badgers between
17:00 and 7:00 h in seasonal data.

Figure 7. Individual intercepts. Under average seasonal environmental conditions and assuming
average age and BCI, the expected (a) total nightly ODBA and (b) number of nightly minutes spent
active for different individuals. Lines connect seasonal estimates for the same individual.
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Figure 8. Intra-individual consistency in nightly ODBA deviations. Dots show residual deviations
from average predicted nightly ODBA expenditure, in %; horizontal lines show individual intercepts
(average deviation from population mean; (a) spring, (b) summer, (c) autumn). Vertical dotted red
lines separate datasets by year.

Figure 9. Seasonal diet trends. (a) Average chaetae count in 10 1-cm2 squares for each fecal sample
collected and analyzed, with bar plots indicating the timing and relative frequency of corresponding
seasonal accelerometry data. Two observations from October were excluded from the plot due to
particularly high chaetae counts. (b) Relative frequency of occurrence of diet categories in feces from
a month.
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4. Discussion
We observed substantial inter-individual heterogeneity in daily ODBA and activity

expenditure on the same day at the same site, and therefore under the same environmental
and social conditions, with some individuals expending almost twice as much mechanical
energy as others (Figure 1). Moreover, per individual, these different energy expenditure
tactics remained consistent within a season. Drivers explaining ODBA expenditure were
complex (Figure 3), involving responses at the hourly level through to season-specific
weather effects (Figure 4), effects of life-history (Figures 3 and 5), and differential plasticity
to prevailing weather according to individual body condition (Figure 6).

Badgers predominantly consumed earthworms in spring (Figure 9), which surface
in an optimal mild temperature and humidity range [57]. Accordingly, in spring, activity
increased linearly with hourly temperature, while ODBA peaked at intermediate tempera-
tures (optimum determined by BCI, see Figure 6) and at precipitation levels of 0.8 mm/h.
Being active during cooler and wetter conditions, exacerbated by wind chill (decreasing
ODBA by up to 24.2% under the windiest conditions) [20], would be expected to incur
higher thermoregulatory costs [48,75]. Strong winds may also disrupt badgers’ ability
to use scent or hearing to detect earthworms [57]. These threshold-bounded effects of
spring temperature and precipitation mirror non-linear relationships detrimental to badger
body condition and survival [30,56], with high precipitation likely causing heat loss due
to fur-soaking [76]. While shallow soil temperature (SoilT10) in spring was not related to
either ODBA or activity (despite including a spring with unusually warm SoilT10), warmer
SoilT30 was associated with up to a 23.1% decrease in ODBA.

During the summer deployments, ODBA was again affected positively by temperature
up to an optimum before declining (again, optimum determined by BCI). Unlike in spring,
summer activity exhibited the same tipping point effect as ODBA, decreasing beyond
13.1 ◦C (only slightly higher than the summer long-term average temperature, Table S1).
We observed no effect of rainfall in summer; however, in contrast to spring, there was up to
a 19.4% increase in activity probability under the windiest conditions, but with no effect
on ODBA. In summer, ODBA decreased by up to 28.1% with warmer SoilT10 conditions,
which also reduced activity; in contrast, the highest SoilM conditions were associated with
a 1.4-fold ODBA increase. We propose that moister, milder soil conditions, likely promoting
earthworm availability, drove significant facultative ODBA increases; however, badgers
depend less on earthworms in their summer diet and instead consume a greater proportion
of berries and cereal crops (Figure 9)—for which availability is not affected by weather
conditions. Unnecessary exertion in high ambient temperatures can lead to overheating, a
major stressor for wild animals [77]. Therefore, heat often causes a hyperthermic lethargy
response [78,79] in order to avoid morbidity [80]. These various summer weather effects
suggest that, when freed from weather driving the availability of their primary food,
badgers primarily sought instead to stay cool, reducing both ODBA and activity when both
the air and soil were warmer, and benefitting from a cooling breeze. Heat stress may be
particularly pertinent to badgers, which evolved primarily as a cold-climate species [81]
and exhibit various physiological adaptations to minimize thermal losses [52].

In autumn, ODBA and activity were less responsive to weather, especially air tem-
perature, than in other seasons—although likely caused in part by the smaller autumnal
sample size. Of the soil covariates tested, only SoilT10 (but not SoilT30; and the effects of
SoilM fell below significance after accounting for autocorrelation) had a significant effect
on activity metrics. This influence was, however, substantial, with a 2.3-fold increase in
ODBA and a 44% increase in activity when soils were warmest—likely linked to conditions
under which earthworms surfaced in the autumn (especially as SoilT10 was significantly
cooler during the study period, p < 0.001, than the long-term mean for the same dates,
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Table S1). Badgers also avoided heavy rain in the autumn, which reduced activity by up to
25.6%, corroborating patterns reported by Noonan et al. [49]. Henry [82] reported that with
earthworm scarcity on frosty nights, the effectiveness of badger foraging was over ten times
lower than during warmer nights, and thus badgers must achieve a minimum autumnal
body by using fat reserves to support torpor. Accordingly, only badgers in low body
condition—those motivated to go foraging even under the low likelihood of reward—tend
to remain relatively active during years with poor autumn foraging conditions [49].

Individual badgers exhibit heterogeneous investments in social activity throughout the
year [43], with some individuals engaging in more energy-intensive life-history strategies
than others [25,55,83]. Within the overarching context of extrinsic effects, we detected no
effect of sex on ODBA, although the limited number of contrasts in our dataset precluded
rigorous analysis on the base of sex. However, we did find different relationships between
BCI and springtime activity between sexes. Higher-condition females were less likely to be
active than lower-condition ones in the spring. While the highest-BCI female badger in the
dataset (the only one not to lactate that year) contributed an influential data point for this
relationship, the interaction term remained significant after excluding it.

Reproduction takes a well-documented toll on female badger condition [84], and
unless females gain back lost body condition they suffer reduced survival and reproduction
probability during the next winter [25]. Therefore, the higher activity seen in low-BCI
reproductive females implies that the residual effects of reproductive investments reduce
an individual’s energy budget flexibility. This elevated maternal activity rate may relate to
the slow rate of social integration for badger cubs relative to other social carnivores [85],
during which time they are vulnerable to infanticide [86], requiring mothers to forego
foraging to safeguard their cubs unless in particularly poor condition [59,87]. In contrast,
males showed a (slight) positive BCI–activity relationship (Figure 5), possibly reflecting that,
in the absence of paternal care, males in good condition could spend more time engaging
in “optional” social behavior such as visiting other setts. Note, however, that welfare
considerations (a legal closed season, linked to not depriving neonatal cubs of maternal
care) prohibited us from trapping and collaring badgers during the peak post-partum
mating period in mid-February [88]—when sex-based activity might differ most [50].

ODBA was clearly related to substantial inter-individual differences in plasticity tied
to body condition: in spring, higher-BCI badgers expended more ODBA with warmer
temperatures while lower-BCI badgers exhibited consistently higher ODBA irrespective of
temperature (Figure 6a). Higher BCI appeared to provide individuals with some degree
of buffering, enabling them to undertake less energy expenditure on cool spring nights,
whereas lower-BCI individuals foraged even under sub-optimal temperature conditions
(Figure 4). Individuals in poor condition need to prioritize foraging activity irrespective
of poor foraging conditions [12], particularly during energy-intensive life-history stages
(e.g., lactation, breeding) [16,89], possibly at a cost to social investments such as inter-sett
visits [43,90].

The BCI-plasticity relationship reversed during summer (Figure 6b). Badgers with
higher BCIs decreased ODBA beyond an inflection point, implying that higher-BCI individ-
uals may seek to avoid excess activity when well-insulated with fat, given that hyperthermia
risks pathophysiological effects [91]. Not least, insensible water loss due to panting to
thermoregulate [92,93] is harder to replace in summer when puddles of water are scarce;
access to water is a major constraint on badgers in arid conditions such as are found around
the Mediterranean [94]. While diurnal animals can partially compensate for warming
conditions by shifting activity towards nocturnality [95], nocturnal ones such as badgers
cannot adapt regimes further and must cope by reducing mechanical expenditure [96].
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Age effects also suggested that warm summer conditions may constrain mechanical
energy expenditure in badgers. Older badgers were less likely to be active than young
badgers and expended less ODBA during summer nights. Heat stress generally has more
severe effects on elderly individuals, including humans [97]. To mitigate this stress, hy-
perthermia triggers lethargy, largely through the generation of central fatigue involving
changes in dopamine and serotonin levels [79], reducing activity and minimizing ther-
mogenesis [98]. Older badgers typically carry smaller fat stores despite somatic reserves
in summer elevating annual survival probability with advancing age [25]. Therefore, the
observed additional activity reductions seen in older badgers likely relate to a necessary
avoidance of unsustainable loss of somatic condition during the summer.

Our observation of badger activity commencing before dusk and extending beyond
dawn in our May deployment corroborates previous studies [99], where badgers’ relatively
fixed and incompressible nightly routines (e.g., foraging, mutual and self-grooming, scent
marking, and territorial defense) [59] require longer than short nights permit. Further-
more, our fine-scale individual data revealed that from 271 badger days of activity, only
126 (46.5%) involved one nonstop bout of activity—on 123 nights (45.4%) the badger be-
came inactive for at least one hour and then resumed activity (Figure 2); one badger even
undertook four cycles of activity/inactivity in one night. While our data do not allow us to
firmly discern between inactive waking and temporary polyphasic sleep (naps), the latter
has been hypothesized to be facilitated by environmental conditions [100], providing an
axis for future investigation. The proportion of unbroken activity was higher in spring
(64.3%), during the shortest nights than in summer (35.7%) or autumn (53.3%) deployments,
demonstrating that individuals tailor their energy budgeting not only from night to night
but also within a night, according to environmental constraints and seasonal priorities.

Beyond the explanatory power of these intrinsic and extrinsic drivers, high intra-class
correlation coefficients exposed substantial individual consistency in the duration of nightly
activity and ODBA (Figures 7 and 8). This suggests that energy budgeting typologies may
exist that persist at least within seasons, implying that once committed to an energetic
tactic, badgers continued to follow it while similar seasonal conditions prevailed; switching
tactics may presumably nullify or destabilize preceding energy investments. Crucially,
however, even after accounting for variation attributable to sex, age, and body condition,
we also found strong evidence for substantial inter-individual heterogeneity in mechanical
energy investment tactics across the population. That is, given the exact same overarching
conditions, two similar individuals might exhibit substantially different ODBA/activity
profiles (Figure 8).

In addition to mechanical energy expenditure, an individual’s total energy budget is
also comprised by obligate metabolic processes not measured by accelerometry [13], includ-
ing homeostasis [101], immune responses [102], and thermoregulation [103]. Superficially
similar individuals may therefore have substantially different underlying metabolic rates or
sustain different metabolic costs, which may factor into their activity tactics [104]. Moreover,
inter-individual differences in the security with which basal energy inputs are met could
lead to heterogeneous investment in “surplus” activities, such as exploration [105], social
interactions [106], territorial defense [107], sexual advertisement and other forms of commu-
nication [108], inter alia. For instance, high-BCI badgers in the studied population perform
more inter-sett visits than do low-BCI badgers [43], implying that badgers experiencing
higher energy constraints reduce non-essential activities. Importantly too, many animals
utilize inactivity (both sleep and torpor) [109,110] to reduce energy expenditure [111]. This
is particularly important because—at least in humans [112]—it is the combination of low
energy intake and low energy expenditure (low energy flux), not energy surplus, that
predicts future body fat gain.
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Niche variation [113] between superficially similar individuals may also contribute
to tactical heterogeneity. We selected badgers from relatively large social groups (avg. of
10.1 badgers from 2011 to 2016, vs. avg of 4.3 in other social groups), even within the
context of this high-density population [46], where higher density militates for trophic
niche specialization [114]. As the diets of individuals become more uniquely specialized,
the cumulative niche breadth of a population increases [7,115], suggesting a greater capacity
for inter-individual energetic heterogeneity.

Although plasticity to environmental change is generally associated with population
resilience [24,116], because individuals are simultaneously responding differently to exis-
tential selection pressures, it comes with costs to efficiency [117,118]. Hypothetically, in
stable environments, a single optimal strategy should become canalized; but for a gener-
alist omnivore with a variable social system such as the badger [59], and in a seasonally
temperate mosaic habitat (a multidimensional niche) [119], a single optimal solution to
maximal fitness is not achievable—as opposed to for species with a more specialized diet,
or that benefit from group hunting, which promotes higher activity fidelity among con-
specifics [120]. Within populations with a wide niche breadth, substantial energy-balancing
diversity can influence pace-of-life syndromes (POLS) [121] through the co-variation in
behavioral and physiological traits [122,123]. In this studied badger population, there is
evidence of demographic [83], developmental [124], and endocrinological [55] variation
in pace-of-life. While here we cannot link to POLS directly, these syndromes may also
contribute to inter-individual differences in how badgers expend energy under the same
conditions. For diverse energetic tactics to persist within a population, each must either pro-
vide equivalent fitness or those that underperform under one environmental scenario must
have a selective fitness advantage under different conditions [125]. As energy availability
can vary substantially as a function of environmental stochasticity, individuals should
seek to minimize their exposure to fitness variance, through “bet-hedging” [23,126]. Con-
sequently, patterns emerge when fluctuating selection pressures [127] alternatively favor
suites of energy expenditure tactics that cluster individuals into high- and low-competition
phenotypes [128].

5. Conclusions
Rapid environmental change—particularly climate change—exerts a disruptive se-

lection pressure on populations [129], likely impacting which energy expenditure tactics
succeed or fail under novel conditions [24]. Badgers, as an emblematic mesocarnivore with
a wide bioclimatic niche [130], provide fertile ground for examining the latent capacity
of species to adopt in situ behavioral coping tactics to conform to these anthropogenic
selective stressors. In this analysis, we unveiled a delicate patchwork of individual het-
erogeneity in energetic response to environmental triggers, dependent on reproduction,
age, and body condition. Ultimately, the persistence of many non-vagile populations in the
Anthropocene will depend on whether parallel patchworks of behavioral responses are a
match for novel energetic challenges. Our findings would compel the wise conservation
practitioner to consider not only emerging environmental changes, but also how these in-
teract with different life history stages and the diverse phenotypes within wild populations,
so that they may better anticipate critical points in population and species viability.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ani15111560/s1. Supplementary Materials contains: S1. an
evaluation of weather covariates within seasonal deployments; S2. deviations from long-term av-
erage and within-season collinearity; S3. methods for determining an accelerometry threshold for
activity; S4. model selection comparing approaches to handling autocorrelation diet analysis meth-
ods [49,64,65,69,73,131–138]. Supplementary Tables: Table S1: Weather covariate characterizations;
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Table S2: Top model coefficients for seasonal ODBA model selection approaches; Table S3.1. Models
with ∆AIC < 2 from top model for all-subsets selection with AR-1 term for hourly springtime ODBA;
Table S3.2. Models with ∆AIC < 2 from top model for all-subsets selection with no accounting for
autocorrelation for hourly springtime ODBA; Table S3.3. Models with ∆AIC < 2 from top model for all-
subsets selection on halved data for hourly springtime ODBA; Table S3.4. Models with ∆AIC < 2 from
top model for all-subsets selection with AR-1 term for hourly summertime ODBA; Table S3.5. Models
with ∆AIC < 2 from top model for all-subsets selection with no accounting for autocorrelation for
hourly summertime ODBA; Table S3.6. Models with ∆AIC < 2 from top model for all-subsets selection
on halved data for hourly summertime ODBA; Table S3.7. Models with ∆AIC < 2 from top model for
all-subsets selection with AR-1 term for hourly autumn ODBA; Table S3.8. Models with ∆AIC < 2
from top model for all-subsets selection with no accounting for autocorrelation for hourly autumn
ODBA; Table S3.9. Models with ∆AIC < 2 from top model for all-subsets selection on halved data for
hourly autumn ODBA; Table S3.10. Models with ∆AIC < 2 from top model for all-subsets selection
for hourly springtime activity; Table S3.11. Models with ∆AIC < 2 from top model for all-subsets
selection for hourly summertime activity; Table S3.12. Models with ∆AIC < 2 from top model for
all-subsets selection for hourly autumn activity. Supplementary Figures: Figure S1.1: Correlations
between covariates during the spring study period; Figure S1.2: Correlations between covariates
during the summer study period; Figure S1.3: Correlations between covariates during the autumn
study period; Figure S2: Distribution of active/inactive samples.
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