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Abstract The reduced sensitivity of mean Southern Ocean zonal transport with respect to surface wind
stress magnitude changes, known as eddy saturation, is studied in an idealized analytical model. The model is
based on the assumption of a balance between surface wind stress forcing and bottom dissipation in the
planetary geostrophic limit, coupled to the GEOMETRIC form of the Gent—-McWilliams eddy parameterization.
The assumption of a linear stratification, together with an equation for the parameterized domain integrated total
eddy energy, enables the formulation of a two component dynamical system, which reduces to the non-linear
oscillator of Ambaum and Novak (2014, https://doi.org/10.1002/qj.2352) in a Hamiltonian limit. The model
suggests an intrinsic oscillatory time scale for the Southern Ocean, associated with a combination of mean shear
erosion by eddies and eddy energy generation by the mean shear. For Southern Ocean parameters the model
suggests that perturbing the system via stochastic wind forcing may lead to relatively large excursions in eddy
energy.

Plain Language Summary The Southern Ocean volume transport is linked to the global
stratification to the north of the Southern Ocean. It is thus of interest to understand how the Southern Ocean
volume transport responds to changes in the forcing. Eddy saturation in this case refers to the weak sensitivity of
the Southern Ocean volume transport to changes in wind forcing, and this phenomenon is investigated in this
work within the context of an idealized but analytically and mathematically tractable model. The model
mathematically formalizes the physical arguments presented in previous works, and leads to closed form
expressions for model response time scales, namely an oscillation and decay time scale. Random but sustained
perturbations can be included in the model, and statistics of the model response can still be derived analytically.
The simple model here advances our understanding of the governing processes related to the phenomenon of
eddy saturation, with possible implications for understanding the ocean's global overturning circulation.

1. Introduction

Numerical models with an explicit representation of mesoscale eddies indicate that the Southern Ocean may be
eddy saturated, with a mean zonal transport which is relatively insensitive to changes in the magnitude of the
mean surface wind stress (e.g., Bishop et al., 2016; Farneti et al., 2015; Hewitt et al., 2020; Munday et al., 2013).
However, in models with parameterized eddies that make use of classic forms of the Gent-McWilliams
parameterization (Gent & McWilliams, 1990; Gent et al., 1995), eddy saturation is often not observed. The
Gent-McWilliams scheme captures the response of baroclinic eddies to a baroclinically unstable lateral density
gradient, in the form of an eddy induced overturning that opposes the density gradients which are the source of the
instability. However the eddy response is constrained by properties of the eddy field, and in particular by the eddy
energy (Marshall et al., 2012).

Inclusion of eddy energy information in mesoscale eddy parameterizations has become increasingly widespread,
finding use in constraining the parameterized momentum forcing (e.g., Bachman, 2019; Bagaeva et al., 2020;
Jansen & Held, 2014; Yankovsky et al., 2024) and in variants of the Gent—-McWilliams scheme (e.g., Cessi, 2008;
Eden & Greatbatch, 2008; Jansen et al., 2019; Mak et al., 2018). The principal focus of the present article is on the
GEOMETRIC scheme (Mak et al., 2018; Marshall et al., 2012), which makes use of an energetically constrained
form of the Gent-McWilliams coefficient, with the constraint derived (and holding exactly) in the quasi-
geostrophic limit (Marshall et al., 2012). The GEOMETRIC scheme is closed via the definition of a parame-
terized eddy energy equation. Numerical applications of the GEOMETRIC scheme in various forms have resulted

MADDISON ET AL.

1 of 18


https://orcid.org/0000-0001-5742-4363
https://orcid.org/0000-0002-5199-6579
https://orcid.org/0000-0001-5862-6469
https://doi.org/10.1002/qj.2352
mailto:j.r.maddison@ed.ac.uk
https://doi.org/10.1029/2024MS004682
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2024MS004682&domain=pdf&date_stamp=2025-04-21

NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004682

in eddy saturation in a zonally averaged planetary geostrophic channel model (Mak et al., 2017), as well as three-
dimensional primitive equation models in both idealized (Mak et al., 2018) and realistic global configuration
settings (Mak, Marshall, et al., 2022).

A simple two-layer analytical model for the Southern Ocean is formulated in Straub (1993), making an
assumption of weak flow at depth. An increase in mean surface wind stress forcing leads to an increased Ekman
transport in the upper layer, which must be counteracted by the influence of the eddies. In order for these to exist it
is necessary for the flow to be baroclinically unstable, and the condition of critical flow stability implies a mean
zonal transport that is independent of surface wind stress forcing magnitude.

A physical description of eddy saturation, which considers the additional element of eddy energetics, is provided
in Marshall et al. (2017). The description assumes a balance between surface wind stress and bottom form stress,
connected by interfacial eddy form stress. The magnitude of the eddy form stress is controlled by the eddy energy,
using the GEOMETRIC energetic bound. The argument is closed with a simple parameterized integrated eddy
energy budget, with eddy energy generation balanced by a linear damping of eddy energy. Combined, this
description predicts that it is the eddy energy, and not the mean zonal thermal wind transport, which increases
when the mean surface wind stress is increased. This description moreover predicts “frictional control,” as an
increase in eddy energy dissipation must be balanced by an increase in eddy energy generation, which is achieved
by an increase in mean vertical velocity shear and hence mean zonal thermal wind transport. The description in
Marshall et al. (2017) is related to that in Straub (1993), except that a mean zonal thermal wind transport is
selected based upon consideration of eddy energetics, rather than critical flow stability.

In Ambaum and Novak (2014) a two-dimensional dynamical system for atmospheric storm tracks is described,
based upon the principles of an erosion of baroclinicity due to eddy heat fluxes, and a growth in eddy heat flux due
to baroclinic instability (or the reverse of each). These are precisely the physical mechanisms as in Marshall
etal. (2017)—and a crucial aspect is the assumed linear scaling of eddy heat fluxes with eddy energy (in Ambaum
and Novak (2014): heat fluxes scaling with the square of the eddy amplitude). The resulting system is a non-linear
oscillator, whose equilibrium response exhibits the principles of eddy saturation and frictional control (Novak
et al., 2018) (with the latter termed “dissipative control” in Novak et al. (2018)). A two-dimensional dynamical
system for the Antarctic Slope Current has recently been discussed in Ong et al. (2024), based upon the action of
eddies on a constant density slope in a two-layer model, with the GEOMETRIC energy scaling. These are the
same key physical principles as in Ambaum and Novak (2014) model, and lead to the same two-dimensional
dynamical system (up to the definitions of constants, and reached from Equations 6 and 7 in Ong et al. (2024)

by deriving an equation for y/APE). A key result from Ambaum and Novak (2014) and Ong et al. (2024) models is
the prediction of an intrinsic oscillatory time scale.

A two-dimensional dynamical system for Southern Ocean mean available potential energy and eddy kinetic
energy is also derived in Sinha and Abernathey (2016), and the key physical principles are again the same: erosion
of a measure of the mean flow by baroclinic instability, feeding eddy energy. However the Sinha and Aberna-
they (2016) system includes an equation for mean available potential energy, rather than baroclinicity, and has
different physical behavior.

Novak et al. (2017) note the relationship of the Ambaum and Novak (2014) model to the earlier low-dimension
models for the atmosphere described in Lorenz (1984) and P. D. Thompson (1987). The P. D. Thompson (1987)
model is formed as a reduced order model for a two-level quasigeostrophic model on a f-plane. A version of this
model is analyzed in Kobras et al. (2022), yielding a six dimensional system where eddy saturation and frictional/
dissipative control mechanisms are discussed. This is further extended in Kobras et al. (2024) in a more
complicated eight dimensional model, incorporating eddy tilt effects, where partial eddy saturation behavior can
be exhibited depending on the regime.

The appearance of the same dynamical equations, emerging based on the same physical principles, motivates a
more detailed study of the consequences of these principles for the dynamics of the Antarctic Circumpolar
Current. In this article we return to a model of the Antarctic Circumpolar Current as in Marshall et al. (2017), and
consider a simple dynamical extension. The model is specifically derived using a reduced order density equation
with a single dynamical degree of freedom setting the meridional mean density gradient, combined with a version
of the GEOMETRIC eddy energy budget. The model as derived here is not dissimilar to the zonally averaged
planetary geostrophic channel model in Mak et al. (2017), but is constructed using the further simplifications of a
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fixed linear stratification, and a time varying linear lateral density gradient (cf. A. F. Thompson et al., 2016).
Specifically the mean thermal wind transport equation is arrived at using a Galerkin discretization with a single
spatial degree of freedom which sets the lateral mean density gradient. Since the model derived here uses the
physical principles of Ambaum and Novak (2014), the same dynamical system is once again reached (up to the
definitions of constants). As a result we here obtain a simple two-dimensional model for the Antarctic
Circumpolar Current which exhibits eddy saturation and frictional control in its equilibrium response, and which
also predicts an intrinsic oscillatory time scale when perturbed from equilibrium.

Sensitivities to more rapid fluctuations on top of the mean surface wind stress may also be important. Eddy
saturation and frictional control relate to the baroclinic processes, which operate on time scales longer than
barotropic responses that are known to operate in the Southern Ocean (e.g., Hughes et al., 1999; Olbers &
Lettmann, 2007; Sura & Gille, 2003). The faster time responses are usually attributed to the short term sub-annual
fluctuations in the surface wind forcing over the Southern Ocean, and sometimes modeled as stochastic (e.g., Sura
& Gille, 2003). It is of interest to investigate how the transport and eddy energy responds to more rapid fluc-
tuations, and whether such fluctuations have consequences for the eddy saturation and frictional control phe-
nomena. This is investigated in this article by considering a simple stochastic extension to the two-dimensional
dynamical system, and it is found that while the mean thermal wind transport is relatively less sensitive to the
stochastic forcing, the eddy energy exhibits more significant excursions away from equilibrium.

The key novel contribution of this article is the derivation of a form of the Ambaum and Novak (2014) model as
applied to the Antarctic Circumpolar Current, allowing for specific predictions regarding its dynamical response,
and leading to a new prediction for an intrinsic oscillatory timescale. Moreover, the use of a Galerkin dis-
cretization to derive this model provides a natural route to less idealized versions. The stochastic extension leads
to further predictions, and in particular the model suggests significant Southern Ocean eddy energy response. The
eddy energy response is not due to direct forcing of the turbulence, but is instead due to the system's dynamical
response when perturbed from equilibrium.

The article proceeds as follows. In Section 2 the scalings of the Marshall et al. (2017) description are summarized.
In Section 3 this is extended via the formulation of a two component dynamical system, which has a Hamiltonian
limit governed by the non-linear oscillator dynamics of Ambaum and Novak (2014) and whose fixed point ex-
hibits the scalings of Marshall et al. (2017) model in this limit. The response of this system to varying wind
forcing is considered in Section 4, considering first the basic case of the linear response to oscillatory wind
forcing, before considering the response to stochastic wind forcing. The paper concludes in Section 5.

2. Key Scalings

We start by briefly outlining the principles as described in Marshall et al. (2017). The discussion in Marshall
et al. (2017) is phrased in terms of vertical momentum eddy stress. Here, and consistent with the formulation to
follow, we instead outline an equivalent viewpoint in terms of Eulerian mean and eddy-induced overturning. We
initially construct a basic scaling argument, and the scalings are justified more robustly, with dimensional factors
restored, in Section 3.

A zonally periodic channel is considered, subject to a surface wind stress forcing with magnitude z. The mean
zonal flow has magnitude U near the surface and, as per the argument in Straub (1993), is assumed to be weak at
depth.

Considering first the mean momentum balance the vertical shear leads, through thermal wind balance, to an
Eulerian mean overturning, suggesting

Eulerian mean overturning ~ . (1)
This Eulerian mean overturning is countered by an eddy-induced overturning associated with the baroclinically
unstable vertical shear. If the (total) eddy energy is E then, consistent with the GEOMETRIC scheme, this

suggests the linear scaling

Eddy-induced overturning ~ E. 2)
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Mean momentum balance therefore suggests

E~t, (3)
that is, that the eddy energy increases with increasing surface wind stress magnitude.
Now, considering the eddy energy balance, baroclinic instability leads to generation of eddy energy

Eddy energy generation ~ Vertical shear X Eddy energy ~ UE. @))

which uses a GEOMETRIC form for the eddy form stress (Marshall et al., 2012, 2017). Assuming that eddy
energy is dissipated linearly at a rate 4, that is,

Eddy energy dissipation ~ AE, (5)
eddy energy balance therefore suggests
U~ (©)

This is the “frictional control” mechanism described in Marshall et al. (2017), with the mean flow magnitude
increasing with increasing dissipation. Since U is independent of z, these arguments imply eddy saturation.

These arguments, which follow Marshall et al. (2017), imply that the momentum input 7 sets the scale of the total
eddy energy E, and the magnitude of eddy energy dissipation 4 sets the mean zonal momentum.

3. Dynamical Equations

3.1. Density Profile

We now consider a zonally periodic channel (x,y,z) € [0,L,] X [-L/2,L/2] X [-H,0], with a linearly varying
mean density profile defined (up to the addition of a constant) to be

P p
p(v,z,1) = —Eom(t)y - EONZZ- )

Here p, is a constant reference density, g the magnitude of the gravitational acceleration, and N the buoyancy
frequency, all assumed to be constant. A time-dependent function m(t) sets the horizontal density gradient. The
domain integrated density is constant for all m(¢), which ensures conservation of the integrated density in the
reduced order model to follow. The zonal, meridional, and vertical coordinates are denoted x, y, and z respec-
tively, and 7 is time. Defining a (non-perturbation) buoyancy b = —gp/p, we have

b(y,z,1) = m(t)y + N*z. ®)

Thermal wind balance on an f-plane leads to a mean thermal wind transport

@) = —%LHz}m(t), ©)

where f is the Coriolis parameter. Hence the mean buoyancy may be written
1 2
b(y,z,1) = -2 me(t)y + N-z (10)

3.2. Mean Thermal Wind Transport

We now construct a model subject to near surface wind forcing, balancing near base momentum dissipation, with
eddies represented by a form of the Gent—-McWilliams parameterization. In this model the mean buoyancy is
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subject to a near surface wind driven Ekman transport, which is closed by near boundary transports around the
edges of the domain. Through thermal wind balance this generates a mean vertically sheared flow, and baroclinic
eddies which feed on this shear should then oppose the mechanism that generated them. The eddies should
therefore also lead to a near boundary eddy induced transport that opposes the transport set up by the wind. We
restrict to a single spatial degree of freedom for the density by asserting that the density varies linearly in space,
and by asserting that the buoyancy frequency is fixed. A Galerkin discretization allows us to construct an equation
involving the single remaining spatial degree of freedom, and the result is a time-dependent equation for the mean
thermal wind transport.

We start from a mean buoyancy equation in the form

ob d 0

—+ [+ V)bl +—[(w+w")b] =0, 11
51 oy VBI04 )] ()
where v and w are the meridional and vertical components of the mean velocity, and v* and w* are corresponding
components of an eddy-induced transport velocity. The Galerkin discretization uses the mean buoyancy Equa-
tion 11, with a discrete mean buoyancy having a single spatial degree of freedom setting the lateral mean
buoyancy gradient as per Equation 10.

Multiplying by y and integrating leads to

L/2 L2 0
/ by dz dy = / f +v")b dz dy, (12)
—L/2 -L/2J —-H
where no-normal-flow boundary conditions are assumed. For the mean buoyancy profile (Equation 10) we have
d 42 112 dT
— by dzdy=——f— 13
dt_[_m/ YERYETEH @ (13)

From the planetary geostrophic mean zonal momentum equation we have
—fv=F—-D, (14)
where F and D represent mean zonal momentum forcing and dissipation respectively. Assuming that the system is

forced by a wind stress concentrated to a near surface region, balanced by a bottom stress of equal and opposite
magnitude concentrated to a near base region, leads to

L2 L/2
f / fvb dz dy = — / [6(z) = 8(z + H)] b dz dy, (15)

—L/2 —L/2
where 7 defines the surface wind stress and where &( - ) denotes the Dirac delta. Consistent with the idealized

model in Mak et al. (2017) we here apply a local balance between surface wind stress and bottom stress. For the
mean buoyancy profile (Equation 10) this gives

L2 N ¢
f f vb dz dy = “LHY T (16)
L/2 f po

Writing the eddy-induced transport velocity in terms of the eddy transport stream function

oy
= 17
v 0z an

leads to
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L2 0
/ / v*bdz dy / / WY az dy
—12J-H -L2

L2
/ / 1;/— dz dy,
—pJ-p 02

where v = 0 on boundaries has been used. Applying the Gent—McWilliams parameterization (Gent &
McWilliams, 1990; Gent et al., 1995) we have, in the interior

ab (ab\~!
_ 1
W—KGMay<aZ> > (19)

(18)

andy = 0 on boundaries. That is, kgy is defined to be spatially constant within the interior, and then falls rapidly
to zero near the boundaries. For the mean buoyancy profile (Equation 10), we obtain

L2 p0 1
f / Vb dz dy =2 — frxgmT. (20)
H H

L2
Combining Equations 12, 13, 16, and 20 then leads to an equation for the mean thermal wind transport

dr  H*N? ¢ 1
dr L f p

The two right-hand-side terms correspond to the competition between generation of mean thermal wind transport
due to the wind-driven Eulerian overturning (first term), and erosion by baroclinic instability (second term).
Alternatively this may be interpreted in terms of a balance between near surface wind and eddy stress,

dT  H?>N? 1 1 f?
—=6———|7-2 T|, 22
at UL 2l I N @2)

where the second bracketed term is the vertical eddy stress.

The mean thermal wind transport equation arrived at is similar to the Southern Ocean component of the Gna-
nadesikan (1999)-type model described in Allison et al. (2011). In Allison et al. (2011) the evolution of a single
isopycnal is modeled, and the channel is coupled to an inter-hemispheric basin. Here instead the model uses a
continuous linear stratification in a bounded channel. Moreover Allison et al. (2011) uses a fixed and constant
value for the Gent—-McWilliams coefficient.

3.3. GEOMETRIC and Eddy Energetics

Eddy saturation is possible at the steady state of Equation 21 if the magnitude of the Gent—-McWilliams coefficient
Kgm Scales with the magnitude of the surface wind stress 7. From Equation 22 we have, at steady-state, the mean
stress balance

2

T= Zp()ﬁ %KGMT. (23)
The key piece of extra physics added by the GEOMETRIC closure is to achieve a scaling of xgy with surface
wind stress indirectly, by allowing the Gent—-McWilliams coefficient to scale with eddy energy (see Mak
et al., 2017). An important and easily overlooked aspect of the GEOMETRIC form of kg is that it also scales
inversely with the lateral mean density gradient. In this idealized model this means that kg T" scales with eddy
energy E, but is independent of mean thermal wind transport 7. At steady state the mean stress balance then sets
the eddy energy, but does not set the mean thermal wind transport. Instead the mean thermal wind transport at
steady state is set by a balance between eddy energy production and eddy energy dissipation.
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For the mean buoyancy profile (Equation 8) GEOMETRIC defines a Gent-McWilliams coefficient (Marshall
et al., 2012)

kKgm = aE (24)

N
T
|m|
where « is a non-dimensional constant which in the quasi-geostrophic limit has a maximum magnitude of one

(Marshall et al., 2012), and is here assumed to be positive, consistent with baroclinic instability of the mean flow.
E is the eddy energy per unit mass, so that the domain integrated total eddy energy is

L/2 0
E=L / f poE dz dy. (25)
-H

—-L/2

Assuming that both kg and a are spatially constant (in the interior) and using (Equation 9) yields (for fT
negative, and in the interior)

1 NE
= ——alH— = 2
Kam = =5 0LH % 7. (26)

Hereafter we refer to the energy per unit mass as simply an “energy.”

GEOMETRIC includes an equation for a depth-integrated parameterized total eddy energy budget. Here this is
further simplified by considering a fully domain integrated budget (see Mak et al., 2017),

v N e dy— 4B+ IE @7)
a T IH),, Nt o

The first right-hand-side term represents the mean-to-eddy energy conversion, the second a linear damping of
eddy energy, and the third a background source of eddy energy. A defines a linear damping rate for the eddy
energy per unit mass toward E,. E,, included in the parameterized eddy energy budget in Mak, Marshall,
et al. (2022), damps the eddy energy toward a background level, but might also be a very basic representation of
any other sources of eddy energy generation.

The assumption of linear damping is a highly simplified approximation for eddy energy dissipation. A simple
assumption of linear damping is used principally for consistency with Mak et al. (2017) and Marshall et al. (2017),
but also because of the resulting analytic tractability, and because of the absence of a clearly better alternative.
Appendix A considers a slightly more general case of non-linear eddy energy dissipation.

3.4. Two-Dimensional Dynamical System

Using the GEOMETRIC form of the Gent—-McWilliams coefficient (Equation 26) with spatially constant kgy; and
a (in the interior), for the case where the product fT is negative and for the mean buoyancy profile (Equation 10),
Equations 21 and 27 become

dr  H?*N? f

e = _E 2

” L7 +aN ], (28a)
dE 1 f
—=|2a—5LT—-1|E+AE 2
7 [ PN ,1] + 1E,, (28b)

yielding a two-dimensional system of ordinary differential equations for the mean thermal wind transport and
total eddy energy.

If these equations are generalized to include positive /7 (noting that this requires |[m| — —|m| in Equation 24)
then this permits mean thermal wind transport reversal with baroclinic stability. This unphysical case is included
as it is technically needed later, for example, when stochastic forcing is added.
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Table 1 3.5. Steady State, Eddy Saturation, and Frictional Control
SouthermOceamiRetevans Baramatens We can now see the balances inherent in the model of Marshall et al. (2017).
Parameter Symbol Value The bracketed term in the mean momentum Equation 28a involves the eddy
Wind stress . 0.1 N m=2 energy, and the bracketed term in the eddy energy Equation 28b involves the
Buoyancy frequency N _30f mean momentum. At steady-state (for small E;) we find that the mean mo-

) mentum balance sets the eddy energy, and the eddy energy balance sets the
Density Po 10’ kg m~3

mean momentum.
Meridional domain size I 2,000 km
Depth H 3 km SPec1flcally, at steady state (i.e., at the fixed point) we obtain mean thermal
) wind transport and eddy energy
GEOMETRIC eddy efficiency parameter a 0.1
Eddy energy dissipation rate A 1077 57! 11 N E
‘ — T, = —-LH*—A|1-22|, (292)

Note. See for example, Mak, Avdis, et al. (2022) for eddy energy dissipation 2a f E,
rate estimates. These define a non-dimensional squared angular frequency
(7)% = (.09, and correspond to an oscillatory time scale of _ IN 7 b
~2n/(@yA) = 6.6 years. E, = 5 ]711—0 (29b)

Note that with small background energy generation E, the mean thermal wind transport is independent of wind
stress 7, and scales with the eddy energy dissipation A, while the eddy energy scales with the wind stress z. These
are eddy saturation and frictional control, being set by mechanisms consistent with those described in Marshall
et al. (2017).

With E; = 0 the Southern Ocean relevant parameters as in Table 1 lead to a steady state thermal wind transport of
T, = 270 Sv and a steady state Gent-McWilliams coefficient of 3,000 m?s~!. While the precise value for the
transport is somewhat too high these have a reasonable order of magnitude.

3.6. Non-Dimensionalization

It is natural to use the steady state to define a non-dimensionalization, with non-dimensional mean thermal wind

transport 7 and eddy energy E defined

T=1T7, (30a)
E = EE, (30b)
with
. 11 ,N
T= 5 H2]7,1, (31a)
E:E*=—é¥p—’0. (31b)

A non-dimensional background energy is defined similarly, £, = Eo/ E. The eddy energy dissipation parameter
A defines an inverse time scale, leading to a non-dimensionalized time 7 = Ar. Considering the logarithm of the
non-dimensionalized eddy energy M = InE, then leads to

‘% _ —@g(ﬂ - 1), (32a)
amr - - - i
i (T—1)+ Epe™, (32b)

where a non-dimensional squared angular frequency is defined
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1Nz 1
vy =—12a————.
[ aL2 T oo 22 (33)

For E, = 0 the Ambaum and Novak (2014) model is now obtained.

3.7. Hamiltonian Structure

Considering E, = 0 leads to

d7 ”

- —a)g(eM - 1), (342)
M -
—=(T-1). 34b
== (34b)

These correspond directly to Equation 6 in Ambaum and Novak (2014), and Equations 6 and 7 in Ong et al. (2024)

(in the latter after deriving an equation for y/APE). By analogy with a standard linear oscillator, d’u/d* = —ku
with “stiffness” parameter k, we can here define a non-linear and non-dimensional stiffness parameter

- M _1 E-1
k=)=t (~—). 35
w°( i ) wO(lnE) G

which indicates that the eddy energy is more rapidly restored to equilibrium at large energy. Correspondingly,
away from equilibrium the system spends longer periods at weak eddy energies with mean thermal wind transport
growing due to Eulerian mean overturning, interspersed with relatively shorter bursts of higher eddy energy with
mean thermal wind transport falling via baroclinic instability.

Defining a Hamiltonian (equivalent up to scaling to Equation 9 of Ambaum and Novak (2014))

. o~ 1,~ 0 .
(T i) = (T = 1) + @ (e = 1 = n), (36)
Equation 34 are equivalent to

dT oM
—=—-, 37
dt oM (37a)
A oH
— =+—=. 37b
di oT (376)

Here the Hamiltonian is defined such that it is non-negative and vanishes only at the fixed point. With this
convention the mean thermal wind transport is the conjugate momentum.

Away from equilibrium the system orbits on contours of the Hamiltonian—see Figure 1. These orbits correspond
to the mechanism shown schematically in Figure 2, with the same fundamental principles appearing in Figure 10
of Ong et al. (2024) in their model for the Antarctic Slope Current. Starting from low eddy energies and low mean
thermal wind transport, the Eulerian mean overturning due to the wind stress is only weakly opposed, leading to a
growth in the mean thermal windshear (lower part of the orbit in Figure 1). A sufficiently high shear drives an
increase in the eddy energy via baroclinic instability (right part of the orbit) which, once the eddy energy is
sufficiently high, counteracts the mean overturning and erodes the mean thermal windshear (upper part of the
orbit). A sufficiently weakened mean thermal windshear, with correspondingly weakened eddy energy genera-
tion, is no longer able to support the eddy energy against dissipation, and so the eddy energy decays (left part of
the orbit). The mechanism behind the oscillatory eddy energy response is reminiscent of the overshoot behavior
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0.996 1.801
0.854 L] 1.687
071l g 0 1572 g
0.569_§ 22 -1 1.458 :;
0-427§ -2 1.343 f
0.285 . 1.229
0.142 4] 1.114
- 0.000 1.000
0.000.250.500.751.00 1.25 1.50 1.75 2.00 0.000.250.500.751.00 1.25 1.50 1.75 2.00
T T
Figure 1. Left: Hamiltonian (Equation 36) for Southern Ocean relevant parameters as in Table 1, corresponding to
@ = 0.09. The dynamics orbits on contours in an anti-clockwise sense. Right: Orbit time scales, computed using action-
angle coordinators. The crosses indicate the fixed point.
behind the oscillatory finite amplitude response in the inviscid cases of the two-layer model for baroclinic
instability in Pedlosky (1970), and also of the “charge and discharge” regime described in Kobras et al. (2024).
Differentiating the maximum non-dimensional mean thermal wind transport and eddy energy with respect to the
Hamiltonian leads to
df, 1
mex : (38a)
dH Thax — 1
dEmax ;2 _ Emax (38b)
dH (2 Emax -1
Note the extra factor of 1/ 6)% which appears in the latter expression, for the eddy energy, but not in the former, for
the mean thermal wind transport. For Southern Ocean relevant parameters listed in Table 1, the parameter
@y = 0.09 is relatively small, amplifying the effect on the eddy energetics when perturbed from the equilibrium.
That is, perturbed dynamics can exhibit excursions to relatively large eddy energy.
4. Response to Forcing
4.1. Time Scales
At the fixed point (Equation 29) the Jacobian of the system (Equation 28) has eigenvalues
T T
© 06 0 0 0 0 © 0 0 0 0 0
- |
T ‘
- |
« > —
A B
Figure 2. The mechanism of the non-linear oscillation. Density surfaces are indicated in gray, the Eulerian overturning
circulation with solid arrows, and the eddy induced circulation with dashed arrows. A to B: The surface wind stress drives an
Eulerian overturning, increasing lateral mean density gradients and hence the mean thermal wind transport. B to C: The
increased mean thermal windshear leads to a growth in eddy energy via baroclinic instability. C to D: The eddy induced
overturning overcomes the Eulerian overturning, eroding the lateral mean density gradients and hence the mean thermal wind
transport. D to A: As the mean thermal windshear erodes, baroclinic instability weakens, and eddy energy decays. The same
fundamental principles appear in Figure 10 of Ong et al. (2024) in a model for the Antarctic Slope Current.
MADDISON ET AL. 10 of 18
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A= T 39)
7'-dlecay Toscillation
with
E. 1
Tdecay = 2 EO 1 (40a)
2
Toscillation = % > (40b)
(,l)o bl

decay

where w, = @yA. Perturbing the system from the fixed point, in the linearized case and for 7 .00 r€@l, leads to
the mean thermal wind transport and logarithm eddy energy each oscillating with period 7 ijjaion- The amplitudes
of the oscillations decay exponentially with decay rate 1/7gecay-

Assuming 7y, is sufficiently long so that zogjaon i8 real, if Ey > 0 then the fixed point is a stable focus with
trajectories spiraling anti-clockwise in (T, 1l7l) phase space toward the fixed point (Equation 29) with linearized
decay time scale 74e.,y- Here E > 0 breaks the Hamiltonian structure, leading to a decay toward the fixed point. A
stronger eddy energy dissipation can also be used as alternative mechanism for breaking the Hamiltonian
structure—see Appendix A.

Since the equilibrium eddy energy E, scales linearly with the wind stress magnitude, for £y > 0 the decay time
scale also scales linearly with the wind stress magnitude.

For a long decay time scale there is a linearized oscillatory time scale

2 & 1 ,fp
Toscillation = = __L2_ _0’ (41)
@y 3V a Nz

which is 1/4/2a times the oscillatory time scale in Ong et al. (2024). To see the mechanisms setting the angular
frequency @y, and hence the time scale 7ygjjjaion. NOte that the dynamical system (Equation 28) can be re-written,
forEy) =0,

ds 1 N[« f
— =12 —|— ~E|, 42
dr L f? p0+aN ] (422)
dE f
— =—a—ES - ]E, 42b
a - N (42b)
where S = 2T/ (LHZ) is the mean thermal windshear. Hence the time scale of the oscillatory response is set by

two effects: the production of mean vertical shear due to the wind forced Eulerian overturning, and the efficiency
of eddy energy generation for a given eddy energy and mean vertical shear,

1 N?
£ po . ,

Mean shear production due to wind ~ Energy conversion efficiency

For the Southern Ocean relevant parameters listed in Table 1 the oscillatory time scale is 7ygijaion = 6.6 years.
Note that there is only a weak square root dependence on the key parameters, and hence a decadal oscillatory time
scale is obtained for a broad range of plausible parameters; see Figure 3.

The oscillatory time scale (Equation 41) scales inversely with the square root of the wind stress forcing 7 and also
inversely with the square root of the efficiency parameter , but is independent of the eddy energy dissipation rate
A. Changing the eddy energy dissipation rate changes the critical mean thermal windshear at which baroclinic
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0.30 instability is sufficiently strong to overcome the linear energy dissipation—
and hence sets the mean thermal wind transport at steady state—but the
0.25 1 oscillatory time scale is set by the wind driven Eulerian mean overturning and
5 the generation of eddy energy by baroclinic instability.
0.20 1 For E, = 0the Hamiltonian structure allows the non-linear orbit time scale to
G
B

/

be computed using action-angle coordinates, without linearizing. Time scales,
3 0.151

5 for the Southern Ocean relevant parameters as in Table 1, are shown in
& Figure 1. These time scales are computed using fourth order finite differ-

X

/

0.10 1 encing of the Hamiltonian contour areas, with the Hamiltonian contour areas

|

4 computed using a method based on Simpson's rule. Even with very large
0.05 1 perturbations away from the fixed point, associated with variations in mean
% thermal wind transport of order 100%, the time scale retains the same order of
0.00 ‘ ; ; ; ; magnitude.
0.00 0.05 0.10 0.15 0.20 0.25 0.30

70 (N m™2)
4.2. Oscillatory Forcing
Figure 3. The oscillatory time scale, in years, given by Equation 41 for
different values of 7 and a. The black cross corresponds to 7 = 0.1 N m~2
and @ = 0.1. Other parameters are as in Table 1.

Adding an oscillatory component to the wind stress
7 — 7[1 + € sin(wr)], (44)

for some @ > 0, if we consider the linearized system for the Hamiltonian case E, = 0, then the system reduces to a
standard forced linear oscillator with a standard resonant response near the natural angular frequency w,, noting
that here the logarithm of the non-dimensionalized eddy energy plays the role of the “displacement,” and the non-
dimensionalized transport perturbation the role of the “momentum.”

As per the standard result for a damped linear oscillator, for high frequencies, @ > @y, in the linearized case with
E, = 0 the mean thermal wind transport response lags the wind forcing by z/2, and the eddy energy response is
out of phase with the wind forcing. For low frequencies, @ < @, the mean thermal wind transport response leads
the wind forcing by z/2, and the eddy energy response is in phase with the wind forcing. This appears to be a
particularly accessible result which could be tested in more complicated models.

Numerical simulations of the non-linear Ambaum and Novak (2014) system with oscillatory forcing are described
in Federer (2021).

4.3. Stochastic Forcing

The problem can be generalized to the case of stochastic forcing by instead considering
- 71 +X], 45)

where X, is a stochastic process. Here stochastic processes depending on ¢ or 7 are denoted using subscripts.

If X, is an Ornstein-Uhlenbeck process then in an appropriate short decorrelation time scale limit (see Pavlio-
tis, 2014, Section 5.1) we now obtain the stochastic differential equations

H2 N2 H2 N2 2V <l>
ar, =6 N1 T ol g a6 “Law,, (46a)
L f*1po N Lf
dE, = | -2a — LT, — M| Edt + AEdt, (46b)
LH*N

where V(z) = p3V(t/p,) is the wind stress variance and 1/y the wind stress decorrelation time scale.

For E, = 0 it follows, using Itd’s formula, that
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d]Eg;i) = %&2. 47)

where H is the Hamiltonian defined in (Equation 36), and where

oo |2V ()
5 ="0a2\a T (48)
T

Hence by perturbing the Hamiltonian system by adding stochastic wind forcing the system drifts in expectation
toward higher Hamiltonian values, associated with longer period orbits, further from the fixed point.

For Ey#0 we instead obtain

1

dECL) _ @OEO[l—T

d7

1
+ 552. (49

E

t

At steady state a simple expression for the expectation of one over the eddy energy is obtained,

1 11 &
E - =1+——~—, 50
(E) 2 &g e
or, restoring dimensions,
1 1N 1 V<L)
B(L) = oL 1+ 12— 51)
E, N L2 1E) v

As the wind stress variance V(7) increases, the expectation of one over the eddy energy also increases. This counter-
intuitive behavior is consistent with the dynamics being forced away from the fixed point, since orbits further from
the fixed point spend relatively longer at lower eddy energy. The magnitude of the departure of the expectation from
the steady state value is controlled by the competition between the magnitude of the stochastic forcing due to the
wind stress, and the decay toward the steady state due to the background eddy energy term. The second term in
Equation 50 expresses the non-dimensional relative strength of these two effects on the eddy energetics.

Figures 4-6 show the results from numerical solutions. The background eddy energy is set to a weak value of
Ey/E, = 0.01. The stochastic forcing is set via & = 0.04, corresponding to a wind stress standard deviation of
128% of the mean wind stress for a wind stress decorrelation time scale of 1 week. Other parameters as in Table 1.
The numerical calculations apply Strang splitting, with half Euler-Maruyama steps for the stochastic term before
and after one full implicit mid-point rule step for the deterministic terms, and with a time step size of
10732 ogcittation- The dynamics is perturbed away from the fixed point, although the effect on the characteristic
oscillatory time scale is small—the mean Hamiltonian contour, averaged from # > 957 ijjation t0 # < 1007 gcittation
and over 10,000 independent realizations, is associated with an orbit time scale 4.6% larger than that at the fixed
point. At these Southern Ocean relevant parameters, while the influence of the stochastic forcing on the mean
thermal wind transport appears relatively more modest, the response of the eddy energy is substantial (noting that
the logarithm of the non-dimensional eddy energy is shown). For the contour associated with the average of the
Hamiltonian, the maximum mean thermal wind transport is 1.9 times the minimum, but the maximum eddy
energy is 8.6 times the minimum. Hence this simple model suggests that a more substantial response to stochastic
wind forcing may be seen through its effect on the ocean turbulence, rather than through the behavior of the mean.
This effect arises not through direct driving of the turbulence, but instead through a perturbation of the system
toward dynamics associated with larger excursions in eddy energy.
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Figure 4. Time series for three independent realizations of the stochastically forced system (Equation 46), with (D% = 0.09,
Ey =0.01,and 5 = 0.04.
5. Conclusions
This article describes an idealized two component dynamical system for Southern Ocean mean zonal thermal
wind transport, coupled to a parameterized mesoscale eddy field. The model captures the evolution of a planetary
geostrophic channel with a linear mean density profile and constant stratification. The GEOMETRIC form of the
Gent-McWilliams parameterization is used, and combined with a model for a domain integrated eddy energy
budget.
In the case of linear damping and zero eddy energy background term the system is Hamiltonian, and is (up to the
definition of constants) equivalent to the non-linear oscillator of Ambaum and Novak (2014) and the system of
Ong et al. (2024). The steady state mean thermal wind transport, set via the
eddy energy balance, is insensitive to wind stress, capturing eddy saturation.
1.0 The steady state eddy energy, set via the balance between Eulerian and eddy-
induced overturning, or equivalently via a balance of vertical stress, scales
0.5 with the eddy energy damping rate, capturing the principle of frictional
control. The system oscillates at a characteristic oscillatory time scale, set by
0.0 the combined effect of mean shear generation by the Eulerian overturning and
the efficiency of eddy energy generation for a given mean vertical shear and
= 0.5 eddy energy. For Southern Ocean relevant parameters the characteristic
oscillatory time scale is decadal, with only a weak dependence on the
—1.01 parameter values. The introduction of stochastic wind forcing perturbs the
system from equilibrium and leads to relatively large excursions in eddy
—1.51 energy.
—201 There are a number of possible generalizations for the dynamical system.
0.'6 0.'8 1"0 1_'2 1_' 4 While we have assumed a fixed linear vertical stratification, a fixed but more
T general vertical stratification can be considered—see Appendix B. Since the

Figure 5. Phase portrait for the realizations shown in Figure 4. The black
contour shows the Hamiltonian contour associated with the time average of
the Hamiltonian from ¢ > 957 iaion t0 # < 1007 ii1aton. averaged over
10,000 independent realizations (three of which are the realizations shown
here).

equations are arrived at by imposing a specific one-dimensional basis for
density perturbations, the system is naturally extended by increasing the size
of this basis, for example, to permit time varying vertical stratification. The
channel may then also be coupled to an inter-hemispheric basin, to yield a
version of the Allison et al. (2011) model. We note the recent work of Kobras
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04 06 08 1.0

T

Figure 6. Two-dimensional normalized histogram for 10,000 independent
realizations of the stochastically forced system (Equation 46), with

&')(2) = 0.09, EO = 0.01, and 6 = 0.04. The values obtained after each time step
of size 107 Zogittation» fOT £ > 957 ogcittation t0 < 10074gcination and for each

et al. (2022, 2024) in the atmospheric context, which derive reduced order
IO 7931 models for the two-level quasigeostrophic Phillips model on a $-plane, and

[ 0.6428 obtain a six or eight dimensional dynamical system respectively. Although
' our model is simpler, complex models can display a richer structure, such as

[0-5624 bifurcation of steady states (Kobras et al., 2022), and dependence on eddy
-0.4821 geometry (Kobras et al., 2022, 2024). While an interesting avenue to pursue,
r0.4017 an exploration into higher order models is beyond the scope of the present
L0.3214 work, which was focused on minimal models for understanding eddy satu-
L 0.2410 ration and frictional control.

t0.1607 The idealized model considered here is also simplified by assuming that both
IO 0803 the Eulerian and eddy-induced overturnings act on a thin layer at the domain

T boundaries. That is, both the Eulerian overturning stream function and eddy

12 14 16 induced stream function are constant in the interior, and fall rapidly to zero

near the boundaries. The steady state residual circulation is hence zero, and so
this model cannot capture eddy compensation effects.

We note that the idealized model presented in this paper provides a dynamical
explanation for the “eddy memory” mechanism explored in a series of papers
by Manucharyan et al. (2017), Moon et al. (2021), Dijkstra et al. (2022), and

realization, are binned using a 50 X 50 array. 0.89% of values are outside the ~ Vanderborght et al. (2024). It would be of interest to explore the relation

considered range of 7 and M . The black contour is associated with the average ~ between these two approaches and, in particular, the relation and consistency

of the Hamiltonian, and is as in Figure 5.

of the oscillatory time scales predicted.

Marshall et al. (2017) outlined the key principles of eddy saturation and frictional control which are suggested
under GEOMETRIC scalings, but considered only the equilibrium response. This article has considered a simple
dynamical extension, so that key dynamical features can be identified. However it is clearly of interest to see if
these features persist and can be observed in numerical models. This strongly motivates further study of the
frequency response of less idealized Southern Ocean relevant models, for example, using an approach similar to
that described in Sinha and Abernathey (2016), and which could be used to investigate and test dynamical
predictions made under GEOMETRIC scalings.

The discussion of the oscillatory time scale is predicated on the assumption that the deviations from the
Hamiltonian case are sufficiently weak. However an increased eddy energy background term, or increased in-
fluence of non-linear eddy energy damping, shortens the decay time scale. For the Southern Ocean relevant
parameters in Table 1, with linear energy damping, the decay time scale equals the oscillatory time scale for
Ey/E, = 9.4%, and the oscillatory behavior is lost entirely from the linearized dynamics at Ey/E,, > 60%. In the
stochastic case the numerical calculations made use of a weak eddy energy background combined with a strong
stochastic wind forcing. Strengthening the eddy energy background term, or weakening the stochastic forcing,
each weaken departures from the steady state. Combined, these effects may make observing an oscillatory time
scale in a non-idealized setting challenging. However the simple model suggests that, with Southern Ocean
relevant parameters, while variations in mean thermal wind transport may be more modest, the eddy energetics
may be more sensitive to non-steady wind forcing, due to the potential for rapid growth in eddy energy.

Appendix A: Non-Linear Eddy Energy Dissipation

The parameterized eddy energy Equation 27 is modified to

L2 -1 a1
ob E
— — A= E E Al
df T LH —L/z.[ < )( ) de dy A(E1> * Ao, (A1)

for some dissipation exponent a > 0. Proceeding as before the dynamical system now becomes

2 A2
o]t
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dE

1 E a—1
w2 —LT—/1<—) E + JE,. (A3)

“LHEN E,

The steady state eddy energy is unchanged. The steady state mean thermal wind transport becomes

11N [(EN" E
T, = —-LH*—A| (=] -=2, (A4)
2a  f |\E E,
and the linearized decay scale becomes
2 1
Tdecay = a1y (AS)
EE—‘: +(a-1) (21)

Note that now, even for E; = 0, a> 1 leads to decay toward this fixed point. That is, a>1 is an alternative
mechanism for breaking the Hamiltonian structure.

Since the equilibrium eddy energy E, scales linearly with the wind stress magnitude, for £y >0 and a = 1 the
decay time scale scales linearly with the wind stress magnitude, while for £, = 0 and a > 1 the decay time scale
decreases with increasing wind stress magnitude.

The Ambaum and Novak (2014) model is now obtained as a special case fora = 1 and E, = 0. The case p = 2
and EO = 0 is considered in Federer (2021).

Appendix B: Generalized Vertical Stratification

The mean buoyancy profile in Equation 8 is generalized to (again defined up to a constant)
b(y,z,1) = m(t)y + NiR(2), (B1)

where R(z) is some function defined such that R(—H) = —H, R(0) = 0, and N, is a constant. We can no longer
assume a z-independent Gent—-McWilliams coefficient, and so instead use

Ny

KoM = aES(Z) |m|

(B2)

for non-negative S(z) with maximum value one on z € [-H,0].

Repeating the derivation, assuming spatially constant & (in the interior), the non-dimensional dynamical system
(Equation 32) is arrived at as before, but with a modified non-dimensional mean thermal wind transport scale

A 11 Ny, H
T=——-LH~2)—, (B3)
2 a f HR
non-dimensional energy scale
o 1N H
E=—-0 T2 (B4)
a f poHs
and non-dimensional squared angular frequency
1 Ny 7 1H,
~2 0 R
oy =—-12a0—————, B5
0 “r f pod* H (B3)
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