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Abstract

Herbivores are an integral part of Arctic terrestrial ecosystems, driving ecosystem
functioning and sustaining local livelihoods. In the context of accelerated climate warming
and land use changes, understanding how herbivores contribute to the resilience of Arctic
socio-ecological systems is essential to guide sound decision-making and mitigation
strategies. While research on Arctic herbivory has a long tradition, recent literature
syntheses highlight important geographical, taxonomic and environmental knowledge gaps
on the impacts of herbivores across the region. At the same time, climate change and
limited resources impose an urgent need to prioritize research and management efforts. We
conducted a horizon scan within the Arctic herbivory research community to identify
emerging scientific and management priorities for the next decade. From 288 responses
received from 85 participants in two online surveys and an in-person workshop, we identified
8 scientific and 8 management priorities centred on: a) understanding and integrating
fundamental ecological processes across multiple scales from individual herbivore-plant
interactions up to regional and decadal scale vegetation and animal population effects; b)
evaluating climate change feedbacks; and c) developing new research methods. Our
analysis provides a strategic framework for broad, inclusive, interdisciplinary collaborations
to optimise terrestrial herbivory research and sustainable management practices in a rapidly

changing Arctic.

Keywords: Arctic herbivores, climate change mitigation, horizon scan, management, tundra
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Introduction

Tundra herbivores are important components of Arctic socio-ecological systems (Forbes et
al. 2009). For example, vertebrate herbivores represent a key resource for many northern
communities through hunting or herding (Huntington et al. 2013), and invertebrate
herbivores can influence local livelihoods through their impacts on vegetation (Vuojala-
Magga and Turunen 2015). Herbivores are a fundamental driver of energy flows and
biogeochemical cycles of Arctic tundra ecosystems (McKendrick et al. 1980; Barrio and Hik
2020). Through selective grazing, trampling and waste deposition, herbivores influence the
composition of plant and animal communities, with consequences to climate feedbacks
(Zimov et al. 1995; Koltz et al. 2022). The importance of herbivores in the functioning of
tundra ecosystems is amplified by their interactions with other drivers of change, as
herbivores can buffer warming-induced plant responses and diversity loss (Post and
Pedersen 2008; Cahoon et al. 2012; Kaarlejarvi et al. 2017; Jessen et al. 2020; Post et al.
2023), reduce deciduous shrub encroachment (Verma et al. 2020; Vuorinen et al. 2022;
Spiegel et al. 2023) or increase the resilience of Arctic ecosystems to warming (Post 2013;

Kaarlejarvi et al. 2015).

Recent syntheses have shown a wealth of scientific studies on the role of herbivores in
Arctic environments while also highlighting important knowledge gaps, including biases in
the geographical, taxonomic and environmental coverage of existing literature (Metcalfe et
al. 2018; Soininen et al. 2021). Coordinated research efforts such as the activities of the
Herbivory Network (Barrio et al. 2016b) or the International Tundra Experiment (Henry et al.
2022), and long-term monitoring programmes, like the Climate-Ecological Observatory for
Arctic Tundra (COAT; Ims and Yoccoz 2017) or the Greenland Ecosystem Monitoring (GEM,;
Schmidt et al. 2021), have been instrumental in generating new knowledge about the role of
herbivores in Arctic ecosystems. In addition, the development of new, more affordable

technologies like high-resolution satellites and unmanned aerial vehicles (Siewert and
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Olofsson 2021), high-throughput DNA sequencing (Soininen et al. 2009) or artificial
intelligence (Al; Christin et al. 2019), will continue to help advance our knowledge of Arctic
herbivory. Together with the accelerating impacts of climate change on herbivores and their
habitats, these developments open new possibilities for both research and management of

Arctic herbivores.

Building on these advances and the need to prioritize research efforts to address those
knowledge gaps, we used a horizon scan to identify future needs in Arctic herbivory
research as perceived by the scientific community. Horizon scanning is a tool to create lists
of research priorities (Dey et al. 2020) that is often conducted as a democratic process by
consolidating expert advice (Sutherland and Woodroof 2009). The goal of horizon scans is
to guide future research and inform subsequent knowledge-based decision-making (Wintle
et al. 2020). Considering the unprecedented rate of climate change at higher latitudes and
the diversity and interconnectedness of ecological, conservation and socio-economic issues
regarding Arctic herbivory, a horizon scan offers an effective way to identify viewpoints and
establish a consensus on strategic research needs related to Arctic herbivory for the next
decade. By prioritizing the most urgent research needs, we aim to guide scientific efforts
more effectively, so that the most critical questions to understanding and managing Arctic
ecosystems in the face of accelerating environmental change are addressed, as well as to
provide a basis for discussions with the broader community of rights holders and

stakeholders.

Methods

The idea for this project emerged from an Herbivory Network workshop organized in June
2023 in Cambridge Bay, Nunavut (Canada) as a contribution of the Arctic herbivory research
community to the Fourth International Conference on Arctic Research Planning (ICARP V)
process. To identify emerging priorities in terrestrial herbivory research in the Arctic, we
followed a Delphi-approach commonly used in horizon scanning and research prioritization

6
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exercises (Sutherland et al. 2011; Mukherjee et al. 2015; Dey et al. 2020). The process
encompassed three key steps: 1) an elicitation of expert knowledge through an online survey
(hereafter ‘elicitation survey’), 2) a follow-up online survey requesting participants to score a
list of responses (hereafter ‘scoring survey’) and 3) an in-person workshop to summarize the

information (hereafter ‘workshop’; Figure 1).

We solicited researchers with expertise in Arctic terrestrial ecology to participate in the
project. An initial call for collaboration was published on the Herbivory Network website on
June 28, 2023, and on the UArctic website on July 26, 2023, and announced through the
Herbivory Network email list (ca. 200 subscribers). An announcement was also placed on
social media and forwarded to researchers with relevant background. In January 2024, the
elicitation survey was sent to Herbivory Network members as a personalized email
(Supplementary Materials S1a) and advertised through the website of the Nordic Society
Oikos Conference 2024. Additional reminders were sent through the Herbivory Network
email list. The initial two-week period for submitting responses to the elicitation survey was

extended from January 15 to January 28, 2024.

In the elicitation survey, participants were asked to provide their perspectives on Arctic
herbivory research for the coming decade by formulating up to five research priorities and
needs (Supplementary Materials S1b). Here we define the Arctic following Virtanen et al.
(2016), including the oroarctic tundra, the high elevation regions at higher latitudes (~ north
of 59°), as these areas are climatically and ecologically more similar to the Arctic tundra than
to truly alpine ecosystems farther south. Information about the participants’ career stage,
gender, and geographic scope of their research was collected for the purpose of analyzing
demographics of participants. Optionally, participants provided a contact email address to
stay informed about the project and contribute towards the next stages. Email addresses
were saved separately from the survey data, rendering the survey data anonymous. All
survey participants agreed that their answers would be used for summary purposes in the

horizon scan, as part of the Herbivory Network’s input to ICARP IV research prioritization.
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The elicitation survey compiled 288 responses from 85 participants (Figure 1; the full list of
responses can be found in Supplementary Materials $2). A core group of authors collated
and edited the responses to improve clarity and remove duplication into 146 responses. In
the elicitation survey, participants were invited to formulate their priorities and needs as
questions, but some responses were not formulated as questions; for these, no attempt was
made to write them in question form. The collated list of responses was randomly split into
two equally sized subsets (73 responses each) that were used in the scoring survey (Figure
1; Supplementary Materials S1c¢). The scoring survey was sent to the 83 participants that
had indicated their willingness to be involved in the next steps of the research as a link in a
personalized email (Supplementary Materials S1d) on February 12, 2024. Participants
were given two weeks to respond (until February 25, 2024) and were asked to score the
responses according to two criteria: scientific relevance (i.e., resolving the issue will address
an important knowledge gap) and management relevance (i.e., resolving the issue will have
important management implications). The scores included four possible values: “not

” o« ”

relevant at all”, “little relevant”, “relevant” and “very relevant”.

A total of 63 participants responded to the scoring survey. Participants were randomly split
into two groups and each group scored one of the subsets of responses, so that each
response was scored by 31-32 participants. Scores for each response were transformed to
integer values between 0 (not relevant at all) and 3 (very relevant) and averaged per
response (the average scores for each response can be found in Supplementary Materials

S2).

The workshop was attended by 26 participants, who discussed the top 25% of scored
responses for each criterion (42 responses for scientific relevance, 38 for management
relevance; Figure 2). During the workshop, discussions took place initially in four small
groups of 5-8 participants. All groups were tasked with synthesizing the top-ranked
responses in each criterion (ca. 60 min per criterion). After the four groups had synthesized

the responses independently, all workshop participants met again to establish a final
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consensus list of broad priorities that were formulated as questions. A total of 16 broad
priorities were identified (eight priorities for each criterion; Figure 1). It is important to
emphasize that the horizon scan’s objective was to prioritise the scientific questions with
important implications for management rather than listing management needs per se.
Therefore, management relevance here reflects the views and experiences of the scientists

participating in this study.

After the workshop, the conclusions were summarized and prepared as a manuscript draft.
The full list of participants that had contributed to the different parts of the process (ca. 170
researchers) were contacted again and invited to contribute to the resulting manuscript (79

researchers co-authored the manuscript).

Results and discussion

Over half of the participants in the elicitation survey were senior researchers (five or more
years since obtaining a research position; 56.5%), followed by recently established
researchers (15.3%), postdoctoral fellows (15.3%), PhD (11.8%) and BSc (1.2%) students
(Supplementary Materials S1e). Of the 85 participants, 43 self-identified as males, 40 as
females, and 2 as non-binary. Regarding the geographical scope of the participants’
research, multiple responses were possible per participant. Fennoscandia was mentioned by
40 participants, pan-Arctic scope was indicated by 25, followed by Greenland (16), Canada
(15), Iceland (13), Russia (10), Alaska (9) and Svalbard (5), while 5 reported their scope to
be (also) outside the Arctic (Supplementary Materials S1e). Although we did not collect
information about the participants’ country of professional affiliation, the author list
represents a broad geographic coverage with residents in 18 countries, including all Arctic

states.
The horizon scan identified 16 distinct priorities (eight for each criterion) based on the top-

ranked responses resulting from the scoring survey (42 responses for scientific relevance,

9
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38 for management relevance). Only three of these responses were identified as relevant
(top 25%) for both criteria (Figure 2), and all these three responses were included within the
respective broad priority related to “climate change” (S4 and M1; Figure 3). This is not
surprising, given that climate change has high societal relevance and serves as a cross-
cutting theme that impacts both human and non-human lives in the Arctic. About half of the
responses identified as a priority under one criterion had below-average scores for the other
criterion (scientific relevance: 21 out of 42; management relevance: 19 out of 38). These
differences are possibly linked to variable research fields and experience with applied
research in management among the participants contributing to the scoring survey.
Management priorities differ across the Arctic and are context dependent (e.g., type of
ecosystems and threats, management strategies, legislations, etc.), and participants likely
had varying experience in translating science into practical management advice or different
perceptions of management strategy feasibility. Future studies should consider these
different perspectives. For instance, submitting the same questionnaire to relevant decision-
makers, rights holders and stakeholders, such as local herders and hunters, and comparing
the resulting ranking of priorities, would provide further important context of the priorities

presented here.

The workshop developed a consensus definition of 8 broader priorities (questions) for each
criterion (Figures 3 and 4; for an overview of priorities and descriptions see Tables $3.1
and S3.2). Although face-to-face workshops bear the risk of cognitive biases, such as the
‘bandwagon effect’ where participants indiscriminately follow the majority opinion (Winkler
and Moser 2016), they have been considered a suitable way to reach consensus and tend to
be more inclusive and productive than other group-based techniques (Sutherland et al.
2023). Furthermore, the division of the workshop participants into four groups to
independently evaluate the priorities prior to evaluating them by the entire group was

intended to minimize biases. The following sections present each of the broad priorities
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identified for the scientific and management criteria, ordered by their highest scoring

response (Figure 4; Supplementary material S2).

Scientific relevance

S1. How do herbivory and climate change interact to impact Arctic

ecosystems?

Climate change can modify the impact of herbivores on different levels of biological
organization, from individual organisms to ecosystems. Nine responses identified the
interactive effects between herbivory and climate change on Arctic ecosystems as a priority

(Figure 4), which received the highest average score (2.47) for scientific relevance.

Herbivores can interact with climate change to affect Arctic tundra plant phenology,
physiology and performance. For instance, plant phenology can be advanced by warming
but be delayed by herbivory (Radville et al. 2016). In turn, changes in plant phenology can
drive habitat selection by herbivores and lead to changes in the distribution of grazing
pressure across the landscape (Anderson et al. 2012; Iversen et al. 2014; see S$4 and S8).
Earlier onset of spring in the Arctic allows migratory herbivores like geese to arrive and start
foraging sooner at Arctic breeding sites (Lameris et al. 2018; Hupp et al. 2018), with
potentially large effects on forage quality (Beard et al. 2019a) and other plant traits (Choi et
al. 2019). Climate change and herbivory can also affect the physiology of forage plants
synergistically. For example, both insect and mammalian herbivory can amplify the emission
of plant volatile organic compounds, simultaneously increased by warming (Li et al. 2019;

Brachmann et al. 2023).

The effects of herbivores and climate change on plant phenology, physiology or performance
may scale up to impact Arctic plant distributions and vegetation composition. For instance,
herbivores may modulate vegetation responses to climate change (Post and Pedersen 2008;

Barrio et al. 2016a) through inhibiting warming-driven expansion of woody species and
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buffering shrub- and treeline advance (Christie et al. 2015; Virtanen et al. 2021). Vertebrate
herbivores may also constrain the expansion of warm-adapted forbs (Kaarlejarvi et al. 2013;
Eskelinen et al. 2017), but the paucity of studies focusing on non-woody plant species
prevents generalisations (but see e.g., Saccone et al. 2014; Post et al. 2022). By selectively
feeding on common species (see $2) vertebrate herbivory can counteract the negative
effects of warming on species diversity (Kaarlejarvi et al. 2017; Post et al. 2023). While
vertebrate herbivores may slow down tundra greening at regional scales (Sundqvist et al.
2019; Spiegel et al. 2023), their influences on overall pan-Arctic greening trends remains

unaddressed (Myers-Smith et al. 2020).

Herbivory can also modulate the effects of climate change on Arctic ecosystem functioning
(Koltz et al. 2022). By removing vegetation through grazing, herbivores suppress the
responses of gross ecosystem productivity to warming (Cahoon et al. 2012; Spiegel et al.
2023). Herbivores can indirectly alter tundra carbon cycling and modify soil nutrient
availability through trampling and by selective feeding, which shifts vegetation trajectories
(Ylanne et al. 2015; Vowles and Bjoérk 2019; Pichon et al. 2023), but these effects can differ
under warming (Ylanne et al. 2015, 2020). We still lack a detailed understanding of the
conditions under which the indirect effects of herbivores on Arctic carbon and nutrient cycling

might interact with climate change.

Finally, it is important to recognize that climate change entails factors other than warming,
such as changing precipitation patterns, altered frequency of freeze-thaw cycles during
spring melt and higher frequency and intensity of extreme weather events (IPCC 2021). Yet,
how herbivory might modulate the role of these key environmental change drivers on
ecosystem functioning is virtually unknown, and we urge future studies to test their

potentially interactive effects.
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S2. How does herbivory influence ecosystem processes in the Arctic?

Beyond their interactions with climate change (see S1), herbivory influences ecosystem
processes directly and indirectly. Through the consumption of biomass, the deposition of
waste products, and habitat-modifying behaviours, herbivores exert a strong influence on
Arctic ecosystems (Koltz et al. 2022). Despite the rich literature on herbivore effects on
Arctic tundra (Soininen et al. 2021; Barbero-Palacios et al. 2024), we are only beginning to
understand these direct and indirect influences and how they may interact. This priority
included the largest number of responses (11; Figure 4), many of them with high scores for
scientific relevance, indicating that we still lack basic understanding of herbivore effects on
tundra ecosystem processes. Responses covered a variety of taxa and topics, including the
effects of vertebrate and invertebrate herbivores on the biodiversity, resilience and

resistance of tundra ecosystems and on key ecosystem processes like nutrient cycling.

Herbivores can affect competitive relationships between plants and thus influence the
biodiversity of Arctic ecosystems (Ramirez et al. 2024). Both large and small herbivores can
reduce the decline in plant species richness in tundra by selectively removing shrubs and
allowing rare species to persist (see 81; Kaarlejarvi et al. 2017; Gibson et al. 2021).
Alternatively, consistent feeding on palatable species can result in dominance of less
palatable species that outcompete herbaceous plants (Brathen et al. 2007). In addition,
disturbance from large herbivores can alter resource and habitat availability for other
vertebrate (den Herder et al. 2008, 2016) and invertebrate herbivores (den Herder et al.
2004), further influencing tundra biodiversity. The impact of large herbivores, however,
depends on the intensity of grazing (Brathen et al. 2017) and on the diversity of herbivores
(Olofsson and Post 2018). Large herbivores can preserve the integrity of tundra ecosystems
by preventing shrub encroachment and tree establishment (Moen et al. 2008; Brathen et al.
2017; Olofsson and Post 2018). In turn, high grazing pressures can shift shrub-dominated
tundra towards graminoid dominance (Van der Wal 2006). To better understand the effects
of herbivores on biodiversity and the resilience and resistance of tundra ecosystems, we
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need a better grasp of the role of different intensities of grazing pressure (Brathen et al.

2017).

Herbivores directly contribute to nutrient cycling through the deposition of waste products,
including faeces and urine (Barthelemy et al. 2018; Beard et al. 2023), carcasses (Danell et
al. 2002), and natal fluids (Ferraro et al. 2024). In nutrient-limited Arctic systems, nutrient
supply commonly occurs in pulses linked to animal inputs (Danell et al. 2002; Barthelemy et
al. 2015). These inputs can accelerate the pace of cycling (Barthelemy et al. 2018),
increase forage quality (Petit Bon et al. 2022; Ferraro et al. 2024), change plant community
composition (Danell et al. 2002), influence plant biomass (Barthelemy et al. 2015), topsoil
microclimate (Deschamps et al. 2023) and ultimately shape landscape heterogeneity
(Ferraro et al. 2022). As such, animal inputs seem to be an important mechanism of
accelerated nutrient cycles in Arctic ecosystems, but their impacts are modified by the
underlying biophysical conditions, including soil conditions and plant-mycorrhizal

associations (Ferraro et al. 2022).

Finally, our understanding of the impact of invertebrate herbivores in Arctic ecosystems
remains sparse. Background levels of invertebrate herbivory in the Arctic are low (Barrio et
al. 2017; Rheubottom et al. 2019) and have limited overall impacts on ecosystem-level
processes such as carbon and nutrient cycling (Koltz et al. 2017; Kristensen et al. 2020; but
see Silfver et al. 2020). However, population outbreaks of herbivorous insects can severely
impact tundra productivity (Lund et al. 2017) and are predicted to become more common
with warming temperatures in some regions (Finger-Higgens et al. 2021; Jepsen et al.
2023). As well, insect outbreaks can interact with reindeer grazing, modulating the
trajectories of vegetation recovery after massive defoliation events (Vindstad et al. 2019).
Further work investigating the role of invertebrate herbivores in shaping Arctic ecosystem-

level processes is needed.
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S3. How can we improve measurements of herbivory?

The need for standardized protocols and coordinated efforts to measure herbivory across
the tundra has been long recognized (Barrio et al. 2016b, 2021; see also M7), but
challenges remain in scaling up from individual organisms and plot-level to landscape- and
ecosystem-level impacts. Although only two responses were included within this priority
(Figure 4), participants ranked the need to improve measurements of herbivory with high

scientific relevance.

Several field-based methodologies for measuring herbivory and herbivore use have been
used, ranging from observational assessments of herbivore habitat use by pellet counts and
other signs of herbivore activity, to the use of exclosures to experimentally manipulate the
presence of vertebrate herbivores (Barbero-Palacios et al. 2024). Standardizing existing
field methodology is an obvious and necessary first-step towards accurate measurements of
herbivory that allow meaningful comparisons of data collected across studies. Traditional
field-based approaches provide a basic understanding of the impacts of herbivores, but
additional insights can be gained by leveraging GPS technologies to understand how
herbivores use space and resources. GPS collars on animals are a key tool to track
movement patterns and identify key habitats for foraging. New devices like tri-axial
accelerometers that track specific behaviours (Rautiainen et al. 2022) and camera collars
that capture visual data on feeding behaviours and plant species consumed (Ehlers et al.
2024) may expand our ability to track and analyze the impact of herbivory on Arctic

ecosystems.

Recent advances in Unmanned Aerial Vehicles (UAVs) and satellite remote sensing have
also opened new possibilities for monitoring herbivore impacts on vegetation. The
emergence of pre-processed high- (~1-5 m, e.g., PlanetScope, Worldview) and medium-
resolution (~5-30m, e.g., Sentinel-2, Landsat) satellite remote sensing products facilitates
incorporating spatially explicit information, including phenology metrics, into predictive
models. Additionally, UAVs offer the opportunity to monitor herbivory across the spatially
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heterogeneous Arctic tundra at fine-scale resolutions currently unavailable with satellite
imagery (Alonzo et al. 2020; Assmann et al. 2020; Eischeid et al. 2021; Siewert and
Olofsson 2021; Villoslada et al. 2023). UAVs can also be used in combination with satellite
data through upscaling approaches (Villoslada et al. 2024), resolving sub-pixel heterogeneity

while expanding the spatial reach of models (but see Eischeid et al. 2021).

Despite these promising technological advances for monitoring herbivore populations and
herbivory in the Arctic, significant challenges remain regarding validation and
characterization of environmental controls (Beamish et al. 2020). Using several
technological approaches will be our best bet for improving measurements of herbivory in
the Arctic. For example, Spiegel et al. (2023) used spaceborne remote sensing and
participatory mapping to identify regional migrations of domesticated reindeer herds and
vegetation changes, showing the potential to capture herbivore impact on Arctic vegetation
over large spatial scales. Field-based measurements of herbivory are still crucial for ground-
truthing and developing reliable remote sensing models and provide the necessary link
between herbivory and remotely sensed information. Importantly, scale mismatches
between plot-level data and satellite imagery can introduce uncertainties in modelling
outputs (Beamish et al. 2020; Siewert and Olofsson 2021). In turn, the rapid recovery of
vegetation after herbivory also poses challenges in detecting the impacts of herbivory in a
timely manner (Ravolainen et al. 2011). The use of remote sensing technologies can allow
collecting a great volume of data, but requires cooperation between scientific disciplines and
participation of stakeholders (e.g.,Spiegel et al. 2023), to efficiently interpret and process
large amounts of data. Advances in deep machine learning and automated image
recognition may offer tools for increased processing speed and data interpretation (Christin

et al. 2019; Tuia et al. 2022; Wang et al. 2024).
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S4. How will climate change affect herbivores and their ecological role in
Arctic ecosystems?

Ultimately, the effects of climate change on herbivore populations will lead to altered
herbivore densities and distributions (see $5), with consequences for both vegetation and
tundra ecosystem functions (see S1 and S2). Nine responses described climate change
effects on herbivores as a priority, and three of these responses also scored as relevant (top
25%) for management (orange points in Figure 2). These three responses highlighted the
need for a better understanding of the impact of extreme weather events on herbivore
populations, how herbivores will respond to climate-driven changes in vegetation and the

direct and indirect effects of climate change on herbivore populations (Table S$3.1).

The observed increases in the frequency and intensity of extreme weather events, like rain-
on-snow or warmer winter spells, can dramatically impact herbivore populations (Hansen et
al. 2011; see M1). Refreezing of water on the ground after rain-on-snow events can form
basal ice layers that prevent access to food by herbivores (Hansen et al. 2013). Examples
of the devastating effects of winter warming on herbivore populations include extensive
mortality of reindeer in Yamal, Russia (Forbes et al. 2016) and the decline of the entire
herbivore community following ‘rain-on-snow’ events on Svalbard (Hansen et al. 2013).
Autumn rains also have strong effects on lemming demography, as they create a hard
ground ice layer that prevents lemming access to food (Domine et al. 2018). While some
information is available on how winter warming and rain-on-snow events affect herbivores
(Hansen et al. 2013; Loe et al. 2016), knowledge about the effect of other extreme weather
events associated with a changing climate, like extreme summer heat and droughts, is

virtually missing.

Climate change can also affect herbivores through its effects on forage quantity, quality and
availability and by altering the overall vegetation structure. For example, shrubification

associated with climate warming alters forage quality, quantity and availability to many
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herbivores (Joly et al. 2009; Thompson and Barboza 2014; Doiron et al. 2014). Changes in
plant phenology associated with climate change (Prevéy et al. 2017) can lead to trophic
mismatches if the availability of highly nutritious forage plants decouples from the timing of
high herbivore nutritional demands (Doiron et al. 2015). Trophic mismatch can lead to
reduced herbivore reproductive success (Post and Forchhammer 2008) and limited offspring
growth and survival (Kerby and Post 2013b; Doiron et al. 2015; Lameris et al. 2018; see
M1). By altering vegetation structure, warming-induced shrubification enhances habitat
quality for biting and parasitic insects and affects herbivores by increasing insect harassment
(Johnson et al. 2021). Shrubification can also alter habitat connectivity, potentially benefiting
browsers such as moose (Alces alces; Zhou et al. 2020), but negatively impacting grazers
such as barren-ground caribou (Fullman et al. 2017) or other herbivores like Arctic ground
squirrels (Urocitellus parryii; Wheeler et al. 2015) that rely on the openness of the tundra to

spot predators.

The combined direct and indirect effects of climate change on herbivores are species- and
context-specific, and therefore complex to predict. For instance, warmer springs may lead to
shallower snowpacks and can influence lemming populations directly by providing less
thermal insulation and increasing their thermoregulatory costs (Poirier et al. 2023) and
indirectly by exposing them to greater predation (Domine et al. 2018). In turn, earlier springs
also lead to enhanced food availability for muskoxen, indirectly increasing their fecundity and
reducing their mortality (Duncan et al. 2021). Further, the effects of climate change need to
be considered across seasons. For example, warmer summers and autumns increase
forage availability for wild reindeer, while warm spells during winter can encase vegetation in
basal ice and hence reduce access to forage (Albon et al. 2017; Loe et al. 2021). The
strength of these climate-induced effects can also vary spatially, resulting in different
population trends (Hansen et al. 2019b). Our understanding of the complex interplay

between climate change and herbivore population dynamics remains superficial and requires
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long term ecosystem-based monitoring programs to disentangle the direct and indirect

effects of climate change, and their combined effects on herbivore populations.

S5. How do compositional changes in herbivore communities affect
ecosystem functioning of Arctic ecosystems?

Arctic herbivore community dynamics are driven by the complex interplay of many factors.
Climate change, through its direct and indirect impacts on herbivores (see $4) is a
particularly strong driving force, currently altering the composition of herbivore communities
in the Arctic (Speed et al. 2021). Understanding how these changes will influence the
functioning of Arctic ecosystems is a key scientific priority. Three responses in the horizon
scan described this priority (Figure 4), with a focus on understanding the combined effects
of guild-specific herbivore impacts on ecosystem functioning, and the effects of changing

herbivore diversity and community composition on tundra ecosystems.

Tundra ecosystems host a range of functionally different herbivores (henceforth referred to
as “guilds”), from invertebrates to migratory geese and large herbivores (Speed et al.
2019b). Differences in body size, habitat preferences and population dynamics across
guilds imply different impacts on ecosystem functioning (Barbero-Palacios et al. 2024). For
instance, heavy grazing by reindeer can increase albedo at a regional scale by reducing
shrub height and abundance (Cohen et al. 2013; Te Beest et al. 2016), while lemmings and
long-term grazing by geese can locally and regionally decrease albedo through the
consumption of vegetation and subsequent exposure of darker soils (Lara et al. 2017;
Conkin and Alisauskas 2017). Even herbivore species within the same guild can have
contrasting effects on ecosystem processes. For example, hay piles constructed by
lemmings increase soil phosphorus content, but this effect is not observed under vole hay
piles (Roy et al. 2022). Further, the combined effect of herbivore guilds on tundra
ecosystems is less well understood and most evidence comes from effects on plants

(Barbero-Palacios et al. 2024). The effects of one guild may complement or buffer the
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effects of another. For example, the combined effects of grazing by reindeer and small
rodents can suppress the growth of tall shrubs (Ravolainen et al. 2014), while these groups
of herbivores dampen each other’s effects on plant nutrient content (Petit Bon et al. 2020).
As such, changes in the composition of herbivore communities will determine the overall

effects of herbivores and their spatiotemporal variation across the landscape.

Around the Arctic, ongoing environmental and management changes modulate the
abundance and distribution of herbivore populations (e.g., Mallory and Boyce 2018; Ehrich et
al. 2019; Cuyler et al. 2020), which further shapes the composition of herbivore communities
(Speed et al. 2019a; Defourneaux et al. 2024; Sokolova et al. 2024) and their impact on
tundra ecosystems. For example, some boreal herbivores like moose (Alces alces; Tape et
al. 2016) and beaver (Castor canadensis; Tape et al. 2018) are expanding their distribution
into the Arctic tundra, while the ranges of other Arctic species are shrinking (van Beest et al.
2023), leading to the borealization of Arctic herbivore assemblages (Speed et al. 2021). Due
to the important role of herbivores in Arctic ecosystems (see $2), it is necessary to
understand the differences between species, their interactions and how they may change to

predict how Arctic systems will function under future herbivore community assemblages.

S6. How are Arctic food webs structured and how do they vary over time
and space?

Herbivores are embedded in complex food webs where they interact directly and indirectly
with multiple species at different trophic levels. Understanding how Arctic food webs are
structured and how they vary over time and space was identified as a key scientific priority in

three responses (Figure 4).

Arctic herbivores have been instrumental for developing food web ecology as a discipline.
Early studies investigated the fluctuating population dynamics of small herbivores using the
long-term population records collected by Canadian fur trading companies, such as the

emblematic Hudson Bay’s lynx-hare and fox-lemming datasets (Elton 1924). More recent
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studies have focused on understanding the mechanisms behind Arctic herbivore population
cycles (Gilg et al. 2003; Ims and Fuglei 2005; Gruyer et al. 2008). Consumer-resource
interactions under the constraints of the harsh Arctic environment provide plausible
mechanisms accounting for these cycles (Ims and Fuglei 2005), but questions remain about
the relative importance of herbivore-plant or predator-herbivore interactions as drivers of

these cycles (Gilg et al. 2003; Gruyer et al. 2008; Ruffino et al. 2016).

Compared to temperate ecosystems, Arctic terrestrial food webs are relatively simple (Elton
1927). Our understanding of the major trophic linkages and compartments in Arctic food
webs has been greatly enhanced by comprehensive ecosystem-based monitoring
programmes (Pedersen et al. 2019; Schmidt et al. 2021; Gauthier et al. 2024). However, the
functional links between species can be complex and dynamic and require the explicit
integration of spatial and temporal variations in trophic interactions. High-resolution data on
replicated food webs can improve ecological assumptions and predictive capacity (Soininen
et al. 2018) but require data-heavy approaches (Kissling et al. 2014). Sampling trophic
interactions remains a challenge, but the relatively-well integrated research community could
also be harnessed to adopt a truly circumpolar food web approach, as exemplified in Mellard
et al. (2022b). This will require developing cost-efficient standard protocols to enable a
coordinated and spatially replicated sampling of trophic interactions (see e.g., Kankaanpaa
et al. 2020). Deploying high-throughput methods for diet analysis such as stable isotopes
and DNA metabarcoding (e.g., Pansu et al. 2022; Hiltunen et al. 2022) should be part of the
toolkit, enabling the broad-scale but detailed characterization of multi-trophic interactions.
DNA metabarcoding already offers great scope for unlocking the hidden dimensions of
animal diets and trophic niche partitioning (Soininen et al. 2009; Neby et al. 2024), and
revealing winter diet in voles (Soininen et al. 2015). The genomic approach can be
generalized to fill the current knowledge gaps in seasonal foraging of other herbivore
species (see S8). However, work should also be carried out in parallel to address current

methodological limitations: i.e., assessing the quantitative performance of DNA

21

© The Author(s) or their Institution(s)



Arctic Science Downloaded from cdnsciencepub.com by Tracy Colborne on 05/23/25

This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

Sr7

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

Arctic Science (Author?s Accepted Manuscript) Page 22 of 70

metabarcoding (Kamenova et al. 2024) and developing plant DNA reference databases for
Arctic regions outside Fennoscandia where these databases are relatively complete
(Voldstad et al. 2020). The structure of food webs is an important determinant of ecosystem
functioning and stability (Tylianakis and Morris 2017) that can influence their resilience and
transformation in response to biological invasions (Frost et al. 2019). This is highly relevant
to Arctic food webs, given the projected changes in herbivore population dynamics and
resource use stemming from climate warming-driven processes such as tundra borealization
or Arctic greening (see S1 and S2; Wirta et al. 2015; Schmidt et al. 2017; Gauthier et al.

2024).

S7. What is the role of herbivores in the long-term stability of Arctic
ecosystems?

Understanding the role of herbivores in the long-term stability of Arctic ecosystems is an
urgent priority, considering the rapid pace of environmental changes in the region. Two

responses in the horizon scan identified this priority (Figure 4).

Reconstructions of past megaherbivore assemblages offer important insights into how the
distribution, density and diversity of herbivores have shaped community and ecosystem
dynamics from 300 million years ago up to the large mass extinctions (Owen-Smith 1987).
This work has contributed to the “keystone herbivore” hypothesis (Owen-Smith 1987), which
posits that the productivity of the steppe-tundra during the Pleistocene was maintained by
megaherbivores. The “keystone herbivore” hypothesis is further supported by archived time
series of dietary samples. Dietary reconstructions for species such as the woolly mammoth,
including analyses of the composition of gut tissue (Cucina et al. 2021), gut and lower
intestine content (Ukraintseva 1981), or coprolites (Polling et al. 2021) provide strong
support for a diet dominated by herbaceous plants and shrubs, with occasional consumption
of lichens, mosses and green algae. In this context, dietary samples can provide a key tool

to assess long-term changes in plant-herbivore interactions (see also S6).
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The mass extinction of megaherbivores towards the end of the Pleistocene coincided with a
decline in the steppe-tundra and the expansion of the shrub tundra in the Arctic (Willerslev et
al. 2014; Wang et al. 2021). Whether this change in vegetation was driven by climate or by
the extinction of megahebivores, and whether the mass extinction of megaherbivores was
caused by changes in climate or by human hunting, has been debated (Zimov et al. 1995;
Monteath et al. 2021; but see also Svenning et al. 2024). There has been much recent
interest in re-establishing extinct past herbivore assemblages (i.e., rewilding; Olofsson and
Post 2018) and on the capacity of current tundra vegetation to sustain these herbivore
assemblages (Poquérusse et al. 2024). The potential to reintroduce large herbivores in the
Arctic could mitigate some of the effects of warming (Olofsson and Post 2018; Macias-Fauria
et al. 2020) but requires biological, social and ethical considerations (Burak et al. 2024; see

M3 and M8).

Following the mass extinctions of megaherbivores, large mammalian grazers have continued
to be important regulators of vegetation patterns worldwide, including in the Arctic (see S$1
and S2). For instance, research on historical reindeer milking grounds and enclosures in
Fennoscandia reveal long-term legacy effects of high local densities of semi-domesticated
reindeer (Egelkraut et al. 2018; Huusko et al. 2024). These studies show that locally, high
reindeer densities can lead to shifts from shrub-dominated tundra to alternative stable
vegetation states dominated by herbaceous plants which can persist for hundreds of years
(Normand et al. 2017). Small mammalian herbivores, such as voles and lemmings, may
further contribute to limiting shrub growth in these historical milking grounds (Egelkraut et al.

2018).

Through their effects on vegetation, nutrient cycling and climate feedbacks (see $2),
herbivores are important regulators of long-term ecosystem processes and ecosystem
stability in tundra ecosystems, although effects vary across spatial scales (see $8) and

among herbivore assemblages (see S5). Improved understanding of the mechanisms that
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determine large-scale and long-term effects of plant-herbivore interactions is an important

avenue of research.

S8. How do the effects of herbivores on Arctic ecosystems vary in space
and time?

It has long been recognized that the effects of herbivores vary greatly depending on where
and when herbivory takes place. Two responses in the horizon scan identified the

spatiotemporal variability of herbivore impacts as a scientific priority (Figure 4).

Herbivores’ use of landscapes is heterogeneous, and their foraging choices span multiple
spatial scales, from individual plants to the landscape level (Senft et al. 1987). Foraging
decisions, in turn, may lead to an uneven distribution of herbivore impacts across the
landscape (see S1). One notorious example is the profound spatial variation in the intensity
of the interactions between small rodents and plants, where strong impacts have been
documented in some parts of the Arctic (Olofsson et al. 2012; Roy et al. 2022) but not in
others (Bilodeau et al. 2014). Even within the same region, the effects of small rodents on
vegetation can differ between river catchments 20 km apart (Ravolainen et al. 2011).
Differences in primary productivity and in food web structure could account for these
pronounced spatial differences between different tundra ecosystems (Gauthier et al. 2011;

Oksanen et al. 2020).

Another source of variation in plant-herbivore interactions is timing, which is particularly
important in highly seasonal environments like the Arctic tundra (Post et al. 2008). Some
migratory herbivores are only present in the Arctic during summer, while other herbivores
are resident year-round (Speed et al. 2019b). In addition, herbivore populations generally
fluctuate among years, leading to temporal variations in grazing impacts on vegetation. For
example, the population cycles of voles and lemmings cause synchronous fluctuations in
plant biomass (Olofsson et al. 2012; Siewert and Olofsson 2021), and periodic outbreaks of

geometrid moths can lead to vegetation shifts in the tundra-forest ecotone (Vindstad et al.
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2019). Changes in the timing of herbivory can have important ecosystem consequences.
For example, grazing by early arriving migratory geese can shift tundra ecosystems froma C
sink to a source, while delayed goose arrival can lead to opposite outcomes (Beard et al.
2019b). Further, food preferences of herbivores change throughout the growing season in
response to phenological changes in food quality and availability (Ilversen et al. 2014;
Barboza et al. 2018; see S4). Parallel to these changes in food quality, the chemical
composition of waste deposition also varies seasonally (Beard et al. 2023), potentially
leading to varying seasonal impacts of herbivores on tundra biogeochemistry.
Understanding the drivers of the spatiotemporal variability of herbivore effects is crucial for
predicting how tundra ecosystems will respond to ongoing environmental changes. This will
require targeted efforts that include underrepresented Arctic environments (Soininen et al.
2021) and special attention to the timing and multiple spatial scales at which these effects

manifest.

Although we have a relatively good understanding of changes in herbivory during the
growing season, there is a clear gap in our knowledge on herbivore impacts during winter
and shoulder seasons (autumn and spring). Snow properties, including the distribution of
snow and timing of snowmelt, can influence the spatiotemporal variability of herbivore
impacts across the landscape (Rixen et al. 2022). A recent synthesis suggested that the
effects of small rodents on vegetation may be most pronounced during winter (Soininen and
Neby 2024), with winter browsing strongly suppressing heavily defended dwarf shrubs
(Dahlgren et al. 2009). Similarly, winter browsing by ptarmigan and moose has strong
effects on the growth, reproduction and architecture of willows (Christie et al. 2014). In turn,
food availability during winter has large repercussions for population dynamics of resident
Arctic herbivores and ultimately determines the carrying capacity (Albon et al. 2017; see
M4). A better understanding of plant-herbivore interactions during winter and their

consequences to both plants and herbivores is therefore needed.
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Management relevance

M1. What are the management implications of the effects of climate
change on Arctic herbivores?

Climate change will affect Arctic herbivores in direct and indirect ways (see S4). From a
management perspective, changes in disease dynamics of plants and herbivores, herbivore
habitat or behaviour, herbivory rates, food availability (e.g., access to food in winter) or in the
adaptive capacity of herbivores (e.g., physiological tolerance to climate extremes), are highly
relevant. This priority included the largest number of responses (12) but received the lowest
average score for management relevance among the identified management priorities
(average score: 2.3; Figure 4), including the highest and the lowest ranked responses

(scores 2.61 and 2.16 respectively).

Rapid changes in abiotic and biotic conditions in the Arctic will influence herbivore
populations (see S$4) and create new challenges for natural resource managers and local
livelihoods. Effective herbivore management in a changing climate requires high-quality
data on herbivore abundances and vital rates, and on drivers like abiotic factors, including
weather variability and extreme weather events. Effective management will also require
anticipating and mitigating the various ecological and evolutionary disruptions caused by
rapid climate change. At broader spatial scales, these ecological disruptions include shifting
distributions of plants, other herbivores, predators and pathogens (van Beest et al. 2021;
Yarzabal et al. 2021) and the subsequent changes in biotic interactions (Mellard et al.
2022a; see S6). For example, the northward expansion of deer and moose has indirectly
resulted in increased predation pressure on caribou by grey wolf (Festa-Bianchet et al.
2011). In addition, the spread of novel diseases represents formidable challenges for
management of herbivore populations. Range expansion of southern deer species
increases the risk of new zoonotic pathogens and parasites not formerly present in the
Arctic, which become lethal when infecting new hosts (Pickles et al. 2013). For instance, the
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outbreak of chronic wasting disease (CWD) in Norway in 2016 required the extirpation of the
third-largest wild reindeer population to prevent the spread of the disease (Mysterud and
Rolandsen 2018; Mysterud et al. 2024). These examples demonstrate the need for
assessing and monitoring the spread of diseases and their vectors (Di Francesco et al.

2021; Johnson et al. 2023).

An important management concern, as reflected explicitly by three responses, is how climate
change will influence food availability and its consequences to herbivore diet composition
and quality. As mentioned in S4, rain-on-snow events that prevent herbivore access to food
in winter are predicted to become more frequent under climate change, and these events
can lead to extensive mortality, particularly when reindeer densities are high (Hansen et al.
2019a, 2019b). Warming-related changes in plant community composition, including
decreases in lichen availability can reduce pasture quality (Joly et al. 2009) and negatively
impact herbivore population growth, as described for caribou herds across North America
(Fauchald et al. 2017). Further, trophic mismatches associated with climate change (see
S4) can reduce herbivore reproductive success, as documented for caribou in West
Greenland (Post and Forchhammer 2008). Some herbivores might be susceptible to
phenological mismatches (Gustine et al. 2017), while others might be able to adjust their
behaviour to buffer some of the negative effects of climate change (Kerby and Post 2013a;
Loe et al. 2016). However, understanding and predicting the adaptive capacity of Arctic
herbivores to rapid abiotic and biotic changes is a critical step for effective management of

herbivore populations in the Arctic.

M2. How will increasing human pressure in combination with
environmental changes affect Arctic herbivores?

As human impact in the Arctic accelerates and becomes more ubiquitous, herbivore
populations are increasingly exposed to direct and indirect impacts affecting population

abundances and vital rates (Klein 2000). Understanding how increasing human pressure
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and other environmental changes will affect Arctic herbivores was identified as a key priority
for management, with the third highest average score (Figure 4). Human pressures include
a wide range of impacts, such as habitat loss to infrastructure, land use changes and
fragmentation, natural resource exploration and exploitation, recreational activities, farming
and the spread of diseases (see M1). Responses included in this priority highlighted
studying the ability of herbivores and the livelihoods that depend on them to adapt to both

the individual and the cumulative impacts from multiple stressors.

The impacts of anthropogenic activities on Arctic herbivores have been well documented,
particularly for muskoxen (Ovibos moschatus; Cuyler et al. 2020) and wild and semi-
domesticated Rangifer spp. (Festa-Bianchet et al. 2011; Skarin and Ahman 2014). Human
infrastructure and resource extraction directly cause habitat loss, fragment landscapes and
can disrupt migration routes for herbivores between seasonal habitats (Severson et al. 2023;
Boulanger et al. 2024). Noise pollution, visual disturbance, dust deposition and pollutant
contamination (Plante et al. 2018; Skarin et al. 2018; Watkinson et al. 2021) effectively
increase the zone of influence and lead to avoidance behaviour. Avoidance may vary with
season, level of human activity, type of industry and herbivore species. For example, large
herbivores usually have the largest avoidance during calving and higher tolerance towards
disturbances during the insect harassment period (Skarin et al. 2018; Prichard et al. 2020;
Johnson et al. 2020). One maijor challenge is identifying the spatial and temporal extent and
variation of the zone of influence within which herbivores respond to disturbances and their
cumulative impacts (Niebuhr et al. 2023). Tolerance to disturbance varies with species,
domestication, handling and taming of the animals. Tolerance can also increase if resources
are scarce, hiding possible adverse effects of disturbances. While some studies conclude
that habituation towards disturbances is possible (Colman et al. 2013), others find it weak or
absent (Johnson et al. 2014, Johnson et al. 2020). Thus, predicting the effect of increased
anthropogenic impacts remains difficult and highly context dependent. Long-term studies

across habitats and seasons are needed to understand the implications of increasing human
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760  activities on the habitats of Arctic herbivores and how these impacts translate to population
761 level consequences. Furthermore, we need to understand better how habitats can be

762  restored to maintain the carrying capacity for viable large herbivore populations to sustain
763  the hunting and herding livelihoods that depend on them. This includes, for instance,

764  restoring mining sites once mineral resources have been depleted, as well as alternative

765  forest management and increased landscape connectivity for seasonal migrations.

766 M3. Can herbivores be used as a climate change mitigation strategy?

767  Using large wild and domestic herbivores as a management tool to mitigate some of the

768  effects of climate change is receiving increasing attention (see S7). Three responses

769  (Figure 4) referred to the potential use of herbivores to restore lost ecosystem functions,
770  counteract climate change effects on tundra ecosystems, or prevent further warming through

771 their effects on climate feedbacks.

772  Herbivores in the Arctic and the sub-Arctic can help mitigate climate change (Cromsigt et al.
773  2018; Beer et al. 2020; Macias-Fauria et al. 2020; Windirsch et al. 2022). Browsing on

774  shrubs and trees by large herbivores prevents the expansion of woody plants (Olofsson et
775  al. 2009; Olofsson and Post 2018) and can promote graminoids, forbs and other low-lying
776  biotic ground cover such as lichens (Stark et al. 2002; Olofsson et al. 2004; see S$1 and S2).
777  These vegetation shifts can have a cooling effect, as graminoids, forbs and in particular

778 lichens reflect more sunlight than darker, taller shrubs and trees and increase albedo (Zimov
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779 et al. 2012; Cohen et al. 2013; Te Beest et al. 2016). However, the most important albedo
780  effect of low-lying vegetation is in the continuous snow layer that it promotes, which results
781 in large quantities of solar energy reflected in the shoulder seasons, especially spring, as
782  compared to landscapes where tall vegetation protrudes from the show layer and enhances
783  snow melt and energy absorption. In addition, low lying vegetation can also help mitigate
784  permafrost thaw, as it promotes wind-packing of snow, reducing the insulation capacity of
785  the snowpack and maintaining colder soil temperatures (Sturm et al. 2001b, 2001a). In

786  addition, large herbivores trample snow in winter, increasing soil exposure to cold air, aiding
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permafrost maintenance and expansion (Beer et al. 2020; Macias-Fauria et al. 2020). Yet,
observations of accelerated permafrost degradation in mires grazed in summer by semi-
domestic reindeer in Fennoscandia (Holmgren et al. 2023) suggest that the effects of large
herbivores on permafrost strongly depend on environmental context and grazing regimes.
To be able to increase albedo and permafrost preservation through herbivore management,
we need further studies on the role of herbivore density, plant community composition and

environmental context.

Large herbivores in Arctic systems could also mitigate the impacts of climate change by
increasing soil carbon storage. Grazing-induced graminoid-dominated systems can store
more carbon than shrub-dominated systems due to faster biomass turnover and relatively
deep and dense root structures, increasing soil carbon storage within the first meter of soils
(Olofsson et al. 2009; Windirsch et al. 2022). Herbivores also accelerate nutrient cycles
(Van der Wal and Brooker 2004), facilitating ecosystem carbon uptake (Falk et al. 2014).
Modelling studies suggest that they can also enhance net primary production (Zhu et al.
2018). However, this effect is not universal and grazing intensity, grazing regime and
environmental context are important mediators of net effects (Burak et al. 2024). For
instance, intense grazing in upland systems can reduce vegetation biomass, muting any
increase in ecosystem carbon storage (Jefferies et al. 2006; Vaisanen et al. 2014). In
contrast, grazing in wetter landscapes can decrease the ratio of emitted methane-to-CO,,
reducing the global warming potential without changing the net C-balance (Fischer et al.
2022). A more comprehensive understanding of the biotic and abiotic factors influencing
herbivore-carbon interactions, the spatiotemporal variability in herbivore impacts, and how
herbivores influence other elemental cycles (Koltz et al. 2022) will lead to better predictive
models of where and when large herbivores may affect carbon storage and energy balance

and thus effectively be used to mitigate climate change effects.

Although large herbivore management has the potential to be used as a climate mitigation

tool, the feasibility of applying such strategies remains questionable. To have a significant
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effect on global climate, drastic increases in the diversity and density of herbivore
assemblages would be needed (Macias-Fauria et al. 2020; Ylanne and Stark 2025). Such
increases might only be feasible at very local scales as induced by human management, but
also pose other problems associated with environmental degradation following overgrazing

(Windirsch-Woiwode 2024).

M4. Can we manage herbivores to enhance biodiversity and ecosystem

functioning in Arctic ecosystems?

In addition to the potential application as a climate change mitigation and adaptation strategy
(see M3), management of large wild and domestic herbivores can enhance biodiversity and
ecosystem functioning in the tundra (Brathen et al. 2017; see S2). In our horizon scan, this

priority was described in four responses (Figure 4).

Current management of large herbivores varies across the Arctic due to differences in
legislations, and these differences may lead to different impacts on tundra biodiversity and
ecosystem functioning (Forbes and Kumpula 2009). For example, in Northern
Fennoscandia, reindeer herding practices differ among countries, from seasonal migration to
sedentary regimes, driving contrasting vegetation patterns and ecosystem impacts (Holand
et al. 2022). Reindeer herds fluctuate due to both environmental and management changes.
For instance, the collapse of the Soviet Union caused large declines in some domesticated
reindeer herds but increases in others (Uboni et al. 2016). In addition, pressures from
competing land uses (see M2) prevent the use of some pastures, concentrating grazing
pressure in the remaining pastures (e.g., Horstkotte et al. 2022). The additive effects of co-
occurring herbivore species also need to be considered (see S5). Although herbivore
diversity has been shown to slow the decline in biodiversity driven by warming (Post et al.
2023) and enhance ecosystem functioning (e.g., Ravolainen et al. 2014), managing multiple
species with different population densities and dynamics within the same area brings

additional challenges.
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Taking domesticated reindeer in Eurasia as an example, the possibility of managing
herbivores to enhance biodiversity and ecosystem functioning lies primarily in the right to
use the pastures and self-determination of the Indigenous reindeer herding groups (Larsson
Blind 2022). Biodiversity and ecosystem functioning could be enhanced, especially in
summer pastures, by re-establishing long-term grazing practices that have been lost or re-
distributing grazing pressure to allow heavily grazed pastures to recover. However, such
measures include a number of challenges as they would require maintaining or even
increasing herd sizes (Uboni et al. 2020). This is difficult because herd sizes are largely
constrained by forage availability during winter (Moen et al. 2006)., which is in turn reduced
by climate change and increased pressures from competing land uses (Uboni et al. 2020).
Supplementary feeding could increase reindeer survival and production but is costly and
difficult to maintain (Ahman et al. 2022), and results in fundamental behavioural changes
that affect the overall ecosystem effects of herbivory as well as increasing the risk of disease
(Tryland et al. 2019). Further, the maximum number of reindeer allowed in a herding district
is based on winter grazing ground carrying capacity and is set by government authorities,
thus affecting self-governing by the herders (Sarkki et al. 2022). In addition, a main
constraint to actively steering herds to appropriate summer pastures to avoid excessive
grazing of some areas is the availability of labour, as the number of herders has declined in
parts of Fennoscandia (Uboni et al. 2020). In the extensive reindeer husbandry systems that
prevail, herds roam freely in summer, apart from certain activities such as calf markings, and
their habitat selection is largely dependent on forage availability and other biotic and abiotic
factors, including human disturbance (see M2). The possibility to explicitly manage
domesticated herbivores for maintaining biodiversity and the provision of ecosystem services
will thus be a complex process that includes considering the annual pasture cycle,

competing land uses and the political systems of governance.
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M5. How can we effectively interweave different types of knowledge to
identify relevant questions and solve management issues regarding

Arctic herbivores?

The value of experiential knowledge, derived from a close cultural connection to the land and
passed down through generations, and Indigenous knowledge, rooted in specific ethnic
contexts and shaped by the cultures, traditions, practices and beliefs of descendants of
people who inhabited a region prior to colonization, is increasingly recognized within the
scientific community for its contribution to understanding ecological and environmental
processes and wildlife management (Berkes et al. 2000; Hill et al. 2020; Jessen et al. 2022).
Three responses mentioned the importance of interweaving experiential, Indigenous and
scientific knowledge in managing herbivores and their ecosystem effects. Participants

ranked this priority the highest (average score: 2.49; Figure 4).

Experiential and Indigenous knowledge are often described as integrated into a way of life
and associated with practices such as hunting, trapping or herding. In this sense,
knowledge is cumulative and is culturally transmitted through language, skills and practices,
and is continuously tested against recent observations and is thus adaptive to environmental
change (Savo et al. 2016; Ford et al. 2020). This knowledge is embedded in specific norms,
values and holistic worldviews (Berkes et al. 2000; Brondizio et al. 2021). Taken out of its
context, there is a risk that the meaning and significance of these forms of knowledge will be
lost (Albuquerque et al. 2021). Successfully interweaving different ontologies for knowledge
co-production, and particularly Indigenous knowledge, therefore requires establishing mutual
trust, respectful engagement of cultural approaches, and equal power relations between
partners to overcome the historical burden of colonialism and marginalization of Indigenous
peoples (Wheeler et al. 2020). The participation of knowledge holders in all stages of the

research process, from identifying relevant questions, agreeing on methods, data collection
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and analysis as well as knowledge dissemination is vital to prevent extractive processes, but

may vary in agreement with involved research partners (David-Chavez and Gavin 2018).

Contributions of interweaving various forms of knowledge for Arctic herbivore management
have led to deeper insights of species and population trends, spatial and temporal changes
in migration patterns, responses to disturbance, spread of diseases and the effects of
climate change and integrity of the Arctic social-ecological system (e.g., Parlee et al. 2005;
Peacock et al. 2020; Gagnon et al. 2023). For instance, Gagnon et al. (2023) developed
predictive models of caribou distribution and hunters’ access to the herds in response to
environmental factors, based on hunters’ Indigenous knowledge, GPS collared caribou and
climate models, as a tool to assess the effects of climate change on the local communities’
food security and cultural relation to caribou. As this example demonstrates, considering the
impacts of human activities and climate change, co-developing adaptive management and
conservation strategies to protect both herbivore populations and their habitats is critical.
Implementing these strategies also requires bridging the interface between experiential and
Indigenous knowledge, scientific knowledge and government policies (Yua et al. 2022). For
instance, policies that restrict hunting quotas or implement limits for semi-domesticated
reindeer herd size, while at the same time promoting the exploitation of natural resources
can erode trust and increase the potential for frictions between government and
communities, thus preventing meaningful knowledge co-production and adaptive
management (Parlee et al. 2018; Larsson Blind 2022; Sarkki et al. 2022). However, the co-
development of new management strategies offering solutions to address current caveats is
also on the rise (Simba et al. 2024). For instance, the use of quality checked protocols for
stakeholder involvement, such as the strategic foresight protocol (Hamel et al. 2022) and
Community-Benefits Agreements (CBA; Gunton and Markey 2021) can help define assets,
incentives, risks, and roles and can create a roadmap of shared purpose among participants
involved in herbivore management across rights holders and stakeholders who bring diverse

ways of knowing.
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M6. What is the role of herbivores in Arctic socio-ecological systems?

The roles of herbivores within Arctic socio-ecological systems span biological, economic and
cultural dimensions. Six responses emphasized the need to understand these roles and
their relevance to maintaining viable rural communities in the Arctic and sub-Arctic (Figure

4, Table S3.2).

Reindeer/caribou, moose, muskoxen, ptarmigan, waterfowl and hares are hunted across the
Arctic, providing food for subsistence use, while other herbivores like reindeer are herded in
parts of the range. Aside from food, materials like furs, antlers and bones can be reworked
by local artisans to make items for personal use or for sale, including clothing, jewelry and
tools (Aslaksen et al. 2009). Carrying out these practices provides Arctic people with
material resources, as well as opportunities to facilitate the transmission of cultural
knowledge and skills (e.g., Pearce et al. 2015; Laptander 2023). The language, behaviour
and stories shared during these practices can maintain community bonds and allow more
intangible spiritual understandings about purpose, identity and how to relate to other beings
to be communicated and enacted (Justice 2018; Ravna 2020; Salusky et al. 2022). In the
wider ecological system, the grazing and fertilizing action of herbivores maintains multiple
ecological processes, creating habitats that support other plants and animals that Arctic
people rely on and can influence climate feedback processes (Olofsson et al. 2004; Te
Beest et al. 2016; Ylanne et al. 2021), thus affecting humans globally. Despite the
importance of herbivores to the livelihood and subsistence of local communities, these
activities often do not represent a main economic source for the country (e.g., in comparison
to fisheries; Bjgrndal and Munro 2012), resulting in lack of priority national funding for long
term monitoring Nevertheless, there are some positive counterexamples such as the
subnational support for preserving Indigenous country food practices in Nunavut (Warltier et

al. 2021).

Several aspects of the role of herbivores in these socio-ecological systems require more
research. The full extent of the impact of herbivores on global climate processes is not yet
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well understood (Koltz et al. 2022; Stark et al. 2023), and larger spatial coverage of research
on reindeer and other herbivores across the Arctic would be valuable (Soininen et al. 2021).
Similarly, how herbivores are adapting to changes in climate and anthropogenic land use
requires more study so that the consequences to food security can be predicted (Cuyler et
al. 2020; Stoessel et al. 2022; van Beest et al. 2023). Given the tight interplay between
ecological and socio-political factors in the Arctic (e.g., Naylor et al. 2021), interdisciplinary
approaches encompassing natural, social and Indigenous sciences will be needed to
address these gaps in understanding, and to reliably inform policy and management
strategies going forward (Riseth et al. 2011; Baztan et al. 2017; Pedersen et al. 2020;

Moirano et al. 2020; Tsuiji et al. 2020; Kater 2022).

M7. How can we gather information on Arctic herbivores that is relevant
to management?

Focus on improving and further developing methods to monitor herbivore abundance and
population dynamics, and the use of new technologies to collect data at spatial and temporal
scales that are relevant to management is a key priority. Two responses were included

under this priority (Figure 4).

Gathering information that is relevant to management should be grounded in robust
conceptual models that can integrate the diversity of spatial and temporal data existing for a
system and guide new data collection. These conceptual models can help define key
system-specific parameters to monitor and identify data gaps and guide adaptive
management approaches. An excellent example of a framework where conceptual models
guide monitoring and data collection is the Climate Ecological Observatory for Arctic Tundra
(COAT; Ims and Yoccoz 2017). In COAT’s conceptual models, climate and management
are the main drivers of change and data collection is tailored to management needs. These
needs are defined based on long-term involvement of rights holders including Indigenous

people (herders), stakeholders and managers, and are guided by national and international
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management plans. For example, the need for reliable data on abundance and distribution
of herbivores is set by management goals targeting population sizes. Based on these data,
management decisions will guide different actions depending on whether the goal is to

increase, reduce or maintain stable populations.

Collecting data at spatial and temporal scales relevant to the herbivore and the management
setting in question remains challenging. However, recent technological developments in
remote sensing, GPS tracking, and bio-logging (see S3) to gather detailed information on
herbivore movements, feeding patterns, and real-time responses to environmental changes
represent a significant advance. In addition, high-resolution and non-invasive methods such
as genomic sequencing of pathogens (Seru et al. 2024) and faecal material (Soininen et al.
2009; Neby et al. 2024), microhistology (Filella et al. 2023) or near-infrared spectroscopy
(NIRS; Tuomi et al. 2023) can provide spatially and temporally explicit information on
herbivore disease and diet, that can inform harvesting, herding or other management

decisions.

The rapid changes faced by herbivores in many ecosystems demand that managers
anticipate future changes to implement short- and long-term strategies to reduce negative,
unwanted impacts. Near-term ecological forecasts provide a framework for such predictions
(see Marolla et al. 2021 for a specific example on rock ptarmigan). Management contexts
and goals differ, and management actions must be based as much as possible on scientific
evidence and knowledge co-production (see M5). Focusing on well-described, transparent
and scientifically robust processes that set up the communication and workflows between
scientists, managers and local communities involved is therefore key to jointly defining
research questions and study designs using an adaptive approach (Lindenmayer et al.
2011). For example, Henden et al. 2020) offer a case study for stakeholder involvement in
management of willow ptarmigan in northern Norway, where collective learning allowed
defining questions and guided data collection. Successfully interweaving knowledge

systems (see M5) and developing strong partnerships requires investment of time and
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funding to facilitate cooperation between stakeholders, and building initiatives on key

lessons learned from successful initiatives (e.g., Hamel et al. 2022).

M8. Which societal obstacles prevent the use of Arctic herbivores in
ecosystem management and how can these obstacles be overcome?

Knowledge is of little practical value if societal obstacles prevent its use in management.
Two responses mentioned the attitudes of Arctic stakeholders and the societal obstacles that

prevent the use of Arctic herbivores in ecosystem management (Figure 4).

Obstacles that prevent the translation of knowledge into practice and policies can relate to
economic, cultural, legislative, ethical, and behavioural factors. These factors can be
identified for example by mapping the attitudes of participants (Bauer et al. 2009) or
promoting the use of deliberative democracy methods in which public consultation with
citizens is central to democratic processes (Lépy et al. 2018). Other approaches, like
tackling legislative barriers across country borders (Trouwborst et al. 2016; see also
Heininen et al. 2020), collaborating with environmental ethicists (Ferraro et al. 2021), and
developing micro- and macroeconomic solutions to enable financing of more sustainable
herbivore management (Karolyi and Tobin-de la Puente 2023) could also help overcome

these obstacles. These approaches, however, remain little used in the Arctic.

Interestingly, the two responses included in this priority were ranked among the lowest in
scientific importance (average scores for scientific relevance 1.90 and 1.31), which might
reflect the predominant natural science background of survey participants and their varying
experience in translating science into applied research and management advice. Future
prioritization exercises could engage more social scientists, reinforcing inter- and
transdisciplinary research (see Ivanov et al. 2024) to identify the social dimensions of
management decisions. Thus, in addition to strengthening our knowledge on herbivores and

their interaction with climate change from a natural sciences perspective, there is a need for
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economic, socio-political, cultural, juridical, ethical, and human behavioural studies around

herbivores and their use (see Artner and Siebert 2006; Burak et al. 2024).

Conclusions

This horizon scan has identified sixteen emerging priorities in the field of Arctic terrestrial
herbivory research that should be addressed over the next decade. The horizon scan
concluded that understanding the impacts and effects of herbivory and herbivores on tundra
ecosystems in rapidly changing environments remains a high priority. However, one general
observation from this horizon scan is that there is still a need for closer integration of
research and management priorities. We chose to balance the number of research and
management questions (Figure 3), but also recognize that there is often a persistent gap
between ecological science and environmental management priorities (Underwood 1998;

Gosselin et al. 2018).

Our categories of science and management are complementary only to the extent that their
knowledge perspectives have an obvious interface. Researchers should be able to improve
the applicability of their research through interacting better with resource managers and
Indigenous organizations who are directly responsible for management decisions and
interventions. Further, we encourage partnerships to co-design applied management
research based on relevant questions and knowledge needs. Future research that
addresses the priorities that we have identified will benefit from a more deliberate effort to
conduct studies that incorporate management perspectives, including testing of
management interventions and investigating alternatives when current practices fail

(Underwood 1998).

Our consensus was that the most important research questions for the next decade pertain
to fundamental ecological processes at different scales, climate change, technology and
innovation, sustainability and the co-production of knowledge and solutions. Climate change
was featured in several scientific (S1, S4) and management (M1, M3) priorities. The impacts
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of climate change are seen and felt across Arctic environments and are particularly impactful
at the local and community level, for example for herbivores that are harvested for
subsistence. The impacts of climate change will influence how research is conducted and
may affect the implementation of natural resource use, management and conservation

practices.

The upcoming Fifth International Polar Year in 2032-33 will provide considerable motivation

for planning and developing new research initiatives on Arctic herbivores. These initiatives
should include coordinated ecosystem-based and circumpolar efforts that incorporate
diverse knowledge systems into future research programs. It will be important to match the
current state-of-knowledge and emerging technology with the quickly changing dynamics of
many Arctic herbivores and the environmental changes occurring in tundra ecosystems.
Addressing these priorities will require developing new methods and inclusive,

interdisciplinary collaborations.

Including diverse research communities and management bodies are both prerequisites for
effective cross-domain knowledge sharing and adoption. This new knowledge can be
incorporated into formal institutional policies and processes. In terms of facilitating and
enhancing the interface between science and management, we are hopeful that our horizon
scan research prioritization will help to create and sustain informal “communities of practice”,

for example through the Herbivory Network (Barrio et al. 2016b; http://herbivory.Ibhi.is) or

independently. These efforts will also enable periodic updates of this horizon scan,

complemented with the additional insights from diverse stakeholders.
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Figure 1. Schematic diagram of the Arctic herbivory horizon scan process. The process was
structured in three key steps: 1) an elicitation of expert knowledge through an online survey
(Elicitation survey), 2) an online survey requesting participants to score a list of responses (Scoring

survey), and 3) an in-person workshop to summarize the information (Workshop).
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Figure 2. Relationship between the scientific and management relevance scores assigned to 146

responses by the 63 Arctic herbivory experts participating in the scoring survey. Scores for individual

responses included in each priority ranged between 0 (not relevant) to 3 (very relevant). Each point

represents the average score for one response, with colours and shapes indicating whether the

response was scored in the top 25% responses according to its scientific relevance (green squares),

management relevance (blue triangles) or both (orange diamonds), or if the scores were not among

the top 25% of either criterion (grey circles). Dashed grey lines indicate average scores across

responses for scientific (2.84 points) and management relevance (1.84 points).
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Figure 3. Overview of the relationships between the eight scientific (green) and eight management

(blue) priorities identified by 26 Arctic herbivory experts in the in-pers

on workshop of the horizon scan.

Priorities with wide outline (S4, M1) indicate priorities that included responses identified with both

scientific and management relevance. S = scientific priority, M = management priority
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Figure 4. Average scores for each of the eight scientific (green) and management (blue) priorities
identified during the horizon scanning exercise, as assessed by 63 Arctic herbivory researchers who
participated in the scoring survey. Each priority included between two and twelve responses (number
of responses included in each priority are indicated at the base of each bar). Scores for individual
responses included in each priority ranged between 0 (not relevant) to 3 (very relevant). The ordering
of scientific (S1-S8) and management (M1-M8) priorities is based on their highest-scoring individual
response (indicated by the numbers in square brackets to the right of the bars). Average scores are
indicated by black dots, and the horizontal lines represent the range of scores of individual responses

(min, max).
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