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ABSTRACT

In this study we propose a novel approach to standardising drought indices that offers flexibility tailored to local conditions.
This involves employing different probability distributions and the Akaike Information Criterion to identify the most appropri-
ate distribution for each region and variable. Following this approach, our proposed methodology enhances the accuracy and
comparability across different spatial and temporal scales, with improved representation of extreme drought events. Nonetheless,
despite the increased computational requirements associated with this approach, the advantages are substantial. By enhancing
accuracy, comparability and adaptability, it may improve drought monitoring and management practices. Moreover, the meth-
odology provides a versatile framework for standardising a wide range of environmental variables beyond traditional drought
indices, and software for calculations is provided (https://github.com/lcsc/FlexDroughtIndex). Overall, the findings of this study
can advance drought assessments by providing an innovative and flexible methodology that addresses key limitations of current
approaches.

1 | Introduction resilience exhibited by ecosystems and societies significantly
influence this assessment (Blauhut et al. 2016; Gazol et al. 2018).

Assessing drought severity is highly complex due to its multi-

faceted nature, which involves various physical, physiological
and human mechanisms (Douville et al. 2021), its different
types (Wilhite and Buchanan-Smith 2005), as well as its wide
variety of impacts (Wilhite et al. 2007; Vogt et al. 2021; Conradt
et al. 2023). Also, the varying degrees of vulnerability and

However, obtaining information about the impacts caused
by droughts, which is a well-established method for quantify-
ing drought severity, is often challenging (Blauhut et al. 2015;
Vicente-Serrano 2016; Cammalleri et al. 2020). On the other
hand, relying on impact data for drought monitoring is
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complicated because real-time impact information is typically
unavailable. Furthermore, the diverse and cascading environ-
mental, agricultural and socioeconomic impacts associated with
droughts are difficult to quantify (Bachmair et al. 2016; Noel
et al. 2020). As a result, the quantification of drought events
often relies on various climatic (e.g., precipitation, atmospheric
evaporative demand [AED], actual evapotranspiration [ET]) and
hydrological variables (e.g., streamflow, soil moisture, ground-
water). A main assumption of these indices is that anomalies
in these variables are typically associated with impacts and
can accordingly provide valuable indicators of drought severity
(Abatzoglou et al. 2014; Bachmair et al. 2015; Chen et al. 2016;
Krueger et al. 2019).

Drought is characterised by water deficits and stress compared to
long-term conditions (IPCC 2023) and it necessitates long-term
data for severity assessment (Guttman 1999; WMO 2012). Due
to significant spatial and seasonal variability in meteorological
and hydrological variables, standardised indices are crucial for
spatial and temporal comparability and drought event isolation
(McKee et al. 1993). Standardisation typically involves convert-
ing real magnitudes to non-dimensional z-units, enabling com-
parison among regions with diverse climates and hydrological
characteristics (Lopez-Moreno et al. 2013; Barker et al. 2016;
Pefia-Gallardo et al. 2019). This approach facilitates comparison
between different variables, such as those based on precipita-
tion and streamflow, which have varying units and physical at-
tributes. Additionally, standardisation aids in mapping drought
severity and spatial extent across large and climatologically di-
verse regions (Hayes et al. 1999; Slette et al. 2020).

The transformation of hydroclimate variables into non-
dimensional standardised z-units can be achieved using either
empirical probabilities or a specific probability distribution.
Some studies advocate for the simplicity and flexibility of the
empirical approach (Mallenahalli 2020; Tijdeman et al. 2020;
Raziei 2023; Raziei and Miri 2023), as it is not bound by a prede-
termined distribution frequency. However, these methods have
specific limitations in characterising the distribution tails and,
consequently, proper identification of the most extreme drought
events. In addition, these methods are constrained by the upper
and lower values observed during the observation period, requir-
ing recalibration of the entire dataset with each new value, pos-
ing challenges for real-time monitoring (Noguera et al. 2022).
On the contrary, employing a probability distribution tailored to
the frequencies of climatic and hydrological variables offers ad-
vantages since this approach is less restricted by the maximum
and minimum observed values, resulting in more precise and
less uncertain calculations, particularly in the tails of the distri-
bution (Soldkova et al. 2014; Vergni, Todisco, et al. 2017, 2021;
Noguera et al. 2022). Moreover, parametric approaches enable
the calculation of standardised values using a reference period,
which is crucial for comparing series of different lengths and for
efficient drought monitoring.

Various studies have proposed the application of specific proba-
bility distributions to calculate different drought indices. For in-
stance, the Gamma distribution has been widely recommended
to fit precipitation series obtained at different time scales for
calculating the Standardised Precipitation Index (SPI) (McKee
et al. 1993; WMO 2012). Likewise, the log-Logistic distribution

has been suggested for computing some of the most commonly
used drought indices such as the Standardised Precipitation
Evapotranspiration Index (SPEI) (Vicente-Serrano et al. 2010;
Begueria et al. 2014) and the Standardised Evapotranspiration
Deficit Index (SEDI) (Kim and Rhee 2016). Conversely, alter-
native probability distributions have been proposed for these
indices, such as the Pearson III distribution for SPI calcula-
tion (Guttman 1999) or the General Extreme Value (GEV) dis-
tribution for SPEI computation (Stagge et al. 2015; Slavkova
et al. 2023; Tam et al. 2023). However, other studies have high-
lighted limitations associated with the parametric approach
based on specific distributions for calculating standardised
drought indices, as the recommended probability distributions
for some of these indices may not align with hydrological and
climatological series across large global regions (Lloyd-Hughes
and Saunders 2002; Pieper et al. 2020; Wang, Wang, Zhang,
et al. 2021; Fotse et al. 2023), or they may yield suboptimal re-
sults (overestimation vs. underestimation of drought conditions)
compared to alternative distributions (Moccia et al. 2022; Hinis
and Geyikli 2023; Nadi and Shiukhy Soqanloo 2023; Slavkova
et al. 2023). Using a probability distribution that does not ad-
equately fit the data can lead to deviations from normality in
the obtained series, affecting drought quantification and spatial
comparability (Zhang and Li 2020; Ghasemnezhad et al. 2022;
Laimighofer and Laaha 2022; Yimer et al. 2022).

An alternative approach to solve the complexity associated
with using a single probability distribution is to employ differ-
ent distributions, adapting to the diverse seasonal and spatial
characteristics of hydroclimate variables. This approach was
proposed by Vicente-Serrano et al. (2012) in the development of
the Standardised Streamflow Index (SSI), which was justified by
the noticeable seasonal and spatial variations in the frequency
distributions of streamflow series. Later, several studies have
followed suit, standardising various meteorological variables
using different statistical tests for distribution selection (Sienz
et al. 2012; Blain and Meschiatti 2015; Touma et al. 2015; Hinis
and Geyikli 2023; Lee et al. 2023; Slavkova et al. 2023).

Considering that the primary objective of calculating stan-
dardised drought indices is to enhance spatial, temporal and
variable comparability of drought conditions and to accurately
represent drought severity and extreme events, it seems log-
ical to adopt flexible approaches not bound by a single global
probability distribution. While non-parametric methods have
been proposed to achieve this flexibility (Farahmand and
AghaKouchak 2015), there is a lack of flexible approaches that
consider parametric distributions, adapt to different variables
and show skill in reproducing drought conditions across differ-
ent climatic regions worldwide.

In this study, we undertake a comparison of three different
drought indices calculated using two distinct methodologies: (i)
employing a single probability distribution at the global scale,
tested across various climate conditions and endorsed by prior
research and (ii) utilising diverse distributions that may vary as a
function of pixel scale, variables, month of the year and drought
time-scale. To achieve this objective, we applied a methodology
that employs the Akaike Information Criterion (AIC) for distri-
bution selection. We employed various statistical approaches to
compare the performance of the two methods.
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2 | Data and Methods

To achieve global coverage, we used precipitation and AED data
from the latest version (TS v. 4.07) of the gridded database pro-
vided by the Climatic Research Unit of the University of East
Anglia (Harris et al. 2020). This dataset offers global monthly
information at a spatial scale of 0.5° spanning from 1901 to 2022.
To mitigate uncertainties associated with data availability, our
analysis focused on the period from 1950 to 2022. This data-
set facilitated the computation of two out of the three drought
indices examined in this study: the SPI (McKee et al. 1993),
which relies solely on precipitation data, and the SPEI (Vicente-
Serrano et al. 2010), which integrates precipitation and AED
data. In addition to these two indices, we incorporated another
index in our analysis: the SEDI (Kim and Rhee 2016), whose
computation requires ET and AED data. To obtain ET data, we
used the Global Land Evaporation Amsterdam Model (GLEAM)
version 3.7a, covering the period from 1980 to 2022 (Martens
et al. 2017). The GLEAM dataset offers global coverage at a spa-
tial resolution of 0.25°.

The selection of these three drought indices is justified by two
major reasons. Firstly, they have been extensively employed
in numerous prior studies to assess drought severity from var-
ious conceptual perspectives. Each of these indices provides
insights into water stress using different approaches, encom-
passing deficits in precipitation (SPI), the balance between
precipitation and AED (SPEI) and evapotranspiration defi-
cit (SEDI), which offers valuable information on plant water
stress conditions.

Secondly, by considering these three drought indices, we en-
compass the entire spectrum of mathematical conditions gener-
ally inherent in drought index calculations. The variables used
to compute these indices span across different ranges (Figure 1).
Precipitation, utilised in calculating SPI, is constrained at O
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since precipitation cannot have negative values, while its upper
limit could theoretically extend to infinity; thus, precipitation
values theoretically oscillate between [0, +o0]. In contrast, the
difference between precipitation and AED, used for SPEI cal-
culation, lacks theoretical upper and lower limits and can os-
cillate between [—oo0, +o0]. Similarly, the difference between
ET and AED, employed for SEDI computation, consistently
yields negative values and has an upper limit at 0, given that
ET cannot exceed AED; hence, it oscillates between [—oo, 0].
Thus, the distinct limits collectively cover the entire spectrum
of scenarios relevant for calculating other drought indices such
as the Standardised Streamflow Index (SSI) (Vicente-Serrano
et al. 2012) and the Standardised Soil Moisture Index (SSMI)
(AghaKouchak 2014), which share a lower limit at 0 similar
to SPI, and the Evaporative Demand Drought Index (EDDI)
(Hobbins et al. 2016), which shares an upper limit at 0 similar
to SEDI.

In our study, we used the established reference distributions
to compute the different drought indices (The Gamma distri-
bution for computing the SPI, while the log-Logistic distri-
bution was used for calculating the SPEI and SEDI), aiming
to compare the outcomes with an alternative approach that
combines various probability distributions to calculate the
indices, allowing for the selection of the most suitable dis-
tribution for each monthly series of each variable (such as
precipitation, precipitation-AED and ET-AED). For this pur-
pose, we consider six widely used three-parameter probability
distributions for fitting hydroclimatic series (Hosking 1990;
Rao and Hamed 2000): GEV, generalised Logistic (GLO) also
known as log-Logistic, generalised Pareto (GPA), log-Normal
(LNO), Pearson Type III (PIII) and Weibull (WEI). The pa-
rameters of the various distributions can usually be calculated
by means of different approaches, usually using Maximum
Likelihood or L-moment statistics. The L-moment method
performs better than Maximum Likelihood for small sample

01 ET-AED
X 0.05
L
0.0 (— ‘V_,_‘
-60 -50 -40 -30 -20 -10

FIGURE 1 | Histograms and the commonly used probability distributions fitted to the data of precipitation (Gamma), precipitation-AED (log-

Logistic) and ET-AED (log-Logistic).
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sizes (Nerantzaki and Papalexiou 2022), which are common
in hydroclimate series. As one of the objectives of this study
is to provide a flexible tool that users can apply to calculate
drought indices across diverse hydroclimate series of varying
durations, using a method like Maximum Likelihood prone to
artefacts in small samples would be inadvisable.

Therefore, the parameters were computed here by means of L-
moment statistics (Hosking 1990) independently for each of the
12 monthly series corresponding to each grid cell, and the vari-
ables were transformed into theoretical cumulative probabilities.
These probabilities were subsequently converted into z-units
using the Abramowitz and Stegun (1965) method. Additionally,
considering that drought indices are typically calculated over
different time scales to enhance their efficacy for drought
quantification and impact assessment (McKee et al. 1993;
Lépez-Moreno et al. 2013; Vicente-Serrano et al. 2013; Barker
et al. 2016), we computed the indices at time scales of 1, 3 and
12months. Consequently, for each variable and grid cell, we de-
rived 36 distinct sets of parameters for each distribution.

Addressing the treatment of zero values is pivotal as it can
significantly influence the resulting drought indices (Wu
et al. 2007; Reyes et al. 2022; Stagge and Sung 2022). For the cal-
culation of the SPI using the Gamma distribution as a reference,
we followed the standard approach to account for zero values
(WMO 2012). In calculating the indices based on the most suit-
able probability distribution, we adopted the recommendation
proposed by Stagge et al. (2015) to compute the probability of
zero values using a Weibull plotting position formula, which
helps mitigate biases in the final average values.

Choosing the most appropriate probability distribution from
the six options mentioned is a multifaceted decision. Previous
literature has proposed various methodologies, such as the
utilisation of the minimum orthogonal distance between
the sample of L-moments at a specific site and the theoreti-
cal curves of L-moments for different distributions (Kroll and
Vogel 2002). Another approach involves employing widely
used statistical tests, like the Kolmogorov-Smirnov or x?
tests, which compare the empirical distribution function of
a variable with the cumulative distribution function (CDF)
for different distributions. Subsequently, the best distribution
can be selected based on criteria such as minimising the ver-
tical difference (Blain et al. 2018; Ghasemnezhad et al. 2022;
Fotse et al. 2023; Hinis and Geyikli 2023) or using informa-
tion criteria like the AIC (Sienz et al. 2012; Lee et al. 2023),
which is recognised as an effective statistic for selecting the
most appropriate distribution for calculating the SPI (Pieper
et al. 2020). In this study, we have used the AIC to determine
the most suitable distribution for calculating the three differ-
ent drought indices.

The challenge in calculating the AIC lies in the fact that the
maximum likelihood estimates, which are necessary to com-
pute the log-likelihoods for various models, cannot be directly
obtained from the L-moment approach used for calculating
the probability distributions. Instead, they are derived from
the Maximum Likelihood approach. We addressed this issue
by calculating the AIC based on both empirical and theoreti-
cal CDFs.

The empirical cumulative distribution function (ECDF) is a
non-parametric estimator of the true CDF. Given a dataset
x = {X;,X,, ... ,X, }, the empirical CDF is defined as:

n
~ 1
F(x)=— 1(x; <x
- ; (x; <x)
where 1(-) is an indicator function that equals 1 if x; <x and 0
otherwise.
For each candidate theoretical distribution F,(x), the estimated

parameters 0 (obtained using the L-moment method) allows to
compute the theoretical CDF at each observation:

Fy(x;) =P(X <x,)
where X follows the fitted theoretical distribution.

To evaluate the goodness of fit, we compare the probability mass
in each interval defined by the empirical CDF. The likelihood is
approximated by comparing probabilities of data falling in succes-
sive intervals between the empirical and theoretical distributions.
Let F () be the empirical CDF and F,(x) be the theoretical CDF.
The probability of data falling within an interval (xi_l,x,-] is es-

timated as:

Empirical probability in the interval:

Pempirical,i = F (xi) -F (xi—l)
Theoretical probability in the interval:

Piheoretical,i = Fy (xi) —-F, (xi—l)

To prevent numerical errors (e.g., taking log(0)), a small constant
¢ is introduced:

Pempiricali = MaxX [ﬁ (x;) = F (xi-1)- 5]
Ptheoreticat,i = MaX [Fe (1) = Fp(xi_1), 5]
where £ = 1071° ensures numerical stability.
The log-likelihood function for the CDF-based approach is
given by comparing the sums of the differences in segments,

which approximates the derivative of the function using finite
differences:

n
IOg LCDF(G) =n Z pempirical,i 1ngtheoretical,i

i=1
Finally, we compute the AIC based on the CDF as:
AICqpp =2k — 21og Lopp(0)

k is the number of parameters in the fitted distribution (three in
the case of the six distributions used in this study).
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FIGURE2 | Relationship between the empirical and the theoretical cumulative probabilities along with the Akaike Information Criterion calcu-
lated for six different probability distributions, using data from the difference between Precipitation and Atmospheric Evaporative Demand for the

August (1-month) series at 105.25W-69.75N.

This approach enables an objective selection of the most suit-
able probability distribution for standardising the series at each
point, period (e.g., annual, monthly, weekly) and timescale.
Figure 2 illustrates an example of the relationship between em-
pirical and theoretical cumulative probabilities, along with the
weighted distances calculated for six different probability dis-
tributions, using data from the difference between Precipitation
and AED for the August (1-month) series at 105.25W-69.75N.
The example demonstrates a generally good agreement between
the empirical and theoretical cumulative probabilities. However,
notable visual differences exist, with the GPA distribution show-
ing the poorest agreement and the Weibull distribution achiev-
ing the lowest AIC among the six distributions, so this is the
distribution selected to standardise the series.

This approach ensures flexibility in the selection of the proba-
bility distribution. Therefore, we obtained two versions of the
four drought indices: one calculated using the single distri-
bution recommended for each index (Gamma for the SPI and
log-Logistic for the other two indices), and the second calcu-
lated by employing the six different probability distributions
and selecting the best-fit one based on the weighted distance
approach.

To assess the suitability of both approaches (i.e., the refer-
ence approach based on a single probability distribution and

the best-fit approach), we employed various procedures: (i)
the percentage of series that could not be calculated due to
lack of fit, (ii) the number of values below the origin of the
selected distribution, indicating no solution, (iii) the percent-
age of resulting standardised series in which normality was
rejected according to the Shapiro-Wilks test, which has been
used in similar contexts by previous studies (Naresh Kumar
et al. 2009; Stagge et al. 2015). A rejection rate of p<0.05
(corresponding to a 95% confidence level) is employed to dif-
ferentiate standardised series adhering to a normal standard
variable, (iv) the average and standard deviation of the result-
ing drought indices to ensure they met the requirement of
having a mean of zero and a standard deviation of one, (v) the
frequency of observed low and high values to the expected fre-
quencies based on a standard normal distribution and (vi) the
duration, magnitude and frequency of drought events using
an arbitrary threshold of —1.28 (representing the maximum
expected drought severity over a 10-year period).

3 | Results

Results indicate significant differences in the selection of the
best probability distribution for the flexible multi-distribution
approach depending on the drought index and temporal scale
(Figure 3). As illustrated, there were minor intra-monthly
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FIGURE 3 | Percentage of the global land area of the three drought indices (SPI, SPEI and SEDI) according to the selected distribution of proba-

bility for calculations. The bars represent months starting from January.

discrepancies irrespective of the selected variable or time
scale. For the SPI, despite the Gamma distribution being the
reference approach, the Weibull distribution emerged as the
most suitable at the global scale for 1-, 3- and 12-month time
scales. Similarly, for the SPEI, the Weibull distribution was
found to be the most appropriate regardless of the time scale.
Nevertheless, it is important to note that while the Weibull
distribution is shown to provide a better fit for a high percent-
age of cases (e.g., over 50% for SPI and SPEI), the combined
percentages of the other distributions are also significant and
often exceed those of the Weibull distribution in most cases.
This underscores the need to consider multiple probability
distributions for these calculations.

However, geographic patterns based on these distributions did
not exhibit clear dominance (Figure S1), making it challenging
to advocate for a single probability distribution that accommo-
dates the diverse requirements of each one of the calculated in-
dices across various regions, seasons and time scales.

To select between the two approaches, it is also necessary to
consider the cases where it is impossible to fit a probability
distribution to the series of different variables. Table 1 indi-
cates the percentage of global monthly series where no fit to
the probability distributions was feasible due to undefined pa-
rameters, rendering the calculation of the drought index im-
possible. Overall, the percentage of such series was low across
the three drought indices and different temporal scales. At
longer time scales (12-month), the index could be calculated
for nearly all regions globally across all three indices. The

differences in percentages between the two procedures were
minimal, so these results were inconclusive in determining
the superior approach due to the small magnitude of the per-
centages in most cases.

Table S1 presents the percentage of global monthly standardised
series for different indices that follow a normal distribution,
indicated by Shapiro-Wilks test p values greater than 0.05.
Generally, both approaches resulted in the majority of stan-
dardised series at the global scale conforming to a standard nor-
mal distribution. However, the best-fit approach yielded a higher
number of standardised series where the null hypothesis of nor-
mality could not be rejected, particularly for shorter time scales
(1-month). This disparity was more pronounced for the SPI, with
larger differences in percentages compared to longer time scales
(12-months).

The spatial comparability of the resulting drought indices is
crucial for ensuring that a value represents the same level of se-
verity across different regions. Figure 4 illustrates the density
curves of the mean standardised indices recorded worldwide
for the different time scales. In the vast majority of cases, the
dominant average values tended to be zero, irrespective of the
selected approach (the single distribution vs. the best-fit ap-
proach). This alignment with a mean of zero is essential for
comparability across regions. However, there are differences
in the density curves of standard deviation values between the
two approaches. While the standard deviations obtained from
the single distribution approach tend to be closer to one, those
from the best-fit approach show more variability. Nevertheless,
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TABLE1 |

Percentage of global series with no fit based on a single distribution method and the Best-fit considering the three drought indices (SPI,
SPEI and SEDI) at the time scales of 1-, 3- and 12-months, while also considering the 12 different monthly series.

SPI-1 SPI-3 SPI-12
Gamma Best-fit Gamma Best-fit Gamma Best-fit
January 1.130 1.130 0.722 0.722 0.000 0.000
February 1.058 1.058 0.835 0.835 0.000 0.000
March 0.750 0.750 0.528 0.528 0.000 0.000
April 0.506 0.506 0.361 0.361 0.000 0.000
May 0.408 0.408 0.273 0.273 0.000 0.000
June 1.115 1.115 0.284 0.284 0.000 0.000
July 1.530 1.530 0.274 0.274 0.000 0.000
August 1.041 1.041 0.629 0.629 0.000 0.000
September 0.910 0.910 0.548 0.548 0.000 0.000
October 0.620 0.620 0.309 0.309 0.000 0.000
November 0.921 0.921 0.319 0.319 0.000 0.000
December 1.156 1.156 0.426 0.426 0.000 0.000
SPEI-1 SPEI-3 SPEI-12
Log-Logist. Best-fit Log-Logist. Best-fit Log-Logist. Best-fit
January 0.000 0.000 0.000 0.000 0.000 0.000
February 0.000 0.000 0.000 0.000 0.000 0.000
March 0.000 0.000 0.000 0.000 0.000 0.000
April 0.000 0.000 0.000 0.000 0.000 0.000
May 0.001 0.000 0.000 0.000 0.000 0.000
June 0.003 0.000 0.000 0.000 0.000 0.000
July 0.002 0.000 0.000 0.000 0.000 0.000
August 0.001 0.000 0.000 0.000 0.000 0.000
September 0.001 0.000 0.000 0.000 0.000 0.000
October 0.000 0.000 0.000 0.000 0.000 0.000
November 0.000 0.000 0.000 0.000 0.000 0.000
December 0.000 0.000 0.000 0.000 0.000 0.000
SEDI-1 SEDI-3 SEDI-12
Log-Logist. Best-fit Log-Logist. Best-fit Log-Logist. Best-fit
January 9.535 8.080 6.916 5.856 0.000 0.000
February 5.748 4.957 5.391 4.572 0.000 0.000
March 1.914 1.813 1.775 1.524 0.000 0.000
April 0.896 0.865 0.829 0.725 0.000 0.000
May 0.138 0.135 0.106 0.100 0.000 0.000
June 0.039 0.038 0.000 0.000 0.000 0.000
July 0.026 0.025 0.000 0.000 0.000 0.000
August 0.394 0.386 0.000 0.000 0.000 0.000
(Continues)
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TABLE1 | (Continued)

SEDI-1 SEDI-3 SEDI-12
Log-Logist. Best-fit Log-Logist. Best-fit Log-Logist. Best-fit
September 1.401 1.335 0.006 0.006 0.000 0.000
October 3.845 3.381 0.390 0.345 0.000 0.000
November 7.496 6.360 1.372 1.178 0.000 0.000
December 10.378 8.755 3.643 3.112 0.000 0.000
1-month SPI 3-month SPI 12-month SPI
; 800- |
60- |
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2 | |
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FIGURE4 | Density curves of the mean values corresponding to different gridded series of the three tested drought indices at the three different
time scales obtained by means of the single distribution and the best-fit approaches.

since the standard deviation values are generally very close to Further analysis confirms that there are no significant spa-
one across most regions, the indices remain highly comparable tial patterns between the resulting standardised indices in
worldwide under both approaches (Figure 5). terms of their spatial comparability following either approach
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FIGURE 5 | Density curves of the standard deviation values corresponding to different gridded series of the three tested drought indices at the

three different time scales obtained by means of the single distribution and the best-fit approaches.

(Figures 6, S2 and S3). Additionally, the statistical characteristics
of drought events identified at the global scale, such as average du-
ration, magnitude and frequency, are comparable between both
calculation approaches. This consistency is observed across the
three drought indices and the three time scales, except for SPI at
shorter time scales, where differences in the average magnitude
and total number of recorded drought events were noted. These
differences may be attributed to the varying treatment of zero val-
ues between the two approaches, particularly affecting arid and
semiarid regions (Figures S4-S6).

A comparison between the single distribution and best-fit
approaches reveals few relevant differences in various tests,
except for a higher number of standardised series following
a normal distribution with the best-fit approach. However,

when examining the relationship between standardised val-
ues obtained from both approaches, some differences emerge,
particularly affecting the lower tail of the distribution values.
For instance, in the scatterplots of SPI values (Figure 7), there
is generally high agreement over most of the variable range (~
+1.8). However, in the lower tail of the distribution, where the
frequency of values is much lower, but still critical for assess-
ing drought severity, differences are recorded. Standardised
values obtained with the Gamma distribution tended to be
more extreme than those obtained with the best-fit approach
across all time scales. Even small changes in z-units in this
lower range can significantly impact the corresponding
drought return periods (Figure 8), and consequently the eval-
uation of extreme drought events, which pose major socioeco-
nomic and ecological impacts. For SPEI, the best-fit approach
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FIGURE 6 | Spatial distribution of the mean and standard deviation of the SPI values calculated at time scales of 1, 3 and 12months obtained by

means of the Gamma distribution and the Best-fit approach.

provides the opposite behaviour to the PI, with lower values
in the lower tail of the distribution and higher values in the
upper part of the distribution than the single distribution ap-
proach (Figure S7). For SEDI, a similar behaviour to the SPEI
is found (Figure S8).

When analysing the expected and observed frequencies of
the z-values using different drought indices, some differences
were found between the two calculation approaches (Table 2).
Considering the high number of records in the gridded data at
the global scale for various drought indices, one would expect
observed standardised values to align closely with expected
frequencies according to the normal standard distribution.
However, discrepancies were observed, including both an over-
estimation and an underestimation of certain values.

For instance, for SPI-1, the single distribution approach tended
to overestimate the expected frequencies of values below differ-
ent thresholds in the lower tail of the distribution. Conversely,
the best-fit approach showed frequencies more in agreement
with the expected frequencies. For instance, while about 1% of
values would be expected to correspond to return periods higher
than 100years, the single distribution approach provided a fre-
quency higher than 3%, whereas the best-fit approach yields
1.19%. Similar patterns were identified for values correspond-
ing to return periods of one in 200, 500 and 1000years. In the
upper part of the distribution, the differences between meth-
ods were smaller, and there was a higher agreement between
observed and expected frequencies. However, for time scales
of 3 and 12months, there was more alignment between the z-
values obtained from both methods, although the single distri-
bution approach tended to overestimate more than the best-fit
approach the extreme drought conditions compared to the ex-
pected frequencies.

In contrast to the findings with SPI, for the SPEI, using the
single (log-Logistic) distribution approach reveals an opposite
problem. The SPEI calculated by means of the log-Logistic dis-
tribution tended to underestimate the expected frequency of

extreme drought events. On the contrary, although the best-
fit approach slightly overestimates the frequency of extremes
at high return periods, it yields values closer to the expected
frequencies than the single distribution approach, particularly
for return periods up to 200years. This pattern is consistent
across different time scales for the SPEI. For the SEDI, the
pattern is similar to that observed for the SPEI, but even more
pronounced, as the single distribution approach clearly under-
estimates the expected frequencies for return periods exceed-
ing 20years.

It is important to note that both calculation approaches en-
counter cases where there is no solution because the value of
the variable (such as Precipitation, Precipitation-AED, AED
and ET-AED) falls below the origin of the selected probability
distribution, whether based on the single distribution or the
best-fit approach. For example, when using the single distri-
bution approach for 1-month SPI, approximately 1.73% of the
gridded values do not yield a solution because the values of
the variable are below the parameter of origin of the distribu-
tion. However, with regard to SPEI and SEDI, this issue be-
comes more pronounced when utilising the best-fit approach.
Nonetheless, it is noteworthy that such situations account for
less than 0.26% of the total cases. In light of this, we suggest
addressing these non-solution values by assigning them a
value of —2.88, which equates to a return period of 500years.
This decision is substantiated by the fact that these cases typ-
ically reflect extremely dry conditions.

We have developed software that calculates various indices
using the best-fit approach. This software consists of a collection
of routines written in the programming language R, accessible
via https://github.com/lcsc/FlexDroughtIndex. With this soft-
ware, users can compute several indices examined in this study,
including SPI, SPEI and SEDI, across different time scales and
frequencies (e.g., monthly: 12 cases per cycle). Additionally, it
offers the capability to establish reference periods for calculating
distribution parameters necessary for index computation over
the entire analysis period.
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FIGURE 7 | Scatterplots showing the relationship of the SPI values at the time scales of (a) 1-month, (b) 3-month and (c) 12-month over the world
calculated by means of the single (Gamma) distribution and the Best-fit approach. The values for January and July are shown in order to illustrate the
most contrasted seasonal conditions. The colours represent the density of points, with the maximum density shown in red.

Each of the three functions corresponds to one of the drought in- ranges of variability, as discussed in Section 2. For instance, the
dices tested in this study. However, they are versatile and canbe  SPI function, based on the best-fit approach, could standardise
utilised to standardise other variables into standardised values. hydrological variables such as streamflow, soil moisture, or

This flexibility accommodates various conditions within the  groundwater, as well as other meteorological variables like wind
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speed. These variables typically have lower bounds at zero in
their distributions, and determining the most suitable distribu-
tion for obtaining standardised series based on these variables
beforehand may not be evident.

4 | Discussion and Conclusions

This study introduces a flexible approach to calculate the most
common standardised drought indices. It is based on testing dif-
ferent probability distributions and selecting those most suitable
according to the resulting normal standard series. These results
are compared with the approaches based on a single probability
distribution that are commonly used to calculate these drought
indices. There are several sources of uncertainty in drought
index calculation, with one of the main uncertainties being
the length of available data (Guttman 1999; Vergni, Di Lena,
et al. 2017; Carbone et al. 2018). However, the selected probabil-
ity distribution used for the calculations also emerges as one of
the main sources of uncertainty (Stagge et al. 2015; Laimighofer
and Laaha 2022).

In agreement with recent studies (Hinis and Geyikli 2023;
Lee et al. 2023; Nadi and Shiukhy Soganloo 2023; Slavkova
et al. 2023; Tam et al. 2023), our findings found that the most
suitable distribution to calculate standardised drought indi-
ces may change spatially, seasonally, and as a function of the
calculated time scales. This suggests that the most widely
recommended distributions, such as the Gamma for the SPI
(WMO 2012) or the log-Logistic for the SPEI (Vicente-Serrano
and Begueria 2016), may not be the best approaches to calculate
these indices in large world regions, in agreement with previous
studies (Pieper et al. 2020). This finding is significant because if
the selection of the probability distribution strongly affects the
obtained results, careful estimation is needed. Moreover, if the
use of a single probability distribution does not guarantee com-
parability of the resulting drought indices across regions, this
reinforces the need for approaches that are more flexible in the
selection of distributions.

Thus, although we agree with Stagge et al. (2015), who stressed
that selecting different distributions for different regions,

seasons and time scales adds complexity to the calculation of
drought indices, we believe that the method used in this study,
based on the AIC, is robust and efficient for selecting the best
distribution (Pieper et al. 2020; Laimighofer and Laaha 2022).
Additionally, the use of different distributions in calculat-
ing drought indices should not affect the spatial and temporal
comparability of the resulting indices, as suggested by (Stagge
et al. 2015). It is essential to remember that the objective of hav-
ing high-quality drought indices is not to find the probability
distribution characterised by higher usability given the variabil-
ity of climate conditions at regional or global scales, but to have
the best standardised series possible, independent of the proba-
bility distribution used for this purpose.

Previous studies have shown that the temporal correlation
between drought indices calculated by different probability
distributions is usually strong (Begueria et al. 2014; Moccia
et al. 2022). Additionally, the characteristics of drought events
in terms of duration, magnitude and frequency can be similar
when considering different probability distributions for calcu-
lation (Moccia et al. 2022). Therefore, we would not expect the
proposed methodology in this study to improve characteristics
of the drought indices related to the overall temporal variability.
However, substantial improvements are evident in other rele-
vant aspects.

In line with previous studies (Blain and Meschiatti 2015;
Stagge et al. 2015, 2025; Wang, Wang, and Romanowicz 2021;
Laimighofer and Laaha 2022), we observed that the time scale
at which the drought indices are calculated significantly affects
the uncertainty of the calculated drought indices. Generally,
the rates of rejection of a normal distribution decrease as the
drought time scale increases. Additionally, the spatial com-
parability of the mean and standard deviation of the z-values
becomes more homogeneous and comparable spatially. This
phenomenon is observed with both the single distribution and
the best-fit approaches. However, we noticed that the influence
of the drought time scale on the accurate representation of the
expected frequencies of extreme drought conditions is also note-
worthy when using the single distribution approach. With the
application of the best-fit approach, this dependence on the ac-
curate representation of the expected frequencies of extremes
across drought temporal scales improves in some of the cases.
It is important to bear in mind the significant uncertainties as-
sociated with standardised values at high return periods (Stagge
et al. 2015), which are also not independent of the selected
drought time scale (Stagge et al. 2025). Nevertheless, we would
like to emphasise that, for return periods of particular relevance
to drought management (e.g., 1 in 20 or 100years), the best-fit
approach yields frequencies that are closer to the theoretically
expected values. This pattern holds regardless of the drought
index used, reinforcing the robustness of this method for accu-
rately calculating drought indices.

Previous studies have indicated that problems in calculating
standardised drought indices due to the selection of a specific
probability distribution are minimal within the main range of
standardised variables (e.g., ~+1.8) (Vergni, Di Lena, et al. 2017;
Blain et al. 2018; Wang, Wang, and Romanowicz 2021). In
this study, we confirm that this conclusion holds true for var-
ious variables and temporal scales at the global level, as the
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| (Continued)

TABLE 2

500years 200years 100years 20years 20years 100years 200years 500years 1000years

1000years

Return period

SEDI-3

0.02 0.03 0.10 0.33 4.63 4.04 0.30 0.13 0.06 0.05

0.01

log-Logistic

0.42 0.47 0.68 1.10 5.06 4.22 1.01 0.68 0.48 0.41

0.35

Best-fit

SEDI-12

0.01 0.01 0.07 0.28 4.53 4.12 0.25 0.08 0.03 0.02

0.00

log-Logistic

0.38 0.44 0.66 1.06 5.08 4.79 1.16 0.77 0.53 0.45

0.32

Best-fit

agreement between standardised z-values calculated using a sin-
gle distribution and those obtained using the best-fit approach is
closer within this range of the variable. In other words, whether
employing a single distribution approach based on widely rec-
ommended distributions or the best-fit approach described in
this study, there is little difference in the calculation of z-values
within this range.

Therefore, the primary challenge in calculating drought indices,
as highlighted in this and previous studies (Stagge et al. 2015,
2025; Pieper et al. 2020), lies in determining drought intensity
in the tail of the distribution, particularly in critical drought
conditions. This finding challenges the use of non-parametric
approaches based on empirical probabilities of the variable
under study. While recommended by some previous studies
(Farahmand and AghaKouchak 2015; Tijdeman et al. 2020;
Raziei and Miri 2023) for their advantages over the main range
of standardised variables (Laimighofer and Laaha 2022), these
approaches are highly sensitive to biases in the tails of the dis-
tribution and strongly constrained by the maximum and min-
imum observed values (Soldkova et al. 2014; Vergni, Todisco,
et al. 2017, 2021; Noguera et al. 2022).

Given the higher uncertainty in assessing standardised
drought indices in the lower tail of the distribution, some pre-
vious studies have suggested implementing bounds in the vari-
able's range, such as between +3.0 (Stagge et al. 2015; Yimer
et al. 2022). While these values correspond to a return period
of 750years, making it sufficiently large to be considered a
very extreme value, much higher values may be much more
uncertain given the length of available samples, rendering the
suggested increase in the expected return period irrelevant for
evaluating drought severity. However, between standardised
z-values of ~ —1.8 and —3.0, there are values corresponding to
return periods between ~25 and ~750years. Small differences
in standardised z-units, even to the second decimal place, may
correspond to vastly different return periods, signifying vary-
ing severity levels of the drought event. Thus, the accurate as-
sessment of this range of the variable is indeed the key issue in
evaluating the effectiveness of methods for calculating stan-
dardised drought indices.

Given the critical evaluation of the lower tail of the distribu-
tion across various variables and the accompanying uncertain-
ties, alternative approaches have been proposed. For instance,
(Laimighofer and Laaha 2022) suggested treating the lower
tail of the distribution independently and employing extreme
value theory, commonly used in hydrological estimations (Rao
and Hamed 2000), and in assessing the probability of extreme
precipitation events (Begueria 2005; Begueria and Vicente-
Serrano 2006), to utilise theoretical extreme distributions.
While this approach may offer advantages in accurately deter-
mining the severity of the most extreme drought events, it could
introduce comparability uncertainties in space and time with
values of drought indices within the common range of variation
(e.g., ~+1.8). Additionally, it could pose technical challenges in
merging estimations conducted via two different procedures to
develop efficient drought quantification and operational mon-
itoring. However, a simpler solution could lie in the use of the
proposed best-fit approach outlined in this study, which pro-
vides frequencies closer to the theoretical ones.
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We have demonstrated that for the majority of variables and time
scales examined here, the frequency of expected extreme drought
values aligns better with observed frequencies on a global scale.
The enhancement in addressing this critical issue, compared to re-
sults obtained using a single distribution, may be attributed to the
better adaptability of the most suitable distribution to the specific
characteristics of different variables, regional conditions, seasons
and time scales. Indeed, while further testing is necessary for a
comprehensive assessment, such as comparing return periods es-
timated by theoretical extreme distributions exclusively fitting the
lower tail of the distribution values with those derived using the
best-fit approach, a more accurate estimation of extreme drought
conditions appears achievable with the proposed approach.

The proposed method for calculating standardised drought indices
is computationally efficient. Indeed, it requires more computation
time than traditional single distribution approaches because vari-
ous probability distributions must be fitted to the data, and the AIC
needs to be calculated to make the optimal selection. However, the
provided software efficiently generates global datasets, making
this approach expectedly suitable for the majority of applications
across different spatial scales. This includes the frequent updates
necessary for real-time drought monitoring systems.

We would also like to emphasise the flexibility of the pro-
posed methodology in obtaining standardised drought indi-
ces, which would allow for the calculation of other drought
indices that have not been extensively explored, such as the
groundwater drought index (Bloomfield and Marchant 2013)
or the standardised soil moisture index (AghaKouchak 2014).
These indices have not been thoroughly tested in terms of the
most suitable probability distributions to use at a global scale.
Indeed, the generated software can be utilised to standardise
any environmental variables computed at time scales ranging
from daily to yearly, bounded at the upper or lower tails, or
oscillating over any range of magnitude. Further research is
needed to test the performance of the proposed methodology
on other hydroclimatic and ecological variables. Additionally,
it is necessary to determine if this approach is more suitable
for point-based series measured at meteorological stations,
which are not subject to the smoothing of extreme events com-
monly seen in gridded databases.
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