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Abstract

The factors and processes that shape microbial genomes and determine the success of microbes in different environments have long
attracted scientific interest. Here, leveraging 2855 metagenome-assembled genomes sampled by the Vanishing Glacier Project from glacier-
fed streams (GFSs), we shed light on the genomic architecture of the benthic microbiome in these harsh ecosystems—now vanishing
because of climate change. Owing to glacial influence, the GFS benthic habitat is unstable, notoriously cold, and ultra-oligotrophic. Along
gradients of glacial influence and concomitant variation in benthic algal biomass across 149 GFSs draining Earth’s major mountain
ranges, we show how genomes of GFS bacteria vary in terms of size, coding density, gene redundancy, and translational machinery.
We develop a novel, phylogeny-rooted analytical framework that allows pinpointing the phylogenetic depth at which patterns in
genomic trends occur. These analyses reveal both deep- and shallow-rooting phylogenetic patterns in genomic features associated
with key GFS taxa and functional potential relevant to live in these ecosystems. Additionally, we highlight the role of several clades
of Gammaproteobacteria in shaping community-level genomic architecture. Our work shows how genome architecture is shaped by
selective environmental constraints in an extreme environment. These insights are important as they reveal putatively important
adaptations to the GFS environment which is now changing at rapid pace due to climate change.
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Introduction

Bacterial genomes exhibit substantial variation in size and com-
plexity [1, 2] and are shaped by processes including genetic drift [2,
3], selection by environmental constraints such as oligotrophy and
symbiotic interactions that facilitate gene loss [1, 4]. Among the
factors that shape bacterial genome architecture, environmental
drivers related to genome size variation have attracted most
attention. For instance, thermophilic microbes thriving in hot
springs often possess small genomes [5], whereas psychrophilic
microbes in cryospheric environments tend to have larger
genomes [6-8]. Increased genome size has also been associated
with the need to maintain a broad functional repertoire to cope
with fluctuating environmental conditions [9-11]. In addition
to habitat characteristics such as temperature and nutrient
availability, microbial lifestyle—such as free-living pelagic versus
attached forms—have also been associated with genome size
variation [12-14]. However, other genomic features, such as
variation in guanine-cytosine (GC) content, gene redundancy
or the translational machinery have received less attention,
particularly for environmental bacteria. Here, we analyse
metagenomic and environmental data from glacier-fed streams

(GFSs) and investigate relationships between glacial influence
and variation in genomic features of the benthic microbiome.

Owing to the direct influence of glaciers [15], GFSs are ultra-
oligotrophic, cold, and unstable environments, yet they harbor
diverse microbial communities [16-18]. In GFSs, bacteria forming
biofilms attached to sedimentary surfaces dominate microbial
life, where they orchestrate important ecosystem functions [19-
21]. These communities are shaped by selective environmental
conditions, which is reflected by deterministic community assem-
bly and elevated microdiversity [22, 23]. Yet, how the environ-
mental characteristics shape the genomic architecture of GFS
bacteria remains unknown. In the light of ongoing climate change
and glacier recession [24], better understanding genomic trends
along environmental factors is however important, as genome
architecture underpins the diversity, distribution, and metabolic
versatility of bacteria [25, 26].

Glacier meltwaters are oligotrophic, which may favor genome
streamlining and low GC content, as has been observed in other
nutrient-limited environments. GFS streamwater is often turbid
due to high loads of fine suspended sediments [15, 27], which
reduces light available for primary producers (i.e. benthic algae)
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and further aggravates resource limitation for heterotrophic bac-
teria [28]. In line with this, smaller average genome sizes have
been reported from GFSs compared tributary streams that are
not under glacial influence, albeit draining the same proglacial
floodplains [29].

On the other hand, efficient stress response, abundant mobile
genetic elements, translational flexibility and genome plasticity
have been related to larger genomes of bacteria in cryospheric
ecosystems [30]. In GFSs, rapid variation in flow and sediment
loads and low streamwater temperatures may thus promote
larger genomes [5]. Moreover, GFS bacteria thrive during windows
of opportunity, which mainly arise in spring and autumn when
nutrients and light are available and streamflow is moderate
[19, 31, 32]. Similarly, bacteria with larger genomes and an
expanded functional and regulatory repertoire thrive in in pelagic
environments where rapid nutrient influx or depletion can occur
[33].

Here, we consider genomic traits prevalent under high glacial
influence to reflect selective pressures and thus as being indica-
tive of adaptations to GFS conditions. This perspective is based on
the idea that genomic features conferring fitness advantages—
such as metabolic efficiency—become prevalent under strong
selective constraints, while at the same time being shaped by
the need to maintain sufficient functional flexibility to cope
with environmental fluctuation [1]. Given the close relationship
between genomic traits and evolutionary history, phylogenetic
context is critical for interpreting variation in genomic features
[34]. To this end, we establish a novel analytical framework for
resolving the phylogenetic signatures of genomic features in GFSs.
This null-model based framework allows us to determine the
phylogenetic depth at which genomic traits exhibit a significant
signal, allowing us to explore how genome variation is structured
across phylogenetic scales and to disentangling the contribution
of specific clades to community-level genomic patterns. Our work
provides new insights into how environmental constraints shape
bacterial genome architecture and contribute to the ecological
success of specific clades in GFSs. These findings are particularly
relevant in the context of climate change, as diminishing glacial
influence may alter key selective constraints and potentially
threaten microorganisms adapted to the GFS environment.

Material and methods

Glacier-fed stream sampling and environmental
parameters

We sampled benthic biofilms (upper 5 cm of the streambed)
from 149 GFSs in the European Alps, Scandinavian Mountains,
Himalayas, Pamir and Tian Shan, Ecuadorian Andes, Southwest
Greenland, Russian Caucasus, Rwenzori in Africa, and South-
ern Alps in New Zealand between January 2019 and July 2022.
GFSs were sampled in spring or autumn during “windows of
opportunity” when streamflow and streamwater turbidity are
relatively low; this sampling strategy facilitates comparability
between GFSs. We did not sample GFSs from heavily debris-
covered and rock glaciers, and we avoided GFSs downstream of
proglacial lakes, with debris flows, or tributaries in the reaches
above the sampling sites. At each GFS, we sampled an upstream
reach, as close as possible to the glacier snout, and a down-
stream reach. Within each reach, sandy sediments (250 um to
3.15 mm size fraction) were collected from three independent
patches (~10 m apart). All sampling devices were flame-sterilized
in the field. Sediment samples were transferred into sterile cry-
ovials, immediately flash-frozen in liquid nitrogen in the field

and subsequently stored at —80°C before and following shipping
to Switzerland for deoxyribonucleic acid (DNA) extraction and
biomass analyses.

For each GFS, the distance to the glacier snout was calculated
based on georeferencing (GPSMAPR 66 s, GARMIN) of the sampling
reach, as well as glacier surface area and glacierized percent-
age catchment based on satellite imagery (Sentinel-2; Level 2a,
March 2019-July 2022 from scihub.copernicus.eu) and a catchment
definition derived from the ASTER Global Digital Elevation Model
(GDEM) v3. (NASA/Meti/Aist/Japan Spacesystems and US/Japan
Aster Science Team, 2019). The glacier index (GI) was calculated

___/Clacier area — according to Jacobsen & Dangles
Glacier area+Distance to the glacier
(2011) [35]. Benthic chlorophyll-a, a proxy for algal biomass, was
extracted from the sediment (90% EtOH) in a hot (78°C) water bath
for 10 min and further incubated (24 h, 4°C). After vortexing and
centrifugation, chlorophyll-a concentration in the supernatant
was quantified using a plate reader (BioTek Synergy H1; EX/EM:
436/680) and a spinach chlorophyll-a standard (Sigma Aldrich)
and normalized to dry mass (DM) of sediment.

Metagenomics

Metagenomes were sequenced for 149 sediment samples. DNA
extraction, purification, library preparation, sequencing, and
metagenome assembly steps were performed as described
elsewhere [19]. Briefly, 5 g of sediments were treated using
a phenol:.chloroform-based extraction method subsequently
followed by an ethanol precipitation step. This protocol yielded
on average 50 ng of DNA per sample which was used for library
preparation using the NEBNext Ultra II FS library kit, which
also included 6 PCR cycles. Sequencing was performed at the
Functional Genomics Centre Zurich using a S4 flowcell on a
NovaSeq ([llumina).

The metagenomic sequence data was processed using the Inte-
grated Meta-omic Pipeline (IMP) workflow (version 3.0; commit#
9672c874) [36]. Briefly, adapter trimming from reads using trimmo-
matic [37] is followed by an iterative assembly using MEGAHIT [38]
and Flye [39]. To reduce computation time for binning, we removed
sequences in the assembly <1.5 kbp and randomly selected 10%
of the pre-processed reads using seqtk (v1.3). For each individual
assembly, we then mapped the selected reads of the 5 spatially
closest samples (Euclidean distances of gps coordinates) using
BWA-mem (v0.7.17). We then used MetaBAT2 (v2.15) [40], CONCOCT
(v1.1.0) [41], and MetaBinner (v1.4.3) [42] using default parameters
to obtain bins {see Code availability}. The quality of bins was
assessed with CheckM2 (v1.0.1) [43], and finally DASTool (v1.1.4)
[44] was employed to generate a non-redundant set of bins using
a score threshold of 0.3.

Bins from all samples (including the ones generated by IMP3)
with a completeness of more than 50% were then selected for
further analyses which accounted for 12 599 bins. We then used
MDM(Cleaner (v0.8.3) [45] to reduce contamination of the bins.
Finally, after rerunning CheckM?2 on the bins to get final estimates
of completeness and contamination, we used dRep (v3.2.2) [46]
to dereplicate bins using a minimum completeness of 70% and
maximum contamination of 10% and an ANI of 99% to obtain
2855 strain-level MAGs. GTDB-Tk (v 2.1) [43, 47] was used to
assign taxonomy to MAGs. We further used the concatenated
alignment of 120 ubiquitous single-copy proteins created by
GTDB-Tk to de novo generate a phylogenetic tree using FastTree2
(v2.1.11) [48] under the WAG model of protein evolution with
gamma-distributed rate heterogeneity. Functional annotation of
the MAGs was performed with eggNOG-Mapper (v2.1.9) [49] after
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obtaining coding regions (CDS) with prodigal (v2.6.3) [50]. The
coverage of MAGs was estimated by mapping reads of samples
to the genomic contigs using CoverM (v0.6.1, available at https://
github.com/wwood/CoverM) using the trimmed_mean parameter.
We normalized the coverage by similarly mapping reads on the
recA gene (K03553). For prevalence, presences were defined as
abundance above a 10x recA coverage abundance threshold.
However, one should keep in mind that metagenome-based
analyses cannot differentiate between active, dormant or dead
cells and that dispersal from upstream habitats may also
influence patterns of prevalence in our dataset.

Dimensions of glacial influence and
community-weighted mean genomic properties

To identify the main environmental gradients across all GFS sam-
ples, Principal Component Analysis (PCA) was performed with the
prcomp function in R (version 4.3.0), and using a non-redundant
set of key physico-chemical as well as glacier-associated mea-
sures (glacier area, glacier coverage, GI, streamwater tempera-
ture, distance to the glacier, benthic chlorophyll-a). Community-
weighted means (CWM) of genomic features [i.e. genome size,
gene number, ribonucleic acid (tRNA) number, GC content, coding
density, and gene redundancy index] were tested with linear
effects against the first two principal components using gener-
alized additive models (GAMs) created with the bam function of
the mgcv R package (v1.9.0). For this, genomic features were first
normalized using completeness and contamination as follows:
valuenormaiisea = Value * (1/completeness) * (1 — contamination) .CWM
were then obtained by weighing normalized genomic features by
MAG relative abundances and averaging across MAGs present in
any given sample. To account for large-scale spatial patterns, we
used a smoothed spline (bs="sos”, k=—1) based on latitude and
longitude in the GAMs. Detailed results of these GAMs are avail-
able in Supplementary Table 1. Significant linear effects (P <.01)
were visualized using mean and standard errors of predictions
across all GFS in the dataset. All figures were created using
the ggplot2 (version 3.4.3) and ggpubr (version 0.6.0) R packages
(R version 4.3.0) [51, 52].

Abundance-based phylogenetic permutation

To resolve the phylogenetic structure of CWM genomic features,
we developed a null-model approach that randomly permutes
abundances in a phylogenetic-bin based framework. For 40 values
of relative phylogenetic height (h) uniformly distributed between
zero and one (i.e. scanning the phylogenetic tree from the root
to the tips), we performed phylogenetic agglomeration using the
“average” method of the hclust R function on the cophenetic
distances obtained with the cophenetic.phylo function of the ape
R package (v5.7-1) [53]. Subsequently, for each value of h, abun-
dances were randomly permuted within phylogenetic bins (20
iterations). Finally, GAMs accounting for spatial structure (i.e.
including a smoothed spline (bs="sos”, k=-1) on latitude and
longitude as covariate) were created, testing for a linear effect of
glacial influence on genomic features. Hence, this approach tests
for associations between CWM genomic features and environ-
mental parameter compared to null-model expectations across
phylogenetic depth. This approach further allows identifying the
relative depth at which phylogenetic signal in CWM genomic fea-
tures appear along the gradients of glacier influence. Significant
coefficients were assessed by combining P-values of the linear
coefficients over the 20 iterations using Stouffer’s method in the
poolr R package (v1.1-1), the mean and the standard deviation

of the coefficients were computed to summarize the null-model
permutations [54].

Additionally, this approach allowed us to pinpoint phylogenetic
clades contributing to the community-level signal at a specific
phylogenetic height. To this end, we used a leave-one-cluster-
out approach, computing coefficients with and without a given
phylogenetic cluster, and comparing the resulting coefficients’
distributions. Wilcoxon tests were used to test for difference in
coefficient distributions, a median relative effect was computed
comparing the median values with and without the target phy-
logenetic cluster [(value with — value without) / (value with)].
MAG taxonomy was used to summarize genera present within
these clades. Additionally, to summarize these results at higher
taxonomic level (i.e. to identify bacterial classes with dispropor-
tionately many MAGs in a phylogenetic cluster), we performed
enrichment analyses using Fisher tests (fisher.test function in R).
To account for multiple testing, we used the p.adjust R function
using the Holm method.

Functional potential

To unravel the functional potential associated with increased
gene redundancy, we tested for each KO if the number of copies
was higher in the MAGs that were part of significant clades com-
pared to all other MAGs. We performed Wilcoxon tests (wilcox.test
R function) on the log-transformed KO data (half of the minimal
non-zero value was added to allow for zeroes in the dataset),
and the P-values were adjusted using the p.adjust function in R
with the “Bonferroni” method. KOs were considered significant
if the P-value was <0, and the mean difference above zero. We
then compared the KOs for all three relationships using intersects
(intersect function in R).

We used LASSO regressions to identify functional genes that
were associated with clades contributing signal to genomic prop-
erties (genome size, gene number, tRNA gene number) in relation
to benthic chlorophyll-a concentration. For this, log-transformed
KO data was used in a LASSO regression to explain the binomial
response variable “part of clade” or “not part of clade”. The penal-
ization in this regression type allowed to shrink the coefficient
of non-important KOs to keep only KOs with high coefficients. We
then compared the KOs for all three relationships using intersects
(intersect function in R).

Taxonomic summary

CWM genomic features of MAGs classified as Gammaproteobacteria
were compared to all other MAGs. The taxonomic summary
comparing genomic features of MAGs classified as Gammapro-
teobacteria to other taxonomic classes was created using the dplyr
R package (v1.1.3). Wilcoxon sign rank tests were used to compare
the distributions. Relative abundance and prevalence (i.e. the
number of occurrences across GFSs) were used as estimates of
the “ecological success” of MAGs. The assumption that abundant
and prevalent MAGs in GFSs are ecologically successful is based
on previous work, which show that GFS benthic communities
assemble deterministically [23] and that benthic communities
are distinct from the bacterial community suspended in the
streamwater [17]. However, we acknowledge that we present
results based on metagenomic dataset, and thus, dormant or
inactive cells may be included. GAMs were built using a spline
(k=5, bs="ts") for these “ecological success” covariates, and
genome size and coding density were used as response variables.
We compared one model with a spline for all MAGs, and one with
a different spline for GFS-Gammaproteobacteria and all other MAGs
(using the “by” argumentin the spline). A Bayes factor analysis was
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used to compare both models, using the test_performance function
of the performance R package (v0.10.5). A Bayes factor above 3 was
considered significant.

Results and discussion
Genome characteristics of the GFS microbiome

The GFS environment is directly influenced by glaciers, primarily
through the magnitude and variation of meltwater runoff
[15, 27]. Runoff determines hydraulic stress, channel stability
and sediment loads, while streamwater temperature affects
metabolic processes [28, 55]. These physical processes are largely
driven by glacier size, which translates into runoff magnitude
and variability [55]. Employing PCA on the complete set of
measured environmental parameters (complete dataset available
as Supplementary Table 2), the first principal component
(PC1; 44.6% explained variance) revealed a gradient of benthic
chlorophyll-a inversely related to glacier area across all studied
GFSs (Fig. 1A). This is striking given the overall low chlorophyll-
a content (median: 0.0056 ug g~' DM; IQR: 0.0007-0.0272) and
underscores the responsiveness of benthic primary producers to
environmental conditions. High runoff and loads of suspended
sediments produced by large glaciers abrade benthic algae and
attenuate light, thereby inhibiting primary production in GFSs
and keeping chlorophyll-a concentrations low [56, 57]. Principal
Component 2 (21.7% explained variance) depicts a gradient of
streamwater temperature related to both distance to the glacier
snout and glacier area (as encapsulated by the GI) across all
GFSs. Indeed, depending on the magnitude of runoff, streamwater
warms with increasing distance from the glacier. Taken together,
the PCA reveals two main dimensions of glacial influence on GFSs
at a global scale, and we will explore them as potential underpin-
ning processes of the genomic landscape of the GFS microbiome.

Weighted by relative abundance of MAGs, bacterial genomes
across all GFSs were relatively large in terms of size, had a
high number of genes, and showed high GC content (Fig. 1B).
These values are bracketed by those reported from other GFSs
[29], various cryospheric ecosystems (e.g. permafrost, glacier ice)
[6], and psychrophiles [5]. Bacterial genomes generally contain
only little non-coding DNA (on average, ORFs account for 87% of
genome size [58]). Hence, variation in gene number and genome
size are generally tightly linked [2], a relationship attributed to
the importance of effective population size [3]. GC content, coding
density and genome size have also been shown to positively cor-
relate in bacteria [5, 59, 60]. However, compared to psychrophilic,
mesophilic, and thermophilic bacterial isolates [61], we found a
relatively low number of tRNAs, which we mainly attribute to the
discrepancy between MAGs and isolates owed to metagenomic
assembly and binning [62, 63]. Because translation is energetically
expensive, tRNA abundance has been linked to shorter minimal
generation time and adaptability to different environmental con-
ditions [64]. The gene redundancy index (i.e. the ratio between
the total number of KOs to the number of unique KOs with a
genome, median RI~1.4) was lower than previously reported in
cryoconite biofilms [65], which we attribute to the dynamic and
unpredictable GFS environment that may select for functional
plasticity rather than redundancy within a given genome.

To further explore glacier influence on these genomic proper-
ties of the GFS microbiome, we implemented GAMs accounting
for large-scale spatial variation and isolating linear effects of
environmental parameters on genomic properties. GAMs revealed
positive associations between benthic chlorophyll-a content
(correlated with PC1) with average genome size, gene number, and

tRNA number, whereas covariates correlating with PC2 (i.e. water
temperature, distance from the glacier and GI) were associated
with the gene redundancy index (Fig. 1C). These findings are in
line with previous work suggesting that benthic algae, through the
exudation of energy-rich macromolecules, relieve GFS bacteria
from energy and carbon limitation [28], ultimately promoting
bacteria with larger genomes as glaciers shrink and benthic
algal biomass increases [26]. Indeed, metabolic interactions
between microbial heterotrophs and algae have been repeatedly
reported from stream biofilms [66, 67], which may be particularly
important in GFSs largely devoid of allochthonous sources of
organic carbon [19, 28]. Furthermore, these analyses revealed
increasing numbers of tRNAs with diminishing glacial influence,
which essentially follows the observed trends in genome size
(Fig. 1C). While tRNAs have been associated with cold adaptation
and post-translational modifications in bacteria [68, 69], work
on isolates showed that psychrophile genomes have elevated
numbers of tRNAs [61]. Nevertheless, translational efficiency
has been shown to be low in organisms that are able to thrive
in multiple habitats, and this could potentially explain the low
number of tRNAs that we observed [64]. Importantly, our analyses
have not revealed any major variation in coding density along
any of the glaciological variables tested. In line with expectations
[3], this suggests that genome size, number of genes and thus
the proportion of non-coding DNA vary concomitantly across
environmental gradients in GFS.

Dissecting the phylogenetic signatures of
genomic trends along environmental gradients

Variation in community-level genomic properties along environ-
mental gradients can either arise from changes in abundance or
the replacement of taxa with different genomic characteristics.
Moreover, shared evolutionary histories of microbiome members
can shape relationships between genomic properties and environ-
mental constraints [34]. For example, accounting for phylogenetic
dependencies, a previous study identified deep phylogenetic sig-
natures in genome size variation of bacteria and archaea [34]. To
assess phylogenetic signatures in genomic features, we developed
a null model-based approach to first identify the phylogenetic
depth at which signal in genomic properties along environmental
gradients arise. Using a leave-one-out approach of individual
clades at the identified threshold phylogenetic distance, we then
find clades that contribute most to this signal. Finally, we inves-
tigate the functional potential of these clades in comparison to
other community members, to uncover functional traits associ-
ated with community-level genomic properties.

We found significant phylogenetic signature exclusively at
low depth (i.e. among closely related members) for relationships
between the gene redundancy index and streamwater tempera-
ture, GI and distance to the glacier (<0.25 relative phylogenetic
tree height, corresponding approximately to median genus-level
phylogenetic depth; Fig. 2A). This suggests that variation in the
gene redundancy index is predominantly structured among
closely related taxa.

Using the leave-one-cluster-out approach, we identified 36
clusters (out of a total of 394 clusters at a phylogenetic depth
of 0.25, Supplementary Table 3) containing MAGs classified
as ELB16-189 (n =42), OLB17 (n=16), CAILRJO1 (n=10), Palsa-
1315 (n=10), Deinococcus (n=5) and Nitrospira_F (n=1) to drive
relationships between the distance to the glacier and the gene
redundancy index. This highlights the fine-scaled yet widely
distributed phenomenon that GFS taxa possess increased gene
redundancy at decreased glacial influence. Interestingly, more
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Figure 1. Dimensions of glacial influence and variation in genomic features. (A) the first two dimensions of a principal component analysis (PCA)
depict associations among key glacier-associated environmental factors in GFS. Symbols represent mountain ranges; arrows depict scores of
environmental variables. (B) Boxplot showing the distribution of community weighted mean genomic features (i.e. weighted with the relative
abundance of MAGs) among GFSs. (C) Regression coefficients of genomic features that correlate with glacial covariates in the GAM analysis. GAMs
considering spatial variations were fitted adding a linear effect for each pair of genomic features and glaciological variables. Significant relationships
after adjusting P-values for multiple testing (Holm'’s method, P < .05) are displayed.

clusters were significant for the distance to the glacier (n=36)
compared to the GI (n=5) and streamwater temperature (n=1).
Both, the GI and distance to the snout may integrate the longer-
term influence of glaciers on the GFS microbiome whereas
streamwater temperature fluctuates on timescales of minutes
to hours [70].

To unravel which microbial functions exhibit increased redun-
dancy in GFS microbiomes under reduced glacial influence, we
compared the number of gene copies per KO in clades with
and without significant relationships between redundancy and
glacial influence, respectively. We identify a total of 37 KOs with
significantly higher copy numbers (Table 1, Wilcoxon rank-sum

test, adjusted P-value <.01). These include several genes asso-
ciated with metabolism, including two genes related to sulfur
metabolism (ddhA, ddhB), two genes encoding methane/ammo-
nia monooxygenase subunits (B and C), and carbon-metabolism
related genes (acsE, ccsB, sucD, korD). This observation aligns with
previous findings [26, 28], who reported that declining environ-
mental selection in GFSs promotes primary production, leading
to shifts in microbiome functions, including changes in energy
acquisition pathways. Taken together, increased gene redundancy
in metabolic pathways with reduced glacial influence, may point
toward an adaptive strategy of microbes to cope with environmen-
tal changes in GFSs.
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Table 1. KEGG orthologs (KOs) that were significantly (P <.01) more redundant in the MAGs associated with increase gene redundancy

index against all three tested glaciological parameters (distance to the glacier, GI, and water temperature). These were tested using
Wilcoxon tests, and P-values were corrected using the Bonferroni method, only KOs with positive mean differences (i.e. higher
redundancy) are displayed. The descriptions and pathways were obtained from the KEGG website (https://www.kegg.jp/entry/).

KO Symbol and description Pathways
K00003 hom, homoserine dehydrogenase Glycine, serine and threonine metabolism / Cysteine and methionine metabolism /
Lysine biosynthesis / Metabolic pathways / Biosynthesis of secondary metabolites /
Microbial metabolism in diverse environments / Biosynthesis of amino acids
K00113 glpC, glycerol-3-phosphate dehydrogenase Glycerophospholipid metabolism / Biosynthesis of secondary metabolites
subunit C
K00176 korD, oorD, 2-oxoglutarate ferredoxin Citrate cycle (TCA cycle) / Other carbon fixation pathways / Metabolic pathways /
oxidoreductase subunit delta Biosynthesis of secondary metabolites / Microbial metabolism in diverse
environments / Carbon metabolism / 2-Oxocarboxylic acid metabolism
K00311 ETFDH, electron-transferring-flavoprotein
dehydrogenase
K00373 narj, narW, nitrate reductase molybdenum Two-component system
cofactor assembly chaperone NarJ/NarW
K00543 ASMT, acetylserotonin O-methyltransferase Tryptophan metabolism / Metabolic pathways
K00688 PYG, glgP, glycogen phosphorylase Starch and sucrose metabolism / Metabolic pathways / Biosynthesis of secondary
metabolites / Biofilm formation - Escherichia coli
K00979 kdsB, 3-deoxy-manno-octulosonate Biosynthesis of various nucleotide sugars / Metabolic pathways / Biosynthesis of
cytidylyltransferase (CMP-KDO synthetase) nucleotide sugars
K01206 FUCA, alpha-L-fucosidase Other glycan degradation / Lysosome
K01665 pabB, para-aminobenzoate synthetase Folate biosynthesis / Biosynthesis of cofactors
component I
K01839 deoB, phosphopentomutase Pentose phosphate pathway / Purine metabolism / Metabolic pathways
K01902 sucD, succinyl-CoA synthetase alpha subunit Citrate cycle (TCA cycle) / Propanoate metabolism / C5-Branched dibasic acid
metabolism / Other carbon fixation pathways / Metabolic pathways / Biosynthesis of
secondary metabolites / Microbial metabolism in diverse environments / Carbon
metabolism
K02237 comEA, competence protein ComEA
K03167 top6B, DNA topoisomerase VI subunit B
K03581 recD, exodeoxyribonuclease V alpha subunit Homologous recombination
K04477 ycdX, putative hydrolase
K04767 acuB, acetoin utilization protein AcuB
K05524 fdxA, ferredoxin
K05809 raiA, ribosome-associated inhibitor A
K06998 phzF, trans-2,3-dihydro-3-hydroxyanthranilate
isomerase
K07019 uncharacterized protein
K07126 uncharacterized protein
K10700 edbA, ethylbenzene hydroxylase subunit Ethylbenzene degradation / Metabolic pathways / Microbial metabolism in diverse
alpha environments / Degradation of aromatic compounds
K10945 pmoB-amoB, methane/ammonia Methane metabolism / Nitrogen metabolism / Metabolic pathways / Microbial
monooxygenase subunit B metabolism in diverse environments / Carbon metabolism / Nitrogen cycle
K10946 pmoC-amoC, methane/ammonia Methane metabolism / Nitrogen metabolism / Metabolic pathways / Microbial
monooxygenase subunit C metabolism in diverse environments / Carbon metabolism / Nitrogen cycle
K13795 citB, tcuB, citrate/tricarballylate utilization
protein
K15023 acsE, 5-methyltetrahydrofolate corrinoid/iron Other carbon fixation pathways / Metabolic pathways / Microbial metabolism in
sulfur protein methyltransferase diverse environments / Carbon metabolism
K15233 ccsB, citryl-CoA synthetase small subunit Other carbon fixation pathways / Metabolic pathways / Microbial metabolism in
diverse environments / Carbon metabolism
K16130 mcyA, microcystin synthetase protein McyA Nonribosomal peptide structures
K16964 ddhA, dimethylsulfide dehydrogenase subunit  Sulfur metabolism / Metabolic pathways / Microbial metabolism in diverse
alpha environments
K16965 ddhB, dimethylsulfide dehydrogenase subunit Sulfur metabolism / Metabolic pathways / Microbial metabolism in diverse
beta environments
K17048 edbB, ethylbenzene hydroxylase subunit beta Ethylbenzene degradation / Metabolic pathways / Microbial metabolism in diverse
environments / Degradation of aromatic compounds
K17052 serC, clrC, selenate/chlorate reductase Selenocompound metabolism
subunit gamma
K18896 gsmt, glycine/sarcosine N-methyltransferase Glycine, serine and threonine metabolism / Metabolic pathways
K18897 sdmt, sarcosine/dimethylglycine Glycine, serine and threonine metabolism / Metabolic pathways
N-methyltransferase
K20435 valM, validone 7-phosphate aminotransferase ~ Acarbose and validamycin biosynthesis / Metabolic pathways / Biosynthesis of
secondary metabolites
K21515 aviRa, 23S rRNA

(guanine2535-N1)-methyltransferase
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Figure 2. The signal between CWM of genomic features and glacier influence is phylogenetically structured. Line plots displaying the signal in
relationships between the gene redundancy index as response variable and the distance to the glacier, the GI and the water temperature as covariates
(A) and between gene number, genome size and tRNA number and chlorophyll-a as covariate (B). The signal was assessed using linear coefficients in
the GAMs taking spatial variation into account when permuting abundances at various relative phylogenetic heights. Coefficients were normalized by
the maximal value for any given glacial covariate-genomic feature pair over the various phylogenetic height values. Shaded areas represent the
standard error obtained through 20 null model iterations. Vertical lines indicate median phylogenetic heights for different taxonomic levels and are

for visual guidance only.

Members of Gammaproteobacteria shape the
relationship between genomic features and
chlorophyll-a

In contrast to gene redundancy, relationships of genome size, gene
number, and tRNA number with benthic chlorophyll-a concentra-
tion arose already at greater phylogenetic depths (~0.6 relative
phylogenetic tree height, corresponding to median class-level
depth, Fig. 2B). This signal was conserved across the lower range of
the phylogenetic tree. Leave-one-cluster-out analysis highlighted
the contribution of a single cluster to signal for all three
genome properties - comprising all MAGs classified as Gammapro-
teobacteria in our dataset (termed GFS-Gammaproteobacteria,
Supplementary Table 4). Additionally, significant changes in
genome size and gene number along the benthic chlorophyll-
a gradient were found for phylogenetic clusters encompassing
MAGs classified as Acidobacteriota, Desulfobacterota, Myxococcota,
and Nitrospirota. This finding aligns with previous work on GFS

community assembly, which found that homogeneous selection
promotes microdiversity among Gammaproteobacteria (from the
Burkholderiales order previously assigned to Betaproteobacteria) and
Nitrospira among a few other taxa [23]. Moreover, these results
highlight the importance of chlorophyll-a in profoundly shaping
the structure of the GFS microbiome. We deem the fact that
chlorophyll-a concentration, a biological factor, is more important
in shaping deep-rooting genomic signatures than physical
factors (e.g. temperature) particularly relevant considering the
importance of algal-bacterial interactions [19] and pronounced
carbon limitation in GFS [28]. This may point to the long-term
coherence of these drivers— which are now changing in GFSs due
to climate-change induced retreat of glaciers.

Given the abundance and prevalence of GFS-
Gammaproteobacteria [18, 21, 23], we next investigated the
genomic properties of GFS-Gammaproteobacteria in relation
to glacier influence (Fig. 3). Indeed, we found a strong negative
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Figure 3. GFS-Gammaproteobacteria drive the variation in genomic features along the gradient of chlorophyll-a (A) scatterplot showing the variation
in the relative abundance of GFS-Gammaproteobacteria and all other MAGs along the gradient of benthic chlorophyll-a in the world’s GFSs. Lines
show linear GAM fits accounting for large-scale spatial patterns; shaded areas show prediction intervals. (B) Distributions of genomic features for
GFS-Gammaproteobacteria and other MAGs are displayed. Stars denote significance (P <.01) of Wilcoxon signed rank tests comparing the two groups.
(C) Linear GAM coefficients representing the variation of genomic feature averages.

relationship ~ between  relative  abundance of  GFS-
Gammaproteobacteria and benthic chlorophyll-a (Fig. 3A). GFS-
Gammaproteobacteria had significantly increased coding density
(median difference: 2%), but fewer tRNAs (median difference:
3.05), and a lower gene redundancy index (median difference:
0.025) compared to all other MAGs in our dataset (Fig. 3B).
On the other hand, genome size and gene numbers of GFS-
Gammaproteobacteria were not significantly different from
other MAGs. This contrasts our findings on community-weighted
average genomic features and suggests that abundance dif-
ferences of GFS-Gammaproteobacteria across gradients of
glacier influence may contribute to the microbiome-weighted
averages.

Next, we examined relationships between genomic properties
and prevalence and mean relative abundance of MAGs across
our global repository of GFSs. Looking at the distribution of
mean relative abundance and prevalence, we find that the
GFS-Gammaproteobacteria harbor representatives with high
values (Fig. 4A and D, Wilcoxon tests, adjusted P-values <.001,
log median difference = 0.54 for both, relative abundance and
prevalence). Additionally, we found positive relationships between
genome size and MAG prevalence and relative abundance
(Fig. 4C and D, whereas coding density was negatively related
to prevalence and abundance (Fig. 4E and F). Using GAMs and
a Bayes factor analysis, we tested whether these relationships
differed between GFS-Gammaproteobacteria and other MAGs. A
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Figure 4. GFS-Gammaproteobacteria are abundant and prevalent. Comparison of relative abundance (A) and prevalence (B) in GFS of MAGs affiliated
to Gammaproteobacteria and other classes. Smoothed splines representing GAMs comparing mean abundance (C and E) and prevalence (D and F) with
normalized genome size (C and D) and coding density (E & F). Models with separate splines for GFS-Gammaproteobacteria and all other MAGs were
better supported (Bayes factor > 1000) than a combined model. While the difference is driven by high abundance and prevalence of large genomes
among other classes (or conversely the absence of small genomes at low abundance and prevalence in GFS-Gammaproteobacteria),
GFS-Gammaproteobacteria exhibit increased values for coding density across the entire gradient.

GAM with separate splines for GFS-Gammaproteobacteria and
other MAGs was better supported by the data (Bayes factor > 1000
for all comparisons) than a GAM with one spline for all MAGs
(Fig. 4). This indicates that GFS-Gammaproteobacteria combine
increased coding density with reduced genome size compared to
classes that are similarly abundant and prevalent in GFSs. Given
the compositional nature of microbiomes, this relationship could
in part (at low prevalence) also be driven by the low prevalence
of symbiotic Patescibacteria that have particularly small and
streamlined genomes and seem to show low dispersal capabilities
[71].

However, that the signal in genomic properties along the
chlorophyll-a gradient was conserved across phylogenetic depths
indicates that not the entire GFS-Gammaproteobacteria clade
but rather specific sub-clades may drive this relationship.
Indeed, the leave-one-cluster-out analysis performed at shal-
lower phylogenetic depth (relative phylogenetic depth=0.2)
identified specific clades including Polaromonas (nwmacs=25),
Rhodoferax (nmags =21), JAAFIPO1 (nmacs=23), Aquabacterium_A
(Mmacs =20), and Rubrivivax (nuacs =27). Other notable taxa

included Novosphingobium (nmacs=42) and the Patescibacteria
genus OLB19 (nmacs=32). The signal among multiple genus-
level clades across the GFS-Gammaproteobacteria suggests that
the observed increase in genome size with higher chlorophyll-a
concentrations (or, inversely, the reduction in genome size under
high glacial influence when benthic chlorophyll-a concentration
is particularly low) may result from either convergent evolution
across diverse lineages or an early adaptive expansion within
the GFS-Gammaproteobacteria. However, further phylogenomic
analyses would be needed to be better understand the mech-
anisms and timescales of these processes. As a first step,
we provide comparative pangenome analyses between GFS-
Gammaproteobacteria and their sister clade in SI (Supplementary
information, section “Pangenome analyses”).

We next sought to identify the functional potential associate
with the differences in genome size, gene number and tRNA
number along gradients of chlorophyll-a. We applied lasso
regression to pinpoint KOs associated with clades exhibiting
significant signal. This approach enabled us to identify functions
that were enriched in these clusters, representing candidate
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Table 2. KEGG orthologs (KOs) that were identified by the LASSO regression analysis to be enriched in clades driving variations for both
genome size and gene numbers, along the gradient of chlorophyll-a. The descriptions and pathways were obtained on the KEGG
website (https://www.kegg jp/entry/), human diseases related pathways were not included.

KO Symbol & Description Pathways
K00028 malate dehydrogenase (decarboxylating) Pyruvate metabolism / Carbon fixation by Calvin cycle / Metabolic
pathways / Microbial metabolism in diverse environments / Carbon
metabolism
K00090 ghrB, glyoxylate/hydroxypyruvate/2-ketogluconate Pentose phosphate pathway / Glycine, serine and threonine
reductase metabolism / Pyruvate metabolism / Glyoxylate and dicarboxylate
metabolism / Metabolic pathways / Biosynthesis of secondary
metabolites / Microbial metabolism in diverse environments
K00525 E1.17.4.1A, nrdA, nrdE, ribonucleoside-diphosphate Purine metabolism / Pyrimidine metabolism / Metabolic pathways /
reductase alpha chain Nucleotide metabolism
K00571 E2.1.1.72, site-specific DNA-methyltransferase
(adenine-specific)
K00646 pksF, curC, aprD, corD, malonyl-[acp] decarboxylase
K01141 sbcB, exol, exodeoxyribonuclease I Mismatch repair
K01432 AFMID, arylformamidase Tryptophan metabolism / Glyoxylate and dicarboxylate
metabolism / Metabolic pathways / Biosynthesis of cofactors
K01491 folD, methylenetetrahydrofolate dehydrogenase (NADP+) / One carbon pool by folate / Other carbon fixation pathways /
methenyltetrahydrofolate cyclohydrolase Metabolic pathways / Microbial metabolism in diverse
environments / Carbon metabolism / Biosynthesis of cofactors
K01626 E2.5.1.54, aroF, aroG, aroH, 3-deoxy-7-phosphoheptulonate Phenylalanine, tyrosine and tryptophan biosynthesis / Metabolic
synthase pathways / Biosynthesis of secondary metabolites / Biosynthesis of
amino acids / Quorum sensing
K01673 cynT, can, carbonic anhydrase Nitrogen metabolism / Metabolic pathways
K01952 PFAS, purL, phosphoribosylformylglycinamidine synthase Purine metabolism / Metabolic pathways / Biosynthesis of
secondary metabolites
K02083 allC, allantoate deiminase Purine metabolism / Metabolic pathways / Microbial metabolism in
diverse environments
K02568 napB, nitrate reductase (cytochrome), electron transfer Nitrogen metabolism / Metabolic pathways / Microbial metabolism
subunit in diverse environments / Nitrogen cycle
K03169 topB, DNA topoisomerase III
K03198 virB3, IvhB3, type IV secretion system protein VirB3 Bacterial secretion system
K03442 mscS, small conductance mechanosensitive channel
K03775 slyD, FKBP-type peptidyl-prolyl cis-trans isomerase SlyD
K03818 wecaF, putative colanic acid biosynthesis acetyltransferase Exopolysaccharide biosynthesis
WcaF
K03832 tonB, periplasmic protein TonB
K05962 protein-histidine pros-kinase
K06192 PqiB, paraquat-inducible protein B
K07025 putative hydrolase of the HAD superfamily
K07114 yfbK, Ca-activated chloride channel homolog
K07343 tfoX, DNA transformation protein and related proteins
K07684 narL, two-component system, NarL family, nitrate/nitrite Two-component system
response regulator NarL
K07712 gInG, ntrC, two-component system, NtrC family, nitrogen Two-component system
regulation response regulator GInG
K10012 arnC, pmrF, undecaprenyl-phosphate Biosynthesis of various nucleotide sugars / Metabolic pathways /
4-deoxy-4-formamido-L-arabinose transferase Cationic antimicrobial peptide (CAMP) resistance
K10537 araF, L-arabinose transport system substrate-binding ABC transporters
protein
K12055 parA, chromosome partitioning related protein ParA
K12500 tesC, thioesterase III
K12601 SKI8, superkiller protein 8 RNA degradation
K12602 WDR61, REC14, SKI8, WD repeat-containing protein 61 RNA degradation
K13117 DHX35, ATP-dependent RNA helicase DDX35
K14160 imuA, protein ImuA
K14742 tsaB, tRNA threonylcarbamoyladenosine biosynthesis
protein TsaB
K15653 mxcG, nonribosomal peptide synthetase MxcG Biosynthesis of siderophore group nonribosomal peptides
K17218 sqr, sulfide:quinone oxidoreductase Sulfur metabolism / Microbial metabolism in diverse environments
K20036 dmdD, (methylthio)acryloyl-CoA hydratase Sulfur metabolism / Metabolic pathways / Microbial metabolism in
diverse environments
K20534 gtrB, polyisoprenyl-phosphate glycosyltransferase
K20906 hemaA, 2-hydroxyisobutanoyl-CoA mutase large subunit
K21211 ncsCl, NDP-hexose 4,6-dehydratase

(continued)
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Table 2. Continued.

KO Symbol & Description

Pathways

K21394 Biosynthesis of enediyne antibiotics / Biosynthesis of

secondary metabolites

K21405 acoR, sigma-54 dependent transcriptional regulator,
acetoin dehydrogenase operon transcriptional activator
AcoR

K21739 rclA, probable pyridine nucleotide-disulfide
oxidoreductase

K21843 TTC7, tetratricopeptide repeat protein 7

drivers of expanded functional potential. While we observed
47 KOs that were shared for genome size and gene number
(Table 2), not a single significant clade (and hence KO) was found
for the relationship between tRNA number and chlorophyll-a at
shallower depth. This may be attributable to a generally weaker
signal observed for tRNA compared to genome size and gene
number (as reflected in the P-values of the GAMs), and potentially
also to the tendency for tRNA genes to be underrepresented on
MAGs due to metagenomic binning.

Nevertheless, for genome size and gene number, several
metabolic pathways—including pyruvate metabolism, the gly-
oxylate cycle, and nucleotide biosynthesis—were represented by
key enzymes such as malate dehydrogenase (decarboxylating),
glyoxylate/hydroxypyruvate/2-ketogluconate reductase, and
ribonucleotide reductases. Nitrogen and sulfur metabolism were
also represented, with genes like napB, cynT, and sqr suggesting
chemolithoautotrophy, typical of oligotrophic glacier-related
systems [21, 72, 73]. Notably, genes involved in quorum sensing
and secondary metabolite biosynthesis—such as the aroF/G/H
cluster and mxcG (non-ribosomal peptide synthetase)—point to
increased microbial interactions and competition at reduced
glacial influence, which is compatible with the “greening” of
GFSs [26, 28]. Two-component systems (narL, glnG) and secretion-
related proteins (virB3) further highlight regulatory complexity
linked to environmental responsiveness, potentially a crucial
adaptation to the fluctuating environmental conditions of
GFSs. Overall, and given the taxonomic diversity and variety of
functional adaptations observed, more targeted, taxon-specific
analyses will be necessary to gain deeper insights into the
ecological strategies of individual lineages.

Conclusions

Evolutionary history and environmental constraints shape the
genomic architecture of microbial communities, ultimately with
consequences for diversity and function. Here, we developed a
phylogeny-rooted analytical framework that unravels signatures
of genomic trends in the world’'s GFSs. The approach allows
pinpointing the phylogenetic depth at which these signatures
arise and the importance of individual clades at shaping
community-level genomic features. We find significant variation
in genome size, gene number, tRNA gene numbers, and modula-
tion of genomic redundancy along gradients of glacial influence.
Collectively, our findings suggest that the selective constraints in
GFSs explain microbiome-level patterns in genome architecture
and that changes in genomic features mainly occur via changes
in abundance among specific GFS-Gammaproteobacteria clades.
We deem these findings critical because the deep phylogenetic
rooting of these signatures reflects the long-term and putatively

consistent nature of this extreme environment, which is now
changing at a rapid pace owing to climate change.
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