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Abstract 
The factors and processes that shape microbial genomes and determine the success of microbes in different environments have long 
attracted scientific interest. Here, leveraging 2855 metagenome-assembled genomes sampled by the Vanishing Glacier Project from glacier-
fed streams (GFSs), we shed light on the genomic architecture of the benthic microbiome in these harsh ecosystems—now vanishing 
because of climate change. Owing to glacial influence, the GFS benthic habitat is unstable, notoriously cold, and ultra-oligotrophic. Along 
gradients of glacial influence and concomitant variation in benthic algal biomass across 149 GFSs draining Earth’s major mountain 
ranges, we show how genomes of GFS bacteria vary in terms of size, coding density, gene redundancy, and translational machinery. 
We develop a novel, phylogeny-rooted analytical framework that allows pinpointing the phylogenetic depth at which patterns in 
genomic trends occur. These analyses reveal both deep- and shallow-rooting phylogenetic patterns in genomic features associated 
with key GFS taxa and functional potential relevant to live in these ecosystems. Additionally, we highlight the role o f several clades
of Gammaproteobacteria in shaping community-level genomic architecture. Our work shows how genome architecture is shaped by
selective environmental constraints in an extreme environment. These insights are important as they reveal putatively important
adaptations to the GFS environment which is now changing at rapid pace due to climate change.

Keywords: phylogenetics; glacier-fed streams; cryosphere; metagenomics; genomic architecture; micro bial genomics; Gammapro-
teobacteria

Introduction 
Bacterial genomes exhibit substantial variation in s ize and com-
plexity [1, 2] and are shaped by processes including genetic drift [2, 
3], selection by environmental constraints such as oligotrophy and 
symbiotic interactions that facilitate gene loss [1, 4]. Among the 
factors that shape bacterial genome architecture, environmental 
drivers related to genome size variation have attracted most 
attention. F or instance, thermophilic microbes thriving in hot
springs often possess small genomes [5], whereas psychrophilic 
microbes in cryospheric environments tend to h ave larger
genomes [6–8]. Increased genome size has also been associated 
with the need to maintain a broad functional repertoir e to cope
with fluctuating environmental conditions [9–11]. In addition 
to habitat characteristics such as temperature and nutrient 
availability, microbial lifestyle—such as free-living pelagic versus 
attached forms—ha ve also been associated with genome size
variation [12–14]. However, other genomic features, such as 
variation in guanine-cytosine (GC) content, gene redundancy 
or the translational machinery have received less attention, 
particularly for environmental bacteria. Here, we analyse 
metagenomic and environmental data from glacier -fed streams

(GFSs) and investigate relationships between glacial influence
and variation in genomic features of the benthic microbiome.

Owing to the direct influence of glaciers [15], GFSs are ultra-
oligotrophic, cold, and unstable environments, yet they harbor 
diverse microbial communities [16–18]. In GFSs, bacteria forming 
biofilms attached to sedimentary surfaces dominate microbial 
life, where they orchestrate important ecosystem functions [19– 
21]. These communities are shaped by selective environmental 
conditions, which is reflected by deterministic community assem-
bly and elevated microdiversity [22, 23]. Yet, how the environ-
mental characteristics shape the genomic architecture of GFS 
bacteria remains unknown. In the light of ongoing climate change
and glacier recession [24], better understanding genomic trends 
along environmental factors is however important, as genome 
architecture underpins the d iversity, distribution, and metabolic
versatility of bacteria [25, 26]. 

Glacier meltwaters are oligotrophic, which may favor genome 
streamlining and low GC content, as has been observed in other 
nutrient-limited environments. GFS str eamwater is often turbid
due to high loads of fine suspended sediments [15, 27], which 
reduces light available for primary producers (i.e. benthic algae)
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and further aggravates resource limitation for heter otrophic bac-
teria [28]. In line with this, smaller average genome sizes have 
been reported from GFSs compared tributary streams that ar e
not under glacial influence, albeit draining the same proglacial
floodplains [29]. 

On the other hand, efficient stress response, abundant mobile 
genetic elements, translational flexibility and genome plasticity 
ha ve been related to larger genomes of bacteria in cryospheric
ecosystems [30]. In GFSs, rapid variation in flow and sediment 
loads and low streamwater temper atures may thus promote
larger genomes [5]. Moreover, GFS bacteria thrive during windows 
of opportunity, which mainly arise in spring and autumn when 
nutrients and light are available and streamflow is moderate
[19, 31, 32]. Similarly, bacteria with larger genomes and an 
expanded functional and regulatory repertoire thrive in in pelagic 
envir onments where rapid nutrient influx or depletion can occur
[33]. 

Here, we consider genomic traits prevalent under high glacial 
influence to reflect selective pressures and thus as being indica-
tive of adaptations to GFS conditions. This perspective is based on 
the idea that genomic features conferring fitness advantages— 
such as metabolic efficiency—become prevalent under strong
selective constraints, while at the same time being shaped by
the need to maintain sufficient functional flexibility to cope
with environmental fluctuation [1]. Given the close relationship 
between genomic traits and evolutionary history, phylogenetic 
context is critical for interpreting variation in genomic features
[34]. To this end, we establish a novel analytical framework for 
resolving the phylogenetic signatures of genomic features in GFSs. 
This null-model based framework allows us to determine the 
phylogenetic depth at which genomic traits exhibit a significant 
signal, allowing us to explore how genome variation is structured 
across phylogenetic scales and to disentangling the contribution 
of specific clades to community-level genomic patterns. Our work 
provides new insights into how environmental constraints shape 
bacterial genome architecture and contribute to the ecological
success of specific clades in GFSs. These findings are particularly
relevant in the context of climate change, as diminishing glacial
influence may alter key selective constraints and potentially
threaten microorganisms adapted to the GFS environment.

Material and methods
Glacier-fed stream sampling and en vironmental
parameters
We sampled benthic biofilms (upper 5 cm of the streambed) 
from 149 GFSs in the European Alps, Scandinavian Mountains, 
Himalayas, Pamir and Tian Shan, Ecuadorian Andes, Southwest 
Greenland, Russian Caucasus, Rwenzori in Africa, and South-
ern Alps in New Zealand between January 2019 and July 2022. 
GFSs were sampled in spring or autumn during “windows of 
opportunity” when streamflow and streamwater turbidity are 
relatively low; this sampling strategy facilitates comparability 
between GFSs. We did not sample GFSs from heavily debris-
covered and rock glaciers, and we avoided GFSs downstream of
proglacial lakes, with debris flows, or tributaries in the reaches
above the sampling sites. At each GFS, we sampled an upstream
reach, as close as possible to the glacier snout, and a down-
stream reach. Within each reach, sandy sediments (250 μm  to  
3.15 mm size fraction) were collected from three independent 
patches (∼10 m apart). All sampling devices were flame-sterilized 
in the field. Sediment samples were transferre d into sterile cry-
ovials, immediately flash-frozen in liquid nitrogen in the field

and subsequently stored at −80◦C before and following shipping 
to Switzerland for deoxyribonucleic acid (DN A) extraction and
biomass analyses.

For each GFS, the distance to the glacier snout was calculated 
based on georeferencing (GPSMAPR 66 s, GARMIN) of the sampling 
reach, as well as glacier surface area and glacierized percent-
age catchment based on satellite imagery (Sentinel-2; Level 2a,
March 2019–July 2022 from scihub.copernicus.eu)  and  a  catchment  
definition derived from the ASTER Global Digital Elevation Model 
(GDEM) v3. (NASA/Meti/Aist/Japan Spacesystems and US/Japan
Aster Science Team, 2019). The glacier index (GI) was calculated
as

√
Glacier area√

Glacier area+Distance to the glacier
according to Jacobsen & Dangles

(2011) [35]. Benthic chlorophyll-a, a proxy for algal biomass, was 
extracted from the sediment (90% EtOH) in a hot (78◦C) water bath 
for 10 min and further incubated (24 h, 4◦C). After vortexing and 
centrifugation, chlorophyll-a concentration in the supernatant 
was quantified using a plate reader (BioTek Synergy H1; EX/EM:
436/680) and a spinach chlorophyll-a standard (Sigma Aldrich)
and normalized to dry mass (DM) of sediment.

Metagenomics 
Metagenomes were sequenced for 149 sediment samples. DNA 
extraction, purification, library preparation, sequencing, and 
metagenome assembl y steps were performed as described
elsewhere [19]. Briefly, 5 g of sediments were treated using 
a phenol:chloroform-based extraction method subsequently 
followed by an ethanol precipitation step. This protocol yielded 
on average 50 ng of DNA per sample which was used for library 
preparation using the NEBNext Ultra II FS library kit, which
also included 6 PCR cycles. Sequencing was performed at the
Functional Genomics Centre Zurich using a S4 flowcell on a
NovaSeq (Illumina).

The metagenomic sequence data was processed using the Inte-
grated Meta-omic Pipeline (IMP) workflow (version 3.0; commit#
9672c874) [36]. Briefly, adapter trimming from reads using trimmo-
matic [37] is followed by an iterative assembly using MEGAHIT [38] 
and Flye [39]. To reduce computation time for binning, we removed 
sequences in the assembly <1.5 kbp and randomly selected 10% 
of the pre-processed reads using seqtk (v1.3). For each individual 
assembly, we then mapped the selected reads of the 5 spatially
closest samples (Euclidean distances of gps coordinates) using
BWA-mem (v0.7.17). We then used MetaBAT2 (v2.15) [40], CONCOCT 
(v1.1.0) [41], and MetaBinner (v1.4.3) [42] using default parameters 
to obtain bins {see Code availability}. The quality of bins was
assessed with CheckM2 (v1.0.1) [43], and finally DAST ool (v1.1.4)
[44] was employed to generate a non-redundant set of bins using 
a score threshold of 0.3.

Bins from all samples (including the ones generated by IMP3) 
with a completeness of more than 50% were then selected for 
further analyses which accounted for 12 599 bins. We then used
MDMCleaner (v0.8.3) [45] to reduce contamination of the bins. 
Finally, after rerunning CheckM2 on the bins to get final estimates
of completeness and contamination, we used dRep (v3.2.2) [46] 
to dereplicate bins using a minimum completeness of 70% and 
maximum contamination of 10% and an ANI of 99% to obtain
2855 strain-level MAGs. GTDB-Tk (v 2.1) [43, 47] was used to 
assign taxonomy to MAGs. We further used the concatenated 
alignment of 120 ubiquitous single-copy proteins created by 
GTDB-Tk to de novo generate a phylogenetic tree using FastTree2
(v2.1.11) [48] under the WAG model of protein evolution with 
gamma-distributed rate heterogeneity. Functional annotation of
the MAGs was performed with eggNOG-Mapper (v2.1.9) [49]  after
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obtaining coding regions (CDS) with prodigal (v2.6.3) [50]. The 
coverage of MAGs was estimated by mapping reads of samples 
to the genomic contigs using CoverM (v0.6.1, available at https:// 
github.com/wwood/CoverM) using the trimmed_mean parameter. 
We normalized the coverage by similarly mapping reads on the 
recA gene (K03553). For prevalence, presences were defined as 
abundance above a 10× recA coverage abundance threshold. 
However, one should keep in mind that metagenome-based 
anal yses cannot differentiate between active, dormant or dead
cells and that dispersal from upstream habitats may also
influence patterns of prevalence in our dataset.

Dimensions of glacial influence and 
community-w eighted mean genomic properties
To identify the main environmental gradients across all GFS sam-
ples, Principal Component Analysis (PCA) was performed with the 
prcomp function in R (version 4.3.0), and using a non-redundant 
set of key physico-chemical as well as glacier-associated mea-
sures (glacier area, glacier coverage, GI, streamwater tempera-
ture, distance to the glacier, benthic chlorophyll-a). Community-
weighted means (CWM) of genomic features [i.e. genome size, 
gene number, ribonucleic acid (tRNA) number, GC content, coding 
density, and gene redundancy index] were tested with linear
effects against the first two principal components using gener-
alized additive models (GAMs) created with the bam function of
the mgcv R package (v1.9.0). For this, genomic features were first
normalized using completeness and contamination as follows:
valuenormalised = value ∗ (

1/completeness
) ∗ (

1 − contamination
)

.CWM 
were then obtained by weighing normalized genomic features by 
MAG relative abundances and averaging across MAGs present in 
any given sample. To account for large-scale spatial patterns, we
used a smoothed spline (bs = “sos”, k = −1) based on latitude and 
longitude in the GAMs. Detailed results o f these GAMs are avail-
able in Supplementary Table 1. Significant linear effects (P < .01) 
were visualized using mean and standard errors of predictions 
across all GFS in the dataset. All figures were created using
the ggplot2 (version 3.4.3) and ggpubr (version 0.6.0) R packages
(R version 4.3.0) [51, 52]. 

Abundance-based phylogenetic perm utation
To resolve the phylogenetic structure of CWM genomic features, 
we developed a null-model approach that randomly permutes 
abundances in a phylogenetic-bin based framework. For 40 values 
of relative phylogenetic height (h) uniformly distributed between 
zero and one (i.e. scanning the phylogenetic tree from the root 
to the tips), we performed phylogenetic agglomeration using the
“average” method of the hclust R function on the cophenetic
distances obtained with the cophenetic.phylo function of the ape
R package (v5.7–1) [53]. Subsequently, for each value of h, abun-
dances were randomly permuted within phylogenetic bins (20 
iterations). Finally, GAMs accounting for spatial structure (i.e.
including a smoothed spline (bs = “sos”, k = −1) on latitude and 
longitude as covariate) were created, testing for a linear effect of 
glacial influence on genomic features. Hence, this approach tests 
for associations between CWM genomic features and environ-
mental parameter compared to null-model expectations across 
phylogenetic depth. This approach further allows identifying the 
relative depth at which phylogenetic signal in CWM genomic fea-
tures appear along the gradients of glacier influence. Significant 
coeff icients were assessed by combining P-values of the linear
coefficients over the 20 iterations using Stouffer’s method in the
poolr R package (v1.1–1), the mean and the standard deviation

of the coefficients were computed to summarize the null-model
permutations [54]. 

Additionally, this approach allowed us to pinpoint phylogenetic 
clades contributing to the community-level signal at a specific 
phylogenetic height. To this end, we used a leave-one-cluster-
out approach, computing coefficients with and without a given 
phylogenetic cluster, and comparing the resulting coefficients’ 
distributions. Wilcoxon tests were used to test for difference in 
coefficient distributions, a median relative effect was computed 
comparing the median values with and without the target phy-
logenetic cluster [(value with – value without) / (value with)]. 
MAG taxonomy was used to summarize gener a present within
these clades. Additionally, to summarize these results at higher
taxonomic level (i.e. to identify bacterial classes with dispropor-
tionately many MAGs in a phylogenetic cluster), we performed
enrichment analyses using Fisher tests (fisher.test function in R).
To account for multiple testing, we used the p.adjust R function
using the Holm method.

Functional potential 
To unravel the functional potential associated with increased 
gene redundancy, we tested for each KO if the number of copies 
was higher in the MAGs that were part of significant clades com-
pared to all other MAGs. We performed Wilcoxon tests (wilcox.test 
R function) on the log-transformed KO data (half of the minimal 
non-zero value was added to allow for zeroes in the dataset), 
and the P-values were adjusted using the p .adjust function in R
with the “Bonferroni” method. KOs were considered significant
if the P-value was <0, and the mean difference above zero. We
then compared the KOs for all three relationships using intersects
(intersect function in R).

We used LASSO regressions to identify functional genes that 
were associated with clades contributing signal to genomic prop-
erties (genome size, gene number, tRNA gene number) in relation 
to benthic chlorophyll-a concentration. For this, log-transformed 
KO data was used in a LASSO regression to explain the binomial 
response variable “part of clade” or “not part of clade”. The penal-
ization in this regression type allowed to shrink the coefficient
of non-important KOs to keep only KOs with high coefficients. We
then compared the KOs for all three relationships using intersects
(intersect function in R).

Taxonomic summary 
CWM genomic features of MAGs classified as Gammaproteobacteria 
were compared to all other MAGs. The taxonomic summary 
comparing genomic features of MAGs classified as Gammapro-
teobacteria to other taxonomic classes was created using the dplyr 
R package (v1.1.3). Wilcoxon sign rank tests were used to compare 
the distributions. Relative abundance and prevalence (i.e. the 
number of occurrences across GFSs) wer e used as estimates of
the “ecological success” of MAGs. The assumption that abundant
and prevalent MAGs in GFSs are ecologically successful is based
on previous work, which show that GFS benthic communities
assemble deterministically [23] and that benthic communities 
are distinct from the bacterial community suspended in the
streamwater [17]. However, we acknowledge that we present 
results based on metagenomic dataset, and thus, dormant or 
inactive cells may be included. GAMs were built using a spline 
(k = 5, bs = “ts”) for these “ecological success” covariates, and 
genome size and coding density were used as response variables. 
We compared one model with a spline for all MAGs, and one with
a different spline for GFS-Gammaproteobacteria and all other MAGs
(using the “by” argument in the spline). A Bayes factor analysis was
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used to compare both models, using the test_performance function 
of the performance R package (v0.10.5). A Bayes factor above 3 was
considered significant.

Results and discussion
Genome characteristics of the GFS microbiome
The GFS environment is directly influenced by glaciers, primarily 
through the ma gnitude and variation of meltwater runoff
[15, 27]. Runoff determines hydraulic stress, channel stability 
and sediment loads, while str eamwater temperature affects
metabolic processes [28, 55]. These physical processes are largely 
driven by glacier size, which tra nslates into runoff magnitude
and variability [55]. Employing PCA on the complete set of 
measured environmental parameters (complete dataset available
as Supplementary Table 2), the first principal component 
(PC1; 44.6% explained variance) revealed a gradient of benthic 
chlorophyll-a in versely related to glacier area across all studied
GFSs (Fig. 1A). This is striking given the overall low c hlorophyll-
a content (median: 0.0056 μg  g−1 DM; IQR: 0.0007–0.0272) and 
underscores the responsiveness of benthic primary producers to 
environmental conditions. High runoff and loads of suspended 
sediments produced by large glaciers abrade benthic algae and 
attenuate light, thereby inhibiting primary production in GFSs
and keeping chlorophyll-a concentrations low [56, 57]. Principal 
Component 2 (21.7% explained variance) depicts a gradient of 
streamwater temperature related to both distance to the glacier 
snout and glacier area (as encapsulated by the GI) across all 
GFSs. Indeed, depending on the magnitude of runoff, streamwater 
warms with increasing distance from the glacier. Taken together, 
the PCA reveals tw o main dimensions of glacial influence on GFSs
at a global scale, and we will explore them as potential underpin-
ning processes of the genomic landscape of the GFS microbiome.

Weighted by relative abundance of MAGs, bacterial genomes 
across all GFSs were relatively large in terms of s ize, had a
high number of genes, and showed high GC content (Fig. 1B). 
These values are bracketed by those r eported from other GFSs
[29], various cryospheric ecosystems (e.g. permafr ost, glacier ice)
[6], and psychrophiles [5]. Bacterial genomes generally contain 
only little non-coding DNA (on average , ORFs account for 87% of
genome size [58]). Hence, variation in gene number and genome 
size are generally tightly linked [2], a relationship attributed to 
the importance of effective population size [3]. GC content, coding 
density and genome size have also been shown to positiv ely cor-
relate in bacteria [5, 59, 60]. However, compared to psychrophilic, 
mesophilic, and thermophilic bacterial isolates [61], we found a 
relatively low number of tRNAs, which we mainly attribute to the 
discrepancy between MAGs and isolates owed to metagenomic
assembly and binning [62, 63]. Because translation is energetically 
expensive, tRNA abundance has been linked to shorter minimal 
generation time a nd adaptability to different environmental con-
ditions [64]. The gene redundancy index (i.e. the ratio between 
the total number of KOs to the number of unique KOs with a 
genome, median R I ∼ 1.4) was lower than previously reported in
cryoconite biofilms [65], which we attribute to the dynamic and 
unpredictable GFS environment that may select for functional 
plasticity rather than redundancy within a given genome.

To further explore glacier influence on these genomic proper-
ties of the GFS microbiome, we implemented GAMs accounting 
for large-scale spatial variation and isolating linear effects of 
environmental parameters on genomic properties. GAMs revealed 
positive associations between benthic chlorophyll-a content 
(correlated with PC1) with average genome size, gene number , and

tRNA number, whereas covariates correlating with PC2 (i.e. water
temperature, distance from the glacier and GI) were associated
with the gene redundancy index (Fig. 1C). These findings are in 
line with previous work suggesting that benthic algae, through the 
exudation of energy-rich macromolecules, relieve GFS bacteria
from energy and carbon limitation [28], ultimately promoting 
bacteria with larger genomes as glaciers shrink and benthic
algal biomass increases [26]. Indeed, metabolic interactions 
between microbial heterotrophs and algae have been repeatedly 
reported from stream biofilms [66, 67], which may be particularly 
important in GFSs largely devoid of a llochthonous sources of
organic carbon [19, 28]. Furthermore, these analyses revealed 
increasing numbers of tRNAs with diminishing glacial influence, 
which e ssentially follows the observed trends in genome size
(Fig. 1C). While tRNAs have been associated with cold adaptation 
and post-translational modifications in bacteria [68, 69], work 
on isolates showed that psychrophile genomes have elevated 
numbers of tRNAs [61]. Nevertheless, translational efficiency 
has been shown to be low in organisms that are able to thrive 
in multiple habitats, and this could potentially explain the low
number of tRNAs that we observed [64]. Importantly, our analyses 
have not revealed any major variation in coding density along 
any o f the glaciological variables tested. In line with expectations
[3], this suggests that genome size, number of genes and thus 
the proportion of non-coding DNA vary concomitantly across
environmental gradients in GFS.

Dissecting the phylogenetic signatures of 
genomic trends along environmental gradients
Variation in community-level genomic properties along environ-
mental gradients can either arise from changes in abundance or 
the replacement of taxa with different genomic characteristics. 
Moreover, shared evo lutionary histories of microbiome members
can shape relationships between genomic properties and environ-
mental constraints [34]. For example, accounting for phylogenetic 
dependencies, a previous study identified deep phylogenetic sig-
natures in genome size variation of bacteria and archaea [34]. To 
assess phylogenetic signatures in genomic features, we developed 
a null model-based approach to first identify the phylogenetic 
depth at which signal in genomic properties along environmental 
gradients arise. Using a leave-one-out approach of individual 
clades at the identified threshold phylogenetic distance, we then 
find clades that contribute most to this signal. Finally, we inves-
tigate the functional potential of these clades in comparison to
other community members, to uncover functional traits associ-
ated with community-level genomic properties.

We found significant phylogenetic signature exclusively at 
low depth (i.e. among closely related members) for relationships 
between the gene redundancy index and streamwater tempera-
ture, GI and distance to the glacier ( <0.25 relative phylogenetic
tree height, corresponding approximately to median genus-level
phylogenetic depth; Fig. 2A). This suggests that variation in the 
gene redundancy index is pr edominantly structured among
closely related taxa.

Using the leave-one-cluster-out approach, we identified 36 
clusters (out of a total of 394 clusters at a phylogenetic depth
of 0.25, Supplementary Table 3) containing MAGs classified 
as ELB16–189 (n = 42),  OLB17 (n = 16), CAILRJO1 (n = 10), Palsa-
1315 (n = 10), Deinococcus (n = 5)  and  Nitrospira_F (n = 1)  to  drive  
relationships between the distance to the glacier and the gene 
redundancy index. This highlights the fine-scaled yet widely
distributed phenomenon that GFS taxa possess increased gene
redundancy at decreased glacial influence. Interestingly, more
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Figure 1. Dimensions of glacial influence and variation in genomic features. (A) the first two dimensions of a principal component analysis (PCA) 
depict associations among key glacier-associated environmental factors in GFS. Symbols represent mountain ranges; arrows depict scores of 
environmental variables. (B) Boxplot showing the distribution of community weighted mean genomic features (i.e. weighted with the relative 
abundance of MAGs) among GFSs. (C) Regression coefficients of genomic features that correlate with glacial covariates in the GAM analysis. GAMs 
considering spatial variations were fitted adding a linear effect for each pair of genomic features and glaciological variables. Signif icant relationships
after adjusting P-values for multiple testing (Holm’s method, P < .05) are displayed.

clusters were significant for the distance to the glacier (n = 36) 
compared to the GI (n = 5) and streamwater temperature (n = 1).  
Both, the GI and distance to the snout may integrate the longer-
term influence of glaciers on the GFS microbiome whereas
streamwater temperature fluctuates on timescales of minutes
to hours [70]. 

To unravel which microbial functions exhibit increased redun-
dancy in GFS microbiomes under reduced glacial influence, we 
compared the number of gene copies per KO in clades with 
and without significant relationships between redundancy and
glacial influence, respectively. We identify a total of 37 KOs with
significantly higher copy numbers (Table 1, Wilcoxon rank-sum 

test, adjusted P-value <.01). These include several genes asso-
ciated with metabolism, including two genes related to sulfur 
metabolism (ddhA, ddhB), two genes encoding methane/ammo-
nia monooxygenase subunits (B a nd C), and carbon-metabolism
related genes (acsE, ccsB, sucD, korD). This observation aligns with
previous findings [26, 28], who reported that declining environ-
mental selection in GFSs promotes primary production, leading 
to shifts in microbiome functions, including changes in energy 
acquisition pathways. Taken together, increased gene redundancy 
in metabolic pathways with reduced glacial influence, may point
toward an adaptive strategy of microbes to cope with environmen-
tal changes in GFSs.
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Table 1. KEGG orthologs (KOs) that were significantly (P < .01) more redundant in the MAGs associated with increase gene redundancy 
index against all three tested glaciological parameters (distance to the glacier, GI, and water temperature). These were tested using 
Wilcoxon tests, and P-values were corrected using the Bonferroni method, only KOs with positive mean differences (i.e. higher 
redundancy) are displayed. The descriptions and pathways were obtained from the KEGG website (https://www.kegg.jp/ entry/). 

KO Symbol and description Pathways 

K00003 hom, homoserine dehydrogenase Glycine, serine and threonine metabolism / Cysteine and methionine metabolism / 
Lysine biosynthesis / Metabolic pathways / Biosynthesis of secondary metabolites /
Microbial metabolism in diverse environments / Biosynthesis of amino acids

K00113 glpC, glycerol-3-phosphate dehydrogenase
subunit C

Glycerophospholipid metabolism / Biosynthesis o f secondary metabolites

K00176 korD, oorD, 2-oxoglutarate ferredoxin 
ox idoreductase subunit delta

Citrate cycle (TCA cycle) / Other carbon fixation pathways / Metabolic pathways / 
Biosynthesis of secondary metabolites / Micro bial metabolism in diverse
environments / Carbon metabolism / 2-Oxocarboxylic acid metabolism

K00311 ETFDH, electron-transferring-flavoprotein 
dehy drogenase

K00373 narJ, narW, nitrate reductase molybdenum 
cofactor assembly chaperone NarJ/NarW

Two-component system 

K00543 ASMT, acetylserotonin O-methyltransferase Tryptophan metabolism / Metabolic pathways
K00688 PYG, glgP, glycogen phosphorylase Starch and sucrose metabolism / Metabolic pathways / Biosynthesis of secondary 

metabolites / Biofilm formation - Escherichia coli
K00979 kdsB, 3-deoxy-manno-octulosonate 

cytidylyltransferase (CMP-KDO synthetase)
Biosynthesis of various nucleotide sugars / Metabolic pathwa ys / Biosynthesis of
nucleotide sugars

K01206 FUCA, alpha-L-fucosidase Other glycan degradation / Lysosome
K01665 pabB, para-aminobenzoate synthetase

component I
Folate biosynthesis / Biosynthesis of cofactors

K01839 deoB, phosphopentomutase Pentose phosphate pathway / Purine metabolism / Metabolic pathways
K01902 sucD, succinyl-CoA synthetase alpha subunit Citrate cycle (TCA cycle) / Propanoate metabolism / C5-Branched dibasic acid 

metabolism / Other carbon fixation pathways / Metabolic pathways / Biosynthesis of
secondary metabolites / Microbial metabolism in diverse environments / Carbon
metabolism

K02237 comEA, competence pro tein ComEA
K03167 top6B, DNA topoisomerase VI subunit B
K03581 recD, exodeoxyribonuclease V alpha subunit Homologous r ecombination
K04477 ycdX, putative hydr olase
K04767 acuB, acetoin utilization pr otein AcuB
K05524 fdxA, ferredo xin
K05809 raiA, ribosome-associated inhibitor A
K06998 phzF, trans-2,3-dihydro-3-hydroxyanthranilate 

isomer ase
K07019 uncharacterized pr otein
K07126 uncharacterized pr otein
K10700 edbA, ethylbenzene hydroxylase subunit

alpha
Ethylbenzene degradation / Metabolic pathways / Microbial metabolism in diverse 
environments / Degradation of aromatic compounds

K10945 pmoB-amoB, methane/ammonia 
monooxygenase subunit B

Methane metabolism / Nitrogen metabolism / Metabolic pathways / Microbial 
metabolism in diverse en vironments / Carbon metabolism / Nitrogen cycle

K10946 pmoC-amoC, methane/ammonia 
monooxygenase subunit C

Methane metabolism / Nitrogen metabolism / Metabolic pathways / Microbial 
metabolism in diverse en vironments / Carbon metabolism / Nitrogen cycle

K13795 citB, tcuB, citrate/tricarballylate utilization 
protein

K15023 acsE, 5-methyltetrahydrofolate corrinoid/iron 
sulfur protein methyltransferase

Other carbon fixation pathways / Metabolic pathways / Microbial metabolism in 
di verse environments / Carbon metabolism

K15233 ccsB, citryl-CoA synthetase small subunit Other carbon fixation pathways / Metabolic pathways / Microbial metabolism in 
di verse environments / Carbon metabolism

K16130 mcyA, microcystin synthetase protein McyA Nonribosomal peptide structur es
K16964 ddhA, dimethylsulfide dehydrogenase subunit

alpha
Sulfur metabolism / Metabolic pathways / Microbial metabolism in diverse
environments

K16965 ddhB, dimethylsulfide dehydrogenase subunit
beta

Sulfur metabolism / Metabolic pathways / Microbial metabolism in diverse
environments

K17048 edbB, ethylbenzene hydroxylase subunit beta Ethylbenzene degradation / Metabolic pathways / Microbial metabolism in diverse 
environments / Degradation of aromatic compounds

K17052 serC, clrC, selenate/chlorate reductase
subunit gamma

Selenocompound metabolism 

K18896 gsmt, glycine/sarcosine N-methyltransferase Glycine, serine and threonine metabolism / Metabolic pathways
K18897 sdmt, sarcosine/dimethylglycine 

N-methyltr ansferase
Glycine, serine and threonine metabolism / Metabolic pathways

K20435 valM, validone 7-phosphate aminotransferase Acarbose and validamycin biosynthesis / Metabolic pathways / Biosynthesis of
secondary metabolites

K21515 aviRa, 23S rRNA 
(guanine2535-N1)-methyltransferase
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Figure 2. The signal between CWM of genomic features and glacier influence is phylogenetically structured. Line plots displaying the signal in 
relationships between the gene redundancy index as response variable and the distance to the glacier, the GI and the water temperature as covariates 
(A) and between gene number, genome size and tRNA number and chlorophyll-a as covariate (B). The signal was assessed using linear coefficients in 
the GAMs taking spatial variation into account when permuting abundances at various relative phylogenetic heights. Coefficients were normalized by 
the maximal v alue for any given glacial covariate-genomic feature pair over the various phylogenetic height values. Shaded areas represent the
standard error obtained through 20 null model iterations. Vertical lines indicate median phylogenetic heights for different taxonomic levels and are
for visual guidance only.

Members of Gammaproteobacteria shape the 
relationship between genomic features and
chlorophyll-a
In contrast to gene redundancy, relationships of genome size, gene 
number, and tRNA number with benthic chlorophyll-a concentra-
tion arose already at greater phylogenetic depths (∼0.6 relative 
ph ylogenetic tree height, corresponding to median class-level
depth, Fig. 2B). This signal was conserved across the lower range of 
the phylogenetic tree. Leave-one-cluster-out analysis highlighted 
the contribution of a single cluster to signal for all three 
genome properties - comprising all MAGs classified as Gammapro-
teobacteria in our dataset (termed GFS-Gammaproteobacteria,
Supplementary Table 4). Additionally, significant changes in 
genome size and gene number along the benthic chlorophyll-
a gradient were found for phylogenetic clusters encompassing 
MAGs classified as Acidobacteriota, Desulfobacterota, Myxococcota, 
and Nitrospirota. This finding aligns with previous work on GFS 

community assembly, which found that homogeneous selection
promotes microdiversity among Gammaproteobacteria (from the
Burkholderiales order previously assigned to Betaproteobacteria) and
Nitrospira among a few other taxa [23]. Moreover, these results 
highlight the importance of chlorophyll-a in profoundly shaping 
the structure of the GFS microbiome. We deem the fact that 
chlorophyll-a concentration, a biological factor, is more important 
in shaping dee p-rooting genomic signatures than physical
factors (e.g. temperature) particularly relevant considering the
importance of algal-bacterial interactions [19] and pronounced 
carbon limitation in GFS [28]. This may point to the long-term 
coherence of these drivers– which are now changing in GFSs due
to climate-change induced retreat of glaciers.

Given the abundance and prevalence of GFS-
Gammaproteobacteria [18, 21, 23], we next investigated the 
genomic properties of GFS-Gammaproteobacteria in relation
to glacier influence (Fig. 3). Indeed, we found a strong negative
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Figure 3. GFS-Gammaproteobacteria drive the variation in genomic features along the gradient of chlorophyll-a (A) scatterplot showing the variation 
in the relative abundance of GFS-Gammaproteobacteria and all other MAGs along the gradient of benthic chlorophyll-a in the world’s GFSs. Lines 
show linear GAM fits accounting for large-scale spatial patterns; shaded areas show prediction intervals. (B) Distributions of genomic features for 
GFS-Gammapr oteobacteria and other MAGs are displayed. Stars denote significance (P < .01) of Wilcoxon signed rank tests comparing the two groups. 
(C) L inear GAM coefficients representing the variation of genomic feature averages.

relationship between relative abundance of GFS-
Gammaproteobacteria and benthic chloroph yll-a (Fig. 3A). GFS-
Gammaproteobacteria had significantly increased coding density 
(median difference: 2%), but fewer tRNAs (median difference: 
3.05), and a lower gene r edundancy index (median difference:
0.025) compared to all other MAGs in our dataset (Fig. 3B). 
On the other hand, genome size and gene numbers of GFS-
Gammaproteobacteria were not significantly different from 
other MAGs. This contrasts our findings on community-weighted 
average genomic features and suggests that abundance dif-
ferences of GFS-Gammaproteobacteria across gradients of
glacier influence may contribute to the microbiome-weighted
averages.

Next, we examined relationships between genomic properties 
and prevalence and mean relative abundance of MAGs across 
our global repository of GFSs. Looking at the distribution of 
mean relative abundance and pr evalence, we find that the
GFS-Gammaproteobacteria harbor representatives with high
values (Fig. 4A and D, Wilcoxon tests, adjusted P-values <.001, 
log median difference = 0.54 for both, relative abundance and 
prevalence). Additionally, we found positive relationships between 
genome size and MAG prevalence and relative abundance
(Fig. 4C and D, whereas coding density was negatively related 
to prevalence and abundance (Fig. 4E and F). Using GAMs and 
a Bayes factor analysis, we tested whether these relationships 
differed between GFS-Gammaproteobacteria and other MAGs. A
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Figure 4. GFS-Gammaproteobacteria are abundant and prevalent. Comparison of relative abundance (A) and prevalence (B) in GFS of MAGs affiliated 
to Gammaproteobacteria and other classes. Smoothed splines representing GAMs comparing mean abundance (C and E) and prevalence (D and F) with 
normalized genome size (C and D) and coding density (E & F). Models with separate splines for GFS-Gammaproteobacteria and all other MAGs were 
better supported (Bayes factor > 1000) than a combined model. While t he difference is driven by high abundance and prevalence of large genomes 
among other classes (or conversely the absence of small genomes at low abundance and preva lence in GFS-Gammaproteobacteria),
GFS-Gammaproteobacteria exhibit increased values for coding density across the entire gradient.

GAM with separate splines for GFS-Gammaproteobacteria and 
other MAGs was better supported by the data (Bayes factor > 1000
for all comparisons) than a GAM with one spline for all MAGs
(Fig. 4). This indicates that GFS-Gammaproteobacteria combine 
increased coding density with reduced genome size compared to 
classes that are similarly abundant and prevalent in GFSs. Given 
the compositional nature of microbiomes, this relationship could 
in part (at low prevalence) also be driven by the low prevalence
of symbiotic Patescibacteria that have particularly small and
streamlined genomes and seem to show low dispersal capabilities
[71]. 

However, that the signal in genomic properties along the 
chlorophyll-a gradient was conserved across phylogenetic depths 
indicates that not the entire GFS-Gammaproteobacteria clade 
but rather specific sub-clades may drive this relationship. 
Indeed, the leave-one-cluster-out analysis performed at shal-
lower phylogenetic depth (relative phylogenetic depth = 0.2) 
identified specific clades including Polaromonas (nMAGs = 25), 
Rhodoferax (nMAGs = 21), JAAFIP01 (nMAGs = 23), Aquabacterium_A 
(nMAGs = 20), and Rubrivivax (nMAGs = 27). Other notable taxa 

included Novosphingobium (nMAGs = 42) and the Patescibacteria 
genus OLB19 (nMAGs = 32). The signal among multiple genus-
level clades across the GFS-Gammaproteobacteria suggests that 
the observed increase in genome size with higher chlorophyll-a 
concentrations (or, inversely, the reduction in genome size under 
high glacial influence when benthic chlorophyll-a concentration 
is particularly low) may result from either convergent evolution
across diverse lineages or an early adaptive expansion within
the GFS-Gammaproteobacteria. However, further phylogenomic
analyses would be needed to be better understand the mech-
anisms and timescales of these processes. As a first step,
we provide comparative pangenome analyses between GFS-
Gammaproteobacteria and their sister clade in SI (Supplementary
information, section “Pangenome analyses”).

We next sought to identify the functional potential associate 
with the differences in genome size, gene number and tRNA 
number along gradients of chlorophyll-a. We applied lasso 
regression to pinpoint KOs associated with clades exhibiting
significant signal. This approach enabled us to identify functions
that were enriched in these clusters, representing candidate
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Table 2. KEGG orthologs (KOs) that were identified by the LASSO regression analysis to be enriched in clades driving variations for both 
genome size and gene numbers, along the gradient of chlorophyll-a. The descriptions and pathways were obtained o n the KEGG 
website (https://www.kegg.jp/ entry/), human diseases related pathways w ere not included.

KO Symbol & Description Pathways 

K00028 malate dehydrogenase (decarboxylating) Pyruvate metabolism / Carbon fixation by Calvin cycle / Metabolic 
pathways / Microbial metabolism in diverse environments / Carbon
metabolism

K00090 ghrB, glyoxylate/hydroxypyruvate/2-ketogluconate 
reducta se 

Pentose phosphate pathway / Glycine, serine and threonine 
metabolism / Pyruvate metabolism / Glyoxylate and dicarboxylate 
metabolism / Metabolic pathwa ys / Biosynthesis of secondary 
metabolites / Microbial metabolism in diverse environments

K00525 E1.17.4.1A, nrdA, nrdE, ribonucleoside-diphosphate 
reductase alpha c hain

Purine metabolism / Pyrimidine metabolism / Metabolic pathways / 
Nucleotide metabolism

K00571 E2.1.1.72, site-specific DNA-methyltransferase 
(adenine-specific) 

K00646 pksF, curC, aprD, corD, malon yl-[acp] decarbo xylase
K01141 sbcB, exoI, exodeoxyribonuclease I Mismatch re pair 
K01432 AFMID, arylformamidase Tryptophan metabolism / Glyoxylate and dicarboxylate 

metabolism / Metabolic pathways / Biosynthesis o f cofactors
K01491 folD, methylenetetrahydrofolate dehydrogenase (NADP+)  /  

methenyltetrahydrofolate cyclohydrolase 
One carbon pool by folate / Other carbon fixation pathways / 
Metabolic pathways / Microbial metabolism in diverse 
environments / Carbon metabolism / Biosynthesis of cofactors

K01626 E2.5.1.54, aroF, aroG, aroH, 3-deoxy-7-phosphoheptulonate 
synthase 

Phenylalanine, tyrosine and tryptophan biosynthesis / Metabolic 
pathways / Biosynthesis of secondary metabolites / Biosynthesis of 
amino acids / Quorum sensing

K01673 cynT, can, carbonic anhydrase Nitrogen metabolism / Metabolic pathways 
K01952 PFAS, purL, phosphoribosylformylglycinamidine synthase Purine metabolism / Metabolic pathways / Biosynthesis of 

secondary metabolites
K02083 allC, allantoate deiminase Purine metabolism / Metabolic pathways / Microbial metabolism in 

diverse envir onments
K02568 napB, nitrate reductase (cytochrome), electron transfer 

subunit 
Nitrogen metabolism / Metabolic pathways / Microbial metabolism 
in diverse en vironments / Nitrogen c ycle

K03169 topB, DNA topoisomer ase III 
K03198 virB3, lvhB3, type IV secretion system protein VirB3 Bacterial secretion system 
K03442 mscS, small conductance mechanosensitiv e c hannel
K03775 slyD, FKBP-type peptidyl-prolyl cis-trans isomer ase Sl yD
K03818 wcaF, putative colanic acid biosynthesis acetyltransferase 

WcaF 
Exopolysaccharide biosynthesis 

K03832 tonB, periplasmic protein TonB 
K05962 protein-histidine pro s-kinase 
K06192 pqiB, paraquat-inducible pro tein B 
K07025 putative hydrolase of the HAD superfamil y
K07114 yfbK, Ca-activated chloride c hannel homolog 
K07343 tfoX, DNA transformation protein and r elated pro teins
K07684 narL, two-component system, NarL family, nitrate/nitrite 

response r egulator NarL
Two-component system 

K07712 glnG, ntrC, two-component system, NtrC family, nitrogen 
r egulation response regulator GlnG

Two-component system 

K10012 arnC, pmrF, undecaprenyl-phosphate 
4-deoxy-4-formamido-L-arabinose tr ansferase 

Biosynthesis of various nucleotide sugars / Metabolic pathways / 
Cationic antimicrobial peptide (CAMP) resistance

K10537 araF, L-arabinose transport system substrate-binding 
pr otein

ABC tra nsporters 

K12055 parA, chromosome partitioning related pr otein P arA
K12500 tesC, thioesterase III 
K12601 SKI8, superkiller protein 8 RNA degr adation 
K12602 WDR61, REC14, SKI8, WD repeat-containing protein 61 RNA degr adation 
K13117 DHX35, ATP-dependent RNA helicase DDX35 
K14160 imuA, protein Im uA 
K14742 tsaB, tRNA threonylcarbamoyladenosine biosynthesis 

pr otein T saB
K15653 mxcG, nonribosomal peptide synthetase MxcG Biosynthesis of siderophore group nonribosomal pe ptides
K17218 sqr, sulfide:quinone oxidoreductase Sulfur metabolism / Microbial metabolism in di verse enviro nments
K20036 dmdD, (methylthio)acryloyl-CoA hydratase Sulfur metabolism / Metabolic pathways / Microbial metabolism in 

diverse envir onments
K20534 gtrB, polyisoprenyl-phosphate glycosyltr ansferase 
K20906 hcmA, 2-hydroxyisobutanoyl-CoA mutase lar ge subunit 
K21211 ncsC1, NDP-hexose 4,6-dehydr atase 

(continued) 
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Table 2. Continued. 

KO Symbol & Description Pathways 

K21394 Biosynthesis of enediyne antibiotics / Biosynthesis of 
secondary metabolites

K21405 acoR, sigma-54 dependent transcriptional regulator, 
acetoin dehydrogenase operon t ranscriptional activator 
AcoR

K21739 rclA, probable pyridine nucleotide-disulfide 
o xidoreductase 

K21843 TTC7, tetratricopeptide repeat pr otein 7 

drivers of expanded functional potential. While we observed 
47 KOs that wer e shared for genome size and gene number
(Table 2), not a single significant clade (and hence KO) was found 
for the relationship between tRNA number and chlorophyll-a at 
shallower depth. This may be attributable to a generally weaker 
signal observed for tRNA compared to genome size and gene 
number (as reflected in the P-values of the GAMs), and potentially
also to the tendency for tRNA genes to be underrepresented on
MAGs due to metagenomic binning.

Nevertheless, for genome size and gene number, several 
metabolic pathways—including pyruvate metabolism, the gly-
oxylate cycle, and nucleotide biosynthesis—were represented by 
key enzymes such as malate dehydrogenase (decarboxylating), 
glyoxylate/hydroxypyruvate/2-ketogluconate reductase, and 
ribonucleotide reductases. Nitrogen and sulfur metabolism w ere
also represented, with genes like napB, cynT, and sqr suggesting
chemolithoautotrophy, typical of oligotrophic glacier-related
systems [21, 72, 73]. Notably, genes involved in quorum sensing 
and secondary metabolite biosynthesis—such as the aroF/G/H 
cluster and mxcG (non-ribosomal peptide synthetase)—point to 
increased microbial interactions and competition at reduced
glacial influence, which is compatible with the “greening” of
GFSs [26, 28]. Two-component systems (narL, glnG) and secretion-
related proteins (virB3) further highlight regulatory complexity 
linked to environmental responsiveness, potentially a crucial 
adaptation to the fluctuating environmental conditions of 
GFSs. Overall, and given the taxonomic diversity and variety of 
functional adaptations observed, more targeted, taxon-specific
analyses will be necessary to gain deeper insights into the
ecological strategies of individual lineages.

Conclusions 
Evolutionary history and environmental constraints shape the 
genomic architecture of microbial communities, ultimately with 
consequences for diversity and function. Here, we developed a 
phylogeny-rooted analytical framework that unravels signatures 
of genomic trends in the world’s GFSs. The approach allows 
pinpointing the phylogenetic depth at which these signatures 
arise and the importance of individual clades at shaping 
community-level genomic features. We find significant variation 
in genome size, gene number, tRNA gene numbers, and modula-
tion of genomic redundancy along gradients of glacial influence. 
Collectively, our findings suggest that the selective constraints in 
GFSs explain microbiome-level patterns in genome architecture
and that changes in genomic features mainly occur via changes
in abundance among specific GFS-Gammaproteobacteria clades.
We deem these findings critical because the deep phylogenetic
rooting of these signatures reflects the long-term and putatively

consistent nature of this extreme environment, which is now
changing at a rapid pace owing to climate change.
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